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Abstract

The earthquake size-frequency distribution of individual seismic faults commonly differs from

the Gutenberg-Richter law of regional seismicity by the presence of an excess of large earthquakes.

Here we present a cellular automaton of the Forest-fire Model type that is able to reproduce several

size-frequency distributions depending on the number and location of asperities on the fault plane.

The model describes a fault plane as a two-dimensional array of cells where each cell can be

either a normal site or a trigger site. Earthquakes start on trigger sites. Asperities appear as

the dual entities of the trigger sites. We study the effect that the number and distribution of

asperities (the dual of the set of trigger sites), the earthquake rate, and the aspect ratio of the

fault have on the size-frequency distribution. Size-frequency distributions have been grouped into

subcritical, critical and supercritical, and the relationship between the model parameters and these

three kinds of distributions are presented in the form of phase maps for each of the five asperity

types tested. We also study the connection between the model parameters and the aperiodicity of

the large earthquakes. For this purpose the concept of aperiodicity spectrum is introduced. The

aperiodicity in the recurrence of the large earthquakes in a fault shows an interesting variability

that can be potentially useful for prediction purposes.
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I. INTRODUCTION

If there is a well-established fact regarding regional seismicity it is the relationship be-

tween the magnitude of an earthquake and its frequency, known as the Gutenberg-Richter

law [1]. This law is of the power-law type when magnitudes are expressed in terms of rup-

ture area [2], n ∝ S−b, where n is the number of observed earthquakes with rupture area

greater than S, and b is the so-called b-value, which is a “universal constant” in the range

0.5-1.5, although b ' 1 is the commonest value [2–4]. The Gutenberg-Richter law implies

that earthquakes are, on a regional or world-wide scale, a self-similar phenomenon lacking

a characteristic scale (but see Ref. 5 for a different point of view).

It is important to notice, however, that the Gutenberg-Richter law is a property of re-

gional or global seismicity, which appears when we average seismicity over big enough areas

and long enough time intervals. In the last ten years, data have been collected to extract

statistics on individual systems of earthquake faults [6]. Interestingly, it has been found

that the distribution of earthquake magnitudes may vary substantially from one fault to

another and that, in general, this type of size-frequency distribution is different from the

Gutenberg-Richter law. Many single faults or fault zones display power-law distributions for

only small events (small compared with the maximum earthquake size a fault can support,

given its area), which occur in the intervals between roughly quasi-periodic earthquakes of

much larger size which rupture the entire fault. These large and quasi-periodic earthquakes

are termed “characteristic” [7], and the resulting size-frequency distribution is referred to as

Characteristic Earthquake distribution. It is important to note that the concept of charac-

teristic earthquake is not universally accepted among seismologists [6, 8, 9].

In any case, due to the short period of instrumental earthquake records and the scarcity

of paleoseismic studies [6, 10–13], the statistics of naturally occurring earthquakes in single

faults is poor. This fact justifies the development of “synthetic seismicity” models [14], in

which long catalogues of events are generated by computer models of seismogenesis. Such

models can be tuned by requiring that they reproduce to a reasonable degree what is known

of the statistics of past seismicity, and then used to make inferences about the behaviour of

seismicity using much longer and homogeneous catalogues of synthetic events.

Here, we propose a modification of an existing cellular automaton, the Forest-fire Model

(FFM) [15, 16], as an earthquake-cycle model. The link between cellular automata models
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and seismicity works by discretizing a fault as a one- or two-dimensional plane made up of a

large number of patches. These models are usually nondeterministic and neglect the details

of both elasticity and fault friction, substituting them by simple cellular automata rules.

Despite their simplicity, they are able to reproduce various types of size-frequency statistics,

including Gutenberg-Richter and Characteristic Earthquake distributions [17–30].

The model presented here is (i) two-dimensional, (ii) for a single fault, (iii) with a

percolation-like stress-transfer mechanism, (iv) quasi-static, (v) with a static/dynamic fric-

tion law with total stress drop, and (vi) dissipative. To this list we would add that our

model is inspired by the concept of asperity, as it is the presence of particularly strong ele-

ments in the fault plane that actually controls its relaxation. In this paper we use the term

asperity in the sense of Ref. 31, that is, in its macroscopic sense and not in the microscopic

one as used in the Materials Science literature. Thus, an asperity is an area on a fault that

is stuck and large earthquakes unload them. From this viewpoint, each fault has only one

or few asperities [32, 33], it being common that these high-strength areas occupy boundary

positions on the fault plane, but not necessarily so.

A 1-dimensional version of this model has already been successfully used by the authors

as a renewal model to reproduce important aspects of the seismic cycle of individual faults

[34], and for prediction purposes [35, 36]. This 1-d version, nicknamed the Minimalist Model

(MM) because of its simplicity, has the important advantage that several properties of the

model can be analytically obtained by means of a Markov chain approach [34], but it has the

disadvantage of its low dimensionality and rigidity. The purpose of this paper is precisely

to present the 2-d version of the MM and to cast it in the already well-known framework

of the FFM. For obvious reasons, we will call 2d-MM the two-dimensional version of the

Minimalist Model although its relationship to the FFM can not be forgotten.

