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Abstract One of the uses of Markov Chains is the simulation of the seismic
cycle in a fault, i.e. as a renewal model for the repetition of its characteristic
earthquakes. This representation is consistent with Reid’s elastic rebound
theory. We propose a general one-way Markovian model in which the waiting
time distribution, its first moments, coefficient of variation, and functions of
error and alarm (related to the predictability of the model) can be obtained
analytically. The fact that in any one-way Markov cycle the coefficient of
variation of the corresponding distribution of cycle lengths is always lower
than one concurs with observations of large earthquakes in seismic faults.
The waiting time distribution of one of the limits of this model is the neg-
ative binomial distribution; as an application, we use it to fit the Parkfield
earthquake series in the San Andreas fault, California.

1 Introduction

The elastic-rebound model is the canonical “macroscopic” theory of great
earthquakes [24,26]. It states that a great earthquake will occur where large
elastic strains have accumulated in the crust. The earthquake itself will relieve
most of the strain which will then accumulate slowly again by a steady input
of tectonic stress until the elastic strain becomes sufficiently large for another
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earthquake to ensue. The duration of this “earthquake cycle” is the ratio of
the strain released during an earthquake to the rate of input of tectonic strain
by plate motion. The concept of cycle in this context is a fundamentally
geologic one that bears little resemblance to other cycles encountered in
physics, and is related to the changing strain state of a fault plane as stress
steadily accumulates via tectonic plate motion [15,19]. In the concept of
earthquake cycle it is implicit that the stress and strain state of the fault
plane after the kth large earthquake is statistically indistinguishable from
the state after the (k − 1)th or any previous large earthquake in the same
fault.

An outcome of the elastic-rebound model is the idea of characteristic
earthquakes [27,35,36,1]. Although a specific seismic fault or fault segment
can produce small earthquakes as well as large ones, an overwhelming part
of the stored elastic energy is released by the large ones, which rupture the
entire area of the fault (or fault segment) in a repetitive, cyclic manner. As
the magnitude of an earthquake is related to the broken area of the fault [14],
each fault (or fault segment) tends to produce large earthquakes of the same
magnitude; and because these earthquakes release most of the stored elastic
energy, their repetition defines the duration of the earthquake cycle. The
concept of characteristic earthquake has slowly changed since its definition
by [27], but the idea of a series of large repetitive earthquake rupturing
periocically an entire fault remain, although not all seismologists adhere to
it (e.g., [17]) due to its phenomenological definition.

Because the Earth’s crust is heterogeneous and faults are not isolated from
each other but communicate through long-range stress-transfer mechanisms
[28,9,31,3,4], the earthquake cycle is not periodic. So, although the elastic-
rebound model is in essence deterministic, its application to a heterogeneous
and interacting crust implies its translation into a probabilistic framework.
Only in this way can it be used for earthquake forecasting purposes.

Several authors have proposed probabilistic versions of the elastic-rebound
model, in the shape of probability distribution functions (pdfs) for the dura-
tion of the earthquake cycle [25,32,18,33,20,12]. The rationale of these pdfs
ranges from purely statistical (e.g. Utsu [32]) to physically-motivated (e.g.
Vázquez-Prada et al. [33]). However, due to the scarcity of registered large
earthquakes in a specific fault (usually 4 to 10 earthquakes), the statistics
upon which the selection of a specific pdf is based are poor. This means that
different pdfs can fit the empirical distribution function.

The variability of the duration of the earthquake cycle can be appropri-
atelly defined in the context of a pdf by means of the coefficient of variation,
α, the ratio of the standard deviation σ to the mean µ of the pdf.

α =
σ

µ
(1)

In the seismological literature the coefficient of variation is also known
as the aperiodicity, a very descriptive name when applied to the duration of
the earthquake cycle: when α = 0 the earthquake cycle is perfectly periodic,
when 0 < α < 1 the earthquake cycle is quasiperiodic, and when α > 1
the earthquake cycle is said to have a clustering of events. The case α = 1 is
particularly important because the exponential distribution has this property,
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and the exponential distribution is the pdf of an earthquake cycle where
large earthquakes occur in time following a Poisson distribution (i.e, they
are random in time).

