000145533 001__ 145533
000145533 005__ 20241108105821.0
000145533 0247_ $$2doi$$a10.3390/nano14181489
000145533 0248_ $$2sideral$$a140389
000145533 037__ $$aART-2024-140389
000145533 041__ $$aeng
000145533 100__ $$aCoronado, Sara
000145533 245__ $$aAdvancements in engineering planar model cell membranes: current techniques, applications, and future perspectives
000145533 260__ $$c2024
000145533 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145533 5203_ $$aCell membranes are crucial elements in living organisms, serving as protective barriers and providing structural support for cells. They regulate numerous exchange and communication processes between cells and their environment, including interactions with other cells, tissues, ions, xenobiotics, and drugs. However, the complexity and heterogeneity of cell membranes—comprising two asymmetric layers with varying compositions across different cell types and states (e.g., healthy vs. diseased)—along with the challenges of manipulating real cell membranes represent significant obstacles for in vivo studies. To address these challenges, researchers have developed various methodologies to create model cell membranes or membrane fragments, including mono- or bilayers organized in planar systems. These models facilitate fundamental studies on membrane component interactions as well as the interactions of membrane components with external agents, such as drugs, nanoparticles (NPs), or biomarkers. The applications of model cell membranes have extended beyond basic research, encompassing areas such as biosensing and nanoparticle camouflage to evade immune detection. In this review, we highlight advancements in the engineering of planar model cell membranes, focusing on the nanoarchitectonic tools used for their fabrication. We also discuss approaches for incorporating challenging materials, such as proteins and enzymes, into these models. Finally, we present our view on future perspectives in the field of planar model cell membranes.
000145533 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E31-23R
000145533 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000145533 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/publishedVersion
000145533 700__ $$aHerrera, Johan
000145533 700__ $$aPino, María Graciela
000145533 700__ $$0(orcid)0000-0001-9193-3874$$aMartín, Santiago$$uUniversidad de Zaragoza
000145533 700__ $$aBallesteros-Rueda, Luz
000145533 700__ $$0(orcid)0000-0002-4729-9578$$aCea, Pilar$$uUniversidad de Zaragoza
000145533 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000145533 773__ $$g14, 18 (2024), 1489 [43 pp.]$$pNanomaterials (Basel)$$tNanomaterials$$x2079-4991
000145533 8564_ $$s5338328$$uhttps://zaguan.unizar.es/record/145533/files/texto_completo.pdf$$yVersión publicada
000145533 8564_ $$s2830205$$uhttps://zaguan.unizar.es/record/145533/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145533 909CO $$ooai:zaguan.unizar.es:145533$$particulos$$pdriver
000145533 951__ $$a2024-11-08-10:37:31
000145533 980__ $$aARTICLE