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Abstract: This work presents radial basis function collocation methods in pseudospectral form
for forecasting the static deformations and free vibration characteristics of thin and thick cross-ply
laminated shells. This method utilizes an innovative layerwise shallow shell theory that integrates
both translational and rotational degrees of freedom. A collection of numerical examples illustrates
the precision and efficacy of the suggested numerical method, highlighting its capability in resolving
static and vibrational issues.
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theory

1. Introduction

The majority of numerical techniques for laminated shell analysis rely on finite element
or analytical solutions. A accurate numerical technique and the suitable application of
a shear deformation theory are necessary for an effective analysis. Shear deformation
theories can be broadly divided into two groups: layerwise (LW) theories, in which each
layer has distinct degrees of freedom, and equivalent single layer (ESL) theories, in which
all layers share the same set of degrees of freedom. ESL theories are further subdivided
into higher-order theories as in Pandya and Kant [1], Reddy and Liu [2], and Touratier [3],
and first-order theories as the Mindlin’s plate theory [4]. LW theories can concentrate just
on translational motion at each layer’s interfaces [5]. Carrera [6–8] developed a unified
formulation that modifies the expansion vector for a particular plate/shell theory, allowing
for the application of many theories.

Recently, the Kansa technique for collocation with radial basis functions (RBFs) have
been presented (Kansa [9], Ferreira [10,11]). RBFs were first used to interpolate geographi-
cally scattered data by Hardy [12,13]. Later, they were utilized to solve partial differential
equations (PDEs) by Kansa [9,14]. Using various shear deformation theories several suc-
cessful applications of the RBF collocation to plates and shell were presented in [15,16]. A
successful concurrent strong-form element method was given in [17]. Layerwise theories
have undergone recent developments, as detailed in [18,19].

In this work, we employ an optimized shape parameter in conjunction with radial
basis functions (RBFs) within a pseudospectral framework and a layerwise shell theory. We
are able to investigate laminated shallow shell free vibrations and static deformations with
this technology. The calculated values, which were attained by applying several techniques,
are in very good agreement with the ones found in the literature.
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2. Collocation with Radial Basis Functions in Pseudospectral Framework
Formulation

Pseudospectral (PS) methods [20,21] are able to deliver highly accurate approximate
solutions to problems with partial differential equations (PDEs). In these methods, the
spatial component û of the approximate solution is represented as a linear combination of
basis functions ϕj, where j = 1, . . . , N, as

û(x) =
N

∑
j=1

cjϕj(x), x ∈ R. (1)

The utilization of polynomial basis functions in higher-dimensional spaces is generally
confined to tensor products of one-dimensional basis functions. To overcome this issue,
we substitute polynomials with radial basis functions (RBFs), enabling the modeling of
uneven, general geometry grids with accuracy comparable to classic PS approaches.

In the realm of resolving linear partial differential equations, the radial basis func-
tion collocation approach, also known as Kansa’s method [9], necessitates that both the
partial differential equation and the corresponding boundary conditions are fulfilled at
a designated set of collocation locations, yielding a system of linear algebraic equations,
that is solved to obtain coefficients cj in Equation (1). The approximate solution û can be
computed then at any position x utilizing Equation (1).

Consider an elliptic PDE:

Lu = f in Ω, (2)

subject to Dirichlet boundary condition:

u = g on Γ = ∂Ω. (3)

In the RBF-PS methodology, the solution is described as follows:

û(x) =
N

∑
j=1

cj φ(∥x − ξ j∥), x ∈ Ω ⊆ IRs, (4)

where the points ξ j, j = 1, . . . , N, serve as the centers of the RBF, with ϕj = φ
(∥∥∥· − ξ j

∥∥∥).
By evaluating Equation (4) at a set of collocation points xi, i = 1, . . . , N, we obtain:

û(xi) =
N

∑
j=1

cj φ
(∥∥xi − ξ j

∥∥), i = 1, . . . , N

or in matrix-vector notation as:

u = Ac, (5)

where c = [c1, . . . , cN ]
T denotes the coefficient vector, and Aij = φ

(∥∥∥xi − ξ j

∥∥∥) represents

the matrix of RBF evaluations, and u = [û(x1), . . . , û(xN)]
T denotes the vector of approxi-

mate solutions at the collocation sites.
A prevalent approach to executing the PS technique entails the formulation of a

differentiation matrix L, such that, at each grid point xi, the relationship

uL = Lu (6)

is maintained, where uL denotes the vector of differentiated solution values.
The vector u = [û(x1), . . . , û(xN)]

T denotes the values of û at the grid points, while uL
indicates the vector of derivative values of u at the same locations. Instead of determining
the coefficients c by solving a system of linear equations, as is standard in the conventional
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RBF collocation approach (Kansa’s method), we utilize the differentiation matrix L. This
yields a discrete formulation of the PDE as:

Lu = f , (7)

where u is defined as previously stated, and f is the vector comprising the values of the
right-hand side function f from Equation (2) assessed at the collocation points. In the
differential Equation (2), the differential operator L is applied to the approximate solution
û as specified in Equation (4). According to linearity, we obtain:

Lû(x) =
N

∑
j=1

cjLφ
(∥∥∥x − ξ j

∥∥∥)
Assessing this statement at the collocation sites xi yields a system of linear algebraic

equations, which can be expressed in matrix-vector notation as:

Lu = ALc (8)

where u and c are as defined in Equation (5), and the matrix AL has entries Lφ
(∥∥x − ξ j

∥∥)∣∣
x=xi

.

Although we do not explicitly calculate the coefficients c, they are given by c = A−1u.
Substituting this into the equation above, we obtain:

Lu = ALA−1u (9)

The differentiation matrix L is defined as L = ALA−1. To implement the Dirichlet
boundary conditions from Equation (3), we substitute the rows of L associated with the
boundary collocation points with conventional unit vectors, featuring a one in the diagonal
position and zeros in all other positions. Furthermore, we substitute the equivalent values
of f(xk) on the right-hand side with g(xk).

The shape parameter ε is essential in determining the precision of the numerical solu-
tion. The ideal value of ε is ascertained by Rippa’s [22] method, a form of cross-validation
referred to as “leave-one-out” cross-validation (LOOCV). Despite the computational ex-
pense associated with a direct implementation of the LOOCV algorithm, Rippa shown that
it may be streamlined into a singular formula:

Ek =
ck

A−1
kk

, (10)

where ck is the k th coefficient in the interpolant based on the full dataset, and A−1
kk is the k

th diagonal element of the inverse of the corresponding interpolation matrix.
We will now demonstrate the calculation of differentiation matrices utilizing three

pseudospectral approaches. The initial approach utilizes Trefethen’s ‘cheb.m’ code as
detailed in [21]. The last two approaches employ collocation with radial basis functions in
a pseudospectral framework, utilizing differentiation matrices of size (N + 1)× (N + 1),
where N denotes the number of nodes in the domain, inclusive of the boundaries. Such
matrices facilitate the interpolation of the equations of motion, permitting resolution as
a linear system of equations (in static scenarios) or as a generalized eigenvalue problem
(in cases of free vibrations or buckling). Utilizing Trefethen’s ‘cheb.m’ code from [21], we
derive the differentiation matrices in a concise format, as demonstrated in Program 1.

Program 1. Using cheb.m from Trefethen’s book [21]

% PS methd using Trefethen’s cheb.m code
[D,x] = cheb(N);
D2 = D^2;Dy=kron(D,I);
Dx=kron(I,D);
Dxx=kron(I,D2);
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Dyy=kron(D2,I);
Dxy=Dx{*}Dy;

In the context of employing radial basis functions in a univariate framework, we
initially calculate the differentiation matrix D. Thereafter, we derive the differentiation
matrices Dx, Dxx, and others by employing the Kronecker product through MATLAB’s
(2024 version) kron function, as demonstrated in Program 2. The shape parameter epsilon
is calculated via Rippa’s algorithm, as detailed by Ferreira and Fasshauer in [23].

