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Abstract: The elements of the bidiagonal decomposition (BD) of a totally positive (TP) collocation
matrix can be expressed in terms of symmetric functions of the nodes. Making use of this result, and
studying the relation between Wronskian and collocation matrices of a given TP basis of functions, we
can express the entries of the BD of Wronskian matrices as the values of certain symmetric functions
evaluated at a single node. Moreover, in the case of polynomial bases, we obtain compact formulae
for the entries of the BD of their Wronskian matrices. Interesting examples illustrate the applications
of the obtained formulae.
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1. Introduction

The class of totally positive matrices possesses rich mathematical properties and nu-
merous applications. It has been extensively studied (cf. [1–6]), and attracts significant
interest across various fields of mathematics, including approximation theory, combina-
torics, computer-aided geometric design, and economics. Let us recall that a matrix is TP if
all its minors are nonnegative, and strictly totally positive (STP) if all its minors are positive.

Different characterizations of the total positivity property of a matrix exist in terms
of the sign of certain collections of its minors. They imply a reduction in the number
of determinants that need to be analyzed to determine whether a matrix is TP or STP.
For example, a matrix is STP if and only if all its minors with consecutive rows and columns
are positive (see [7,8]). This characterization may be refined, as pointed out in [4], where it
is shown that only minors with consecutive rows and columns that include either the first
row or the first column need to be checked. These minors are usually referred to as initial
minors. The above observations significantly reduce the complexity of the tests for STP
matrices. For later use in this paper, we quote this fundamental result in the next theorem.

Theorem 1 (Theorem 4.1 of [4]). Let A be a real l × n matrix. Then, A is STP if and only if every
initial minor of A is positive.

Considering the Cauchy–Binet formula for determinants, it was established that
the product of the TP matrices results in another TP matrix (see Theorem 3.1 of [1]).
This property opened the possibility of factorizing TP matrices into products of simpler
TP matrices. This endeavor has been the focus of extensive literature [9–14]. In this
regard, the most definite fact is that a nonsingular TP matrix always admits a bidiagonal
decomposition that can be fully determined by its initial minors [6].

In [5,6], it is shown that a nonsingular TP matrix A ∈ Rn×n can be written as

A = Fn−1 · · · F1DG1G2 · · · Gn−1, (1)
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where D is a diagonal matrix D = diag(pi,i)1≤i≤n whose diagonal entries are called pivots,
and Fi ∈ Rn×n (respectively, Gi ∈ Rn×n), i = 1, . . . , n − 1, are the TP, lower (respectively,
upper) triangular bidiagonal matrices of the following form:

Fi =



1
. . .

1
mi+1,1 1

. . . . . .
mn,n−i 1


, GT

i =



1
. . .

1
m̃i+1,1 1

. . . . . .
m̃n,n−i 1


.

The off-diagonal entries mi,j are usually called multipliers, and satisfy mi,j = pi,j/pi−1,j,
with

pi,1 = ai,1, 1 ≤ i ≤ n, pi,j =
det A[i − j + 1, . . . , i | 1, . . . , j]

det A[i − j + 1, . . . , i − 1 | 1, . . . , j − 1]
, 1 < j ≤ i ≤ n, (2)

where A[i1, . . . , ir|j1, . . . , js] denotes the submatrix from A formed with rows i1, . . . , ir and
columns j1, . . . , js. In the following, we shall denote A[i1, . . . , ir] := A[i1, . . . , ir|i1, . . . , ir].
Similarly, m̃i,j = p̃i,j/ p̃i−1,j, where p̃i,1 = a1,i and p̃i,j can be obtained by means of the
quotient of minors in (2) for the transposition At of the matrix A.

The bidiagonal decomposition (BD) (1) of nonsingular TP matrices is important for
theoretical reasons and practical numerical applications, ensuring great accuracy in linear
algebra computations involving matrices whose BD can be computed to high relative
accuracy (HRA). There is rich literature delivering algorithms for resolving algebraic
problems related to TP matrices to HRA through their BD (cf. [9–15]).

Given a basis F = ( f1, f2, . . . , fn) of functions defined on an interval I ⊆ R and a set of
parameters X = {x1, x2, . . . , xn} with x1 < x2 < · · · < xn within I, the collocation matrix
of the basis F at X is defined as:

MF(X) :=
(

f j(xi)
)

1≤i,j≤n. (3)

The basis F is TP (STP) if, for any X = {x1, x2, . . . , xn} with x1 < x2 < · · · < xn,
the matrix MF(X) is TP (STP).

