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1. Introduction: why hybrid control?

Control theory is one of the fields of mathematics with a broader range of applications. Since the
seminal work by Maxwell [1], it has been made clear that a solid mathematical framework is fundamental
for an appropriate description of the interaction between mechanical systems and their environments or
operators. Control theory provides such a framework [2, 3], and has shown its usefulness in many fields
of physics [4, 5], chemistry [6, 7], quantum information [8] and many others.

https://www.aimspress.com/journal/cam
http://dx.doi.org/10.3934/cam.2024034


787

In particular, the applications of control theory to quantum systems are fundamental in order to
develop new quantum technologies with a wide range of applications [9–14]. Some of the focuses of
research on quantum control are the controllability of quantum systems, i.e., the determination of which
states of the system can be reached by suitable control functions [15–18], and optimal control problems,
with the goal of designing efficient algorithms that may reach specific states in minimal time or with a
minimal energy investment [5, 19–21].

The aim of this paper is to extend the controllability concepts to hybrid quantum-classical systems.
Hybrid models are useful to describe quantum systems that present two different energy or mass scales;
in those cases, slow or heavy degrees of freedom can be approximated as classical variables. These
hybrid models are useful in describing both molecular and condensed matter systems [22–25], which
present two distinctive energy scales (nuclei and electrons). An interesting framework for the analysis
of hybrid quantum-classical systems is based on differential geometry, which allows combining the
geometrical descriptions of both classical mechanics [26–28] and quantum mechanics [28–34]. In
previous works, [33, 35–38], we introduced a geometric formulation for hybrid quantum-classical
models, aiming to describe molecular systems [39–41], statistics [42–44] and quantum fields [45]. Our
goal in this paper is to analyze the same geometrical description of hybrid quantum-classical systems from the
perspective of control theory, providing sufficient conditions for the controllability of such systems.

The paper is organized as follows. Section 2 presents a summary of the main elements in the
geometrical description of classical and quantum systems, as well as their combination to describe hybrid
systems. Section 3 shows how controllability concepts can be applied to hybrid systems. Applications
of the controllability results to some examples are provided in Section 4. Finally, conclusions and an
outlook of future research in the field are presented in Section 5.

2. A geometrical description of hybrid quantum-classical dynamics

The geometric formalism of mechanics is a common framework for a description of dynamics
based on the intrinsic elements of the relevant spaces. Here, we summarize the main aspects of this
formalism for both classical and quantum systems, as well as its combination for the analysis of hybrid
quantum-classical systems.

2.1. Geometric formalism of classical mechanics

For most applications, geometric formulation of classical mechanics is based on the description of the
phase space as a cotangent bundle on a differentiable manifold and the geometric objects and structures
that emerge from it. See [26–28] and references therein for a detailed description of the formalism.
Thus, for most of the cases, we will consider a classical system with an n-dimensional configuration
space N and coordinates R = (R1, . . . ,Rn) ∈ N. The Hamiltonian formulation of mechanics focuses
on the structures and properties of its cotangent bundle MC = T ∗N with elements ξ = (R, P) ∈ MC,
where coordinates P = (P1, . . . , Pn) are identified as the momenta associated to R. Notice, though, that
other relevant examples are defined directly on a general symplectic manifold, where these variables
ξ = (R, P) will just be used as local coordinates on a Darboux chart. Remember that a manifold is
said to be symplectic if it is endowed with a closed and nondegenerate differential two form which in
Darboux coordinates is written as ωC = dR j ∧ dP j (again, see the references above for details). As in
the following we will just need a symplectic structure, we will just consider that (MC, ωC) is a general

Communications in Analysis and Mechanics Volume 16, Issue 4, 786–812.



788

symplectic manifold, with ωC representing the symplectic form. In some of the examples, we may also
need a Riemannian structure defined on MC, but this will be clarified below.

Let F (MC) denote the set of smooth functions on MC. On the symplectic manifold MC, there exists
a canonical Poisson bracket acting on smooth functions whose coordinate expression in the Darboux
chart is

{ f , g}C =

n∑
j=1

(
∂ f
∂R j

∂g
∂P j
−
∂ f
∂P j

∂g
∂R j

)
, ∀ f , g ∈ F (MC). (2.1)

This Poisson bracket thus provides the set of smooth functions F (MC) with a Poisson algebra structure.
For every smooth function f ∈ F (MC), there exists a Hamiltonian vector field XC

f defined by its
action on smooth functions:

XC
f = {·, f }C ⇔ XC

f (g) = {g, f }C = ωC(XC
g , X

C
f ), ∀ f , g ∈ F (MC). (2.2)

For instance, consider the following function H and its associated Hamiltonian vector field:

H =
1
2

n∑
j=1

(P2
j + R2

j), n ∈ N⇒ XH =

n∑
j=1

(
P j

∂

∂R j
− R j

∂

∂P j

)
, (2.3)

Integral curves of XH correspond to the trajectories of the harmonic oscillator in n-dimensions, whose
Hamiltonian function is H. In the case n = 1, the trajectories correspond to the curves in Figure (1).
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Figure 1. Integral curves of the Harmonic oscillator in 1 dimension.

The set of classical Hamiltonian vector fields on MC is a Lie algebra whose Lie bracket (the
commutator of vector fields) satisfies

[XC
f , X

C
g ] = XC

{g, f }C , ∀ f , g ∈ F (MC). (2.4)

Observables on the classical system are represented by functions on MC. In particular, the Hamilto-
nian function of the system h ∈ F (MC) represents the energy of the system. This observable, together
with the canonical symplectic structure on MC, determines the dynamics of classical systems, as the
integral curves of its Hamiltonian vector field XC

h are the orbits of the systems on the phase space MC.
Dynamics thus obtained preserve the described symplectic structure.

In summary, dynamics of classical systems are governed by Hamiltonian vector fields defined on a
symplectic manifold via a Poisson bracket. These key elements are the basis for the geometric formalism. Any
geometrical analysis of other types of systems aims to find similar elements on the corresponding manifolds.

Communications in Analysis and Mechanics Volume 16, Issue 4, 786–812.



789

2.2. Geometric formalism of quantum mechanics

A geometrical description for quantum system analogous to that of classical systems can be achieved
by identifying the underlying geometrical structure that governs dynamics. The geometric formulation
of quantum mechanics was originally analyzed by prominent authors such as T. W. B. Kibble [34] and
A. Heslot [32], and is a relevant field of study in modern physics both from a theoretical perspective and
for its applications; see [28–31, 33] and references therein.

Postulates of quantum mechanics [46] establish that states of a quantum system are described by
elements |ψ〉 in a complex Hilbert space H . Let us assume, for the sake of simplicity, that H is
finite-dimensional, with complex dimension n. The geometrical formulation of quantum mechanics is
based on the description of this linear space of quantum states of complex dimension n ∈ N (isomorphic
to Cn), as a real manifold MQ of real dimension 2n (isomorphic to R2n). In order to identify them, let us
consider a basis {|e j〉}

n
j=1 ofH defines a set of complex coordinates onH :

|ψ〉 =

n∑
j=1

z j|e j〉, z j =
1
√

2

(
q j + ip j

)
, q j, p j ∈ R, j = 1, 2, . . . , n. (2.5)

Real numbers q = (q1, q2, · · · ) and p = (p1, p2, · · · ) can be understood as coordinates of points on a 2n-
dimensional real manifold MQ, thus defining a one-to-one correspondence ψ = (q, p) ∈ MQ 7→ |ψ〉 ∈ H .
The choice of different bases on H leads to different sets of real coordinates for MQ. To encode the
complex nature ofH , we need a complex structure J defined on MQ, which identifies the q–coordinates
as the real parts and to the p–coordinates as the imaginary ones. Futhermore, we know that H is
endowed with a canonical Hermitian tensor h which defines a scalar product on the complex vector
space. This Hermitian structure can also be encoded on the real manifold MQ in the form of a pair
of tensors: a Riemannian structure g (which represents the real part of h) and a symplectic form ω

(representing the imaginary part) Notice that the different choices of complex coordinates preserving the
Hermitian tensor h onH lead to different charts on MQ defining different coordinate representations of
the tensors J, g and ω, which are intrinsic objects on MQ. Hermiticity of the tensor h onH is equivalent
to the property of the triad (g, ω, J) defining a Kähler structure on the real manifold MQ. This Kähler
structure distinguishes the classical case, where no complex structure is considered and where the
Riemannian structure may or may not be considered, from the quantum case where all the tensors are
canonical and therefore they are always present (see [28, 30, 31, 33] for details).

