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2Departamento de Física Téorica, Facultad de Ciencias and Centro de Astropartículas y Física de Altas
Energías (CAPA), Universidad de Zaragoza, Calle Pedro Cerbuna 12, E-50009, Zaragoza, Spain

3Departamento de Física Teórica, Universidad Autónoma de Madrid,
Módulo 15, Cantoblanco, E-28049 Madrid, Spain

4Core of Research for the Energetic Universe, Graduate School of Advanced Science and Engineering,
Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

5Graduate School of Advanced Science and Engineering, Hiroshima University,
Higashi-Hiroshima, Hiroshima 739-8526, Japan

(Received 24 June 2024; accepted 12 September 2024; published 10 October 2024)

We present the first nonperturbative large N calculation of the N ¼ 1 supersymmetric SUðNÞ Yang-
Mills gluino condensate obtained by means of numerical simulations of the lattice-discretized theory,
exploiting large-N twisted volume reduction. We present two different determinations based, respectively,
on the Banks-Casher formula and on the Gell-Mann–Oakes–Renner relation, both giving perfectly
consistent results. By expressing the lattice results in the Novikov-Shifman-Vainshtein-Zakharov (NSVZ)
scheme, we are able for the first time to compare numerical and analytic computations. Our most
accurate determination of the renormalization group invariant (RGI) gluino condensate gives
ΣRGI=Λ3

NSVZ ¼ ½1.18ð08Þstatð12Þsyst�3 ¼ 1.64ð33Þstatð50Þsyst ¼ 1.64ð60Þ, in agreement with the N depend-

ence and the value predicted by the weak coupling instanton-based approach ΣRGI=Λ3
NSVZ ¼ 1.

DOI: 10.1103/PhysRevD.110.074507

I. INTRODUCTION

The value of the gluino condensate in the N ¼ 1
supersymmetric (SUSY) SUðNÞ Yang-Mills theory has
been a subject of debate since the first exact instanton-
based calculations were conducted in the early 1980s [1–4].
A comprehensive overview can be found in [5]. At that
time, two distinct methodologies were employed to obtain
the gluino condensate. In one approach, the so-called
strong-coupling (SC) instanton approach [1–3], the gluino
condensate was derived from the one-instanton contribu-
tion to the 2N-point function hTrλ2ðx1Þ � � �Trλ2ðxNÞi, a

quantity related, assuming clustering, to the object of
interest hTrλ2iN . In contrast, the weak-coupling (WC)
instanton approach incorporated additional matter fields
and operated within a Higgs phase, enabling a controlled
weak coupling calculation of the condensate [4]. By
invoking holomorphicity, this approach allowed to decou-
ple the additional matter fields, leading to the value of the
condensate in the N ¼ 1 SUSY theory.
The two methods yielded two distinct values for the

renormalization group invariant (RGI) gluino condensate,
exhibiting different leading N dependence in the large-N
limit:

ΣRGI ≡ 1

ð4πÞ2b0N
jhTrλ2ij ¼

�
2eΛ3

NSVZ=N; SC;

Λ3
NSVZ; WC;

ð1Þ

where ΛNSVZ refers to the Λ parameter in the Novikov-
Shifman-Vainshtein-Zakharov (NSVZ) scheme, given at all
orders by [1,6]

Λ3
NSVZ ¼ μ3

b0λNSVZðμÞ
exp

�
−8π2

λNSVZðμÞ
�
; ð2Þ
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with λNSVZðμÞ denoting the renormalized ’t Hooft coupling
in this scheme, and b0 ¼ 3=ð4πÞ2, the first universal
coefficient of the N ¼ 1 SUSY β function.1

An alternative approach to computing the gluino con-
densate is through the use of fractional instantons, namely,
self-dual configurations with fractional topological charge
Q ¼ 1=N [8]. In contrast to standard instantons, these
allow for direct saturation of the value of the gluino two-
point function, circumventing the need for clustering [9,10].
However, it was not until recently that the proportionality
constant between the condensate and Λ3

NSVZ was computed
using fractional objects. The result obtained in the WC
approach has been reproduced using the fractional con-
stituents of finite-temperature calorons [11,12]. In contrast,
using the fractional instanton solutions [13,14] on asym-
metric tori endowed with ’t Hooft’s twisted boundary
conditions [15] results in a value that, for gauge group
SU(2), is 2 times larger than that of WC [16]. This factor of
2 is expected to become a factor of N for SUðNÞ,2 adding to
the controversy surrounding the determination of the
condensate.
Given the nonperturbative nature of the gluino conden-

sate, numerical Monte Carlo simulations of the lattice-
discretized theory offer a natural framework to compute
this quantity from first principles. Despite a significant
progress in the past decade concerning SUSY Yang-Mills
lattice calculations [18–28] (see also Refs. [29–31] and
references therein), determining the gluino condensate has
proven to be a highly nontrivial numerical challenge.
So far, only a few SU(2) determinations have been
obtained [18,19,26,27], all lacking continuum limit, and
all missing the matching to the NSVZ scheme, thus
preventing comparison with analytic predictions.
In this paper we present the first nonperturbative com-

putation of the gluino condensate at large-N using a lattice-
discretized version of the supersymmetric theory. We
anticipate that our result, extrapolated to the continuum
and zero-gluino-mass limit, and matched to the NSVZ
scheme, will be in agreement with the WC prediction,
including the N dependence and the numerical coefficient
of the condensate.
The paper is organized as follows. In Sec. II we examine

the conventions that have led to the definition of ΣRGI, as
given in Eq. (1). In Sec. III we present the two different
methodologies used to determine the gluino condensate on
the lattice. The final results for the gluino condensate are
presented in Sec. IV. All technical details concerning the
lattice simulations, the determination of the condensate,

and of the dynamically generated scale ΛNSVZ, are dis-
cussed respectively in Appendixes A, B, and C.