In this paper, we will show that the collocation matrices MF(X) connect the realm of
total positivity and the field of symmetric functions. This relation happens because the
initial minors of a collocation matrix

det MF(X)[i − j + 1, . . . , i | 1, . . . , j], det MF(X)t[i − j + 1, . . . , i | 1, . . . , j] (4)

are antisymmetric functions of the variables x1, x2, . . . , xn and, in turn, can be expressed as
the product of a Vandermonde determinant and a symmetric function of x1, . . . , xn. Conse-
quently, each initial minor of an n × n collocation matrix can be computed by evaluating
a symmetric function. An interesting problem is finding the n2 symmetric functions that
encode the BD of the collocation matrices (3).

As a precedent, it was found in [16] that, surprisingly, the elements of the BD decom-
position of the Cauchy-polynomial–Vandermonde matrices could be expressed in terms
of Schur functions. Later, a systematic line of research was initiated in [15], where explicit
formulas in terms of Schur polynomials were provided for the initial minors of collocation
matrices of arbitrary polynomial bases. As a result, the straightforward computation of
the BD for any collocation matrix of a polynomial basis can be achieved by evaluating the
Schur polynomials at the nodes. The formulas provided in [15] were also used to determine
the maximal interval, for which the polynomial bases are STP. Moreover, the techniques
developed in [15] can be extended to any non-polynomial basis of functions, provided that
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the corresponding symmetric functions associated with the initial minors of the collocation
matrices can be identified.

Intriguingly, the connection between TP bases and symmetric functions may be ex-
tended to various mathematical objects, provided that they are related to collocation
matrices through certain limits. They include Wronskian matrices, which are the main
focus of this work. In this paper, the initial minors of Wronskian matrices will be expressed
as the limit of finite differences of certain collocation matrices. This observation allows
us to apply the findings of [15], and derive a concise formula for the initial minors of
Wronskian matrices.

The paper is organized as follows. Section 2 introduces the necessary concepts to make
the article as self-contained as possible. Section 3 shows that any minor with consecutive
rows of a Wronskian matrix can be expressed in terms of the limits of determinants of
collocation matrices at equally spaced nodes. As a consequence, conditions guaranteeing
the total positivity of Wronskian matrices are derived. Moreover, their minors with con-
secutive rows and columns are expressed in terms of symmetric functions. In particular,
for the polynomial case, these minors are written in terms of Schur polynomials in Section 4.
The applicability of the achieved formula is illustrated in Section 5 for Bernstein bases
and recursive polynomial bases, such as Jacobi, Laguerre, Hermite, and Bessel bases. We
conclude with an appendix containing the pseudocode of an algorithm for the computation
of the minors (4) in the case of polynomial bases.

2. Preliminary Results

Let us consider the monomial polynomial basis (m1, . . . , mn) with

mi(x) := xi−1, i = 1, . . . , n.

The corresponding collocation matrix at X = {x1, x2, . . . , xn} is the well-known Van-
dermonde matrix

VX = Vx1,...,xn :=

 1 x1 . . . xn−1
1

...
...

...
1 xn . . . xn−1

n

,

and its determinant satisfies
det VX = ∏

i<j
(xj − xi).

Given h > 0, and the equally spaced sequence

xk := x + (k − 1)h, k = 1, . . . , n,

the Vandermonde determinant satisfies

det VX = h
n(n−1)

2

n−1

∏
r=1

r!.

This result can be extended to initial minors of VX as

det Vxk ,xk+1,...,xl = h
(l−k)(l−k+1)

2

l−k

∏
r=1

r!. (5)

Vandermonde matrices are STP if 0 < x1 < · · · < xn. Thus, we can say that the
monomial polynomial basis is STP on the interval (0, ∞).

Now, let us recall that f (x1, x2, . . . , xn) is a symmetric function if

f (x1, x2, . . . , xn) = f (xσ(1), xσ(2), . . . , xσ(n)),
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for any permutation σ of the indices {1, 2, . . . , n}. On the other hand, f (x1, x2, . . . , xn) is
antisymmetric if

f (xσ(1), xσ(2), . . . , xσ(n)) = sgn(σ) f (x1, x2, . . . , xn),

where sgn(σ) is the signature of σ, taking the value +1 if σ is even and −1 if σ is odd.
Note that any minor of the collocation matrix MF(X) can be considered as an antisym-

metric function of the nodes involved. Moreover, since the Vandermonde determinant is
nonzero for different values of the nodes, it is always possible to express any minor of the
collocation matrix as the product of a Vandermonde determinant and a symmetric function.