The predictability of a time series whose events follow a specific pdf is
related to its aperiodicity [22,37,30]. Applied to the earthquake cycle this
means that the predictability of the next large (characteristic) earthquake
in a series is related to the aperiodicity of the pdf describing the duration
of the cycles: aperiodicities close to zero imply greater predictability than
aperiodicities close to one. Sykes and Menke [29] have calculated the ape-
riodicity of the earthquake cycle of several seismic faults. All the studied
faults have aperiodicities smaller than 0.6, meaning that the earthquake cy-
cle is quasiperiodic. Ellsworth et al. [8] also studied the aperiodicity of the
earthquake cycle in several fault segments and concluded that all of them are
between 0.11 and 0.97. Recently, Abaimov et al. [1,2] studied the creeping
section of the San Andreas Fault, where instead of through medium or large
earthquakes, elastic strain is released in an almost continuous way via small
slip events 20 to 100 days apart. The aperiodicity of these slip series is in the
range 0.473 < α < 0.677 [1]. It seems, thus, that α < 1 is a property of the
earthquake cycle in seismic faults and that this behaviour spans cycles with
durations from days to hundreds of years. Can this be reproduced by simple
models of single-fault seismicity?

In this paper we propose a general one-way Markovian model of the earth-
quake cycle with aperiodicities lower than 1. The term one-way in this family
of models refers to the fact that after a time step, the state of strain in a fault
can remain either stationary or grow by a finite amount. In other words, in
this model a decrease in the strain, such as could take place in a random
walk type model, is forbidden. Time increases in discrete steps and strain is
also added in finite units. The N positions of the model correspond to states
of the system with progressive growing strain. The scheme of this model is
shown in figure 1, for N = 6.

The relaxation of the system through a sudden and complete loss of strain,
which simulates the occurrence of an earthquake, occurs when the N th posi-
tion of chain is reached. In Fig. 1, the relaxation is represented by the wavy
line.

This article is organized as follows: Section 2 contains the general form
of the stochastic matrix of one-way Markov cycles together with the special-
ization to the case of the Box-Model and the case where all the parameters
are equal. This second case is nothing but a Negative Binomial Process. Sec-
tions 3 and 4 contain the distribution function for the cycle length and the
two first moments of that distribution, respectively. The distribution func-
tion and first moments of the two particular cases mentioned above are also
included. In Section 5, the so called fraction of error and fraction of alarm
time are calculated. In Section 6, using a Negative Binomial Distribution we
fit the data of the Parkfield earthquake series. Finally, in Section 7 we write
the conclusions. Additionally, we have considered it of interest to explicitly
present, for a non trivial case such as N = 3, how the distribution function in
the case where all the parameters are equal tends to the Negative Binomial
Distribution. This proof is written in the Appendix.
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Fig. 1 Scheme of a one-way Markov cycle with N = 6. The probability of staying
in state i is ai and the probability of jumping from state i to state i + 1 is (1− ai).
The wavy line between states 6 and 1 means that at the end of the cycle all the
stored energy is released.

2 One-way Markov cycles: Two particular cases

This model can be viewed as an array of N sites, or cells. These N sites
are ordered by the index i, i = 1, 2, . . . , N . As in genuine cellular automata,
time increases in discrete steps. At the beginning of each cycle (i = 1), the
array is empty of particles. In the first time step one particle is thrown to
hit site 1, the probability of success being (1− a1) and, in consequence, the
probability of failure is a1. In each failed attempt, the particle than misses
the site is lost. Typically, after several failures a particles hits site 1 and is
incorporated to the array at this position. Once the first site is occupied, the
succesive throws of particles are aimed to hit site 2. All is identical to the
first case except that now the probability of success is (1 − a2) and that of
failure is a2.