Notice that despite the formal similarities with a classical manifold, the equivalence is purely
mathematical, since no physical meaning as positions and momenta can be associated with variables
(q, p), which simply represent the real and imaginary parts of the quantum states. Nonetheless, from
the mathematical point of view, MQ will be described as a symplectic manifold (specifically, a Kähler
manifold, as stated), with analogous properties to the classical symplectic manifold MC. This leads
to the definition of Schrödinger equation as a Hamiltonian flow, which is one of the most remarkable
consequences of geometric quantum mechanics. Besides, this formal similarity of both MC and MQ

as symplectic manifolds is crucial to build the geometrical description of hybrid quantum-classical
dynamics as a Hamiltonian flow, as we will see below.

Tensors ωQ and g endow the set F (MQ) of smooth functions on MQ with both a Poisson bracket
{·, ·}Q and a symmetric product of functions (·, ·)Q determined by the properties of the Hermitian product
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inH [28]. Their coordinate expressions are

{ f , g}Q =

n∑
j=1

(
∂ f
∂q j

∂g
∂p j
−
∂ f
∂p j

∂g
∂q j

)
, ( f , g)Q =

n∑
j=1

(
∂ f
∂q j

∂g
∂q j

+
∂ f
∂p j

∂g
∂p j

)
, ∀ f , g ∈ F (MQ). (2.6)

On the other hand, observables of the quantum system are represented by Hermitian linear operators
onH , denoted as Herm(n), which has a Lie-Jordan algebra structure with respect to the following Lie
bracket and symmetric product:

~A, B� = −i(AB − BA), A ◦ B = AB + BA, A, B ∈ Herm(n). (2.7)

Notice that the Lie-Jordan algebra Herm(n) is isomorphic to the unitary algebra u(n), while the subset of
traceless Hermitian observables, which will be denoted as Herm0(n), is a Lie algebra with the same Lie
bracket defined in (2.7) and isomorphic to the special unitary algebra su(n).

The geometric formalism represents observables by their expectation values. Thus, any A ∈ Herm(n)
defines the following expectation value function fA on MQ:

fA(ψ) = 〈ψ|A|ψ〉. (2.8)

There is a one-to-one correspondence between expectation value functions of the form (2.8) and
observables in Herm(n). The Kähler structure reproduces on these functions the Lie-Jordan algebraic
structure on Herm(n) defined by the two brackets in (2.7) as follows

{ fA, fB}Q = f~A,B�, ( fA, fB)Q = fA◦B, ∀A, B ∈ Herm(n). (2.9)

Compared to the classical case, the quantum formalism includes an analogous Poisson structure which
can be used to describe the Schrödinger equation as a Hamiltonian system, and an additional structure,
the symmetric product (·, ·)Q, related to the indeterministic nature of quantum mechanics [33,47]. Notice
that not any smooth function on MQ can represent a physical observable of the quantum system, but
only those of the form in (2.8).

Smooth functions on MQ determine Hamiltonian vector fields on the manifold through the Poisson
bracket. In particular, for any observable A ∈ Herm(n), we will denote by XQ

A the vector field defined as

XQ
A = {·, fA}Q ⇔ XQ

A ( fB) = { fB, fA}Q = ωQ(XQ
B , X

Q
A ) = f~B,A�, ∀g ∈ F (MQ) (2.10)

Analogously to the property of classical Hamiltonian vector fields encoded in Equation (2.4), commuta-
tors of these quantum Hamiltonian vector fields satisfy

[XQ
A , X

Q
B ] = XQ

~B,A�. (2.11)

Hence, the set of quantum Hamiltonian vector fields of observables is a Lie sub-algebra of the whole set
of quantum Hamiltonian vector fields on MQ.

In the particular case of the Hamiltonian observable H of the quantum system, integral curves of
its associated vector field XH correspond to the solutions to Schrödinger’s equation [28]. Dynamics
thus obtained preserve the canonical Kähler structure described above. Notice again that, despite the
similarities with classical dynamics, these are purely formal, since there is no physical meaning of the
quantum Darboux coordinates.
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It should be noticed that, as it is clear from the postulates of quantum mechanics, states of quantum
systems are not in one-to-one correspondence with elements in a Hilbert spaceH . Instead, states can
be identified as elements of the projective space PH , defined as the equivalence classes onH − {0} of
vectors which belong to the same complex line through the origin of the linear space. The complex
projective space PH can also be descried as a Kähler manifold, whose tensor fields are related to those
of the Kähler structure onH [33, 48]. The existence of this double description of the quantum state at
the level of the linear space or the complex projective space has deep implications in the definition of
the different notions of quantum controllability [49].

An efficient representation of the complex projective space is provided by the set of projectors onto
one-dimensional subspaces of H − {0}. Indeed, there is a one-to-one correspondence between the
equivalence classes of PH and the set of projectors:

PH 3 [ψ]←→ ρψ =
|ψ〉〈ψ|

〈ψ|ψ〉
. (2.12)

These projectors belong to the space of Hermitian operators Herm(n). Nonetheless, it is well-known
that Herm(n) is isomorphic to the Lie algebra of the unitary group u(n) and that this algebra, which can
be endowed with a scalar product 〈A, B〉 = Tr(A†B), is also isomorphic to its dual u∗(n). As a result,
Herm(n) can also be identified with u∗(n), and therefore the subset of projectors of the form (2.12) is
diffeomorphic (with respect to the natural differentiable linear structures) to a 2n − 2 sub-manifold
D1(H) of the n2-dimensional space u∗(n). Furthermore, being the dual of a Lie algebra, u∗(n) is endowed
with a canonical Poisson bracket (the Lie-Poisson structure corresponding to the Lie bracket of u(n)
or, equivalently, to the bracket ~·, ·� on Herm(n)). D1(H) defines one of the leaves of its symplectic
foliation, with the symplectic form being equivalent to the one of the Kähler structure of the projective
space PH (see [33, 48] for details). As a result, using the identification with a subset of u∗(n), we have
been able to endow the set of projectors of the form (2.12) with a canonical symplectic structure. This
is the ingredient we need to define hybrid quantum-classical dynamics while representing the quantum
state as the projector ρψ. In the following, to simplify the notation, we will useD1(H) to represent the
set of pure states in any of the two representations, as a subset of u∗(n) or as a subset of Herm(n), just
clarifying when necessary.

The simplest example corresponds to the case of a qubit, whose Hilbert space is C2, the corresponding
projective space being CP1. This projective space can be determined as a sub-manifold of u∗(2)
corresponding to the self-adjoint rank-one projectors on C2. Using a basis composed of the identity
matrix I and the three Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.13)

Projectors ρψ can be written as

ρψ =
1
2

(ρ0I + ρ1σ1 + ρ2σ2 + ρ3σ3) , ρ0 = 1, ρ2
1 + ρ2

2 + ρ2
3 = 1 (2.14)

where the constraints on the coordinates ensure that ρψ is a rank-one projector onto C2. Therefore,
D1(C2) is diffeomorphic to the two-dimensional sphere S 2. This set is known as the Bloch sphere.

Unitary dynamics correspond to the different actions of the unitary group U(n) on these spaces of states:
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• The action on the Hilbert space H where the unitary group defines the canonical isometries,
determines orbits ψ(t) whose tangent vectors are defined by the Schrödinger equation,

i~
dψ
dt

= Hψ(t). (2.15)

• The action on the projective space PH is diffeomorphic to the action on the space of projectors on
one-dimensional subspaces, which is determined by the co-adjoint action of the U(n) group on
the dual of its Lie algebra u∗(n). From our discussion above, we know that we can consider the
states ρψ either as Hermitian operators corresponding to the projectors |ψ〉〈ψ|

〈ψ|ψ〉
or as points in u∗(n).