Given a partition λ := (λ1, λ2, . . . , λp) of size |λ| := λ1 + · · ·+λp and length l(λ) := p,
such that λ1 ≥ λ2 ≥ · · · ≥ λp > 0, the Jacobi definition of the corresponding Schur
polynomial in n variables is, via the Weyl’s formula,

sλ(x1, x2, . . . , xn) :=
det(x

λj+n−j
i )1≤i,j≤n

det(xn−j
i )1≤i,j≤n

,

and, by convention, s∅(x1, x2, . . . , xn) := 1 for the empty partition ∅.
Schur polynomials are symmetric functions in their arguments. In addition, we now

list other well-known properties that will be used in the following sections:

(i) sλ(x1, . . . , xn) > 0 for positive values of xi, i = 1, . . . , n. Additionally,

sλ(1, . . . , 1︸ ︷︷ ︸
j

) = Dλ,j, (6)

with
Dλ,j = ∏

1≤k<l≤j

λk − λl + l − k
l − k

≥ 0. (7)

(ii) sλ(x1, . . . , xn) = 0 if l(λ) > n.
(iii) sλ(x1, . . . , xn) is a homogeneous function of degree |λ|, i.e.,

sλ(α x1, α x2, . . . , α xn) = α|λ|sλ(x1, x2, . . . , xn).

(iv) As running over all the partitions of size |λ|, the corresponding Schur polynomials
provide a basis for the space of symmetric homogeneous polynomials of degree |λ|.
When considering all partitions, Schur polynomials furnish a basis of symmetric
functions.

For more details, interested readers are referred to [17].
We finish this section by defining some symmetric functions that will be used in

the following:

gF,i,j(xi−j+1, . . . , xi) := det MF(X)[i−j+1,...,i|1,...,j]
det Vxi−j+1,...,xi

, 1 ≤ j ≤ i ≤ n,

gF,j,i(x1, . . . , xj) := det Mt
F(X)[i−j+1,...,i|1,...,j]

det Vx1,...,xj
, 1 ≤ j < i ≤ n.

(8)

3. Initial Minors and Total Positivity of Wronskian Matrices

Let F = ( f1, f2, . . . , fn) be a system of Cn−1 functions on I. The Wronskian matrix of F
at x ∈ I is defined as:

WF(x):=


f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)

...
...

. . .
...

f (n−1)
1 (x) f (n−1)

2 (x) · · · f (n−1)
n (x)

,
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where f ′(x) and f (k)(x), k = 2, . . . , n − 1, denote the first and k-th derivative of f at x.
For a given F = ( f1, . . . , fn), we shall denote

F0 := F, Fm := ( f (m)
1 , f (m)

2 , . . . , f (m)
n ), m = 1, . . . , n − 1. (9)

Note that the system Fm needs to not be a basis, since it is not guaranteed that the
functions are linearly independent.

Let us recall that the forward finite-difference approximation of the derivative of a
function f at x = x0 is given by:

f ′(x0) ≈
f (x0 + h)− f (x0)

h
,

where h > 0 is a small step size. Then, we define the forward finite-difference of f as:

∆h f (x) := f (x + h)− f (x),

and recursively, for n ∈ N, the higher-order difference of f :

∆n
h f (x) :=

n

∑
i=0

(−1)n−i
(

n
i

)
f (x + ih).

The relationship of the higher-order differences with the respective derivatives is
straightforward, and can be expressed as follows:

f (n)(x) = lim
h→0

1
hn ∆n

h f (x). (10)

The next result demonstrates that the determinant of a Wronskian matrix can be
expressed as a limit of collocation matrices.

Proposition 1. Let F = ( f1, f2, . . . , fn) be a basis of Cn−1 functions on I ⊆ R, and WF(x) be the
Wronskian matrix of F at x ∈ I. Then, we have

det WF(x) = lim
h→0+

hn(1−n)/2

∣∣∣∣∣∣∣∣∣
f1(x1) f2(x1) . . . fn(x1)
f1(x2) f2(x2) . . . fn(x2)

...
...

. . .
...

f1(xn) f2(xn) . . . fn(xn)

∣∣∣∣∣∣∣∣∣, (11)

for xk := x + (k − 1)h, k = 1, . . . , n.

Proof. By applying elementary properties of determinants, we can express∣∣∣∣∣∣∣∣∣
f1(x1) . . . fn(x1)
f1(x2) . . . fn(x2)

...
. . .