II. FROM THE LATTICE TO THE NSVZ SCHEME

Before presenting our results, it is essential to establish
the conventions that underpin the definition of ΣRGI, as
given in Eq. (1).3 It should be noted that, although defined
in the NSVZ scheme, ΣRGI, or equivalently hTrλ2i, is a
renormalization group invariant and scheme-independent
quantity [6,32–34]. The relationship between the quantity
hTrλ2i and the renormalized gluino two-point function in
the NSVZ scheme, defined in terms of canonically nor-
malized gluino fields and dependent on the chosen scheme
and scale, is given by [6,32]

ΣðNSVZÞ
R ðμÞ ¼ N½1 − λNSVZðμÞ=ð8π2Þ�

λNSVZðμÞ
jhTrλ2ij: ð3Þ

To obtain a generalization of this expression for any
arbitrary renormalization scheme “s”, the starting point
is the Callan-Symanzik equations, which define the β
function and the gluino mass anomalous dimension:

βsðλsÞ ¼
dλs

d logðμ2Þ ; τsðλsÞ ¼
d log

�
mðsÞ

R ðμÞ
�

d logðμÞ : ð4Þ

The equation for the mass anomalous dimension can be
formally integrated. The result, when combined with the

renormalization group invariance of mðsÞ
R ðμÞΣðsÞ

R ðμÞ, can
be used to define a renormalization group and scheme-
independent condensate [35–38]:

ΣRGI ¼ AΣðsÞ
R ðμÞ½2b0λsðμÞ�

d0
2b0

× exp

�Z
λsðμÞ

0

dx

�
τsðxÞ
2βsðxÞ

−
1

x

��
; ð5Þ

where the coefficients d0, b0, and b1 represent the universal
terms in the asymptotic expansions of the β and τ functions.
For N ¼ 1 supersymmetric Yang-Mills theory, these coef-
ficients take the values ð4πÞ2b0 ¼ 3, ð4πÞ4b1 ¼ 6, and
d0 ¼ 2b0. The normalization factor A can be readily
determined by employing the relationship between the
exact β function and the mass anomalous dimension in the
NSVZ scheme [39]:

τNSVZðxÞ
2βNSVZðxÞ

¼ 1

xð1 − b1x=b0Þ
: ð6Þ

Upon insertion of this expression into Eq. (5), a comparison
to Eqs. (1) and (3) yields the result A ¼ 8π2=ð9N2Þ.

1The Λ parameter is defined following the standard QCD
convention, trivially mapped to the usual ones in SUSY instanton
calculations, see, e.g., Ref. [7].

2Recently, a new study [17] from the same authors of [16]
appeared, where a solution to this apparent discrepancy was
found, resulting in an N dependence in agreement with ours.

3A discussion along the lines presented here, but restricted to
leading order perturbation theory, was given in Ref. [7].
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The final ingredient necessary to match the lattice- and
instanton-based determinations of the condensate is the
RGI Λ parameter in a conventionally defined scheme
such as MS, which can be reliably determined on the
lattice. This dynamically generated scale is defined by
formally integrating the Callan-Symanzik equation defin-
ing the β function, leading to

Λs ¼ μ½b0λsðμÞ�
−b1
2b0

2 exp

�
−1

2b0λsðμÞ
�

× exp
�
−
Z

λsðμÞ

0

dx
�

1

2βsðxÞ
þ 1

2b0x2
−

b1
2b20x

��
: ð7Þ

A one-loop calculation enables the matching of the
NSVZ and MS schemes, as expressed by the equation:
ΛNSVZ ¼ e−1=18ΛMS [40].
When all the elements are combined, the result, at next-

to-leading order, is (see Appendix B)

ΣRGI¼A2b0λMSðμÞ
�
1þdðMSÞ

1 −2b1
2b0

λMSðμÞ
�
ΣðMSÞ
R ðμÞ; ð8Þ

where one can rely on the two-loop relation between the
renormalized coupling and the Λ parameter, i.e.,

2b0λMSðμÞ ¼ −
1

logðyÞ −
b1
2b20

log ½logð1=y2Þ�
log2ðyÞ ; ð9Þ

with y≡ ΛMS=μ. Using these expressions, we will be able
to determine the RGI condensate in terms of the lattice

determination of ΣðMSÞ
R ðμÞ.

III. METHODS

Our lattice-based extraction of the renormalized gluino
condensate employs two distinct methodologies. The first
is a Banks-Casher-based approach, which relates the
spectral density of the Dirac operator to the condensate.
The second is based on a Gell-Mann–Oakes–Renner-like
relation that is applicable in SUSY Yang-Mills theory when
endowed with a gluino mass SUSY-breaking term (see
below). The two aforementioned methods, employed in
SUSY Yang-Mills for the first time in this study, have
recently been successfully employed by the authors to
determine the quark condensate in large-N Yang-Mills
theories [41]. It should be also noted that the spectral
method has been extensively used in the QCD
literature [41–49].
The Banks-Casher (BC) equation establishes a relation-

ship between the condensate in the massless-gluino limit
and the value of the spectral density at the origin. In their
seminal paper, Leutwyler and Smilga proposed the follow-
ing expression for the specific case of N ¼ 1 supersym-
metric Yang-Mills theory [50]:

Σ
2π

¼ lim
λ→0

lim
m→0

lim
V→∞

ρðλ; mÞ; ð10Þ

where iλþm stands for a generic eigenvalue of the massive
Dirac operator =Dþm. The additional factor of 2 with
respect to the usual BC relation has to do with the Majorana
nature of gluinos [50].
Giusti and Lüscher demonstrated that a more convenient

quantity for determining the condensate on the lattice is the
mode number [42]. This is defined in relation to the spectral
density, as follows:

hνðM;mÞi ¼ V
Z

−λM

−λM
dλρðλ; mÞ; ð11Þ

with λM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −m2

p
. The integration of Eq. (10) between

−λM and λM is straightforward, leading in the chiral and
thermodynamic limit to

Σ≡ lim
m→0

lim
V→∞

πνðM;mÞ
4VλM

: ð12Þ

The advantage of this formulation is that the mode number
is a renormalization group invariant quantity [42], which
means that the renormalization properties of Σ are fully
dictated by those of λM. Further technical details about the
practical implementation of the Giusti-Lüscher method and
its related lattice renormalization procedure can be found in
Appendix B.
The gluino condensate can also be determined from a

Gell-Mann–Oakes–Renner-like (GMOR) relation. As is
well known, the lattice formulation explicitly breaks
supersymmetry. However, Kaplan [51] and Curci and
Veneziano [52] demonstrated that the N ¼ 1 SUSY
Yang-Mills theory could be recovered as the continuum
limit of a lattice Yang-Mills theory coupled to a massless
adjoint Majorana fermion. In the continuum and chiral
limits of such a theory, supersymmetry is recovered as an
accidental symmetry. The chiral behavior of the nonsinglet
adjoint pion, an unphysical particle not present in the
SUSY spectrum, can be used to determine the point where
SUSY gets restored. The mass of this adjoint pion is
related, at leading order in the chiral expansion, to the
gluino mass by a relation analogous to the Gell-Mann–
Oakes–Renner one in QCD [20,21]:

m2
π ¼ 2

ΣðsÞ
R

F2
π
mðsÞ

R ; ð13Þ

where by Fπ we denote the adjoint-pion decay constant in
the massless gluino limit. By employing this relationship,
one can derive a determination of the renormalized gluino
condensate, provided that the mass of the adjoint pion and
its decay constant, as well as the renormalized gluino mass,
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are known on the lattice. In Appendix B we provide all the

details concerning the lattice computation of Fπ and mðsÞ
R .