The occupation of site 1 is the first transit of the one-way Markov cycle
ant the occupation of site 2 is the second transit. And then is the turn of sites
3, 4, ..., N . When site N is occupied, the cycle ends because all the particles
accumulated in the array are released in a global relaxation. These simple
rules are graphycally illustrated in Fig. 1 and materialized in the Markov
matrix [M ], that for a cycle of size N has the form
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[M ] =




a1 1− a1 0 · · · 0 0 0
0 a2 1− a2 · · · 0 0 0
0 0 a3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · aN−2 1− aN−2 0
0 0 0 · · · 0 aN−1 1− aN−1

1− aN 0 0 · · · 0 0 aN




, (2)

where the N parameters ai, i = 1, 2, 3, .., , N , are 0 < ai < 1. Note that,
including the size N , the number of free paramenters in the model is N + 1.
From the point of view of the earthquake cycle defined in Section 1, if we
conceptualize a fault plane as a 2D array of cells and each cell can be either
stressed or un-stressed, the probability ai of remaining in the same position
of the cycle means no increase in stress during time step i, while jumping
to the next position in the cycle, which occurs with probability (1 − ai),
is associated with an increase in stress on the fault plane (i.e., a change of
one cell from the un-stressed to the stressed state), thus approaching the
final state when all the fault plane is stressed and the large earthquake that
terminates the cycle takes place.

Denoting by [M ]T the transpose of the Markov matrix, the components
of its eigenvector with eigenvalue unity, ci , are:

ci =
1
C

N∏

j( 6=i)=1

(1− aj)

(3)

C =
N∑

i=1

N∏

j( 6=i)=1

(1− aj)

where C is the normalization factor. The component ci is the probability,
statistically speaking, of finding the system in the position i of the cycle.

A particular case of this general scheme is that of the Box Model (BM)
[11]. This is a cellular automaton where the stochastic filling of a box rep-
resents the increase of elastic energy in a fault during the seismic cycle. To
visualize the model, consider an array of N cells. The position of the cells
is irrelevant, but we can assume that they are arranged in the shape of a
box. At the beginning of each cycle, the box is completely empty. At each
time step, one ball is thrown, at random, to one of the cells in the box. That
is, each cell has equal probability, 1/N , of receiving the ball. If the cell that
is chosen is empty, it will become occupied. If it was already occupied, the
thrown ball is lost. Thus, each cell can be either occupied by a ball (stressed)
or empty (un-stressed). When a new throw completes the occupation of the
N cells of the box, it topples, becoming completely empty, and a new cycle
starts. The emptying of the box after it is full is analogous to the generation
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of a characterisitic earthquake. In this model, the values of the N parameters
are:

ai =
i− 1
N

(4)

Another significant particular case corresponds to the case when

ai = a ∀i (5)

That is, all the parameters are identical. In such a Markov process, the
distribution of the cycle length is that of a Negative Binomial Distribution
(NBD) [7] where the probability of success is (1 − a) and N successes are
required. In other words, the negative binomial distribution is a discrete
probability distribution of the number of Bernoulli trials before a specified
(non-random) number of successes (denoted N) occur. For example, if one
throws a die repeatedly until the third time ’1’ appears (N = 3), then the
probability distribution of the number of trials (i.e. the sum of ’1’s and non-
’1’s) that have been needed will be negative binomial.

3 Distribution Function for the cycle lengths

The distribution function of the cycle length for a one-way Markov cycle of
N states, PN (n), can be obtained from the Markov matrix of the system, M,
by the application of the following three steps: i) The element of the last row
and first column of M is changed by a 0. After this pruning, the matrix will
be called M′. ii) The new matrix M′ is multiplied by itself n − 1 times to
obtain M′(n−1) and the element of the first row, last column of this matrix
is identified. iii) PN (n) is the product of this selected matrix element times
1/N . The whys of this recipe are explained, for example, in [34]. Using this
procedure, one obtains

PN (n) =

[
N∏

i=1

(1− ai)

][
N∑

i=1

an−1
i∏N

j(6=i)=1(ai − aj)

]

(6)
n = N, N + 1, . . . ,∞

where n represents the length of the cycle expressed in time steps of the
model.