Apart from the score of papers addressing the connection between heterogeneity and

size-frequency statistics [37–45], the only previous work where the FFM has been directly

linked to seismicity and the earthquake cycle is that of Newman and Turcotte [46]. Our

model has in common with theirs the use of a percolation-like stress-transfer mechanism,

but differs in the way earthquakes are triggered: in Ref. 46 a characteristic earthquake is

an infinite percolation cluster (i.e., a cluster of occupied sites spanning the lattice east-west

or north-south). Because of this triggering mechanism, Newman and Turcotte’s model is

capable only of generating characteristic earthquakes, but no smaller ones in between. Our
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model generates earthquakes of all sizes, with a specific size-frequency distribution.

The paper is set out as follows. In Section II we present the new model emphasizing

its relationship to the forest-fire and minimalist models. Then, we graphically show the

different types of asperity distributions and the type of two-dimensional grids that will be

studied in the numerical simulations.

The results of the simulations are shown in Section III. First, we present the resulting

size-frequency profiles and phase maps where the type of size-frequency distribution is related

to the parameters of the model. Then, the recurrence probability of the large earthquakes is

analysed emphasizing the role of the aperiodicity as a useful compact index that evaluates

the predictability of the large events. The results section concludes with a quantitative

evaluation of the goodness of several prediction strategies.

Finally, in Section IV we come back to the nature of the model, its quantitative differences

with the forest-fire model, discuss the results and remark on the most relevant conclusions.

II. THE MODEL AND ITS SIMULATION

The FFM was introduced in Ref. 47 and modified in Ref. 15 to make it self-organized

critical. The Drossel-Schwabl FFM (DS-FFM) is defined in a hyper-cubic lattice of dimen-

sionality 1 < d < ∞, although we will concentrate here on the d = 2 case because of its

immediate relevance to two-dimensional fault planes. The model can be boiled down to four

cellular automaton rules [30]: (i) a green tree catches fire if any of its 4 nearest-neighbors

is burning; (ii) a burning tree turns into an empty site; (iii) at an empty site a green tree

grows with a given probability p; and (iv) a green tree becomes a burning tree with a prob-

ability f even if none of its neighbors is burning (sparking probability). This fourth rule

is the modification that Drossel and Schwabl introduced in the original model. To make

the implementation on a computer more feasible, a separation of time scales is imposed by

assuming that the growth and spontaneous ignition cease as long as any trees are burning.

In other words, the time scale of fires is much shorter than the time scale of tree growth

and also than the time between sparks. In practical terms a realization of the DS-FFM

chooses at random a site for ignition. If the site is occupied by a tree, this tree and all

trees connected to it are instantaneously burnt down (i.e., the corresponding sites become

empty); in the next time step, a tree is planted in a randomly chosen site of the lattice.
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The DS-FFM can be easily “translated” into earthquake terminology: the 2-d lattice is

the fault plane (horizontal size N and vertical size M); a site on the lattice is a small patch

of the fault plane; a site with a tree becomes a loaded patch in the fault, and a fire is an

earthquake. Time is measured by the planting of trees in the DS-FFM and by the addition

of load (or stress) in our model. This slow stress buildup simulates the remote stress that

plate motion adds to real faults. In the model it is added in discrete units (particles) that

can be thought of as stress quanta [48]. What about the sparking probability? Here is where

the concept of trigger site enters into the model. In the standard FFM any lattice site can

be ignited if it is occupied by a tree. In the 2d-MM, and this is the key difference with the

standard model, only specific lattice sites, the trigger sites, can be “ignited” and start an

earthquake. So, we divide the lattice into two sets of sites: normal sites and trigger sites.

Both types of sites can be unloaded (empty) or loaded (tree), but only trigger sites can start

an earthquake. The earthquake starts at the very moment a trigger site becomes loaded.

In other words, the more trigger sites the lattice has, the higher the sparking probability

is. If a fraction f of sites is occupied by trigger sites then, on average, once every 1/f time

steps an earthquake will be triggered. As in the standard model, the size of the resulting

earthquake will depend on the number of occupied sites that belong to the same cluster as

the ignited trigger site. After an earthquake, this cluster is emptied (unloaded) and in the

next time step another particle is randomly deposited in the lattice. Clusters are identified

and counted with the Hoshen-Koppelman algorithm [49].

