000145521 001__ 145521
000145521 005__ 20260112133233.0
000145521 0247_ $$2doi$$a10.1002/aelm.202400096
000145521 0248_ $$2sideral$$a140401
000145521 037__ $$aART-2024-140401
000145521 041__ $$aeng
000145521 100__ $$aKoroleva, Aleksandra
000145521 245__ $$aImpact of the La2NiO4+d oxygen content on the synaptic properties of the TiN/La2NiO4+d/Pt memristive devices
000145521 260__ $$c2024
000145521 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145521 5203_ $$aThe rapid development of brain‐inspired computing requires new artificial components and architectures for its hardware implementation. In this regard, memristive devices emerged as potential candidates for artificial synapses because of their ability to emulate the plasticity of the biological synapses. In this work, the synaptic behavior of the TiN/La2NiO4+δ/Pt memristive devices based on thermally annealed La2NiO4+δ films is thoroughly investigated. Using electron energy loss spectroscopy (EELS), it is shown that post‐deposition annealing using inert (Ar) or oxidizing (O2) atmospheres affects the interstitial oxygen content (δ) in the La2NiO4+δ films. Electrical characterization shows that both devices exhibit long‐term potentiation/depression (LTP/LTD) and spike‐timing‐dependent plasticity (STDP). At the same time, the Ar annealed TiN/La2NiO4+δ/Pt device demonstrates filamentary‐like behavior, fast switching, and low energy consumption. On the other hand, the O2 annealed TiN/La2NiO4+δ/Pt devices are forming‐free, exhibiting interfacial‐like resistive switching with slower kinetics. Finally, the simulation tools show that spiking neural network (SNN) architectures with weight updates based on the experimental data achieve high inference accuracy in the digit recognition task, which proves the potential of TiN/La2NiO4+δ/Pt devices for artificial synapse applications.
000145521 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E13-23R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-112914RB-100/AEI/10.13039/501100011033
000145521 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000145521 590__ $$a5.3$$b2024
000145521 592__ $$a1.478$$b2024
000145521 591__ $$aPHYSICS, APPLIED$$b43 / 187 = 0.23$$c2024$$dQ1$$eT1
000145521 593__ $$aElectronic, Optical and Magnetic Materials$$c2024$$dQ1
000145521 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b52 / 147 = 0.354$$c2024$$dQ2$$eT2
000145521 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b140 / 460 = 0.304$$c2024$$dQ2$$eT1
000145521 594__ $$a10.7$$b2024
000145521 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145521 700__ $$aKhuu, Thoai-Khanh
000145521 700__ $$0(orcid)0000-0002-6761-6171$$aMagén, César
000145521 700__ $$aRoussel, Hervé
000145521 700__ $$aJiménez, Carmen
000145521 700__ $$aTernon, Céline
000145521 700__ $$aVatajelu, Elena-Ioana
000145521 700__ $$aBurriel, Mónica
000145521 773__ $$g10, 11 (2024), 2400096 [12 pp.]$$pAdv. Electron. Mater.$$tAdvanced Electronic Materials$$x2199-160X
000145521 8564_ $$s3474439$$uhttps://zaguan.unizar.es/record/145521/files/texto_completo.pdf$$yVersión publicada
000145521 8564_ $$s2501723$$uhttps://zaguan.unizar.es/record/145521/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145521 909CO $$ooai:zaguan.unizar.es:145521$$particulos$$pdriver
000145521 951__ $$a2026-01-12-12:50:08
000145521 980__ $$aARTICLE