000145579 001__ 145579
000145579 005__ 20250923084440.0
000145579 0247_ $$2doi$$a10.3390/mi15091129
000145579 0248_ $$2sideral$$a140403
000145579 037__ $$aART-2024-140403
000145579 041__ $$aeng
000145579 100__ $$0(orcid)0000-0003-2660-3726$$aLafuente, Marta
000145579 245__ $$aPeriodic arrays of plasmonic Ag-coated multiscale 3D-structures with SERS activity: fabrication, modelling and characterisation
000145579 260__ $$c2024
000145579 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145579 5203_ $$aSurface enhanced Raman spectroscopy (SERS) is gaining importance as sensing tool. However, wide application of the SERS technique suffers mainly from limitations in terms of uniformity of the plasmonics structures and sensitivity for low concentrations of target analytes. In this work, we present SERS specimens based on periodic arrays of 3D-structures coated with silver, fabricated by silicon top-down micro and nanofabrication (10 mm × 10 mm footprint). Each 3D-structure is essentially an octahedron on top of a pyramid. The width of the top part—the octahedron—was varied from 0.7 µm to 5 µm. The smallest structures reached an analytical enhancement factor (AEF) of 3.9 × 107 with a relative standard deviation (RSD) below 20%. According to finite-difference time-domain (FDTD) simulations, the origin of this signal amplification lies in the strong localization of electromagnetic fields at the edges and surfaces of the octahedrons. Finally, the sensitivity of these SERS specimens was evaluated under close-to-reality conditions using a portable Raman spectrophotometer and monitoring of the three vibrational bands of 4-nitrobenzenethiol (4-NBT). Thus, this contribution deals with fabrication, characterization and simulation of multiscale 3D-structures with SERS activity.
000145579 536__ $$9info:eu-repo/grantAgreement/EC/H2020/883390/EU/Advanced Surface Enhanced Raman Spectroscopy (SERS) based technologies for gas and liquids sensING in the area of chemical protection/SERSing$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 883390-SERSing
000145579 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000145579 590__ $$a3.0$$b2024
000145579 592__ $$a0.575$$b2024
000145579 591__ $$aCHEMISTRY, ANALYTICAL$$b49 / 111 = 0.441$$c2024$$dQ2$$eT2
000145579 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b31 / 79 = 0.392$$c2024$$dQ2$$eT2
000145579 591__ $$aPHYSICS, APPLIED$$b81 / 187 = 0.433$$c2024$$dQ2$$eT2
000145579 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b95 / 147 = 0.646$$c2024$$dQ3$$eT2
000145579 593__ $$aElectrical and Electronic Engineering$$c2024$$dQ2
000145579 593__ $$aMechanical Engineering$$c2024$$dQ2
000145579 593__ $$aControl and Systems Engineering$$c2024$$dQ2
000145579 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145579 700__ $$aKooijman, Lucas J.
000145579 700__ $$aRodrigo, Sergio G.
000145579 700__ $$aBerenschot, Erwin
000145579 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, Reyes$$uUniversidad de Zaragoza
000145579 700__ $$0(orcid)0000-0001-9897-6527$$aPina, María P.$$uUniversidad de Zaragoza
000145579 700__ $$aTas, Niels R.
000145579 700__ $$aTiggelaar, Roald M.
000145579 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000145579 773__ $$g15, 9 (2024), 1129 [21 pp.]$$pMicromachines (Basel)$$tMicromachines$$x2072-666X
000145579 8564_ $$s6969699$$uhttps://zaguan.unizar.es/record/145579/files/texto_completo.pdf$$yVersión publicada
000145579 8564_ $$s2573781$$uhttps://zaguan.unizar.es/record/145579/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145579 909CO $$ooai:zaguan.unizar.es:145579$$particulos$$pdriver
000145579 951__ $$a2025-09-22-14:50:11
000145579 980__ $$aARTICLE