It is important to stress that a trigger site is not an asperity. In a sense it is just its dual,

as Fig. 1a shows. The relationship between trigger sites and asperities is based on the idea

of a zone of influence or catchment area around each trigger site (Fig. 1b). Sites close to a

trigger site are commonly unloaded upon failure of the trigger site. On the other hand, sites

far from trigger sites tend to accumulate load and are only unloaded when the total load

on the lattice is high and the probability of finding a percolation path from a trigger site

to a distant non-trigger site has increased. Thus, asperities are the set of sites outside the

catchment area of any trigger site in the lattice (black areas in Fig. 1b). The unloading of

asperities gives rise to large earthquakes. The area occupied by asperities increases when the

number of trigger sites decreases, making thus clear the dual relationship between asperities

and trigger sites.

Figure 1a shows the five types of trigger site distributions that have been used in the
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FIG. 1: (a) Types of trigger site distributions used in the simulations (left column) and their

corresponding asperity maps on a fault plane (right column). From top to bottom, Type-1: end

asperity; Type-2: central vertical asperity; Type-3: central horizontal asperity; Type-4: boundary

asperities; Type-5: dispersed asperities. (b) Concept of zone of influence or catchment area. Each

trigger site (light gray) is surrounded by an area (white circles) which is commonly unloaded

upon failure. Regions of the lattice outside the catchment area of any trigger site (black) are the

asperities. Here load acccumulates and only when the lattice is highly loaded can it be depleted.

simulations and the corresponding asperity maps on the fault plane. Type-1 is an end

asperity and can be regarded as the main geometrical and/or mechanical heterogeneities

that terminate a fault or divide it into segments. Type-2 and Type-3 asperities are central

asperities, i.e., particularly strong patches in the fault plane that control the way the fault

relaxes. Type-4 is a boundary asperity, in a sense the opposite of a cental asperity, where

the weakest part of the fault is the central one. Finally, type-5 asperities are randomly

distributed over the fault plane. This classification of asperity types does not intend to be

exhaustive. It only includes extreme cases to better appreciate the influence of the number

and distribution of asperities on the size-frequency statistics.

Because the sparking probability f depends on the number of trigger sites and the size of

the lattice, it is not an independent parameter. For type-1 trigger sites f = 1/N ; for type-2

triggers, f = 2/N ; for type-3 triggers f = [2(M + N − 2)]/(M × N); for type-4 triggers,

f = 1/(M ×N), and for type-5 triggers, f = 1/N because we select M sites as trigger sites.

Apart from the number and distribution of asperities (which fixes the sparking probability

f , i.e., the earthquake rate), the other parameters of the model are the size N ×M of the

lattice, N being the horizontal dimension and M the vertical one; and the aspect ratio of the

fault plane r = N/M . Only three of the four parameters r, f , N , and M are independent.

The aspect ratio is important in real faults because it is related to the overall size of the

fault plane, small faults being square (circular), with r ≈ 1 and big faults rectangular, with

r > 1 due to the depth limit that the brittle-ductile transition imposes on the Earth crust

(around 15 km for vertical strike-slip faults, but can be more for subduction-type faults).

Considering this depth limit and the range of surface fault trace lengths (from few kilometers

for small earthquakes to 103 km for great earthquakes), a reasonable range of aspect ratios
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FIG. 2: (Color online) Size-frequency distribution for the 2d-MM as a function of type of asperity

(upper panel), aspect ratio (middle panel), and system size (lower panel).

FIG. 3: (Color online) Phase maps for the five different asperity types. The four parameters of the

model are explicitly shown in each graph. N increases from left to right and M from bottom to top.

The other two parameters of the model are included as isolines (dashed lines for the aspect ratio r

and dotted lines for the sparking probability f). The resulting type of size-frequency distribution

is colour coded in yellow (light gray) for supercritical behaviour, cyan (middle gray) for critical

behaviour, and navy blue (dark gray) for subcritical behaviour. Intermediate behaviours between

supercritical and critical, and between subritical and critical are also included.

for real faults is 1 < r < 50.

We want to explore the impact that the asperity distribution and the fault plane as-

pect ratio have on (i) the size-frequency distribution, (ii) the time between characteristic

earthquakes, and (iii) the aperiodicity of the earthquake cycle. All three characteristics are

important in assessing the predictability of the large earthquakes in the model.

III. RESULTS

A. Size-frequency distributions

To appreciate at a glance the type of size-frequency distributions that the model is able

to produce, Fig. 2 shows several examples as a function of asperity type (upper panel),

fault plane aspect ratio (middle panel), and fault size (lower panel). All three panels plot

the non-cumulative size-frequency distribution P (k), where k is the size of an earthquake

(i.e., the number of loaded patches connected to the trigger site). Figure 2a shows the effect

of changing the type of asperity for a square system of size 50 × 50. Here we can already

see the three main different types of size-frequency distributions [27]: supercritical (or char-

acteristic earthquake type), critical (or Gutenberg-Richter type) and subcritical. Type-1,

2 and 4 asperities produce supercritical size-frequency distributions, although the degree

of supercriticality is not constant,increasing from type-2 to type-1 to type-4. Asperities
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of type 3 (boundary asperities) produce an almost-critical size-frequency distribution; and

type-5 asperities give a subcritical size-frequency distribution. In general terms, the degree

of criticality is related to the size of the ‘bump’ at the large-earthquake size end.