Program 2. Using RBFs in tensor-product mode

% Kansa’s unsymmetric method on tensor-product grids
rbf = @(e,r) exp(-(e*r).^2);
drbf = @(e,r,dx) -2*e^2*dx.*exp(-(e*r).^2);
d2rbf = @(e,r) 2*e^2*(2*(e*r).^2-1).*exp(-(e*r).^2);
r = DistanceMatrix(x,x);
dx = DifferenceMatrix(x,x);
maxepsilon = 5;minepsilon = .1;
[epsilon,fval,exitflag,output] = fminbnd(@(epsilon)...
CostEpsilonDxRBFPS(epsilon,r,dx),minepsilon,maxepsilon);
ep=epsilon;
A = rbf(ep,r);
DA = drbf(ep,r,dx);
D = DA/A;D2A = d2rbf(ep,r);
D2 = D2A/A;
Dy=kron(D,I);
Dx=kron(I,D);
Dxx=kron(I,D2);
Dyy=kron(D2,I);
Dxy=Dx{*}Dy;

The methodologies outlined in Programs 1 and 2 are confined to tensor-product grids,
which may be constraining for specific engineering applications. This code calculates
differentiation matrices for generic two-dimensional grids to overcome this constraint.

Program 3. Using RBFs in general 2D grids

% Kansa’s unsymmetric method on general grids
[Dx,x,y,epsilon] = DxRBF(N);
[Dy,x,y] = DyRBF(N,epsilon);
[Dxx,x,y] = DxxRBF(N,epsilon);
[Dxy,x,y] = DxyRBF(N,epsilon);
[Dyy,x,y] = DyyRBF(N,epsilon);

In Program 4, we illustrate the computation of the matrix Dx, which encompasses the
first derivatives concerning x. Comparable procedures can be utilized to derive matrices
for additional derivatives. In accordance with the methodology established by Ferreira
and Fasshauer [23], we delineate the procedure for calculating the shape parameter epsilon
utilizing Rippa’s algorithm in Program 5. It is essential to acknowledge that an other
differentiation matrix may have been employed instead of Dx.

Program 4. Computing Dx

% DxRBF compute D = differentiation matrix, x,y = Chebyshev grids
function [D,x,y,epsilon] = DxRBF(N,epsilon)
global rbf dxrbf dyrbf dxxrbf dxyrbf dyyrbf Lrbf L2rbf d2rbf
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if N==0, D=0; x=1; return, end
x = cos(pi*(0:N)/N)’; % Chebyshev points
y=x;[xx,yy] = meshgrid(x,y);
points = [xx(:) yy(:)];
r = DistanceMatrix(points,points);
dx = DifferenceMatrix(xx,xx);
if nargin == 1
% Shape parameter interval
maxepsilon = 10;
minepsilon = .1;
[epsilon,fval,exitflag,output] = fminbnd(@(epsilon) ...
CostEpsilonDxRBF(epsilon,r,dx),minepsilon,maxepsilon);
end
A = rbf(epsilon,r);
DA = dxrbf(epsilon,r,dx);
D = DA/A;

Program 5. Computing error for Rippa’s algorithm

% CostEpsilonDxRBF
function ceps = CostEpsilonDxRBF(epsilon,r,dx)
global rbf dxrbf
[m,n] = size(r);
A = rbf(epsilon,r);
rhs = dxrbf(epsilon,r,dx)’;
invA = pinv(A);
EF = (invA*rhs)./repmat(diag(invA),1,m);
ceps = norm(EF(:),2);

In this third RBF-PS approach, we generally employ the Wendland C6 functions,
as specified in Program 6. In this case, e signifies the shape parameter, r indicates the
Euclidean distance between two grid points, and dx refers to its first derivative concerning
x, among others.