This is the general form of the discrete distribution function in any one-
way Markov cycle. This formula has been obtained from systematics. That
is, after having explicitely calculated P2(n), P3(n), etc., one deduces that the
form of PN (n) is what is written in Eq. 6.

When these models are applied in seismicity, the fact that until time step
n = N the probability of completing a cycle is null is called a stress shadow,
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i.e., a time period during which no earthquake can occurr in the fault due to
the fact that the previous one has release all of the stored energy.

In the two particular cases mentioned above, the Box Model and the
Negative Binomial Distribution, one obtains:

PN (n) =
N−1∑

i=1

(−1)i+1

(
N − 1
i− 1

)
(1− i

N
)n−1

(7)
n = N, N + 1, . . . ,∞

for the BM, and

PN (n) = (1− a)Nan−N

(
n− 1
N − 1

)

(8)
n = N,N + 1, . . . ,∞

for the NBD.

4 The two first moments

In a geometric process where the probability of success is (1− a), the mean
and variance of the distribution are:

µ =
1

1− a
, (9)

and

σ2 =
a

(1− a)2
. (10)

Thus, the coefficient of variation, or aperiodicity, of a geometric process is

α =
σ

µ
= a1/2 < 1 (11)

Therefore, as a one-way Markov cycle is nothing more than a succession
of N independent geometric processes, the mean and variance can be written
as:

µ =
1

1− a1
+

1
1− a2

+ . . . +
1

1− aN
, (12)

and
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σ2 =
a1

(1− a1)2
+

a2

(1− a2)2
+ . . . +

aN

(1− aN )2
. (13)

Thus, the aperiodicity, α, is given by:

α =

[
a1

(1−a1)2
+ a2

(1−a2)2
+ . . . + aN

(1−aN )2

]1/2

1
1−a1

+ 1
1−a2

+ . . . + 1
1−aN

. (14)

This aperiodicity is rigorously lower than 1 because the different subprocesses
which build the one-way Markov cycle are geometric and independent.

In the particular case of the NBD, we have:

µ =
N

1− a
, (15)

σ2 =
Na

(1− a)2
, (16)

and

α =
σ

µ
=

√
a

N
. (17)

5 Fraction of error and fraction of alarm

A convenient way to assess the predictability of a time series is by trying
to forecast its events by declaring alarms at particular times. The aim is to
declare alarms before all the events in order not to miss any, but to declare
them just before the events in order to minimize the total alarm time. Many
strategies can be devised to declare the alarms but there is a reference strat-
egy to which all others can be compared [23,16,34]. This strategy consists
of setting the alarm a fixed time interval after each event (waiting time) and
maintaining it until the occurrence of the event. If the following event in the
time series occurs before the alarm is raised, it is counted as a prediction
error; if the following event in the time series occurs after the alarm is raised,
it is counted as a prediction success and the alarm is then cancelled.

The fraction of errors fe (number of missed events divided by the total
number of events) and the fraction of alarm time fa (total alarm time di-
vided by the total duration of the time series) can be computed as a function
of the waiting time n and the purpose is to find the optimum waiting time.
This optimum waiting time depends on the relative importance that failing
to predict an event has compared to keeping the alarm on. An objective func-
tion, called loss function, L, can be defined that incorporates this trade-off
in each particular case. One very simple option is L = fe + fa, where both,
failure to predict an earthquake and a long alarm time, are equally penal-
ized. Obviously the aim is to find the waiting time n = n∗ that minimizes
L(n). Depending on the context where an alarm-based prediction strategy is
applied, the loss function can be tailored to specific needs [21,22].
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For any thinkable strategy based on the use of alarms, if an earthquake
takes place when the alarm is on, the prediction is considered to be a success.
If the earthquake takes place when the alarm is off, then it is labelled as a
prediction failure.In our general one-way Markov model, and using the above-
mentioned strategy, the fraction of error function adopts the form

fe(n) =
n∑

n′=N

P (n′) = 1−
∞∑

n′=n+1

P (n′). (18)