...
f1(xn) . . . fn(xn)

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

f1(x1) . . . fn(x1)
∆h f1(x1) . . . ∆h fn(x1)

...
. . .

...
∆n−1

h f1(x1) . . . ∆n−1
h fn(x1)

∣∣∣∣∣∣∣∣∣,
and then,∣∣∣∣∣∣∣∣∣

f1(x1) . . . fn(x1)
1
h ∆h f1(x1) . . . 1

h ∆h fn(x1)
...

. . .
...

1
hn−1 ∆n−1

h f1(x1) . . . 1
hn−1 ∆n−1

h fn(x1)

∣∣∣∣∣∣∣∣∣ = hn(1−n)/2

∣∣∣∣∣∣∣∣∣
f1(x1) . . . fn(x1)
f1(x2) . . . fn(x2)

...
. . .

...
f1(xn) . . . fn(xn)

∣∣∣∣∣∣∣∣∣. (12)

The Formula (11) follows as we take the limit h → 0 in (12) and consider (10).
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With similar reasoning, the previous result can be extended to any minor of WF(x)
with consecutive rows.

Proposition 2. Let F = ( f1, f2, . . . , fn) be the basis of Cn−1 functions on I ⊆ R, and WF(x) be
the Wronskian matrix of F at x ∈ I. Then, for any 1 ≤ j ≤ i ≤ n and 1 ≤ α1 < · · · < αj ≤ n,

det WF(x)[i − j + 1, . . . , i|α1, . . . , αj] = lim
h→0+

hj(1−j)/2

∣∣∣∣∣∣∣∣∣∣∣

f (i−j)
α1 (x1) . . . f (i−j)

αj (x1)

f (i−j)
α1 (x2) . . . f (i−j)

αj (x2)
...

. . .
...

f (i−j)
α1 (xj) . . . f (i−j)

αj (xj)

∣∣∣∣∣∣∣∣∣∣∣
, (13)

where xk := x + (k − 1)h, k = 1, . . . , n.

Using the previous result, conditions to guarantee the total positivity property of a
Wronskian matrix can be derived.

Theorem 2. Let F = ( f1, f2, . . . , fn) be the basis of Cn−1 functions on (a, b) and Fk; k =
1, . . . , n − 1; the systems are defined in (9). If the Wronskian matrix WF(x) at x ∈ (a, b) is
nonsingular, and Fk is TP on (a, b), for k = 0, . . . , n − 1, then WF(x) is TP at x ∈ (a, b).

Proof. According to Theorem 2.3 of [18], we only have to check that all minors of WF(x)
with consecutive rows are nonnegative. Let us consider (x − δ, x + δ) ⊂ (a, b) and h < δ

j−1 .
The condition that Fi−j is TP on (a, b) for i − j = 0, . . . , n − 1 implies that, for any pair
(i, j) such that 1 ≤ j ≤ i ≤ n, the determinants in (13) at the nodes xk = x + (k − 1)h are
nonnegative, and remain so when h → 0+.

Now, we shall express the initial minors of WF(x) in terms of symmetric functions.

Theorem 3. Let F = ( f1, f2, . . . , fn) be a basis of Cn−1 functions on I ⊆ R, and WF(x) be the
Wronskian matrix of F at x ∈ I. Then,

det WF(x)[i − j + 1, . . . , i|1, . . . , j] = gFi−j ,j,j(x, . . . , x)
j−1

∏
r=1

r!,

det Wt
F(x)[i − j + 1, . . . , i|1, . . . , j] = gF,j,i(x, . . . , x)

j−1

∏
r=1

r!, (14)

where gFi−j ,j,j and gF,j,i, 1 ≤ j ≤ i ≤ n, are the symmetric functions in (8).

Proof. By applying (8) in Formula (13) for the sequence αk = k, and taking the limit h → 0+,
we deduce that

det WF(x)[i − j + 1, . . . , i|1, . . . , j]

= lim
h→0+

h
j(1−j)

2

∣∣∣∣∣∣∣∣∣∣∣

f (i−j)
1 (x1) . . . f (i−j)

j (x1)

f (i−j)
1 (x2) . . . f (i−j)

j (x2)
...