Considered as projectors, tangent vectors to trajectories ρψ(t) are defined now by the von Neumann
equation:

i~
dρψ
dt

= [H, ρψ(t)]. (2.16)

The isomorphisms between the set of Hermitian operators and the Lie algebra u(n) given by the
multiplication by the imaginary unit, and of u(n) and its dual, given by the scalar product 〈A, B〉 =

Tr(A†B), allows us to write the solutions of this equation as the image under the isomorphisms
above of the flow on u∗(n) of the canonical Hamiltonian vector field associated to the linear function
fH(ρ) = ρ(iH) = Tr(ρψH) for ρ ∈ u∗(n), ρψ,H ∈ Herm(n) and the canonical Lie-Poisson structure
defined on the dual of any Lie algebra (see [26]). Thus the space of rank-one projectors becomes
diffeomorphic to a symplectic leaf of the canonical foliation of this Lie-Poisson structure, which
is also symplectomorphic to the complex projective space. There is a single orbit of the action
of U(n) on PH , equal to the whole space. Geometrically, the full tangent space to each point
of PH is generated by Hamiltonian vector fields; hence, from now on, if necessary we can also
consider the quantum manifold as MQ ' PH , with the tangent space at each point generated by
observables in Herm0(n) via (2.16).

We can also consider a simple example of these dynamical systems. Consider a two-level quantum
system, whose Hilbert space is thusH = C2, with a Hamiltonian written in the energy eigenbasis as

H =

(
E0 0
0 E1

)
, E0, E1 ∈ R, E0 < E1. (2.17)

In the description in terms of Hilbert spaces, if we consider the eigenbasis of the Hamiltonian
operator H as the basis forH and (q1, p1, q2, p2) the corresponding real coordinates, the function fH(ψ)
becomes

f (q1, p1, q2, p2) = 〈ψ|Hψ〉 = E0(q2
1 + p2

1) + E1(q2
2 + p2

2),

and the Hamiltonian vector field X fH with respect to the symplectic form ωQ = dq1 ∧ dp1 + dq2 ∧ dp2

becomes

X fH = E0

(
p1

∂

∂q1
− q1

∂

∂p1

)
+ E1

(
p2

∂

∂q2
− q2

∂

∂p2

)
. (2.18)

If we consider the representation (2.14) for the projector ρψ with coordinates (ρ1, ρ2, ρ3) ∈ D1(C2),
the linear function for the energy becomes

fH(ρψ) = Tr(Hρψ) =
E1 + E0

2
−

E1 − E0

2
ρ3. (2.19)
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With this function, the corresponding Hamiltonian vector field reads:

X fH = (E1 − E0)
(
ρ2

∂

∂ρ1
− ρ1

∂

∂ρ2

)
(2.20)

Integral curves of this vector field describe the evolution of pure states. Figure (2) shows the represen-
tation of (2.20) not only for pure states (satisfying ρ2

1 + ρ2
2 + ρ2

3 = 1), but also for mixed states, with
ρ2

1 + ρ2
2 + ρ2

3 < 1, for which the Hamiltonian vector field is identical to (2.20) but defined on the whole
interior of the Bloch sphere.

Integral curves of vector field (2.18) define the integral curves of vector field (2.20) when taken to
the Bloch sphere by considering the corresponding projectors |ψ(t)〉〈ψ(t)|

〈ψ(t)|ψ(t)〉 .

ρ3

ρ1

ρ2

Figure 2. Integral curves of the Hamiltonian vector field on and inside the Bloch sphere, valid,
respectively, for pure and mixed quantum states.

Notice that both descriptions, on the Hilbert space or on the projective space, are physically equivalent.
The solutions of the Schrödinger equation ψ(t) and the solutions of the von Neumann equation on the
space of projectors ρψ(t) correspond to orbits of the solution of the same equation on the unitary group:

i~
d
dt

U(t) = HU(t); H ∈ Herm(n); U(t) ∈ U(n),

as
ψ(t) = U(t)ψ(0); ρψ(t) = U(t)ρψ(0)U(t)†,

for ψ(0) ∈ H and ρψ(0) ∈ D1(H) being the initial conditions. Therefore, both dynamics contain the
same physical information. From the mathematical point of view, both solutions can also be obtained
as flows of Hamiltonian vector fields with respect to the canonical symplectic forms (on the vector
space description or on the description in terms of projectors) presented above. As the existence of a
symplectic form is the only technical requirement we need to build hybrid quantum-classical dynamics,
in the following we will use both formulations indistinctly, just indicating with the representation of the
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state ψ or ρψ which one are we considering. Nonetheless, these alternative formulations of quantum
dynamics determine different approaches to the problem of quantum controllability [49], as it can
be considered as the problem of building the suitable trajectory on the unitary group U(n) or on the
corresponding orbit. We will see later that this situation is very different when we consider hybrid
quantum-classical dynamics, which are no longer linear.

2.3. Hybrid systems and their geometric description

The above summaries show how a common formalism can be used to describe two different types of
dynamics. The existence of this common framework allows combining both descriptions in a natural
way, giving as a result a geometric formalism for hybrid quantum-classical systems [33, 35–38].

Consider the product manifold MQC = MC × MQ as the space of states of hybrid systems, where
(MC, ωC) and (MQ, ωQ) are, respectively, the classical and the quantum symplectic manifolds considered
above. Each manifold contains the states of different types of systems: the points of MC represent the
states of the classical degrees of freedom, while the points of MQ represent the states of the quantum
degrees of freedom. States of a hybrid system are represented by elements (ξ, ψ) ∈ MQC, with ξ ∈ MC,
ψ ∈ MQ. The composition of manifolds is immediate from the mathematical perspective: the phase
space of the hybrid system is the Cartesian product of the phase spaces of the subsystems. The canonical
projections onto the two subsystems will be denoted as

πC : MQC → MC πQ : MQC → MQ

(ξ, ψ) 7→ πC(ξ, ψ) = ξ (ξ, ψ) 7→ πQ(ξ, ψ) = ψ
(2.21)

The symplectic forms on both MC and MQ, described above, define the following canonical symplectic
form on the product manifold MQC:

ωQC = π∗C(ωC) + ~−1π∗Q(ωQ), (2.22)

with π∗C and π∗Q being the pullbacks of the projections πC and πQ, respectively. In the following, we will
use natural units and assume ~ = 1.

The hybrid manifold is thus a symplectic manifold with a Poisson bracket {·, ·}QC acting on the set
F (MQC) of smooth functions, and the corresponding hybrid Hamiltonian vector fields:

XQC
f = {·, f }QC ⇔ XQC

f (g) = {g, f }QC = ωQC(XQC
g , XQC

f ), ∀ f , g ∈ F (MQC). (2.23)

As usual, hybrid Hamiltonian vector fields conform a Lie algebra with respect to their commutator:

[XQC
f , XQC

g ] = XQC
{g, f }QC

, ∀ f , g ∈ F (MQC). (2.24)

Due to (2.22), the hybrid Poisson bracket can also be decomposed as the sum of its classical and
quantum parts:

{ f , g}QC = { f , g}C + { f , g}Q, ∀ f , g ∈ F (MQC), (2.25)

where in this context {·, ·}C and {·, ·}Q denote, respectively, the Poisson bracket defined by π∗C(ωC) and
π∗Q(ωQ) on MQC. These are directly defined, but strictly different due to their space of definition, to the
Poisson brackets on the classical and quantum sub-manifolds. They are however similar enough to
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justify the abuse of notation. Hamiltonian vector fields with respect to both brackets will also reuse the
notation of the subsystems, (2.2) and (2.10).

Analogously to the previous description, physical observables of the hybrid system are functions on
MQC. As quantum observables are described as Hermitian operators onH , every hybrid observable is
represented by a field of Hermitian operators A(ξ), which in turn defines a smooth function on MQC as
its expectation value function:

fA(ξ, ψ) = 〈ψ|A(ξ)|ψ〉. (2.26)

This is the most general element of the hybrid algebra of observables defined by the tensor product
of the classical and the quantum ones [40]. Hamiltonian vector fields on MQC associated to a hybrid
observable A(ξ) will be denoted as

XC
A = {·, fA}C, XQ

A = {·, fA}Q, XQC
A = {·, fA}QC. (2.27)

These vector fields satisfy the relation

XQC
A = XC

A + XQ
A , (2.28)

which has the following property as a consequence.