Note that fe is the accumulated distribution of Eq. (6). Performing the sum
over the n′ index, the result is:

fe(n) = 1−
[

N∏

i=1

(1− ai)

]
N∑

i=1

[
an

i

(1− ai)
1∏N

j( 6=i)=1(ai − aj)

]
. (19)

Regarding the fraction of alarm time function, fa, its general form is

fa(n) =
∑∞

n′=n P (n′)(n′ − n)∑∞
n′=n P (n′)n′

=
∑∞

n′=n P (n′)(n′ − n)
µ

, (20)

and, for the particular case of a one-way Markov cycle, we have:

µfa(n) =
∞∑

n′=n

n′P (n′)− n
∞∑

n′=n

P (n′) =

=

[
N∏

i=1

(1− ai)

]
N∑

i=1

[
ai

n∏N
j(6=i)=1(ai − aj)

(
n

ai(1− ai)
+

1
(1− ai)2

)]

−n (1 + P (n)− fe(n)) . (21)

6 Application of the model to the Parkfield series

As said in Section 2, two particular cases of the models included in the
family of one-way Markov cycles are the BM and the NBD. The waiting
time distribution of the BM was used in [11] to fit the series of earthquakes
occurred at the Parkfield segment of the San Andreas fault in California.
Here we will apply a NBD to the same series because it constitutes the
best studied sequence of characteristic earthquakes in the world. The mean
and aperiodicity of the Parkfield earthquake series are 24.5 years and 0.378
respectively. During the mid 1980s a prediction experiment was set up in
this fault segment in order to predict the time of the next earthquake in the
series [6]. Finally the earthquake did occur in 2004, but outside the prediction
window of the 1985 experiment, demonstrating that a reliable short-term
earthquake prediction is still not achievable [5].

A negative binomial process is a particular case where all the probabilities
of advancing in the one-way Markov process are equal. Thus, in principle, in
this model one would have to deal with two parameters, N and a. But this
can be simplified if N and a are related. One interesting possibilty is
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1− a =
1
N

, (22)

which corresponds to an statistical process of filling the N sites of an array
in an ordered way (note the difference with the Box Model, where the filling
process is not ordered). Thus, in this particular case the occupation of any
site is a geometric process with a probability of success equal to 1/N while
(N − 1)/N is the probability of failure. Inserting Eq. (22) into Eq. (17), we
obtain the aperiodicity of this concrete model:

α =
√

N − 1
N

. (23)

The aperiodicity has a maximum value of 0.5 for N = 2 and then decays
monotonously to 0 as N tends to ∞.

We will fit the Parkfield series of earthquakes to this model using the
method of moments. First, we will choose the value of N for which the
aperiodocity is nearest to that of the Parkfield series, α = 0.378. The result
is N = 6, for which α = 0.373. From Eq. (15), the mean value of n in this
model is N2 and thus for N = 6 the mean is equal to 36 time steps. Because
the actual mean of the Parkfield series is 24.62 years, one step of the model
corresponds to 24.62/36 = 0.68 years, or around 8 months.

As the last earthquake of the series occurred on September 28, 2004 and
the period of stress shadow is 6×8 = 48 months, it ended in September 2008.
Therefore the occurrence of the next event now (2012) is not forbidden by
this model, although the probability is very low.

Now the parameters are already fixed and using Eq. (8), the pdf for the
fit is

P6(n) =
(

1
6

)6 (
5
6

)n−6 (
n− 1

5

)
, n = 6, 7, . . . ,∞. (24)

In Figure 2 we have superimposed the cumulative histogram (empirical
distribution function) of the Parkfield series to the cumulative distributions
of the NBD and other five models used in the literature [10,12]. It is quite
obvious from the figure that the performance of all six models is good and
very similar, including the NBD. Indeed, the residuals for the NBD evaluated
at the midpoints of the horizontal segments of the empirical distribution
function are the lowest of the six tested models.