It should be noted that the methods described above

allow for the determination of ΣðsÞ
R =ZðsÞ

S and ΣðsÞ
R =ZðsÞ

P .
A nonperturbative determination of ZS and ZP represents
a highly nontrivial challenge on its own, which falls beyond
the scope of this paper. Consequently, we have opted to rely
on a nonperturbative determination of ZP=ZS based on the
spectral methods described in Refs. [41–43,47–49], com-

bined with the two-loop determination of ZðMSÞ
S ðμÞ provided

in Ref. [53]. In order to keep into account the perturbative
renormalization and the two-loop truncation of Eqs. (5) and
(7), a 30% systematic error has been added to our final results
for the condensate. The size of the systematic error has been
chosen on the basis of the typically observed mismatch
between two-loop and nonperturbative results for renorm-
alization constants in Yang-Mills theories [41,54–56] (for
explicit examples, see Table 6 of [55], where a ∼10%
between perturbative and nonperturbative determinations
of ZA is reported, and Tables 6 and 7 of [54], where
∼16% and ∼37% are reported for, respectively, ZS and ZP
at N ¼ 3, b ¼ 0.334). This will be our dominant source of
uncertainty.

IV. RESULTS

The gluino condensate has been determined using the
Monte Carlo ensembles generated in Ref. [57]. The reader
is referred to this paper and to Appendix A for all the
technical details concerning the simulations. These were
performed using the so-called large-N twisted volume
reduction [58,59], which was generalized to include the
case of adjoint fermions in Ref. [60]. The relationship
between space-time and color degrees of freedom that
emerges in the large-N limit due to Eguchi-Kawai
equivalence [61] enables the large-N theory to be simulated
as a model of SUðNÞ matrices on a lattice with a single
space-time point and twisted boundary conditions [15].
This equivalence has been successfully employed to
investigate numerous instances of Yang-Mills theories in
the large-N limit [41,55,62,63], as well as several non-
supersymmetric theories with Dirac fermions in the adjoint
representation [64]. This technique was applied in Ref. [57]
to simulate N ¼ 1 supersymmetric Yang-Mills theory,
generating configurations with dynamical massive gluinos
at several values of the inverse bare ’t Hooft coupling
(b ¼ 1=λL ¼ 0.34, 0.345, 0.35 are used here), and for
several values of N (169, 289, and 361). In accordance with
the strategy proposed by the DESY-Jena-Regensburg-
Münster collaboration [23–25], we employed Wilson
fermions and adopted the well-known reweighting method
to address the computation of the Pfaffian, which is not
positive definite for this particular fermion discretization.
This entailed incorporating the Pfaffian sign in the observ-
able and sampling the Monte Carlo configurations with its

modulus. In [57] we explicitly computed the sign of the
Pfaffian on the ensembles used for this study, and found it
was always positive, thus no reweighting was needed.
In [57] we also determined the lattice spacing in physical
units, a prerequisite for relating any lattice-based measure-
ment to a common physical standard. To this end, we
employed the hadronic reference scale

ffiffiffiffiffiffi
8t0

p
, based on

the renormalization group flow of the gauge action den-
sity, which has emerged as the standard for lattice
computations [65], and which will be used subsequently
in the estimation of the Λ parameter.
Our determination of the dynamically generated scale of

the theory, Λ, relies on the use of asymptotic scaling, which
has proven to be highly reliable in the case at hand. By
making use of the defining equation (7), we determined the
value of the Λ parameter relative to the hadronic scale

ffiffiffiffiffiffi
8t0

p
through the two-loop expression:

ffiffiffiffiffiffi
8t0

p
Λs ¼ lim

aχ→0

ffiffiffiffiffiffi
8t0

p
aχ

expf−fðλsÞg;

fðxÞ ¼ 1

2b0

�
1

x
þ b1
b0

logðb0xÞ
�
; ð14Þ

where the momentum scale has been set to μ ¼ 1=aχ , with
aχ the lattice spacing in the massless-gluino limit obtained
in [57]. It is widely acknowledged that the use of the naive
bare coupling, λL ¼ 1=b, is not expected to exhibit good
scaling properties. However, it is possible to accelerate the
convergence of the perturbative expansion by defining
appropriate improved couplings. In the literature, there
are several standard choices based on the use of the average
plaquette P. In this study, we considered three possibilities:

λðIÞt ¼ 1=ðbPÞ, λðEÞt ¼ 8ð1 − PÞ, and λðE
0Þ

t ¼ −8 logðPÞ.
Each of these definitions introduces a different lattice
scheme, with an associated determination of the Λ param-
eter. The matching of all these definitions to the MS scheme
is known; details on the matching prescriptions are pro-
vided in Appendix C. Figure 1 shows the continuum
extrapolation leading to the determination of

ffiffiffiffiffiffi
8t0

p
ΛNSVZ.