Lemma 2.1. For any hybrid observable A(ξ) and any point (ξ, ψ) ∈ MQC:

π
(ξ,ψ)
C∗

(
XQC

A |(ξ,ψ)

)
= π

(ξ,ψ)
C∗

(
XC

A |(ξ,ψ)

)
, π

(ξ,ψ)
Q∗

(
XQC

A |(ξ,ψ)

)
= π

(ξ,ψ)
Q∗

(
XQ

A |(ξ,ψ)

)
. (2.29)

with π
(ξ,ψ)
C∗ and π

(ξ,ψ)
Q∗ as the push-forwards or differentials of the canonical projections πC and πQ,

respectively, at (ξ, ψ).

Proof. By construction, XC
A |(ξ,ψ)∈ ker

(
π

(ξ,ψ)
Q∗

)
and XQ

A |(ξ,ψ)∈ ker(π(ξ,ψ)
C∗ ). Hence, writing XQC

A as (2.28)
gives its push-forwards at every point by (2.29).

Notice that, unlike the quantum case, hybrid Hamiltonian vector fields XQC
A of physical observables do

not conform a Lie algebra. For any two hybrid observables, A(ξ), B(ξ), consider their Hamiltonian vector
fields XQC

A , XQC
B . Their commutator, given by (2.24), involves the hybrid Poisson bracket { fA, fB}QC.

Due to the specific form (2.26) of expectation value functions (quadratic on the quantum variables), the
result of the hybrid Poisson bracket is not, in general, an expectation value function. This motivates
the analysis of hybrid systems, and, in particular, of control problems, from a perspective close to the
classical one.

As in the previous cases, the Hamiltonian observable H(ξ) that describes the energy of a hybrid
system defines the vector field governing the symplectic-preserving dynamics of the system. The vector
field governing hybrid dynamics is:

XQC
H = {·, fH}QC = {·, fH}C + {·, fH}Q = XC

H + XQ
H , (2.30)

whose integral curves are the trajectories of the hybrid system on MQC. Particular expressions of
H(ξ) allow studying different quantum-classical models, such as the Ehrenfest equations of molecular
dynamics [35].

It is important to remark that, despite the formal similarities, there is a very important difference of
these hybrid dynamics with respect to the purely quantum ones described in the previous section. In this
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case, the classical degrees of freedom make the dynamics defined by Equation (2.30) non-linear. This is
the reason why the problem of hybrid controllability exhibits important differences with respect to the
quantum controllability problem since, being a non-linear system in general, it resembles much more
closely to the problem of classical controllability. Even in the case of considering a partial controllability
of the quantum degrees of freedom, unitary dynamics have no meaning now.

3. Controllability of hybrid systems

The geometric formalism provides us with a framework to study control problems in hybrid systems.
Our goal is to adapt the formalism for the analysis of hybrid control systems and to describe controlla-
bility conditions, as it has already been done for classical [2] and quantum control systems [15–18, 49].
Combining both types of control systems, which are not completely equivalent, introduces new types of
problems which are interesting to consider.

Consider a hybrid system with Hamiltonian H(ξ). Its natural evolution is governed by a drift vector
field X0 = XQC

H , described in (2.30). We will consider linear controls over this system, introduced by
means of a set of time-dependent control functions u(t) = (u1(t), . . . , uk(t)), taking values in a set U ⊂ Rn

of admissible controls. There are no strong restrictions on the nature of these functions: In particular,
admissible control functions can be non-smooth and even noncontinuous, as long as they take values in
U. Some simple examples of typical control functions include the Heaviside function, square waves
and so on, while practical implementations of control problems make use, among others, of Fourier
series [50] and the chopped random basis ansatz (CRAB) [51]. The controllability properties developed
here are valid for all kinds of control functions.

Control functions act as coefficients for control vector fields X1, . . . , Xk, which are added to the drift;
for simplicity, control vector fields will be assumed to be hybrid Hamiltonian vector fields associated
to hybrid observables A1(ξ), . . . , Ak(ξ) defined by (2.26) and (2.27). Thus, the total vector field of the
controlled system is a t-dependent family Xu of vector fields on MQC defined as

Xu(t) = X0 +

k∑
j=1

u j(t)X j, X j = XQC
A j

= {·, fA j}QC, j = 1, 2, . . . , k. (3.1)

Without loss of generality, the vector fields X0, X1, . . . , Xk can be assumed to be linearly independent.
For simplicity, we will also assume them to be analytic and complete. Notice that, for every t, the vector
field Xu(t) is the hybrid Hamiltonian vector field of the hybrid function

Fu(ξ, ψ, t) = fH(ξ, ψ) +

k∑
j=1

u j(t) fA j(ξ, ψ) (3.2)

which itself is the expectation value function of the hybrid observable H(ξ) +
∑k

j=1 u j(t)A j(ξ), the
controlled Hamiltonian of the system. Due to the definitions of previous sections, there exist one-to-one
correspondences between vector fields, functions and hybrid observables.

As a first step in the study of hybrid control systems, we shall adapt the notion of controllability to
our problems. We will not only focus on total controllability on the hybrid manifold MQC (what we
denote as hybrid controllability), but also to the analogous concepts on each subsystem (classical and
quantum controllability).
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Definition 3.1. Let Xu be a controlled vector field on the hybrid manifold MQC, defined by (3.1). We say
that the associated control system is hybrid controllable if, for any two arbitrary points on MQC, there
exists a set of control functions u′ with values in the set of admissible controls such that an integral
curve of Xu′ joins both points in finite time.

Two weaker notions of controllability, referred to the analogous property restricted to the classical or
the quantum sub-manifolds, can be also considered.

Definition 3.2. Let Xu be a controlled vector field on the hybrid manifold MQC, defined by (3.1). We say
that the associated control system is classical controllable if, for any two arbitrary points on MC, there
exists a set of control functions u′ with values in the set of admissible controls and an integral curve γ(t)
of Xu′ such that the projection πC(γ(t)) joins both points in finite time.

Analogously, we say that the associated control system is quantum controllable if, for any two arbitrary
points on MQ, there exists a set of control functions u′ with values in the set of admissible controls and an
integral curve γ(t) of Xu′ such that the projection πQ(γ(t)) joins both points in finite time.

Both notions introduce relevant physical properties of the system, although, as we discussed above,
the notion of classical-controllability is more natural because of the slower characteristic timescale of
the classical degrees of freedom.

It is also important to remark that the different notions of quantum controllability we mentioned above
cannot be transferred to the hybrid framework in a simple way. The reason is the nonlinearity of the hybrid
dynamics, and therefore, the non-unitarity of the evolution on the quantum sub-manifold. Hence, it does
not make sense considering the control problem on the unitary group or relating the problem defined on the
space of quantum vectors and the problem defined on the set of rank-one projectors.

A sufficient condition for classical controllability on differentiable manifolds is that, at every point of
the manifold, the control vector fields generate the whole tangent space to the manifold. Equivalently,
we can ask the drift and the control vector fields to do it, but in this case some extra conditions on the
topology of the orbits of the drift must be imposed [2]. The relevant results for our study are summarized
in the following statements.

Definition 3.3. Given some vector fields Z1,Z2, . . . on a manifold M, we shall denote as Lie(Z1,Z2, . . .)
the Lie algebra of vector fields on M generated by them.

Theorem 3.4. Let X0 + u1(t)X1 + · · ·+ uk(t)Xk be a control vector field on a differentiable and connected
manifold M. If Lie (X1, . . . , Xk) |m= TmM, for every m ∈ M and there are no restrictions over the control
functions u1, . . . , uk, then the system is controllable.

This theorem states the fact that, if controls allow for movement along any direction from any starting
point, then with strong enough control functions one can overcome the drift X0 and reach any desired
destination. Indeed, without limitations on the control functions, this can be performed in any desired
time; optimal control problems deal with these situations, with the usual goal of optimizing both the
time required to reach the chosen points and the total strength of the controls needed for this operation.

Notice that movement parallel to vector fields [Xi,X j] can be achieved by consecutive movement by
controls Xi, X j, −Xi and −X j (this is actually obtained as the time-zero limit of the corresponding evolutions).
This can be performed because control functions can be either positive or negative, which allows to consider
not only evolution by any control field Xi, but also by its inverse −Xi. This is not true for the drift X0, which
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in general cannot be inverted. In those cases for which control fields X1, . . . ,Xk are not enough to generate
movement along all directions, additional requirements are needed for controllability.