. . .
...

f (i−j)
1 (xj) . . . f (i−j)

j (xj)

∣∣∣∣∣∣∣∣∣∣∣
= lim

h→0+
h

j(1−j)
2 det MFi−j(X)[1, . . . , j]

= lim
h→0+

h
j(1−j)

2 |Vx1,...,xj |gFi−j ,j,j(x1, . . . , xj) =
j−1

∏
r=1

r! gFi−j ,j,j(x, . . . , x),
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where in the last equality, we have used (5). Similarly,

det Wt
F(x)[i − j + 1, . . . , i|1, . . . , j]

=

∣∣∣∣∣∣∣∣∣∣∣

fi−j+1(x) . . . f (j−1)
i−j+1(x)

fi−j+2(x) . . . f (j−1)
i−j+2(x)

...
. . .

...
fi(x) . . . f (j−1)

i (x)

∣∣∣∣∣∣∣∣∣∣∣
= lim

h→0+
h

j(1−j)
2

∣∣∣∣∣∣∣∣∣
fi−j+1(x1) . . . fi−j+1(xj)
fi−j+2(x1) . . . fi−j+2(xj)

...
. . .

...
fi(x1) . . . fi(xj)

∣∣∣∣∣∣∣∣∣
= lim

h→0+
h

j(1−j)
2 det Mt

F(X)[i − j + 1, . . . , i|1, . . . , j] =
j−1

∏
r=1

r! gF,j,i(x, . . . , x).

Starting from this point, the discussion will be narrowed to the polynomial basis.

4. Initial Minors and Total Positivity of Wronskian Matrices for Polynomial Bases

Let Pn(I) be the space of polynomials of a degree not greater than n, defined on I ⊆ R,
and P = (p1, . . . , pn) is a basis of Pn−1(I), such that

pi(x) =
n

∑
j=1

ai,j xj−1, x ∈ I, i = 1, . . . , n.

Let A = (ai,j)1≤i,j≤n be the change of the basis matrix from the monomial basis M =

(m1, . . . , mn), with mi(x) = xi−1; i = 1, . . . , n, satisfying

(p1, p2, . . . , pn)
T = A(m1, m2, . . . , mn)

T .

The first derivatives of P form a system P1 = (p′1, p′2, . . . , p′n) of polynomials of a
degree not greater than n − 2 are given by

p′i(x) =
n−1

∑
j=1

(A1)i,j xj−1, x ∈ I, i = 1, . . . , n,

where

(A1)i,j :=
{

j ai,j+1, 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1,
0, 1 ≤ i ≤ n, j = n.

(15)

Higher derivative sets Pm = (p(m)
1 , p(m)

2 , . . . , p(m)
n ) can be defined in a similar fashion

from the matrix A,

p(m)
i (x) =

n−m

∑
j=1

(j + m − 1)!
(j − 1)!

ai,j+m xj−1 =
n−m

∑
j=1

(Am)i,j xj−1, x ∈ I, i = 1, . . . , n,

with

(Am)i,j :=

{
(j+m−1)!
(j−1)! ai,j+m, 1 ≤ i ≤ n, 1 ≤ j ≤ n − m,

0, 1 ≤ i ≤ n, 1 ≤ j = n − m + 1, . . . , n.
(16)

In [15], it was shown how to express the BD of the collocation matrix MP(x) in terms
of Schur polynomials and some minors of A. Specifically,

det MP(x)[i − j + 1, . . . , i | 1, . . . , j]

= |Vxi−j+1,...,xi | ∑
l1>···>lj

det A[1, . . . , j | lj, . . . , l1]s(l1−j,...,lj−1)(xi−j+1, . . . , xi). (17)
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Schur polynomials are naturally labeled by partitions, and their product rule and other
properties are easily stated in terms of them. Thus, for operativeness, it is convenient to
write the linear combination appearing in (17) in terms of partitions. We shall consider
the partitions λ = (λ1, . . . , λj), where λr = lr + r − j − 1, for r = 1, . . . , j. Note that, since
l1 > · · · > lj, λ is a well-defined partition. So, for the minors of A, we shall use the notation

A[i,λ] := det A[i − j + 1, . . . , i |lj, . . . , l1] = det A[i − j + 1, . . . , i |λj + 1, . . . , λ1 + j]. (18)

Be aware that as the dummy variables satisfy l1 > · · · > lj and lk ≤ n, for 1 ≤ k ≤ n,
the partitions they correspond to will have j parts of maximal length n − j each. In other
words, the sum in (17) must be over all Young diagrams that fit in a j × (n − j) rectangular
box. This fact can be expressed as

l(λ) ≤ j, λ1 ≤ n − j.