The values of aχ=
ffiffiffiffiffiffi
8t0

p
shown in the figure correspond to

the chiral (zero-gluino-mass) limit, as obtained in Ref. [57].
As previously noted, asymptotic scaling works remarkably
well and leads to

ffiffiffiffiffiffi
8t0

p
ΛNSVZ ¼ 0.376ð25Þ: ð15Þ

For the sake of completeness we also quote
ffiffiffiffiffiffi
8t0

p
ΛMS ¼

0.397ð26Þ.
We now proceed to the calculation of the gluino con-

densate. In this section, we will merely present the final
results. Further details on the extraction of the condensate
using either the BC or GMOR methods can be found in
AppendixB.A summary of all of the intermediate numerical
results used to extract the condensate in the supersymmetric
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limit is provided in Table II in Appendix B. It should be
noted that in order to determine the condensate using the
GMORmethod, the value of the adjoint-pion decay constant
in the SUSY (chiral-continuum) limit was required. This
was calculated, resulting in a value

Fπ

NΛNSVZ
¼ 0.092ð14Þ: ð16Þ

A significant outcome of our analysis is the leading N
dependence of the condensate, when written in units of
ΛNSVZ, cf. Eq. (1). The three available values of N, namely
N ¼ 169, 289, and 361, were analyzed using both the BC
and the GMORmethods. In the BC approach, we were able
to reliably determine the condensate only for volumes
satisfyingmπleff ¼ mπða

ffiffiffiffi
N

p Þ≳ 10. The outcomes at finite
gluino mass are presented as functions of the pion mass
squared in Fig. 2. There is no observed dependence on the
number of colors. This result, in full accordancewith theWC
instanton-based approach, is clearly in contradiction with
the 1=N dependence predicted by the SC determination.
Given the excellent agreement among determinations for

different values of N, the final numbers for the gluino
condensate were obtained through a joint chiral and
continuum extrapolation of the results at N ¼ 361, col-
lected in Table I and obtained at finite gluino mass and
lattice spacing as described in Appendixes B 1 and B 2. The
scale is set by fixing

ffiffiffiffiffiffi
8t0

p
ΛNSVZ to the value given in

Eq. (15).
In Fig. 3, displaying the values reported in Table I of

Σ1=3
RGI=ΛNSVZ as a function of the lattice spacing in units offfiffiffiffiffiffi
8t0

p
, we perform a simultaneous chiral and continuum

extrapolation of the gluino condensate assuming Oð8t0m2
πÞ

and Oða= ffiffiffiffiffiffi
8t0

p Þ corrections, as expected from chiral
perturbation theory for Wilson fermions. The dashed lines
and shaded areas represent the best fit with the coefficient
of the Oð8t0m2

πÞ correction set to zero. The results are
compared to those predicted by the WC instanton-based
approach, represented by the horizontal line indicating
Σ1=3
RGI=ΛNSVZ ¼ 1. As can be observed, the BC and the

GMOR methods yield results which are perfectly in
accordance when extrapolated to the supersymmetric limit:

ΣRGI
Λ3
NSVZ

¼ ½1.18ð08Þstat ð12Þsyst�3

¼ 1.64ð33Þstatð50Þsyst
ðGMORÞ ð17Þ

FIG. 2. Behavior of the gluino condensate Σ1=3
RGI=ΛNSVZ as a

function of N for several values of the adjoint-pion mass mπ and
the bare ’t Hooft coupling 1=b. The x axis refers to the values offfiffiffiffiffiffi
8t0

p
mπ determined for N ¼ 361. Points are slightly shifted

horizontally for readability.

FIG. 1. Determination of
ffiffiffiffiffiffi
8t0

p
ΛNSVZ (star) from asymptotic

scaling with different improved couplings assuming OðaχÞ
artifacts. Dashed lines and shaded areas represent the joint
continuum extrapolation best fit obtained imposing a common
continuum limit.

NONPERTURBATIVE DETERMINATION OF THE … PHYS. REV. D 110, 074507 (2024)

074507-5



ΣRGI
Λ3
NSVZ

¼ ½1.24ð19Þstatð12Þsyst�3

¼ 1.89ð87Þstatð55Þsyst:
ðBCÞ ð18Þ

Furthermore, these numbers are in good agreement with the
WC determination. Although the errors in our calculation
are significant, it is crucial to highlight that this is the first
time a numerical determination of this kind has been carried
out in the existing literature. Previous calculations of the
condensate in four-dimensional supersymmetric Yang-
Mills theory [18,19,26,27] were limited to a single lattice

spacing and gauge group SU(2), and were never matched to
the NSVZ scheme.

V. CONCLUSIONS

In this paper we have presented the first nonperturbative
lattice calculation of the gluino condensate in N ¼ 1
supersymmetric Yang-Mills theory in the large-N limit.
We have exploited large-N volume independence, and
adopted two independent strategies, giving perfectly agree-
ing results. After extrapolation to the supersymmetric limit
and matching with the NSVZ scheme, our results confirm
the N dependence predicted by semiclassical instanton
methods based on the so-called weak coupling (WC)
approach [4,11,12]. Our most accurate determination of
the condensate in units of the dynamically generated
scale of the theory is ΣRGI=Λ3

NSVZ¼½1.18ð08Þstatð12Þsyst�3¼
1.64ð33Þstatð50Þsyst¼1.64ð60Þ, consistent with the expected
result from WC. The error budget in our result is largely
influenced by the systematic error resulting from the
absence of a nonperturbative determination of the renorm-
alization constant ZS. While addressing this issue would be
a valuable avenue for future research, it would also
necessitate the commitment to a long-term project that is
beyond the scope of the current study.
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TABLE I. Summary of the numerical results reported in Fig. 3,
and used to extrapolate the gluino condensate towards the SUSY
(i.e., chiral-continuum) limit.

b κ
affiffiffiffiffi
8t0

p
mπ

ffiffiffiffiffiffi
8t0

p Σ1=3
RGI=ΛNSVZ

(BC)
Σ1=3
RGI=ΛNSVZ

(GMOR)

0.340 0.1850 0.2132 4.58 2.24(14) 1.02(11)
0.1890 0.1762 4.08 2.09(15) 1.08(11)
0.1910 0.1521 3.55 1.93(8) 1.11(12)
0.1930 0.1172 2.24 � � � 1.20(13)

0.345 0.1800 0.1954 5.34 2.19(13) 0.99(10)
0.1840 0.1686 4.87 2.06(13) 1.02(11)
0.1868 0.1438 4.39 2.06(18) 1.06(11)
0.1896 0.1095 3.23 � � � 1.11(12)

0.350 0.1800 0.1535 5.81 2.09(16) 1.01(11)
0.1825 0.1361 5.42 1.91(15) 1.03(11)
0.1850 0.1155 4.64 1.82(24) 1.04(11)
0.1875 0.0934 3.07 � � � 1.08(11)

FIG. 3. Chiral-continuum extrapolations of the gluino conden-
sate (stars) obtained from the Banks-Casher and from the Gell-
Mann–Oakes–Renner relations, assuming OðaÞ and Oðm2

πÞ
corrections. Dashed lines and shaded areas represent the best
fit with the coefficient of the Oðm2

πÞ correction set to zero.
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hp230021 and hp220011).