Definition 3.5. Let Z be a complete vector field on a manifold M, and let ΦX
t denote the transformations

on M such that ΦZ
t (m) is the integral curve of X starting from m ∈ M. A point m is called recurrent for

Z if there exists a sequence (tn) with limn→∞ tn = +∞ such that m = limn→∞ΦZ
tn(m). A complete vector

field on M is called recurrent if it has a dense set on M of recurrent points.

Fixed points of the dynamics are trivially recurrent. More interesting examples of recurrent points are the
starting points of either periodic or quasi-periodic orbits. Consider a periodic orbit γ with period T ; then,
its starting point m = γ(0) (as well as any other point in the orbit) is recurrent, as it satisfies the definition
for a sequence tn = nT with n ∈ N. Additionally, if a system starting in m evolves in such a way that the
asymptotic limit of the orbit is again m (i.e., it returns to m in infinite time), then m is also recurrent.

Recurrent vector fields can thus be effectively inverted by simply allowing the system to evolve
freely, possibly for a long time. For this reason, Theorem 3.4 can be generalized to control systems
whose drift is recurrent as follows.

Theorem 3.6. Let X0 + u1(t)X1 + · · ·+ uk(t)Xk be a control vector field on a differentiable and connected
manifold M. If X0 is recurrent, Lie (X0, X1, . . . , Xk) |m= TmM, for every m ∈ M, and there are no
restrictions over the control functions u1, . . . , uk, then the system is controllable.

See Theorem 5 in Chapter 4 of [2] for a detailed proof. As indicated above, directions along Lie
brackets of vector fields can be controlled if the involved vector fields can be inverted. Thus, if X0 is
recurrent, it can be effectively inverted and directions along [X0, Xi] can be reached. Notice that, in this
case, it is not possible in general to reach the chosen destination in arbitrary time. Also, as the drift
is now part of the Lie algebra, the system is controllable even if there exist restriction on the control
functions, as long as u1 = · · · = uk = 0 is an admissible control.

In order to combine these two types of systems, the following property will be used to simplify
the computations.

Corollary 3.7. Let X0 + u1(t)X1 + · · ·+ uk(t)Xk be a control vector field on a differentiable and connected
manifold M. If X0 is recurrent, then the system is controllable if the system with the controlled vector
field u0(t)X0 + u1(t)X1 + · · · + uk(t)Xk is controllable and satisfies the conditions of Theorem 3.4.

Proof. The statement is proven by applying Theorems 3.4 and 3.6 to the proposed controlled vector fields.

The stated sufficient conditions for controllability need to be adapted for hybrid systems. We will
achieve this by considering the projections onto MC and MQ of the whole system.

Theorem 3.8. Let Xu be a controlled vector field on the hybrid manifold MQC, defined by (3.1), and
consider a dense sub-manifold S ⊂ MQC. If at least one of the following conditions is satisfied

1. for any (ξ, ψ) ∈ S :
π

(ξ,ψ)
C∗

(
Lie (X1, . . . , Xk) |(ξ,ψ)

)
= TξMC; (3.3)

2. X0 is recurrent and, for any (ξ, ψ) ∈ S :

π
(ξ,ψ)
C∗

(
Lie (X0, X1, . . . , Xk) |(ξ,ψ)

)
= TξMC; (3.4)
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and there are no restrictions on the admissible controls, then the system is classical controllable.

Proof. Let us assume hypothesis (3.3). Proofs of Theorem 3.4 are based on the fact that the controlled
system can move along any direction parallel to vector fields in Lie (X1, . . . ,Xk) [2]. That is, at every
(ξ, ψ) ∈ S , there exist sets of control functions u such that the integral curve γu(t) of Xu, with γ(0) = (ξ, ψ)
is parallel to each vector in Lie (X1, . . . ,Xk) |(ξ,ψ). In our case, the projection onto MC shows that the control
system can move in any direction tangent to TξMC. Hence, if there are no restrictions on the admissible
controls, the system can reach any destination point in MC and the system is classical controllable.

If X0 is recurrent and hypothesis (3.4) is satisfied, then by Corollary 3.7, the above proof shows that
the system is again classical controllable.

An analogous theorem describes quantum controllability. In the following, we will consider MQ =

PH , so that its tangent space at each point is generated by the action of the unitary group. The theorems
and results of the paper, however, can be immediately translated to the situations in which MQ = H . As
only normalized elements ofH with constant global phase are physically relevant, conditions involving
TψMQ can be relaxed as to not involve directions that change the norm or the global phase of vectors.

Theorem 3.9. Let Xu be a controlled vector field on a connected hybrid manifold MQC, defined by (3.1).
If at least one of the following conditions is satisfied

1. for a dense set of points (ξ, ψ) ∈ MQC:

π
(ξ,ψ)
Q∗

(
Lie (X1, . . . , Xk) |(ξ,ψ)

)
= TψMQ; (3.5)

2. X0 is recurrent and, for a dense set of points (ξ, ψ) ∈ MQC:

π
(ξ,ψ)
Q∗

(
Lie (X0, X1, . . . , Xk) |(ξ,ψ)

)
= TψMQ; (3.6)

and there are no restrictions on the admissible controls, then the system is quantum controllable.

Proof. This theorem complements Theorem 3.8, and it is proven in an analogous way, replacing classical
elements by quantum ones.

Notice that, by definition, if a system is hybrid controllable, it is also classical controllable and
quantum controllable. The converse, however, is not true, as it has to be guaranteed that the whole
tangent space is generated at each point of MQC, which cannot be deduced simply by its projections.

Controllability conditions in Theorems 3.4 and 3.6 involve Lie brackets of control fields. Intuitively,
similar results should exist regarding classical and quantum controllability, replacing Lie bracket by
Poisson bracket or commutators, as they are related by (2.4) and (2.11). These results are proven in the
following theorems.

Theorem 3.10. Let Xu be a controlled vector field on a connected hybrid manifold MQC, defined by
(3.1). If there exists a dense subset S ⊂ MQC such that, for every (ξ, ψ) ∈ S , hybrid control observables
satisfy Lie(A1(ξ), . . . , Ak(ξ), I) = Herm(n), the system is quantum controllable.

Proof. Control vector fields are assumed to always be analytic, hence control hybrid observables vary
smoothly. Thus, consider an orthogonal basis σ1, . . . , σn2 for Herm(n), with expectation value functions
s j(ψ) = 〈ψ|σ j|ψ〉 and quantum Hamiltonian vector fields YQ

j = XQ
σ j , for j = 1, 2, . . . , n2. Structure

constants cr
i j ∈ R determine the commutators of elements in the basis as ~σi, σ j� =

∑n2

r=1 cr
i jσr. Let a j

i (ξ)
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be the smooth functions on MC representing the coefficients of each Ai(ξ) hybrid control observable at
each point ξ ∈ MC:

Ai(ξ) =

n2∑
j=1

a j
i (ξ)σ j, fi(ξ, ψ) = fAi(ξ, ψ) =

n2∑
j=1

a j
i (ξ)s j(ψ), Xi = XQC

Ai
=

n2∑
j=1

(
s jXC

a j
i
+ a j

i Y
Q
j

)
, (3.7)

for i = 1, 2, . . . , k. By direct computation, commutators of control vector fields are

[Xi, X j] = XC
{ fi, f j}C

+

n2∑
l,m=1

s[l,m]

(
al

iX
C
am

j
+ am

j XC
al

i

)
+ XQ

~A j,Ai�
−

n2∑
l,m=1

{al
i, a

m
j }C

(
smYQ

l + slYQ
m

)
, (3.8)

with s[l,m](ψ) = 〈ψ|~σl, σm�|ψ〉. Consider now the projection πQ : MQC → MQ. Due to Lemma 2.1, only
the quantum Hamiltonian vector fields project onto MQ.