Taking into account this notation, we can write

∑
lj<···<l1

det A[1, . . . , j | lj, . . . , l1]s(l1−j,...,lj−1)(xi−j+1, . . . , xi) = ∑
l(λ)≤j

λ1≤n−j

A[j,λ]sλ(xi−j+1, . . . , xi),

and

det MP(x)[i − j + 1, . . . , i | 1, . . . , j] = |Vxi−j+1,...,xi | ∑
l(λ)≤j

λ1≤n−j

A[j,λ]sλ(xi−j+1, . . . , xi).

For polynomial functions, the symmetric functions gPi−j ,j,j and gP,j,i are

gPi−j ,j,j(x1, . . . , xj) = ∑
l(λ)≤j

λ1≤n−j

Ai−j [j,λ]sλ(x1, . . . , xj),

gP,j,i(x1, . . . , xj) = ∑
l(λ)≤j

λ1≤n−j

A[i,λ]sλ(x1, . . . , xj) (19)

Using (19), it is possible to find compact formulae for the initial minors of the Wron-
skian matrix WP(x). They are shown in the next result.

Theorem 4. For 1 ≤ j ≤ i ≤ n, we have

det WP(x)[i − j + 1, . . . , i|1, . . . , j] =
j−1

∏
r=1

r! ∑
l(λ)≤j

λ1≤n−j

Ai−j [j,λ]Dλ,j x|λ|, (20)

det Wt
P(x)[i − j + 1, . . . , i|1, . . . , j] =

j−1

∏
r=1

r! ∑
l(λ)≤j

λ1≤n−j

A[i,λ]Dλ,j x|λ|, (21)

where Dλ,j are the values defined in (7).

Proof. First, we have to evaluate (19) at a single node. The value of a Schur function at a
single node can be found by the use of

sλ(x, . . . , x︸ ︷︷ ︸
j

) = x|λ|sλ(1, . . . , 1︸ ︷︷ ︸
j

) = x|λ|Dλ,j.
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The symmetric functions in (19), evaluated at a single node, take the values

gPi−j ,j,j(x, . . . , x) = ∑
l(λ)≤j

λ1≤n−j

Ai−j [j,λ]x
|λ|Dλ,j,

gP,j,i(x, . . . , x) = ∑
l(λ)≤j

λ1≤n−j

A[i,λ]x
|λ|Dλ,j. (22)

Finally, by inserting the above functions into (14), we obtain the expressions for the
minors of the Wronskian matrices.

Using (20) and (21), we can find sufficient conditions for the total positivity of the
Wronskian matrix WP(x).

Theorem 5. Let A be the matrix of change of the basis from the monomial basis of a polynomial
basis P and J = (Ji,j)1≤i,j≤n, with Ji,j := (−1)j−1δi,j.

(i) If A is TP then WP(x) is TP for x ∈ (0, ∞).
(ii) If JAJ is TP then JWP(x)J is TP for x ∈ (−∞, 0).

Proof. (i) If A is TP, the matrices Am in (16) are also TP. Now, since all the minors of Am
and the quantities Dλ,j in (7) are non-negative, from (20) and (21), the initial minors of
WP(x) are non-negative for x ∈ (0, ∞). (ii) Let us note that for any matrix M and partition
λ = (λ1, . . . , λj), we have

det JMJ[i − j + 1, . . . , i|1 + λj, . . . , j + λ1]

= (−1)j(i−1)+|λ| det M[i − j + 1, . . . , i|1 + λj, . . . , j + λ1].

If JAJ is TP, then for x ∈ (0, ∞), we have

0 ≤
j−1

∏
r=1

r! ∑
l(λ)≤j

λ1≤n−j

JAJ[i,λ]Dλ,j x|λ| =
j−1

∏
r=1

r! ∑
l(λ)≤j

λ1≤n−j

(−1)j(i−1)+|λ|A[i,λ]Dλ,j x|λ|

= (−1)j(i−1) det Wt
P(−x)[i − j + 1, . . . , i|1, . . . , j]

= det JWP Jt(−x)[i − j + 1, . . . , i|1, . . . , j].

Similarly, since JAi−j J is TP, we have

0 ≤
j−1

∏
r=1

r! ∑
l(λ)≤j

λ1≤n−j

JAi−j J[j,λ]Dλ,j x|λ| = det JWA J(−x)[i − j + 1, . . . , i|1, . . . , j].

So, JWP(x)J is TP at x ∈ (−∞, 0).

In Algorithm A1 (see Appendix A), the implementation of the code of Formula (20) is
displayed. Note that an algorithm for the implementation of the code of Formula (21) can
be obtained similarly.

