000145556 001__ 145556
000145556 005__ 20250923084437.0
000145556 0247_ $$2doi$$a10.1016/j.psep.2024.10.053
000145556 0248_ $$2sideral$$a140411
000145556 037__ $$aART-2024-140411
000145556 041__ $$aeng
000145556 100__ $$aRefaat, Dalia
000145556 245__ $$aThin film nanocomposite membranes based on renewable polymer Pebax® and zeolitic imidazolate frameworks for CO2/CH4 separation
000145556 260__ $$c2024
000145556 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145556 5203_ $$aThis study investigates the impact of integrating Pebax® Rnew® 30R51, a sustainable elastomer-type copolymer material, with zeolitic imidazolate frameworks (ZIFs) to develop advanced membranes for CO2/CH4 gas separation. The fabrication process of ZIF/Pebax® Rnew® 30R51 thin films was optimized to achieve uniform and defect-free thin film composite (TFC) membranes. Crucial membrane properties, including permeability, selectivity and separation efficiency, were analyzed with variations in ZIF type, loading levels, film thickness and operating conditions. Additionally, the resulting TFC and ZIF/Pebax® Rnew® 30R51 thin film nanocomposite (TFN) membranes were subjected to characterization via FTIR, XRD, TGA and SEM to evaluate their physicochemical properties. Nanoparticles of ZIF-8, NH2-ZIF-8 and ZIF-94 were individually added (at 5–15 wt% loadings) to the Pebax® Rnew® 30R51 matrix to develop the CO2 separation efficiency. The pristine TFC membrane showed a 66 GPU CO2 permeance and a 37.5 CO2/CH4 separation selectivity, primarily due to improved CO2 mass transport. Upon inclusion of ZIFs, the CO2 permeance with 5 wt% loadings of ZIF-8, NH2-ZIF-8 and ZIF-94 increased to 148, 99 and 125 GPU, respectively, despite this, the CO2/CH4 separation selectivity maintained at 29.4, 37.0 and 27.0, respectively.
000145556 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/DGA/T68-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-138582OB-I00$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130621B-C41
000145556 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000145556 590__ $$a7.8$$b2024
000145556 592__ $$a1.473$$b2024
000145556 591__ $$aENGINEERING, ENVIRONMENTAL$$b13 / 83 = 0.157$$c2024$$dQ1$$eT1
000145556 591__ $$aENGINEERING, CHEMICAL$$b19 / 175 = 0.109$$c2024$$dQ1$$eT1
000145556 593__ $$aEnvironmental Chemistry$$c2024$$dQ1
000145556 593__ $$aSafety, Risk, Reliability and Quality$$c2024$$dQ1
000145556 593__ $$aChemical Engineering (miscellaneous)$$c2024$$dQ1
000145556 593__ $$aEnvironmental Engineering$$c2024$$dQ1
000145556 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145556 700__ $$aYahia, Mohamed
000145556 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, Joaquín$$uUniversidad de Zaragoza
000145556 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000145556 773__ $$g192 (2024), 401-411$$pProcess saf. environ. prot.$$tPROCESS SAFETY AND ENVIRONMENTAL PROTECTION$$x0957-5820
000145556 8564_ $$s7417476$$uhttps://zaguan.unizar.es/record/145556/files/texto_completo.pdf$$yVersión publicada
000145556 8564_ $$s2798615$$uhttps://zaguan.unizar.es/record/145556/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145556 909CO $$ooai:zaguan.unizar.es:145556$$particulos$$pdriver
000145556 951__ $$a2025-09-22-14:47:31
000145556 980__ $$aARTICLE