Without loss of generality, the hybrid control observables can be assumed to be linearly independent
and orthogonal, and the basis of Herm(n) can be chosen so that, at a certain point (ξ, ψ) ∈ MQC, the first
elements of the basis satisfy σ1 = A1(ξ), . . . , σk = Ak(ξ). Thus, the push-forward by πQ at (ξ, ψ) of the
commutators are

π
(ξ,ψ)
Q∗

(
[Xi, X j] |(ξ,ψ)

)
=

n2∑
l=1

cl
i j −

n2∑
m=1

(
{al

i, a
m
j }C(ξ) + {am

i , a
l
j}C(ξ)

)
sm(ψ)

 YQ
l |ψ (3.9)

Coefficients of YQ
l |ψ can only be zero if cl

i j = 0 and either al
i = al

j = 0, sm(ψ) = 0 or all Poisson brackets
are zero, or if both terms cancel each other. The first case is impossible for all coefficients under the
assumption of the theorem, while the second one is only possible on a no-where dense set of MQC. Thus,
projection onto MQ determines all tangent directions parallel to quantum Hamiltonian vector fields of
σ1, . . . , σk, as well as those of their commutators. The remaining directions, if any, can be obtained by
higher orders commutators of vector fields, thus satisfying the conditions of Theorem 3.9 and proving
the quantum controllability of the system.

Notice that the condition in Theorem 3.10 is sufficient but not necessary for quantum controllability.
As one can notice in (3.9), the required direction could be obtained even if all the relevant structure
constants are zero, as long as the classical Poisson brackets do not vanish. This may only occur if the
coefficient functions are not zero at every point, so that the control hybrid observables A1(ξ), . . . , Ak(ξ)
involve all the relevant direction in a neighborhood of ξ. This means that, even if a purely quantum
system is not controllable, it can be controllable as a part of a hybrid system as long as movement along
the classical variables causes the controls to span all the directions tangent to MQ, especially those not
available originally.

Notice also that Theorem 3.10 involves the identity I in its hypothesis. This is due to the fact that
control hybrid observables need not be traceless, although its trace is lost when projected onto MQ, as
XQ
I = 0. An alternative hypothesis would be Herm0(n) ⊂ Lie(A1(ξ), . . . , Ak(ξ)), with the same validity

but a slightly lengthier proof.
A similar theorem can be proven for the classical subsystem. We will denote by PoiC( fA1 , . . . , fAk) the

Poisson algebra of functions in C∞(MQC) generated by fA1 , . . . , fAk with respect to the classical Poisson
bracket {·, ·}C.
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Theorem 3.11. Let Xu be a controlled vector field on a connected hybrid manifold MQC, defined by
(3.1). If there exists a dense subset S ⊂ MQC such that, for every (ξ, ψ) ∈ S , there exists a set of smooth
hybrid functions {g1, . . . , gl} ⊂ PoiC( fA1 , . . . , fAk) such that π(ξ,ψ)

C∗

(
Lie

(
XC

g1
, . . . , XC

gl

)
|(ξ,ψ)

)
= TξMC, the

system is classical controllable.

Proof. As in the previous theorem, consider an orthogonal basis and compute the commutators of
control vector fields as in (3.8). Its projection onto MC at a point (ξ, ψ) ∈ MQC is

π
(ξ,ψ)
C∗

(
[Xi, X j] |(ξ,ψ)

)
= π

(ξ,ψ)
C∗

(
XC
{ fi, f j}C

|(ξ,ψ)

)
+

n2∑
l,m=1

s[l,m](ψ)
(
al

i(ξ)X
C
am

j
|ξ +am

j (ξ)XC
al

i
|ξ

)
. (3.10)

If the condition in the theorem is satisfied, then the first term produces all the tangent directions at ξ; the
second term could cancel it on a nowhere-dense set of MQC, as si functions are quadratic on ψ, while
{ fi, f j}C is a degree-4 function on the quantum variables. Conditions of Theorem 3.8 are thus satisfied,
hence the system is classical controllable.

Notice that, in particular, if R1, R2, . . . , P1, P2, . . . ∈ PoiC( fA1 , . . . , fAk ), then the system is classi-
cal controllable.

4. Applications

In order to illustrate the applications of our results, in this section we present some examples in
which the developed criteria are useful in order to analyze the controllability of the systems.

4.1. Classical subsystem on the plane and a qubit

As a first example, let us consider a hybrid system whose classical manifold is the cotangent space
to the plane, MC = T ∗R2, with coordinates ξ = (R1,R2, P1, P2), and whose quantum subsystem is a
qubit, henceH = C2. Without controls, the evolution of the hybrid system is governed by the hybrid
Hamiltonian H(ξ). We will analyze the situation in which two linearly-independent controls are added
to this drift. Thus, let us consider a simple control system with two control functions u1(t) and u2(t), and
with the following particular expression for the expectation value function of the controlled Hamiltonian:

Fu(ξ, ψ, t) = fH(ξ, ψ) + u1(t)R1 fA(ψ) + u2(t)g(ξ) fB(ψ), (4.1)

for some (constant) quantum observables A, B ∈ Herm(2) and some smooth function g(ξ).
Let us apply the results shown in the previous section to analyze the controllability of the system:

• If A and B are linearly independent, then Lie(R1A, g(ξ)B, I) = Herm(2) as long as R1 , 0 and
g(ξ) , 0. Thus, assuming g is a nonzero analytic function, Theorem 3.9 indicates that the system
is quantum-controllable.
• Classical controllability requires PoiC(R1 fA, g fB) to generate the whole classical Poisson algebra

of polynomials. As {R1 fA, g fB(ψ)}C = fA fB{R1, g}C, it is enough to consider a smooth function g
whose successive Poisson brackets with R1 generates enough functions to cover all the classical
tangent space. Such is the case of the following function:

g(ξ) =
1
2

(
P2

1 + P2
2 − 2R1R2

)
, (4.2)
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The first elements in PoiC(R1 fA, g(ξ) fB) are thus

{R1 fA, g fB}C(ξ, ψ) = fA(ψ) fB(ψ)P1,

{{R1 fA, g fB}C, g fB}C(ξ, ψ) = fA(ψ) f 2
B(ψ)R2,

{{{R1 fA, g fB}C, g fB}C, g fB}C(ξ, ψ) = fA(ψ) f 3
B(ψ)P2.

Assume that fA(ψ) , 0 and fB(ψ) , 0, which occurs in a dense subset of MQ if A and B are
not the null operator, and consider the hybrid Hamiltonian vector fields of these three functions,
together with fAR1. Their projections at each (ξ, ψ) ∈ MQC generate the whole tangent space TξMC,
satisfying Theorem 3.8, so the system is classical controllable.

Alternatively, one could compute explicitly the control vector fields and their commutators, in order to
prove controllability by Theorems 3.8 and 3.9. Consider the expression for g(ξ) given in (4.2); control
vector fields are thus

X1 = XQC
R1 fA

= − fA
∂

∂P1
+ R1XQ

A ,

X2 = XQC
g fB

= P1 fB
∂

∂R1
+ R2 fB

∂

∂P1
+ P2 fB

∂

∂R2
+ R1 fB

∂

∂P2
+ gXQ

B .

(4.3)

The commutator of both control vector fields can be directly computed to be:

[X1, X2] = − fA fB
∂

∂R1
+ f~A,B�

(
−R1P1

∂

∂R1
+ (g − R1R2)

∂

∂P1
− R1P2

∂

∂R2
− R2

1
∂

∂P2

)
− R1gXQ

~A,B� − P1

(
fBXQ

A + fAXQ
B

) (4.4)

Notice the terms, both in classical and quantum directions, obtained from the commutation between the
quantum part of X1 and the classical part of X2, and vice-versa, corresponding to the last terms in (3.9)
and (3.10).

As long as ~A, B� , 0, projections onto MQ of X1, X2 and [X1, X2] already generate the whole tangent
space to the quantum sub-manifold, so the system is quantum controllable. Additional commutators
are needed in order to prove the same for the classical part. Lastly, with enough commutators one can
prove that the whole tangent space T(ξ,ψ)MQC can be generated at each point, so the system is classical,
quantum and hybrid controllable.

4.2. Hybrid controllability of the spin-boson model

A qubit is a quantum system with only two possible energy levels, hence its Hilbert space isH = C2.
Although simple, this system has a great relevance due to the complex behaviors that show and its
applications in many fields. A basis for the algebra of observables Herm(2) is given by the identity and
the Pauli matrices σ1, σ2, σ3, defined in (2.13).