5. Examples

In order to show the application of Formula (20) for the computation of the initial
minors det WP(x)[i − j + 1, . . . , i|1, . . . , j], let us present two interesting examples.
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5.1. Wronskian Matrices of the Bernstein Basis

The Bernstein basis of the space Pn−1[0, 1] of polynomials of degree less than or equal
to n − 1 on the interval [0, 1] is B := (Bn−1

1 , . . . , Bn−1
n ), with

Bn−1
i (x) :=

(
n − 1
i − 1

)
xi−1(1 − x)n−i, x ∈ [0, 1], i = 1, . . . , n. (23)

For n = 4, (B3
1 , B3

2, B3
3, B3

4)
T = A(1, x, x2, x3)T , with

A =


1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

,

and the Wronskian matrix of the Bernstein basis (23) is

WB(x) =


(1 − x)3 3x(1 − x)2 3x2(1 − x) x3

−3(1 − x)2 9x2 − 12x + 3 −9x2 + 6x 3x2

6(1 − x) 18x − 12 −18x + 6 6x
−6 18 −18 6

.

Now, we shall focus on det WB(x)[2, 3, 4|1, 2, 3] to illustrate our proposed procedure
for obtaining the initial minors of WB(x).

For computing det WB(x)[2, 3, 4|1, 2, 3], we have to sum in (20) over all partitions λ,
such that l(λ) ≤ 3 and λ1 ≤ 1. In general, partitions with l(λ) ≤ j and λ1 ≤ n − j are
in one-to-one correspondence with integer non-negative decreasing j-tuplas whose first
entry does not exceed n − j. This observation is taken into account in the present example,
and in the implementation of (20) in Algorithm A1 (see Appendix A). In our example, we
must consider all non-negative decreasing three-tuplas with initial entry less or equal to 1.
Thus, we will be summing over {(1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 0, 0)}. Moreover, from (15)
we obtain

A1 =


−3 6 −3 0
3 −12 9 0
0 6 −9 0
0 0 3 0

.

From (18), we can write A1[3,λ] as follows

A1[3,(1,1,1)] = det A1[1, 1, 3|2, 3, 4] = 0, A1[3,(1,1,0)] = det A[1, 2, 3|1, 3, 4] = 0,

A1[3,(1,0,0)] = det A1[1, 2, 3|1, 2, 4] = 0, A1[3,(0,0,0)] = det A1[1, 2, 3|1, 2, 3] = −54.

Taking into account (7), we can derive

D(1,1,1),3 = 1, D(1,1,0),3 = 3, D(1,0,0),3 = 3, D(0,0,0),3 = 1,

and
x|(1,1,1)| = x3, x|(1,1,0)| = x2, x|(1,0,0)| = x1, x|(0,0,0)| = x0.

Finally, from (20), we obtain

det WB(x)[2, 3, 4|1, 2, 3] = 1!2!
(

A1[3,(1,1,1)]D(1,1,1),3x|(1,1,1)| + A1[3,(1,1,0)]D(1,1,0),3x|(1,1,0)|

+ A1[3,(1,0,0)]D(1,0,0),3x|(1,0,0)| + A1[3,(0,0,0)]D(0,0,0),3x|(0,0,0)|) = −108.

Following the same reasoning, we can obtain any other initial minor.
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5.2. Polynomial Recursive Bases

The example of polynomial recursive bases shows that Equations (20) and (21) can be
specially useful for the computation of the initial minors, if the structure of the correspond-
ing matrix of the change of the basis permits a systematic computation of its minors with
consecutive rows.

Given values b1, . . . , bn, such that bi > 0, i = 1, . . . , n, let us define the polynomial
recursive basis P := (p1, . . . , pn) as

pi =
i

∑
j=1

bj xj−1, i = 1, . . . , n.

The change of the basis matrix such that (p1, . . . , pn)T = A(m1, . . . , mn)T , with
mi(x) := xi−1, i = 1, . . . , n, is a nonsingular lower triangular and TP matrix of the fol-
lowing form:

A =


b1 0 0 . . . 0
b1 b2 0 . . . 0
b1 b2 b3 . . . 0
...

...
...

. . . 0
b1 b2 b3 . . . bn

. (24)

So, the basis (p1, . . . , pn) is TP for x ∈ [0, ∞). Therefore, by virtue of Theorem 5,
the Wronskian matrix WP(x) is TP for x ∈ [0, ∞).

The matrix A1 is

A1 =


0 0 0 . . . 0 0
b2 0 0 . . . 0 0
b2 2b3 0 . . . 0 0
...