The hazard rate corresponding to PN (n) is defined as:

hN (n) =
PN (n)∑∞
i=n PN (i)

. (25)

The hazard rate is the probability for an earthquake to occurr at time step
n on the condition that it has not occurred until time step n − 1. However,
in the seismological literature is customary to express the likelihood of an
earthquake using the yearly conditional probability of earthquake occurrence,
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Fig. 2 Fit of the Negative Binomial model to the Parkfield series and comparison
with other statistical models used in the literature.

P (n|τ = 1 year), instead of the hazard rate. This function gives the probabil-
ity of having an earthquake during the next year provided it has not occurred
before:

PN (n|τ = 1 year) =
SN (n + τ)− SN (n)

1− SN (n− 1)
, (26)

where SN (n) =
∑n

i=N PN (n) is the cummulative distribution function.
Both the hazard rate and the yearly conditional probability functions for

the NBD reach a constant value for large times. Inserting Eq. (24) into Eq.
(25) one easily obtains that, for long times,

lim
n→∞

hN (n) =
1
N

. (27)

As an example, the asymptotic (large time) hazard rate for the Parkfield
series is h6(∞) = 1/6 = 0.1667, while the present hazard rate (for the end of
the year 2012) is 0.0033, a 2% of the maximum hazard rate.

The yearly conditional probability function for the Parkfield series is il-
lustrated in Fig. 3. Again, as in Fig. 2, the NBD and five other models are
compared. The present yearly probability of earthquake occurrence is 0.004,
i.e., there is a 0.4% probability of having an earthquake in the following 12
months. Obviously this probability is low because the earthquake cycle is in
its early stages. When the cycle is at its average duration, 24.62 years, the
yearly probability is 6% (Fig. 3).



12

2000 2010 2020 2030 2040 2050 2060
0.00

0.05

0.10

0.15

0.20

 NegBin
 Weibull
 Gamma
 Lognormal
 BPT
 MM

 

 
ye

ar
ly

 p
ro

ba
bi

lit
y

date (year)

September 28, 2004 
Parkfield earthquake

Mean recurrence
interval (24.62 yr)

Fig. 3 Yearly conditional probability for the Parkfield series as predicted by the
Negative Binomial model compared to other statistical models used in the litera-
ture.

7 Conclusions

We have introduced a family of models, one-way Markov cycles, for the de-
scription of the repetitive occurrence of earthquakes in faults. We have calcu-
lated the form of the distribution function for the cycle length. The number
of independent parameters, N , coincides with the number of positions in the
Markov cycle, each one corresponding to a transition probability (1− ai) to
the next state in the cycle (i = 1, 2, . . . N). The first moments of this distri-
bution are easily calculated bearing in mind that a one-way Markov cycle is
nothing more than a succession of N independent geometric processes. Thus,
these moments are written as the sum of the mean, or variance, of the N
stages of the cycle. Most properties of this family of models can be obtained
analytically, an interesting result in itself. Two of such properties are the
fraction of error to predict and the fraction of alarm time, basic funtions to
assess the predictability of earthquake renewal models [13].

The above enumerated properties of the model nicely match Reid’s the-
oretical vision of the mechanism of how earthquakes are generated [15]. As
commented on in the Introduction, data on the recurrence of large earth-
quakes in well documented seismic faults indicate that their aperiodicity is
always lower than unity [29,8,1,2]. Because the aperiodicity (coefficient of
variation) of the distribution of cycle lengths in any one-way Markov cycle is
also lower than unity, this family of models can be used as general renewal
models of earthquake recurrence.
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Two limit cases of one-way Markov cycles are the Box Model (BM) and
the Negative Binomial Model (NBM). The first was already used by the
authors to evaluate the predictability of the Parkfield, California, series of
earthquakes [11]. Here we have applied the NBM to the same earthquake
series and shown that it gives competitive results in comparison to several
other renewal models used in the literature. However, while renewal mod-
els using known distributions such as gamma, Weibull, log-normal, etc. are
pure fits to earthquake data, our model at least provides a nave view of the
process of loading and relaxation of a fault. This relationship between the
model and the physics of a fault, together with the conclusion that one-way
Markov cycles always have aperiodicities lower than one (in agreement with
observations), are the main results of our study.