APPENDIX A: THE TEK LATTICE
FORMULATION OF N = 1 LARGE-N

SUðNÞ SUSY YANG-MILLS

Our entire lattice setup, including the gauge configura-
tion ensembles, comes from the one explained and adopted
in Ref. [57], which we briefly summarize here.
The twisted Eguchi-Kawai (TEK) model is a

d ¼ 4-matrix model with partition function given by

ZTEK ¼
Z

½dU�PffCDðTEKÞ
W ½U�ge−STEK½U�; ðA1Þ

with the charge-conjugation operator C satisfying
γtμC ¼ −γμC and Ct ¼ −C.
The gauge action, expressed in terms of the gauge link

Uμ ∈SUðNÞ in the fundamental representation, reads

STEK½U� ¼ bN
X
μ≠ν

TrfI − z�μνUμUνU
†
μU†

νg; ðA2Þ

where zμν ¼ ei2πnμν=N is the twist factor, with
ffiffiffiffi
N

p
∈N,

nμν ¼
ffiffiffiffi
N

p
kðNÞ for ν > μ and nμν ¼ −nνμ (we used k ¼ 5,

5, 7 for N ¼ 169, 289, 361). Instead, the adjoint Wilson-
Dirac operator reads

DðTEKÞ
W ½U�

¼ 1

2κ
I−1

2

X
μ

h
ðI− γμÞUðadjÞ

μ þðIþ γμÞðUðadjÞ
μ Þ†

i
; ðA3Þ

with κ the Wilson hopping parameter, and UðadjÞ
μ denoting

the d ¼ 4 SUðNÞ gauge fields in the adjoint representation.
Since the Pfaffian of the lattice Wilson-Dirac opera-

tor is not guaranteed to be positive, we follow the
approach proposed by the DESY-Jena-Regensburg-
Münster collaboration [23–25], namely, we resort to
sign-quenched simulations, meaning that the sign of
the Pfaffian is moved to the observable via standard
reweighting:

hOi ¼ hOsign½PffCDðTEKÞ
W ½U�g�isq

hsign½PffCDðTEKÞ
W ½U�g�isq

: ðA4Þ

The sign-quenched (sq) expectation value is calculated
sampling the following functional integral using a standard
rational hybrid Monte Carlo algorithm (see Ref. [57]):

ZðsqÞ
TEK ¼

Z
½dU�jPffCDðTEKÞ

W ½U�gje−STEK½U�: ðA5Þ

The sign of the Pfaffian on the ensembles used for this
study was subjected to explicit analysis in the study

presented in Ref. [57]. In light of the results presented
in Refs. [66–70], the sign in question can be determined by
counting the number of negative real eigenvalues of DW. It
is anticipated that, for heavy gluino masses, there will be no
flips in the sign of the Pfaffian. Consequently, the analysis
focused on the lightest adjoint fermion masses at each value
of b and N. No negative-real eigenvalues were identified in
the spectrum. Furthermore, this absence was confirmed for
a number of heavier fermion masses. Therefore, we
concluded that the sign of the Pfaffian is consistently
positive for the employed model parameters, thereby
simplifying the reweighting method by validating the
distribution using the absolute value of the Pfaffian.

APPENDIX B: EXTRACTING THE GLUINO
CONDENSATE FROM THE LATTICE

In this Appendix we describe the extraction of the gluino
condensate from lattice gauge configurations using the two
methodologies described in Sec. III: the spectral method and
the GMOR relation. We also describe how to relate the bare
quantity obtained from these methods to the RGI conden-
sate. A summary of all intermediate numerical results for the
largest value of N ¼ 361, along with the results of [57]
employed in this study, is presented in Table II.

1. Spectral method (Banks-Casher)

The Giusti-Lüscher method is a well-established numeri-
cal strategy to compute fermion condensates from lattice
simulations based on the low-lying spectrum of the Dirac
operator and on the Banks-Casher relation [41–43,47–49].
We summarize it in the following.
We numerically solved theHermitian eigenvalue problem,�

γ5D
ðTEKÞ
W

�
uλ ¼ λuλ; λ∈R; ðB1Þ

for the first 100 low-lying eigenvalues using the ARPACK

library in order to compute the mode number hνðMÞi ¼
h#jλj ≤ Mi as a function of the threshold mass M.
Given that M renormalizes as an eigenvalue (λ ¼ ZPλR),

the Giusti-Lüscher method allows to determine the renor-
malized condensate, up to the renormalization constant ZP,
as follows:

ΣR

ZP
¼ π

4V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mR

MR

�
2

s
S; ðB2Þ

with V ¼ a4 the one-point lattice volume and a the lattice
spacing, and with

S ¼ ∂hνðMÞi
∂M

ðB3Þ

the slope of the mode number as a function of the threshold
mass M, calculated for M close to M ¼ hjλminji (the
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average minimum eigenvalue extrapolated to the infinite N
limit). Note that ΣR=ZP is RGI, thus we do not need to
specify any renormalization scheme/renormalization scale.
Examples of mode number best fits to extract the slope are
shown in Fig. 4.
Given that the Banks-Casher relation just gives the

leading order term of the chiral expansion of the spectral
density in powers of m and λ, the linearity of the mode
number as a function of M is only valid up to OðM2Þ
corrections. To avoid contaminations from higher-order
terms, we chose the fit range according to the same criteria
suggested in the original paper [42], which were also
applied in other works addressing the spectral determina-
tion of fermion condensates, see, e.g., Refs. [41,49,71].
The lower bound of the fit range was chosen so as to stay

close to the threshold M=hjλminji ¼ 1. For Wilson fer-
mions, the lower end of the spectrum is known to deviate
from the expected continuum form [42], therefore we
actually started the fit range in the linear region a bit
above the threshold. Then, we tried several linear best fits
increasing the upper bound of the fit range until a good
reduced chi square (p value larger than 5%) could be
obtained. We also verified that including/excluding one
further point from the lower/upper bound of the fit range
did not change significantly the obtained slope, i.e., that the
contamination coming from higher-order terms in M is
negligible. Thus, systematic errors related to the choice of
the fit range are negligible compared to our statistical ones.
Given the renormalization property of the so-called

“subtracted definition” of the bare gluino mass,

amsub ¼
1

2κ
−

1

2κc
¼ aZSmR; ðB4Þ

with κc the critical κ obtained in [57], in order to calculate
the factor mR=MR ¼ ðZP=ZSÞðmsub=MÞ appearing in
Eq. (B2) we need the RGI ratio ZP=ZS.
This quantity can be computed from spectral methods

using the eigenvectors obtained from the same eigenvalue
problem in Eq. (B1) [41–49] as follows:�

ZP

ZS

�
2

¼ hsPðMÞi
hνðMÞi ; ðB5Þ

sPðMÞ≡ X
jλj;jλ0j≤M

ju†λγ5uλ0 j2; ðB6Þ

where the ratio in Eq. (B5) is expected to exhibit a plateau
as a function of M for sufficiently large values of M.

