000145522 001__ 145522
000145522 005__ 20241108105821.0
000145522 0247_ $$2doi$$a10.3390/axioms13090589
000145522 0248_ $$2sideral$$a140406
000145522 037__ $$aART-2024-140406
000145522 041__ $$aeng
000145522 100__ $$aDíaz, Pablo$$uUniversidad de Zaragoza
000145522 245__ $$aTotally positive Wronskian matrices and symmetric functions
000145522 260__ $$c2024
000145522 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145522 5203_ $$aThe elements of the bidiagonal decomposition (BD) of a totally positive (TP) collocation matrix can be expressed in terms of symmetric functions of the nodes. Making use of this result, and studying the relation between Wronskian and collocation matrices of a given TP basis of functions, we can express the entries of the BD of Wronskian matrices as the values of certain symmetric functions evaluated at a single node. Moreover, in the case of polynomial bases, we obtain compact formulae for the entries of the BD of their Wronskian matrices. Interesting examples illustrate the applications of the obtained formulae.
000145522 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E41-23R$$9info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RED2022-134176-T
000145522 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000145522 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145522 700__ $$0(orcid)0000-0002-1101-6230$$aMainar, Esmeralda$$uUniversidad de Zaragoza
000145522 700__ $$0(orcid)0000-0001-9130-0794$$aRubio, Beatriz$$uUniversidad de Zaragoza
000145522 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000145522 773__ $$g13, 9 (2024), 589 [14 pp.]$$pAxioms$$tAxioms$$x2075-1680
000145522 8564_ $$s274132$$uhttps://zaguan.unizar.es/record/145522/files/texto_completo.pdf$$yVersión publicada
000145522 8564_ $$s2384247$$uhttps://zaguan.unizar.es/record/145522/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145522 909CO $$ooai:zaguan.unizar.es:145522$$particulos$$pdriver
000145522 951__ $$a2024-11-08-10:37:19
000145522 980__ $$aARTICLE