How the size-frequency distribution changes with the aspect ratio r for a type-1 asperity

system is shown in Fig. 2b. The black curve is the size-frequency distribution for an N = 100

one-dimensional MM [34], and the rest of the curves are for 2-d systems with decreasing r,

from 100 (elongated faults) to 1 (square faults). We see that the slope of the power-law part

is the same for all aspect ratios and, more surprisingly, that the 1-d and the 2-d systems

also have the same slope. An important difference between the 1-d and the 2-d version

of the MM is that in the 1d-MM a strict definition of a characteristic earthquake can be

given, as only the biggest earthquakes (k = 100 in the example) depart from the power-law

curve. On the contrary, the 2d-MM has a broad range of large earthquakes that do not

follow the power law curve and which can thus be considered characteristic [7]. This will

have important implications when discussing the predictability of the model. Notice, also,

how the maximum that marks the characteristic size of the large earthquakes decreases as

r decreases (f is constant and equal to 0.01 in all the curves) implying a dependence of the

degree of criticality on the aspect ratio.

Finally, Fig. 2c depicts the change in size-frequency distribution as the size of a square

system (i.e. N = M) is increased from N = 5 to N = 500. Here, r is constant and f

varies from 0.2 (smallest lattice) to 0.002 (largest lattice). The basic observation is that

the distribution is very robust, and little change can be appreciated as the size increases

although the sparking probability decreases by two orders of magnitude. Although small,

the change in the size-frequency distribution is apparent, with an increase in the degree of

super-criticality as the sparking probability decreases [30].

This qualitative survey of the range of size-frequency distributions is insufficient to quan-

titatively relate the type of asperity to the parameters of the model. For that purpose,

extensive numerical simulations have been carried out to reconstruct the phase space of the

model. As already said, the model has four parameters, N , M , r, and f , although only

three are independent. Cuts of the global phase space for each type of asperity are displayed

in Fig. 3. Phase maps are shown with N in the horizontal axis and M in the vertical

axis, together with r and f as isolines. Lines of constant aspect ratio are dashed, while

lines of constant sparking probability are dotted. The type of size-frequency distribution is
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shown in yellow (light gray) for supercritical behaviour; pale blue (middle gray) for critical

behaviour; and navy blue (dark gray) for subcritical behaviour. Due to the difficulty in

defining some transitional cases, two intermediate behaviours have been introduced for the

transition from (pure) supercritical to (pure) critical behaviour, and for the transition from

(pure) subcritical to (pure) critical behaviour. We will now describe the behaviour of the

model for each asperity type.

1. Asperity type 1 (end asperity)

All the simulations carried out with trigger sites of the first type give a supercritical

size-frequency relation (Fig. 3, first graph). Examples of specific size-frequency curves

have already been given in Fig. 2b, c. They clearly show the positive departure from the

power-law for large earthquakes that is the hallmark of supercritical behaviour. The sparking

probability (a proxy of earthquake rate) is independent ofM , and so isolines are vertical (four

are shown in the figure, from 0.01 on the left to 0.0025 on the right). Careful observation

of specific size-frequency curves indicates that the degree of supercriticality varies more

rapidly with the aspect ratio than with the sparking probability. The highest degree of

supercriticality is connected in type-1 asperity simulations with elongated systems (large r)

and small sparking probabilities. This is logical if we resort to the concept of catchment

area introduced before (Fig. 1b). If the aspect ratio is large (very elongated faults), trigger

sites in a vertical edge are few and most of the lattice is outside their aggregated catchment

area. Because of the elongated character of the lattice, few percolation paths are possible

between trigger sites and the opposite end of the lattice, facilitating thus the storage of load

in the asperities by simultaneously depleting the load in the catchment areas of the trigger

sites. Few trigger sites also means a low earthquake rate, favouring again the accumulation

of load in the system and supercriticality.

2. Asperity type 2 (vertical central asperity)

This case has a unique large central asperity, elongated in the vertical direction, which

is the dual of two sets of trigger sites occupying the two vertical edges of the lattice. The

behaviour of the system for asperities of the second type match closely that of the previous
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case, although the degree of supercriticality is lower because the sparking probability is

higher for the same N , M and r. This is shown in the figure by the small area with critical

behaviour near the left corner of the triangle. For these simulations the positive excess of

large earthquakes has disappeared. Obviously, the higher earthquake rate implied by the

larger value of f precludes the complete filling of the lattice, inhibiting in this way the

occurrence of system-wide earthquakes in this area of the phase space.