FIG. 4. Examples of calculation of mode number slope for
b ¼ 0.34, N ¼ 361, and three values of the Wilson hopping
parameter κ ¼ 0.185, 0.189, 0.191. In the bottom right plot we
compare two different values of N for b ¼ 0.34 and κ ¼ 0.185.

TABLE II. Summary of obtained numerical results for N ¼ 361, with the only exceptions of ZP=ZS, which was instead calculated for
N ¼ 289. The quantity t1 is another hadronic reference scale which was used to set the scale in intermediate calculation. It is related to
the more commonly employed reference scale t0, which we used to display all of our final results in the main text, by the relationffiffiffiffiffiffiffiffiffiffi

t0=t1
p

≃ 1.627 [57]. The results for the critical κc, the scale setting, the pion and partially conserved axial current (PCAC) masses, and
the plaquette, come from Ref. [57].

b κ amπ amPCAC

a3ΣR=ðZPN2Þ
(Banks-Casher)

ffiffiffiffiffiffi
8t1

p
=a ZP=ZS P (plaquette) aFπ=ðZANÞ κc

ffiffiffiffiffiffi
8t1

p
=aχ

0.340 0.1850 0.977(4) 0.2018(14) 0.00378(69) 2.883(58) 0.642(2) 0.541414(99) 0.1758(16) 0.19359(5) 5.88(11)
0.1890 0.719(4) 0.1083(7) 0.00213(43) 3.488(88) 0.560(5) 0.549479(88) 0.1317(10)
0.1910 0.540(5) 0.0609(9) 0.00129(17) 4.024(58) 0.500(5) 0.55419(10) 0.1006(17)
0.1930 0.263(13) 0.0138(6) � � � 5.244(175) 0.410(12) 0.560145(74) 0.0422(13)

0.345 0.1800 1.043(6) 0.2352(32) 0.00266(43) 3.134(93) 0.683(4) 0.55072(10) 0.16841(92) 0.19095(6) 7.03(23)
0.1840 0.821(5) 0.1507(11) 0.00163(28) 3.645(98) 0.625(6) 0.556355(81) 0.13412(87)
0.1868 0.631(6) 0.0913(18) 0.00118(31) 4.274(55) 0.565(8) 0.561253(71) 0.1067(13)
0.1896 0.353(5) 0.0289(5) � � � 5.614(201) 0.464(10) 0.567106(91) 0.0581(12)

0.350 0.1800 0.883(7) 0.1826(16) 0.00126(28) 4.003(109) 0.663(5) 0.564610(70) 0.13560(94) 0.18857(5) 7.74(21)
0.1825 0.733(6) 0.1242(15) 0.00073(17) 4.516(64) 0.629(8) 0.568020(55) 0.11299(95)
0.1850 0.540(6) 0.0712(10) 0.00046(18) 5.323(65) 0.552(8) 0.571769(42) 0.0839(13)
0.1875 0.293(6) 0.0195(4) � � � 6.582(287) 0.472(10) 0.576334(91) 0.0422(11)
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The expected behavior is verified from actual lattice data,
see Fig. 5. Since ZP=ZS is a ratio of spectral sums, and since
it is determined by the plateau at larger values of M, while
finite-size effects mostly affect the smallest eigenvalues,
finite-volume (i.e., finiteN) corrections for this quantity are
expected to be largely negligible.
Table II collects the values of a3ΣRða;mπÞ=ðZPN2Þ,

obtained applying this method for N ¼ 361, and the
values of ZP=ZSða;mπÞ, determined nonperturbatively
for N ¼ 289. These are converted in physical units through

ΣRða;mπÞ
ZSN2Λ3

NSVZ

¼
� ffiffiffiffiffiffi

8t0
p
a

�
3

×
a3ΣRða;mπÞ

ZPN2
×
ZP

ZS
ða;mπÞ

×
� ffiffiffiffiffiffi

8t0
p

ΛNSVZ

�
−3
: ðB7Þ

After using the perturbatively determined value of ZS,
determined as described in Appendix B 3, and the procedure
to pass from the renormalized to the RGI condensate, again
described in Appendix B 3, the determinations reported in
Table I are obtained.

2. Pion mass method (Gell-Mann–Oakes–Renner)
Although softly broken SUSY Yang-Mills has just a

single massive fermion flavor as its dynamical content, it is
possible to consider, in the rigorous framework of partially
quenched chiral perturbation theory, the chiral behavior of
the adjoint pion, an unphysical particlewhosemass is related
to the gluino one by a Gell-Mann–Oakes–Renner-like
relation, just as in QCD [20,21]. In this context, one finds

m2
π ¼ 2

ΣR

F2
π
mR; ðB8Þ

where Fπ refers to the decay constant of the unphysical
adjoint pion, while ΣR is the physical gluino condensate we

wish to calculate. Clearly, both quantities must be under-
stood as computed in the chiral (i.e., SUSY restoring)
limit mR → 0.
From the adjoint-pion mass correlators computed in [57]

it is possible to extract both mπ and Fπ=ZA. Once one gets
rid of ZA and isolates Fπ , from the knowledge of mπ as a
function of the bare gluino mass it is possible to obtain the
renormalized gluino condensate, up to the renormalization
constant ZS, as

ΣR

ZS
¼ m2

πF2
π

2msub
: ðB9Þ

To obtain Fπ=ZA, we used standard techniques relying
on the calculation of the pion-vacuummatrix element of the
temporal component of the axial vector current:

Fπ

NZA
¼ 1ffiffiffi

2
p

Nmπ

h0jA4ðx ¼ 0Þjπðp⃗ ¼ 0Þi; ðB10Þ

where the normalization was chosen on the basis of
standard counting arguments, leading to Fπ ∼OðNÞ for
adjoint fermions. The details of the generalized eigenvalue
problem solved to find the largest-overlapping interpolating
pion operator for twisted-reduced models can be found in
the Appendixes of Refs. [55,57]. Table II collects the values
of aFπ=ðNZAÞ obtained for N ¼ 361.
Since Fπ needs renormalization, it is useful to recall that

from the axial Ward identity it is possible to extract a
different definition of the bare quark mass, the so-called
PCAC (partially conserved axial current) mass:

mPCAC ¼ ZP

ZA
mR: ðB11Þ

Therefore, using the spectral determination of ZP=ZS, and
the PCAC mass determinations of [57], the adjoint-pion
decay constant, for each value of N, b, and gluino mass, is
obtained via

Fπ

N
¼

�
Fπ

NZA

�
×

�
msub

mPCAC

�
×

�
ZP

ZS

�
; ðB12Þ

as in this combination the factors of ZP=ðZSZAÞ exactly
cancel out.
The values of the decay constant obtained in this way

(normalized to the value of ΛNSVZ) are displayed as a
function of the adjoint-pion mass squared, in units of 8t0, in
Fig. 6. A joint chiral and continuum extrapolation of all the
results obtained for the largest N ¼ 361 is then performed.
Assuming OðaÞ and Oðm2

πÞ corrections, we fit to a func-
tional form,

ffiffiffiffiffiffi
8t0

p
Fπða;mπÞ

N
ffiffiffiffiffiffi
8t0

p
ΛNSVZ

¼ Fπ

NΛNSVZ
þ c1

affiffiffiffiffiffi
8t0

p þ c28t0m2
π; ðB13Þ

FIG. 5. Example of nonperturbative determination of ZP=ZS
using the spectral method, Eq. (B5), for N ¼ 289, b ¼ 0.34, and
κ ¼ 0.185. The shaded area represents our final result for
the ratio ZP=ZS.
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where
ffiffiffiffiffiffi
8t0

p
ΛNSVZ is set to the value in the SUSY limit,

given by Eq. (15), and the values of
ffiffiffiffiffiffi
8t0

p
Fπða;mπÞ can be

determined in a straightforward way from the data given in
Table II. Higher-order corrections in the chiral expansion
appear to be negligible within our numerical precision, as
adding a Oðm4

πÞ power to the fit function does not change
the obtained result for Fπ in the SUSY limit. The dashed
line and the shaded area in Fig. 6 represent the pion mass
dependence obtained by setting c1 ¼ 0. We obtain a value
for the adjoint-pion decay constant in the chiral and
continuum limit given by Fπ=ðNΛNSVZÞ ¼ 0.092ð14Þ.
Using this value of Fπ and the values of the adjoint pion

and PCAC masses determined in Ref. [57] (compiled in
Table II for N ¼ 361), it is straightforward to ascertain the
values of ΣR=ZS through the application of Eq. (B9). To be
precise, we determine

ΣRða;mπÞ
ZSN2Λ3

NSVZ

¼
� ffiffiffiffiffiffi

8t0
p
a

�
×

ðamπÞ2
2ðamsubÞ

×

�
Fπffiffiffiffi

N
p

ΛNSVZ

�
2

×
1ffiffiffiffiffiffi

8t0
p

ΛNSVZ
: ðB14Þ

The outcomes obtained for the largest N ¼ 361, multiplied
by the perturbatively determined value of ZS, and passed to
the RGI definition, cf. Appendix B 3, are summarized in
Table I.

3. Renormalization and conversion to RGI definition

The methods described so far allow to determine the bare
gluino condensates ΣR=ZP and ΣR=ZS. Given that we are

also able to obtain nonperturbative determinations of
ZP=ZS, in the end we are just left with two independent
determinations of, say, ΣR=ZS. A nonperturbative determi-
nation of ZS is not available at present, therefore we have to

rely on two-loop perturbation theory to estimate ZðMSÞ
S ðμÞ.

In terms of the renormalized coupling at scale μ ¼ 1=a, the
renormalization constant ZS in the MS scheme at two-loop
order reads [53]

ZðMSÞ
S

�
μ¼ 1

a
; λMS

�
¼ 1−

12.9524104ð1Þ
ð4πÞ2 λMS

−
60.68ð10Þ
ð4πÞ4 λ2

MS
þOðλ3

MS
Þ: ðB15Þ

The renormalized coupling in the MS scheme at μ ¼ 1=a
was computed using improved couplings (see Appendix C),
and no significant dependence on the choice of the particular
improved lattice scheme was observed in the obtained
results.
With these ingredients we are able to determine, up to the

systematic error involved in the perturbative determination

of ZS, the value of ΣðMSÞ
R ðμ ¼ 1=aÞ. As explained in the

main text, the renormalized condensate ΣðsÞ
R ðμÞ, determined

in any arbitrary scheme (s) at an arbitrary renormalization
scale μ, can be converted to a scheme and scale-indepen-
dent RGI quantity as follows [35–38]:

ΣRGI ¼ AΣðsÞ
R ðμÞ½2b0λsðμÞ�

d0
2b0

× exp

�Z
λsðμÞ

0

dx

�
τsðxÞ
2βsðxÞ

−
1

x

��
; ðB16Þ

with A ¼ 8π2=ð9N2Þ a normalization factor chosen to
match the analytic calculation conventions of the NSVZ
determination. At two-loop order, expanding β and τ, this
relation simplifies as

ΣRGI ¼ A2b0Σ
ðsÞ
R ðμÞλsðμÞ

�
1þ λsðμÞ

�
dðsÞ1

2b0
−
b1
b0

��
;

where b0, b1, and d0 ¼ 2b0 are universal, and dðsÞ1 is
scheme dependent. In the MS scheme at scale μ ¼ 1=a, one
obtains

ΣRGI ¼ A2b0Σ
ðMSÞ
R ðμ ¼ 1=aÞλMSðμ ¼ 1=aÞ

×

�
1þ dðMSÞ

1 − 2b1
2b0

λMSðμ ¼ 1=aÞ
�
; ðB17Þ

with dðMSÞ
1 ¼ 32=ð4πÞ4 [72].