The interaction between a qubit and a thermal reservoir can be described by the following Hamiltonian
function [25]:

fH(ξ, ψ) = hr(ξ) + fHQ(ψ) − uE(R) fσ3(ψ), ξ ∈ MC = R2N , ψ ∈ H , (4.5)

where hr denotes the Hamiltonian function for the thermal reservoir, modeled by a non-interacting
group of N unidimensional bosons with masses m1, . . . ,mN and frequencies ω1, . . . , ωn; HQ is the purely
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quantum Hamiltonian of the qubit; u is a constant coefficient; and E denotes the polarization energy of
the reservoir:

hr(ξ) =

N∑
j=1

 P2
j

2m j
+

m jω
2
jR

2
j

2

 , HQ = −
1
2

(
ε ∆

∆ −ε

)
= −∆σ1 − εσ3, E(R) =

N∑
j=1

c jR j, (4.6)

for some positive numbers ε,∆, c1, . . . , cN ∈ R.
Let us consider a bath with a single boson with mass m1 = m, frequency ω1 = ω and energy

coefficient c1 = c. We will replace the coefficient u by a control function u(t), which turns (4.5) into a
controlled Hamiltonian function:

Fu(ξ, ψ, t) = f0(ξ, ψ) + u(t) f1(ξ, ψ), f0(ξ, ψ) =
P2

2m
+

mω2R2

2
+ fHQ(ψ), f1(ξ, ψ) = −cR fσ3(ψ). (4.7)

For each t ∈ R, this is the expectation value function of the following hybrid observable, acting as the
controlled Hamiltonian of the hybrid system:

Hu(ξ, t) = H0(ξ) + u(t)A1(ξ), H0(ξ) =

(
P2

2m
+

mω2R2

2

)
I + HQ, A1(ξ) = −cRσ3. (4.8)

The controlled dynamics of the system are governed by the family of hybrid Hamiltonian vector fields
of Fu(t):

Xu(t) = XQC
Fu

(t) = X0 + u(t)X1, X0 =
P
m
∂

∂R
− mω2R

∂

∂P
+ XQ

HQ
, X1 = c fσ3

∂

∂P
− cRXQ

σ3
. (4.9)

As the system has a single control, Theorem 3.4 cannot be directly applied to prove its controllability.
However, in this case, notice that the drift X0 describes a rotation of the system simultaneously on MC and
on MQ. Therefore, X0 is recurrent and Corollary 3.7 allows us to treat the drift as an additional control.

First, let us analyze the classical controllability of the system. By direct computation, the classical
Poisson bracket of f0 and f1 is:

{ f0, f1}C =
c
m

P fσ3 . (4.10)

Therefore, at every point (ξ, ψ) ∈ MQC such that fσ3(ψ) , 0, push-forwards by πC of the Hamiltonian
vector fields of f1 and { f0, f1}C generate the whole tangent space TξMC. By Theorem 3.8, the system
is classical controllable (as long as c , 0, i.e. there exists interaction between the classical and the
quantum subsystems).

On the other hand, the successive commutators of H0(ξ) and A1(ξ) at any ξ ∈ MC are

~H0(ξ), A1(ξ)� = −cR~HQ, σ3� = −c∆Rσ2, ~~H0(ξ), A1(ξ)�, A1(ξ)� = c2∆R2σ1. (4.11)

Hence, Lie(H0(ξ), A1(ξ)) = Herm(2) except for the set R = 0, and as long as c , 0 and ∆ , 0, so by
Theorem 3.9 the system is quantum controllable.

Consider now the case of 2 bosons, replacing functions f0 and f1 in (4.7) by

f0(ξ, ψ) =
P2

1

2m1
+

m1ω
2
1R2

1

2
+

P2
2

2m2
+

m2ω
2
2R2

2

2
+ fHQ(ψ), f1(ξ, ψ) = −(c1R1 + c2R2) fσ3(ψ). (4.12)
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We will assume c1 , 0, c2 , 0 and ∆ , 0.
As before, the drift is recurrent. As there are no changes in the quantum subsystem, the system is

again quantum controllable Regarding the classical subsystem, let us compute some of the first Poisson
brackets:

{ f0, f1}C =

(
c1

m1
P1 +

c2

m2
P2

)
fσ3 , { f0, { f0, f1}C}C =

(
c1ω

2
1R1 + c2ω

2
2R2

)
fσ3 . (4.13)

As long as |ω1| , |ω2|, functions f1 and { f0, { f0, f1}C}C are linearly independent. Therefore, we have
R1 fσ3 ,R2 fσ3 ∈ PoiC( f0, f1); using R1 fσ3 and R2 fσ3 to compute more Poisson brackets, we find

{ f0,R1 fσ3}C = −
P1

m1
fσ3 , { f0,R2 fσ3}C = −

P2

m2
fσ3 . (4.14)

Having R1 fσ3 ,R2 fσ3 , P1 fσ3 , P2 fσ3 ∈ PoiC( f0, f1) is enough to generate, at every (ξ, ψ) ∈ MQC with
fσ3(ψ) , 0, the whole tangent space TξMC by push-forward of their hybrid Hamiltonian vector fields.
The system is thus classical-controllable as long as both bosons have different frequencies.

Notice that the same construction can be extrapolated to any number of bosons: the spin-boson
system is classical and quantum controllable for any number of bosons with different frequencies.

4.3. Hybrid splines

Splines have been studied for several decades due to their interesting applications in different fields,
such as design and computer graphics. Originally introduced for linear spaces, and later generalized
to arbitrary Riemannian manifolds [52–54], the idea behind them is to define curves joining a given
set of points of the state space of a system at the corresponding values of the curve parameter (time,
for instance). Curves are chosen as geodesics of the corresponding Riemannian metric. In 2012, the
concept was generalized to the quantum state case, for quantum pure states first [20] and later to the
case of mixed states [19].

The combination of classical and quantum splines leads naturally to considering the case of the
interpolation problem for a hybrid state space, and from a threefold perspective. The first is the direct
problem of interpolation of a set of points in the hybrid phase space (ξ0, ψ0), (ξ1, ψ1), · · · , (ξk, ψk) ∈ MQC

by means of a certain controlled hybrid dynamics. However, with respect to those same dynamics, we
may consider the problem of interpolation restricted to just one of the two manifolds:

• interpolating the points {ξ0, ξ1, · · · , ξk} in MC, or
• interpolating the points {ψ0, ψ1, · · · , ψk} in MQ.

From the physical point of view, the first case makes more sense, since the classical degrees of
freedom are slower than the quantum ones. Nonetheless, from the mathematical point of view, it is the
most complicated one due to the nonlinearity and unboundedness of the dynamics.

As we saw in the references above, the problem of cubic splines can be considered an optimal
control problem, which can be solved either by a variational approach as above (we can consider
it a Lagrangian version of the problem) or by the Pontryagin Maximum principle [55, 56], which
represents the corresponding Hamiltonian version. In this paper, we will consider the second case,
which generalizes to a hybrid framework the (quantum) construction considered in [19].

We will recover the example analyzed in Section 4.1: a classical system with two degrees of
freedom, parametrized by classical coordinates ξ = (R1,R2, P1, P2) ∈ MC, and one qubit as the quantum
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subsystem, parametrized by a quantum state ψ ∈ MQ = C2. The system will present two control
functions u1(t), u2(t), so its controlled Hamiltonian has the following expression:

Hu(ξ, t) = H0(ξ) + u1(t)A1(ξ) + u2(t)A2(ξ) (4.15)

The drift Hamiltonian H0 is taken to describe a purely classical harmonic oscillator and a static qubit,

H0(ξ) =

(
R2

1

2
+

R2
2

2
+

P2
1

2
+

P2
2

2

)
I, (4.16)

while the control hybrid observables are taken as particular examples of (4.1) with Pauli matrices (2.13):

A1(ξ) = R1σx, A2(ξ) = −
1
2

(
P2

1 − P2
2 + 2R1R2

)
σy. (4.17)

The system thus described is classical, quantum and hybrid controllable, as described in Section 4.1. Its
dynamics are governed by the family of Hamiltonian vector fields of (4.15):

Xu(t) = X0 + u1(t)X1 + u2(t)X2, (4.18)

where the drift term is a purely classical vector field,

X0 = XQC
H0

= P1
∂

∂R1
+ P2

∂

∂R2
− R1

∂

∂P1
− R2

∂

∂P2
, (4.19)

and the control vector fields are the same as in (4.3).
The effect of the control vector fields can be visualized in Figure (3) where the trajectory on the

Bloch sphere and on the two classical planes is visualized together with the expression of the two control
functions u1(t) and u2(t).