3. Asperity type 3 (horizontal central asperities)

Type-3 asperity systems have one or several central asperities elongated in the horizontal

direction, far from all the edges of the fault plane as a consequence of the location of the

trigger sites. The earthquake rate has increased again compared with type-1 and type-2

systems, so that f -values are larger. This is clearly shown in Fig. 3, where almost half the

area of the graph is below the f = 0.01 isoline. Also, f -isolines are now near-horizontal,

whereas in the two previous cases they are vertical, intersecting r-isolines at high angles. This

increase in the sparking probability gives rise to a richer variability of behaviour,exhibiting

the full range of size-frequency distributions, from subcritical for large-f large-r lattices,

to supercritical for small-f , small-r lattices. The degree of supercriticality increases from

the lower left corner to the upper right corner in the graph and depends both on f and

r. The smallest degree of supercriticality is found at the base of the triangle near its left

corner. Here the earthquake rate is largest and so is the aspect ratio. A large aspect ratio

tends to overlap the catchment areas of the upper and lower rows of trigger sites, making

asperities very small or even non-existent; this configuration inhibits the accumulation of

load (favoured also by the large earthquake rate) and the system produces only small and

medium earthquakes, but no large ones. This is the definition of subcritical behaviour.

The upper right corner of the phase map has the opposite values of r and f , both being

small. A square lattice maximises the size of the central asperities and a small f minimises

the earthquake rate. Both effects facilitate the accumulation of load in the central part of

the lattice and the production of system-wide earthquakes (supercritical behaviour).
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4. Asperity type 4 (boundary asperity)

Although this type of asperity distribution can not be considered too realistic for surface-

braking faults (the upper horizontal edge of these faults is always a free boundary) it can

have some bearing on blind faults (those that do not reach the surface and are pinned at all

four edges). Leaving aside the appropriateness of type-4 asperities in relation to real faults,

they are an interesting addition to the model, as they allow the exploration of very small

values of f for a wide range of system sizes. Because of this, the sparking probability is

very low compared with the other types of asperities. This sole characterisitic makes the

behaviour universally supercritical, although supercriticality decreases towards the lower left

corner of the graph. Isolines of f are straight lines with negative slope.

5. Asperity type 5 (distributed asperities)

This last type of asperity distribution differs from all the others in its stochastic nature.

M trigger sites are randomly (but homogenously) located on the lattice. Homogeneously

means that each row of the lattice has one and only one trigger site and no trigger site

can share the same column. This assignment assures that all trigger sites are surrounded by

non-trigger sites. Lines of constant f and r are identical to those of type-1 asperities, but the

resulting phase map is completely different. Again, as was the case with type-3 asperities,

the behaviour is rich and size-frequency distributions of the three types are represented in

different parts of the map. There is a clear dependence on r and f . Subcritical behaviour

is restricted to the small-r and large-f region, and supercritical behaviour is found only in

the lower part of the phase map, for large values of r (i.e., for elongated faults). Compared

with Type-3 systems, we see that now the subcritical region is restricted to square systems.

This is a consequence of the way trigger sites are dispersed in the lattice (one per row and

no two trigger sites in the same column). When the lattice is very elongated, few trigger

sites are seeded and the probability is high of finding areas devoid of trigger sites (i.e.,

with asperities). On the other hand, when the lattice is square, many more trigger sites

are seeded, and the probability of finding large asperities is consequently smaller; thus, the

behaviour of the system becomes less and less supercritical as r tends to 1 (for constant N).
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FIG. 4: Aperiodicity spectrum of a 10 × 100 system with a type-1 asperity (thick gray curve in

main panel). The aperiodicity is plotted as a function of the minimum earthquake size k included

in the time series. The main panel also shows the size-frequency distribution (black curve). The

four smaller plots are inter-event time distributions for specific points on the aperiodicity spectrum,

k ≥ k1 = 1, k ≥ k2 = 40, k ≥ k3 = 550, and k ≥ k4 = 850. Point k2 has been chosen inside

the power-law section of the size-frequency distribution; point k3 is located just where scaling

breaks down (typically this occurs when more than half of the sites in the lattice participate in

an earthquake);and point k4 is located near the maximum on the characteristic earthquake hump.

Time in these plots is dimensionless, measured in number of particles added to the system.

B. Aperiodicity spectrum and inter-event time distribution

A compact way of assessing the predictability of the large earthquakes in the 2d-MM

model is by means of their aperiodicity α. The aperiodicity is a quantitative measure of the

regularity of a time series. If µ is the average time between two consecutive characteristic

earthquakes (i.e., the mean duration of the earthquake cycle), and σ is the standard deviation

of the duration around the mean, then α = σ/µ. The aperiodicity is otherwise known as the

coefficient of variation. G. Molchan [50] has shown that the predictability of a non-periodic

sequence of events is determined by the coefficient of variation rather than the inter event

time distribution itself.