Given the order of truncation we are working at, we rely
on two-loop perturbation theory also to express the ’t Hooft

FIG. 6. Chiral-continuum extrapolation (star) of the N ¼ 361
results for the adjoint-pion decay constant Fπ=ðNΛNSVZÞ. For
comparison we also show results obtained for N ¼ 169 and 289.
The dashed line and the shaded area represent the chiral
extrapolation best fit at the zero-lattice-spacing point. Best fit
yields a reduced χ̃2 ≃ 14.4=9.
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coupling in terms of the dynamically generated scale of the
theory [37], which we are able to reliably compute from the
lattice (see Appendix C):

2b0λMSðμ ¼ 1=aÞ

¼ −
1

logðaΛMSÞ
−

b1
2b20

log ½−2 logðaΛMSÞ�
log2ðaΛMSÞ

: ðB18Þ

We have checked that truncating Eqs. (B17)–(B18) at one-
loop order leads to a change in the final results for the
condensate which is well below the 30% systematic error
we have assigned to the use of the perturbative formula for
the renormalization factor ZS.

APPENDIX C: THE DYNAMICALLY
GENERATED SCALE ΛNSVZ

FROM THE LATTICE

The dynamically generated scale ΛNSVZ can be obtained
from the one of the MS scheme, which is more amenable to
be computed on the lattice, via ΛNSVZ ¼ e−1=18ΛMS [40].
We computed ΛMS via asymptotic scaling:

ffiffiffiffiffiffi
8t0

p
ΛMS ¼ lim

aχ→0

ffiffiffiffiffiffi
8t0

p
aχ

expf−fðλMSÞg;

fðxÞ ¼ 1

2b0

�
1

x
þ b1
b0

logðb0xÞ
�
; ðC1Þ

with aχ the lattice spacing extrapolated to the massless-
gluino limit, computed in [57].
Instead of matching directly the bare lattice ’t Hooft

coupling λL ¼ 1=b to the MS scheme, it is better first to
pass through an intermediate scheme defined by the so-

called improved couplings λðsÞt , which are related to the bare
one by

λL ¼ λðsÞt − 2b0
�
λðsÞt

�
2
logðΛs=ΛLÞ; ðC2Þ

with ΛL the Λ parameter related to λL.

In this work we have considered three different improved

couplings: λðIÞt ¼ 1=ðbPÞ, λðEÞt ¼ 8ð1 − PÞ, and λðE
0Þ

t ¼
−8logðPÞ, where P is the averaged clover plaquette
P≡ 1

6N

P
μ>νhTr Cloverμνi. All of these improved cou-

plings define its own renormalization scheme, which can
be matched to the bare lattice one via

log

�
ΛL

ΛI

�
¼ −

w1

2b0
¼ log

�
ΛL

ΛMS

× 2.7373

�
; ðC3Þ

log

�
ΛL

ΛE

�
¼ −

w2

2b0w1

¼ log

�
ΛL

ΛMS

× 29.005

�
; ðC4Þ

log

�
ΛL

ΛE0

�
¼ −

a1
2b0

¼ log

�
ΛL

ΛMS

× 5.60

�
: ðC5Þ

Here w1 and w2 [73,74] are the first two coefficients of the
perturbative expansion of the plaquette P:

w1 ¼
1

8
; ðC6Þ

w2 ¼ 0.0051069297 − Nf0.0013858405ð1Þ; ðC7Þ

a1 ¼
w2

w1

þ w1

2
; ðC8Þ

with Nf ¼ 1=2. Finally, using the known relation between
ΛL and ΛMS in a theory with adjoint fermions [73],

ΛMS

ΛL
¼ 73.46674161161081; ðC9Þ

and the values of the plaquette determined in Ref. [57]
(cf. Table II for N ¼ 361), we have all the necessary
ingredients to pass from improved lattice couplings to the
MS one.
The result of applying this exercise to determine ΛNSVZ

through the three different improved couplings is presented
in Fig. 1, in Sec. IV. Asymptotic scaling works remarkably
well leading to a value:

ffiffiffiffiffiffi
8t0

p
ΛNSVZ ¼ 0.376ð25Þ.

[1] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I.
Zakharov, Nucl. Phys. B229, 407 (1983).

[2] G. C. Rossi and G. Veneziano, Phys. Lett. 138B, 195
(1984).

[3] D. Amati, G. C. Rossi, and G. Veneziano, Nucl. Phys. B249,
1 (1985).

[4] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I.
Zakharov, Nucl. Phys. B260, 157 (1985).

[5] T. J. Hollowood, V. V. Khoze, W.-J. Lee, and M. P. Mattis,
Nucl. Phys. B570, 241 (2000).

[6] M. A. Shifman and A. I. Vainshtein, Nucl. Phys. B277, 456
(1986).

[7] A. Armoni, M. Shifman, and G. Veneziano, Phys. Lett. B
579, 384 (2004).

[8] G. ’t Hooft, Commun. Math. Phys. 81, 267 (1981).
[9] E. Cohen and C. Gomez, Phys. Rev. Lett. 52, 237 (1984).

NONPERTURBATIVE DETERMINATION OF THE … PHYS. REV. D 110, 074507 (2024)

074507-11

https://doi.org/10.1016/0550-3213(83)90340-1
https://doi.org/10.1016/0370-2693(84)91899-9
https://doi.org/10.1016/0370-2693(84)91899-9
https://doi.org/10.1016/0550-3213(85)90037-9
https://doi.org/10.1016/0550-3213(85)90037-9
https://doi.org/10.1016/0550-3213(85)90316-5
https://doi.org/10.1016/S0550-3213(99)00503-9
https://doi.org/10.1016/0550-3213(86)90451-7
https://doi.org/10.1016/0550-3213(86)90451-7
https://doi.org/10.1016/j.physletb.2003.10.094
https://doi.org/10.1016/j.physletb.2003.10.094
https://doi.org/10.1007/BF01208900
https://doi.org/10.1103/PhysRevLett.52.237


[10] A. R. Zhitnitsky, Nucl. Phys. B340, 56 (1990).
[11] N. M. Davies, T. J. Hollowood, V. V. Khoze, and M. P.

Mattis, Nucl. Phys. B559, 123 (1999).
[12] N. M. Davies, T. J. Hollowood, and V. V. Khoze, J. Math.

Phys. (N.Y.) 44, 3640 (2003).
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