...
...

...
...

b2 2b3 3b4 . . . (n − 1)bn 0

,

and, similarly, by using (16), we obtain Am with m = 1, . . . , n.
Let us note that the only non-zero minors of Am are

Am[i − j + 1, . . . , i| l, i − j + 2 − m, . . . , i − m] = Ci,j,m bl+m

j

∏
k=2

bi−j+k,

for l = 1, . . . , i − j − m + 1, where A0 := A and

Ci,j,m = (l + m − 1)m

j−1

∏
k=1

(i − j + k)m, i − j ≥ m

with the Pochhammer symbol for descending factorials (j)m := j(j − 1) · · · (j − m + 1).
Specifically, for the case m = i − j, which is relevant in (20), we have

Ai−j,[j,λ] = det Ai−j[1, . . . , j|l, 2, . . . , j], l = 1.

So, the only partition which contributes to (20) is λ = ∅, and

det WP(x)[i − j + 1, . . . , i|1, . . . , j] =
j−1

∏
r=1

r!
j

∏
k=1

bi−j+k,

which does not depend on x.
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In order to compute (21), let us note that, because of (24), the only contribution to the
sum in the RHS of (21) comes from the partitions λ = (λ1, . . . , λj) with

λr = i − j, r = 1, . . . , j − 1,

λj = 0, 1, . . . , i − j,

Let us call
λl := (i − j, . . . , i − j︸ ︷︷ ︸

j−1

, l − 1), l = 1, . . . , i − j + 1. (25)

Applied on these partitions, Formula (7) reduces to

Dλl ,j =

(
i − l
j − 1

)
.

Thus, finally, we obtain

det Wt
P(x)[i − j + 1, . . . , i|1, . . . , j] =

j−1

∏
r=1

r!
j

∏
k=2

bi−j+k

i−j+1

∑
l=1

bl

(
i − l
j − 1

)
x(i−j)(j−1)+l−1.

6. Conclusions

The elements of the bidiagonal decomposition of a totally positive collocation matrix
can be expressed in terms of symmetric functions of the nodes. By examining the relation-
ship between the Wronskian and collocation matrices of a given TP basis of functions, we
have developed a method to express the entries of the BD of Wronskian matrices. These
entries can be calculated as the values of certain symmetric functions evaluated at a single
node. Furthermore, in the case of polynomial bases, we have derived explicit formulas for
the entries of the BD of their Wronskian matrices, facilitating a deeper understanding and
simpler computation in applications involving TP matrices.
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Appendix A

In Algorithm A1, the implementation of the code of Formula (20) is displayed.

Algorithm A1: Pseudocode for the computation of Formula (20)
Require: i,j,A
Ensure: det WA(x)[i − j + 1, . . . , i|1, . . . , j]

1: n = size(A,1);
2: m = i − j;
3: Am = Am(A,i,j);
4: parts = particiones(j,n);
5: suma = 0;
6: for k = 1:size(parts,1)
7: lambda = parts(k,:);
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Algorithm A1: Cont.
8: a = Alambda(Am, j, lambda);
9: d = Dlambdaj(lambda,3);

10: suma = suma + a*d*xsum(lambda);
11: end
12: prod = 1;
13: for r = 1:j−1
14: prod = prod * factorial(r);
15: end
16: total = prod * suma

17: function part = partitionsR(from, level)
18: part = [];
19: for value = from: −1:0
20: if level > 1
21: res = partitionsR(min(from,value),level-1);
22: part = [part; [value .∗ ones(size(res,1),1) res]];
23: else
24: part = [part; value];
25: end
26: end

27: function partitions = partitions(j, n)
28: partitions = partitionsR(n−j,j);

29: function Alambda = Alambda(A, j, lambda)
30: rows = 1:j;
31: cols = flip(lambda) + (1:j);
32: Alambda = det(A(rows,cols));

33: function Am = Am(A,i,j)
34: m = i-j;
35: n = size(A,1);
36: r = (m+1):n;
37: Am = [A(:,r), zeros(n,m)];
38: for j=1:n-m
39: factorj = factorial(j + m−1)/factorial(j−1);
40: Am(:,j) = Am(:,j).*factorj;
41: end

42: function d = Dlambdaj(lambda,j)
43: d = 1;
44: for kl=nchoosek(1:j,j−1)’
45: k = kl(1);
46: l = kl(2);
47: factor = (lambda(k) − lambda(l) + l − k)/(l − k);
48: d = d * factor;
49: end
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