We have computed the aperiodicity of the large earthquakes in the 2d-MM and an example

of its behavior is shown in Fig. 4 as the thick gray line in the main plot. Because the definition

of a characteristic earthquake in the 2d-MM is not as straightforward as in the 1d case [34],

we have calculated, for completeness, the whole spectrum of aperiodicities, taking as the

target of observation any earthquake bigger than k, from k = 1 to k = M × N . This is

what the gray curve means in Fig. 4. The aperiodicity spectrum for the 2d-MM has several

interesting properties: it starts (k = 1) and ends (k = M × N) at α ≈ 1; from k = 1 it

decreases to a minimum value (α ≈ 0.3 for a 10× 100, type-1 asperity system); and then it

starts increasing until reaching again α ≈ 1 for earthquakes close to the maximum allowable

size. This behavior is similar for other sizes, aspect ratios, and asperity types and can thus

be considered general.
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Thus, we see how the aperiodicity spectrum evolves from pure Poissonian (α = 1) to

quasi-periodic (α < 1) to α ≈ 1 again (but clearly non-Poissonian) as the minimum size of

the target earthquakes changes from 1 to M×N . In the same panel of Fig. 4 we have drawn

the size-frequency distribution (black curve) to see how the increase in aperiodicity near the

right-hand side of the plot relates to the deviation from the power-law in the size-frequency

distribution. Note that while the size-frequency curve P (k) corresponds to individual (non-

accumulated) values of the size k, the curve of aperiodicities corresponds to accumulated

(≥ k) values of its size.

The decrease in aperiodicity in the first part of the aperiodicity spectrum is easily ex-

plained. The time series of the 2d-MM can be considered as the superposition of two different

processes: one process, the generation of events of any size, is random in time; the other,

the generation of intermediate and large earthquakes, is quasi-periodic. So, when events

of random origin are eliminated from a time series, what remains has, necessarily, a lower

aperiodicity. This is why the aperiodicity decreases from 1 towards a minimum value. This

minimum value depends on the asperity distribution, system size, and system aspect ratio.

In particular, the regularity is enhanced as the aspect ratio r grows. It is clear that the

elongated form favors the storing of many particles in the system (highly loaded fault) be-

fore one of the few trigger sites is hit, which will frustrate the formation of a big cluster of

occupied sites. This low α value remains almost constant up to k ≥ k3, where k3 = 550

(see the caption of Fig. 4). The reason for this lies in the fact that the middle-sized events

k2 < k < k3 have only a small impact on the complete range k ≥ k2, as they are scarce and

their absence (when we consider only the range of sizes k ≥ k3) is not so important from

the aperiodicity point of view.

The reason for the increase in aperiodicity when considering only the final fraction of the

largest earthquakes (k > k3) is due to the fact that, in this model, the enhanced regularity

(low α) corresponds to the inclusive consideration of all the large relaxations k ≥ k3 (that

is, all the relaxations under the hump in the size-frequency distribution). Thus, when the

target of observation does not take into account this unity, but focuses only on sizes k ≥ k4,

the regularity is lost and α grows. This is clearly seen in Fig. 5, where a particular, although

representative section of a time series coming from the 2d-MM is shown: the regularity in the

occurrence of events is greater when all events above 550 are considered. If this lower limit

of 550 is steadily increased, more and more large events (all belonging to the same group)

14



are excluded from the time series and their aperiodicity increases. Near the maximum of the

hump in the size-frequency distribution (k4 = 850 in Fig. 5) the regularity of the sequence

of events drops as the quasi-periodic process that generates these large earthquakes is split

into its random components (each particular size).

The shape of the aperiodicity spectrum, as depicted in Fig. 4 is not unique to the 2d-

MM. We have verified that the Abelian sandpile model [18, 51, 52] also has an aperiodicity

spectrum which is qualitatively similar, with a high aperiodicity (close to one) both for all

the events and only the largest ones, and a minimum in between. The same is true for

Burridge-Knopoff slider-block automata models [53].

Figure 4 also shows how the inter-event time probability distribution changes with the

definition of characteristic earthquake. Time t is discrete and is measured in units of particles

added since the last characteristic earthquake. Four inter-event time probability distribu-

tions have been included, corresponding to four points on the aperiodicity spectrum (k1 ≥ 1,

k2 ≥ 40, k3 ≥ 550, nd k4 ≥ 850). The first point, k1 ≥ 1, includes all the events generated

by the dynamics of the 2d-MM; the second point, k2 ≥ 40, is located where the aperiodicity

levels off after the initial decrease; the third point, k3 ≥ 550, coincides with the deviations

from the power law in the size-frequency distribution; and the fourth point, k4 ≥ 850, is at

the summit of the hump that defines the characteristic earthquakes of the model.

The inter-event time distribution for k ≥ 1 is purely geometric, reflecting the Poissonian

nature of the model when all earthquakes are included; the distribution for k ≥ 40 has a

maximum for t > 0 and a faster-than-geometric decay for large times. The most important

difference between this and the k ≥ 550 distribution is that the former lacks a stress shadow.

A stress shadow is the time period at the beginning of an earthquake cycle where the

probability of having another great earthquake is zero, and is a basic ingredient of all seismic

faults. The k ≥ 550 inter-event time distribution corresponds to the end of the power-law

section of the size-frequency distribution and is the most reasonable choice for the definition

of characteristic earthquakes in the 2d-MM.