A APPENDIX: The Negative Binomial Distribution as a Limit:
Case N = 3

In this Appendix we show explicitly that, for N = 3, the limit of eq. 6 when the
three parameters are equal is eq. 8. For simplicity in the notation, let us call a1 = a,
a2 = b, a3 = c. Eq. 6 for N = 3 reads as follows:

P3(n)

K
=

an−1

(a− b)(a− c)
+

bn−1

(b− a)(b− c)
+

cn−1

(c− a)(c− b)

(28)

K = (1− a)(1− b)(1− c)

To carry out the limit, we introduce new variables x and y.

a = xc

(29)

b = yc

The limit we seek will be implemented by tending x and y to 1. Substituting
the new variables into eq. 28, the result is:

cn−1xn−1

c2(x− y)(x− 1)
+

cn−1yn−1

c2(y − x)(y − 1)
+

cn−1

c2(1− x)(1− y)
=

(30)

= cn−3

[
xn−1(y − 1)− yn−1(x− 1) + (x− y)

(x− y)(x− 1)(y − 1)

]

Elaborating eq.30 slightly, we obtain :

cn−3

(x− y)(x− 1)(y − 1)

[
y(xn−1 − 1)− x(xn−2 − 1)− yn−1(x− 1)

]
(31)

Henceforth it is convenient to use the following type of polynomials:
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Pn(x) = xn + xn−1 + xn−2 + . . . + x + 1

Pn(1) = n + 1 (32)

Pn(x, y) = xn + xn−1y + xn−2y2 + . . . + xyn−1 + yn

These polynomials fulfil the so-called cyclotomic property, namely

(xn − 1) = (x− 1)Pn−1(x)

(33)

(xn − yn) = (x− y)Pn−1(x, y)

So, dividing the second factor in eq. 31 by (x− 1) we obtain

cn−3

(x− y)(y − 1)

[
yPn−2(x)− xPn−3(x)− yn−1

]
=

=
cn−3

(x− y)(y − 1)

[
y(Pn−3(x) + xn−2)− xPn−3(x)− yn−1

]
= (34)

=
cn−3

(x− y)(y − 1)

[
(y − x)Pn−3(x) + y(xn−2 − yn−2)

]

Now we divide the second factor of eq. 34 by (x− y)

cn−3

(y − 1)
[yPn−3(x, y)− Pn−3(x)] =(35)

cn−3

(y − 1)
[y(xn−3 + xn−4y + xn−5y2 + . . . + xyn−4 + yn−3)− (xn−3 + xn−4 + . . . + x + 1)] =

cn−3

(y − 1)
[(y − 1)xn−3 + (y2 − 1)xn−4 + . . . + (yn−4 − 1)x2 + (yn−3 − 1)x + (yn−2 − 1)] =

cn−3[xn−3 + xn−4P1(y) + xn−5P2(y) + . . . + x2Pn−5(y) + xPn−4(y) + Pn−3(y)]

Returning to eq. 28, using eq. 35, and performing the limit x, y → 1, we obtain:

lim
x,y→1

P3(n) = (1− c)3cn−3[1 + 2 + 3 + . . . + (n− 3) + (n− 2)] =

(36)

(1− c)3cn−3 (n− 1)(n− 2)

2

This formula coincides with eq. 8 when N = 3

P3(n) = (1− c)3cn−3
(

n− 1
2

)

(37)

n = 3, 4, . . . ,∞
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