Given these controlled dynamics, we now proceed to studying the following optimal control problem.
For a certain set of target points (ξ0, ψ0), (ξ1, ψ1), · · · , (ξk, ψk) ∈ MQC and instants of time t0 < t1 < . . . <

tk, our goal is to determine the control functions {u1(t), u2(t)} such that the resulting trajectory (ξ(t), ψ(t))
of the system satisfying ξ(t0) = ξ0, ψ(t0) = ψ0 minimizes the functional:

J(u1, u2) =

∫ tk

t0
dt (u2

1(t) + u2
2(t)) + ε

k∑
j=0

d((ξ(t j)ψ(t j)), (ξ j, ψ j)), ε > 0, (4.20)

with d a distance function in MQC. The parameter ε is included to balance the strength of the two
conditions in the functional: the power introduced in the system by the control functions, and the
closeness of the trajectory to the target points.
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Figure 3. Solution of the optimal control problem. On the upper part left, the two projections
on the R1,R2 and P1, P2 planes can be seen. On the righthand side, the trajectories on the Bloch
sphere are depicted. At the bottom, the two control functions u1(t) and u2(t) are presented.

Notice that, as the hybrid manifold MQC is a cartesian product, the problem can be easily adapted to
interpolate between either hybrid points, or just classical and quantum ones, depending on the distance
function we consider. Thus, if the function d above represents only the classical distance of points on
MC, the interpolation problem refers to classical points only. Notice that, in this case, a Riemannian
structure for the classical manifold MC is required. Analogously, considering a purely quantum distance
function on MQ, the interpolation problem is purely quantum. If the distance function is the sum of the
two distances, the problem is a hybrid interpolation.

For the sake of simplicity, let us consider a problem with just three target points, defined as follows:

• Target point ξ0 = (R10,R20, P10, P20) =
(
1, 0,−1

2 ,−1
)
, |ψ0〉 = 1

√
2

(|0〉 + |1〉) at time t0 = 0.
• Target point ξ1 = (R11,R21, P11, P21) = (1, 1, 1, 0), |ψ1〉 = |1〉 at time t1 = 4.
• Target point ξ2 = (R12,R22, P12, P22) =

(
1
2 ,

1
2 ,

1
2 , 1

)
, |ψ2〉 = |0〉 at time t2 = 9.

In order to do that, we define the corresponding Pontryagin Hamiltonian, by introducing the co-state
variables Π = (ΠR1 ,ΠR2 ,ΠP1 ,ΠP2 ,Πψ) and the Hamiltonian

HP = Π(Xu) − J . (4.21)
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Hamilton equations are obtained straightforwardly from Equation (4.21) using the first term in Equation
(4.20), for each of the two time intervals [0, 4] and [4, 9]. The discrete part of the functional in (4.20)
provides the corresponding boundary conditions for states and co-states at points t = 0, t = 4 and t = 9.
In this optimal control problem, analogously to what happened in the discussion on the controllability
notion in the previous section, we can also consider different levels while attending to just classical, just
quantum, or the complete set of degrees of freedom in the functional J . If the distance function d in
(4.20) is purely classical, there will be no boundary constraints for the quantum degrees of freedom.
Analogously, for a purely quantum distance function, there will be no boundary constraints for the
classical ones. Having a hybrid distance function will introduce boundary conditions for both types of
degrees of freedom.

The resulting set of fourteen equations (seven for the states and seven for the co-states) must be
solved numerically with the boundary conditions of each interval. The problem is numerically complex
because of the large number of equations and the two sets of conditions (one for each time interval).
Our numerical solver, implemented in Mathematica, had difficulties with the balance between the large
kicks and the required oscillatory regimes to balance the optimization functional. In any case, an exact
solution can be seen in Figure 3.

An alternative approach to the resolution of this problem could be obtained by extending to the
hybrid case the algorithm we introduced in [19] to find approximate solutions for the quantum spline
problem. We will consider this extension in a future paper.

5. Conclusions and outlook

In this paper we have introduced the notion of hybrid control system, as a control dynamical system
which combines classical and quantum degrees of freedom. The interest of this type of system comes
mostly from physics, where some full quantum systems admit an approximate description where the
slowest degrees of freedom can be modeled as classical objects. If we use a geometrical description
for quantum systems, which allows us a formally analogous description to the classical ones, a simple
dynamical description as Hamiltonian systems can be achieved for hybrid control dynamical systems.

Once defined, we have analyzed the notion of controllability adapted to hybrid systems. We
generalized the theory of controllability of classical systems incorporating the quantum degrees of
freedom described in geometrical terms. It is important to remark that the usual definitions of quantum
controllability which involve the unitary group have lost their meaning, because the hybrid dynamics are
no longer linear due to the coupling with the classical subsystem. Furthermore, the definition in terms
of product manifolds opens the possibility of considering partial controllability on just the classical
or the quantum degrees of freedom, the first case being more realistic from the physical point of view
(remember that the classical degrees of freedom are slower than the quantum ones). Lie algebras of
control observables and classical Poisson algebras of their expectation value function play a key role in
the description of sufficient conditions for controllability.

Finally, we have considered some practical applications. In particular, we have proved the controlla-
bility of the spin-boson model, which has remarkable applications in different fields, the best known
being transition of electronic states coupled to nuclear vibrations in molecules or the coupling of protein
motion to electron transfer in a photosynthetic reaction center (references). We have also introduced the
notion of hybrid spline, as a generalization of their classical and quantum analogues and have presented
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a simple case of interpolation between three hybrid points. A more detailed geometric analysis of this
problem and further examples will be the goal of future papers. In particular, notice that the nature
of the control functions is not subject to strong restrictions. Thus, other applications based on recent
quantum control protocols such as the choped random basis ansatz [51], as well as control functions
described in terms of Fourier series [50], are also being considered. Additionally, future works will
deal with the practical applications of controllability and optimal control in numerical simulations and
physical experiments in order to verify the validity of the theory and to comprehend its applicability to
actual physical control systems.
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33. J. A. Jover-Galtier, Sistemas cuánticos abiertos: descripción geométrica, dinámica y control,
(spainsh) [Open quantum systems: geometrical description, dynamics and control], PhD thesis,
University of Zaragoza, 2017. Available from: https://zaguan.unizar.es/record/61849.

34. T. W. B. Kibble, Geometrization of quantum mechanics, Commun. Math. Phys., 65 (1979),
189–201. https://doi.org/10.1007/BF01225149

35. J. L. Alonso, A. Castro, J. Clemente-Gallardo, J. C. Cuchı́, P. Echenique-Robba, F. Falceto,
Statistics and Nosé formalism for Ehrenfest dynamics, J. Phys. A Math. Theor., 44 (2011), 395004.
https://doi.org/10.1088/1751-8113/44/39/395004

36. J. L. Alonso, J. Clemente-Gallardo, J. C. Cuchı́, P. Echenique-Robba, F. Falceto, Ehrenfest
dynamics is purity non-preserving: a necessary ingredient for decoherence, J. Chem. Phys. 137
(2012), 054106. https://doi.org/10.1063/1.4737861

37. E. C. Boghiu, Formulación geométrica de la dinámica y el control de sistemas hı́bridos
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55. M. Barbero-Liñán, M. C. Muñoz-Lecanda, Geometric approach to Pontryagin’s maximum
principle, Acta. Appl. Math., 108 (2009), 429–485. https://doi.org/10.1007/s10440-008-9320-5

56. L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelidze, E. F. Mischenko, The Mathematical Theory
of Optimal Processes. Wiley Interscience, New York, 1962.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Communications in Analysis and Mechanics Volume 16, Issue 4, 786–812.

http://dx.doi.org/https://doi.org/10.1088/1751-8113/44/35/355203
http://dx.doi.org/https://doi.org/10.1093/imamci/12.4.399
http://dx.doi.org/https://doi.org/10.1093/imamci/6.4.465
http://dx.doi.org/https://doi.org/10.1007/s10440-008-9320-5
http://creativecommons.org/licenses/by/4.0

	Introduction: why hybrid control?
	A geometrical description of hybrid quantum-classical dynamics
	Geometric formalism of classical mechanics
	Geometric formalism of quantum mechanics
	Hybrid systems and their geometric description

	Controllability of hybrid systems
	Applications
	Classical subsystem on the plane and a qubit
	Hybrid controllability of the spin-boson model
	Hybrid splines

	Conclusions and outlook