If we focus on just the largest earthquakes, k ≥ 850, near the tip of the hump in the

size-frequency distribution, we see that the inter-event time distribution is not a exponential,

although for longer times the decay is indeed exponential. Apart from the exponential tail,

the inter-event time distribution for the k ≥ 850 case has a ‘stress shadow’ for short time

intervals, and a maximum, followed by the exponential decay. Both elements of the inter-

15



FIG. 5: (Color online) Time series for one realization of a 10× 100 type-1 asperity system. 5× 105

time units are shown (time is dimensionless, measured in number of particles added to the system).

Each vertical line is an earthquake, whose height represents its size. Three sizes are highlighted by

horizontal lines, k2 = 40, k3 = 550, and k4 = 850.

event time distribution are important for the predictability of these earthquakes, as the next

subsection will clarify.

C. Forecasting

A convenient way to assess the predictability of a time series is by trying to forecast

events (called target events) by declaring alarms at particular times. The aim is to declare

alarms before all target events in order not to miss any, but to declare them just before the

events in order to minimize the total alarm time. Many strategies can be devised to declare

the alarms but there is a reference strategy to which all others can be compared [46, 54, 55].

This strategy consists of setting the alarm a fixed time interval (waiting time) after each

target event and maintaining it until the occurrence of the event. If the following target

event in the time series occurs before the alarm is raised, it is counted as a prediction error;

if the following target event in the time series occurs after the alarm is raised, it is counted

as a prediction success and the alarm is then cancelled.

The fraction of errors fe (number of missed events divided by the total number of events)

and the fraction of alarm time fa (total alarm time divided by the total duration of the time

series) can be computed as a function of the waiting time t and the purpose is to find the

optimum waiting time. This optimum waiting time depends on the relative importance that

failing to predict an event has compared to keeping the alarm on. An objective function,

called loss function, L, can be defined that incorporates this trade-off in each particular

case. Here we will use the simplest of them, L = fe + fa, where failure to predict and a

long alarm time are equally penalized. Obviously the aim is to find the waiting time t = t?

that minimizes L(t). This minimum value is denoted by L? = L(t?). And the best way

to graphically display this is by means of an error diagram, where the fraction of errors

fe runs along the horizontal axis and the fraction of alarm time fa runs along the vertical

axis (Fig. 6). Error diagrams were introduced in earthquake forecasting by Molchan [50]
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who contributed with rigorous mathematical analysis to the optimization of the earthquake

prediction strategies. In an error diagram L = 0 means a perfect prediction (all the events

have been predicted and the alarm was raised just before each event, so that fa → 0) and

L = 1 means no prediction at all, either because we ‘predicted’ all the events (fe = 0) by

keeping the alarm always on (fa = 1), or because the alarm was always off (fa = 0) and we

missed all the events (fe = 1).

With these tools in hand, we return to the question raised at the beginning of the section

about the predictability of the characteristic earthquakes in the 2d-MM model. Figure 6

shows the predictability of the same 10 × 100 2d-MM system whose aperiodicity spectrum

and inter-event time distributions were depicted in Fig. 4. Four error diagrams have been

constructed with the reference strategy for events of sizes k ≥ 1, k ≥ 40, k ≥ 550, and

k ≥ 850. Several observations are worth commenting on. For the k ≥ 1 case, i.e., when

all the earthquakes are taken into account, irrespective of their size, the inter-event time

distribution is an exponential distribution (see Fig .4) and its error diagram for the reference

forecasting strategy coincides with the fe + fa = 1 line, as it should be. In other words, the

2d-MM model is a realization of a Poisson process when all the events are included and the

occurrence of earthquakes of any size is random in time.

Things get more interesting when small earthquakes are excluded and the focus is placed

on the forecasting of larger events. When all earthquakes k2 ≥ 40 are included, the error

diagram is no longer along the diagonal line. The minimum loss function is L? = 0.50,

with fe ∼ 0.11 and fa ∼ 0.39. This diagram and the one for k3 ≥ 550 are quite similar,

with a minimum loss function of L? = 0.47, slightly lower, and fe ∼ 0.04 (fewer events

are missed, although the alarm time increases from 39% to 41%). This is compatible with

the aperiodicity spectrum, as both sizes belong to the section of low aperiodicity (around

0.35) in Fig. 4. The main difference is in the width of the stress shadow region (zero in

the k2 case and different from zero in the k3 case) which has its consequence in the error

diagram in a reduction of the fraction of errors when the stress shadow is different from

zero (only 4% of the events are missed compared with 11% in the former case). Finally,

when a point is selected inside the characteristic earthquake hump (k4 ≥ 850), where the

aperiodicity has again started to increase towards one, the error diagram has a minimum loss

function considerably greater (L? = 0.65), meaning that the predictability of this fraction

of characteristic earthquakes is lower than when all the characteristic earthquakes are taken
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FIG. 6: (Color online) Error diagrams for the assessment of the predictability of large earthquakes

in a 10× 100 2d-MM system. The four panels show the outcome of the reference strategy for the

four event sizes depicted in Fig. 4, i.e., for earthquakes with sizes k ≥ 1, ≥ 40, ≥ 550, and ≥ 850.

L? is the minimum value of the loss function L(t) = fe(t) +fa(t). Note that the best predictability

corresponds to the case when all the earthquakes in the scaling breakdown section are taking into

account (large hump in the size-frequency distribution in Figure 4) and that this predictability is

diminished when only part of the hump is chosen as the prediction target.

as a group. These results agree with what we have seen in the aperiodicity spectrum in Fig

4 and the qualitative explanation given in the previous subsection.

IV. DISCUSSION AND CONCLUSIONS

The 2d-MM tries to capture the basic functioning of an isolated seismic fault subjected

to a long-term accumulation of stress (due to the plate motions) and a sudden release of

stress by earthquakes. In this context, the separation of time scales is even more obvious

than in the original DS-FFM because earthquakes have durations of seconds whereas times

between earthquakes in the same fault are measured in terms of years or hundreds of years.

The model is dissipative because a particle that hits a loaded site just disappears from the

system. Time is discrete and ticks at the pace of the addition of particles, one per time step.

We have analyzed the 2d-MM in the light of the original FFM. The key difference with the

DS-FFM is that ignition is limited to a subset of sites on the lattice, the trigger sites, and the

topology of this subset controls the way the model behaves, as in real seismic faults [31, 56].

Asperities are the dual of trigger sites and can be defined as the set of lattice sites outside the

aggregated catchment area of all trigger sites. In particular, the model shows that faults can

display both a Gutenberg-Richter and a Characteristic Earthquake distribution depending

on the number and location of asperities in the fault plane, as pointed out by several authors.

[6, 8, 57]. The 2d-MM suggests that there is no specific distribution, and that it is the

distribution of the asperities that controls the stress relaxation during the seismic cycle: one

or few big compact asperities tend to give a Characteristic Earthquake distribution (i.e.,

type-1, type-2, and type-4 asperity systems), whereas small and/or distributed asperities
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tend to promote a Gutenberg-Richter or subcritical one (type-3 and type-5 systems). This

is compatible with what is known about real asperities in seismic faults [58–60].

The type of size-frequency distributions of the 2d-MM and DS-FFM are very similar, but

with an important difference: the slope of the power-law section. This slope reflects the

distribution of cluster (fire, earthquake) sizes, and is given by kN(k) ≈ k1−τ , where N(k)

is the number of clusters of size k and τ is a critical exponent whose value is not yet well

known for the DS-FFM but ranges from τ = 2.08 [61] to τ = 2.15 [62]. In the 2d-MM

τ ≈ 2.67 for large lattices, well above the upper limit accepted for the DS-FFM. The change

of critical exponent is clearly due to the topology of the subset of sites that can trigger

avalanches. Precisely, the asperity of type-5 (Figure 1) has been devised to simulate the

way the DS-FFM relaxes and, as Fig. 2 demonstrates, the critical exponent changes from

τ ≈ 2.67 to τ ≈ 2.25, approaching the value that characterizes the DS-FFM.

A useful element that has been introduced in this paper for the analysis of the predictabil-

ity of discrete threshold systems is the aperiodicity spectrum. The aperiodicity spectrum

quantifies the predictability of a time series as the definition of the events to be predicted

changes. In other words, it summarizes the predictability of all the time series that can

be constructed from the basic one when the minimum event size changes from 1 to the

maximum allowable size (N ×M). The usefulness stems from the fact that the aperiodicity

spectrum allows us to see important changes in the behavior of the ‘pruned’ time series,

changes that are related to the dynamics of the system. A similar plot in the context of

spring-block models has also been used in Ref. 53.

Although the aperiodicity of a time series is by no means a rigorous proxy of its pre-

dictability, we have shown that a combination of the aperiodicity spectrum and error dia-

grams constructed for the reference strategy for specific points in the aperiodicity spectrum

is a powerful graphical tool for the analysis of the predictability of the 2d-MM. And because

we have observed that the behavior of the 2d-MM is more the rule than the exception as

far as the aperiodicity spectrum is concerned (because the Abelian sandpile model has a

qualitatively similar spectrum), it could be a useful tool for the analysis of the predictability

of a whole group of threshold cellular automata [18, 23, 24, 26, 38, 63]. A more in-depth

analysis of the predictability of all these models is currently under way.
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[34] M. Vázquez-Prada, A. González, J. B. Gómez, and A. F. Pacheco, Nonlin. Processes Geophys.

9, 513 (2002).

[35] J. B. Gomez and A. F. Pacheco, Bull. Seism. Soc. Am. 94, 1960 (2004).
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