Program 6. Wendland C6 function and its derivatives

rbf = @(e,r) max(1-e*r,0).^8.*(32*(e*r).^3+25*(e*r).^2+8*e*r+1);
dxrbf = @(e,r,dx) -22*dx*e^2.*...
max(1-e*r,0).^7.*(16*(e*r).^2+7*e*r+1);
dyrbf = @(e,r,dy) -22*dy*e^2.*...
max(1-e*r,0).^7.*(16*(e*r).^2+7*e*r+1);
dxxrbf = @(e,r,dx) 22*e^2*max(1-e*r,0).^6.*...
(16*e^3*(r.^2+9*dx.^2).*r+3*e^2*(8*dx.^2-3*r.^2)-6*e*r-1);
dxyrbf = @(e,r,dx,dy) 528*e^4*dx.*dy.*...
max(1-e*r,0).^6.*(6*e*r+1);
dyyrbf = @(e,r,dy) 22*e^2*max(1-e*r,0).^6.*...
(16*e^3*(r.^2+9*dy.^2).*r+3*e^2*(8*dy.^2-3*r.^2)-6*e*r-1);

3. The Layerwise Theory

We introduce a simple and efficient layerwise shallow shell theory. A Mindlin shell is
situated in the intermediate layer. Subsequently, we overlay an upper and a lower layer
above and below the middle layer, guaranteeing that the displacements at the interfaces
between the layers remain continuous. The lowest, medium, and highest levels are marked
as 1, 2 , and 3, accordingly.
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3.1. Displacement Field

The displacement field encompasses nine degrees of freedom: three displacements
(u0, v0, w0) of the mid-surface of the second layer, and six rotations

(
θx(k), θy(k), k = 1, 2, 3

)
of the normal to the mid-plane of each respective layer about the y and x axes. For clarity,
we designate the displacement field as layer 2, also referred to as the middle layer or
sandwich core. This field is characterized by the subsequent equation:

(u, v, w)(2) = (u0, v0, w0) + z(2)
(

θ
(2)
x , θ

(2)
y , 0

)
(11)

For layer 3, by imposing continuity of displacements at the layers 2–3, we obtain

(u, v, w)(3) = (u0, v0, w0) + z(3)
(

θ
(3)
x , θ

(3)
y , 0

)
+

h2

2

(
θ
(2)
x , θ

(2)
y , 0

)
+

h3

2

(
θ
(3)
x , θ

(3)
y , 0

)
(12)

For layer 1 (lower layer or lower sandwich skin), by imposing continuity of displace-
ments at the layers 1–2, we obtain

(u, v, w)(1) = (u0, v0, w0) + z(1)
(

θ
(1)
x , θ

(1)
y , 0

)
− h2

2

(
θ
(2)
x , θ

(2)
y , 0

)
− h1

2

(
θ
(1)
x , θ

(1)
y , 0

)
(13)

In Equations (11)–(13), hk represents the thickness of layer k, and z(k) represents the
z-coordinates for each layer k and is defined within the interval z ∈ [−hk/2, hk/2].

3.2. Deformations

In this shallow shell theory, we regard x and y as curvilinear coordinates, with Rx and
Ry representing the radii of curvature in the xz and yz planes, respectively. The in-plane
deformations may be defined as:


ε
(k)
xx

ε
(k)
yy

γ
(k)
xy

 =


εm

xx
εm

yy
γm

xy

+ z(k)


ε

f (k)
xx

ε
f (k)
yy

γ
f (k)
xy

+


ε

m f (k)
xx

ε
m f (k)
yy

γ
mp
xy f (k)

+


εw0

xx
εw0

yy
γw0

xy

 (14)

where the membrane constituents are the same throughout the three layers:

(
εxx, εyy, γxy

)m
=

(
∂u0

∂x
,

∂v0

∂y
,

∂u0

∂y
+

∂v0

∂x

)
(15)

For every layer k, the bending deformations are described as:

(
εxx, εyy, γxy

) f (k)
=

∂θ
(k)
x

∂x
,

∂θ
(k)
y

∂y
,

∂θ
(k)
x

∂y
+

∂θ
(k)
y

∂x

 (16)

The deflection components related to the radius of curvatures are given by:

(
εw0

xx0 , εw0
yy , γw0

xy
}
=

(
w0

Rx
,

w0

Ry
, 0
)

(17)

The membrane-bending coupling components for layers 2, 3, and 1 are specified
as follows: (

εxx, εyy, γxy
)m f (2)

= (0, 0, 0) (18)
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(
εxx, εyy, γxy

)m f (3)
=h2

2
∂θ

(2)
x

∂x
+

h3

2
∂θ

(3)
x

∂x
,

h2

2
∂θ

(2)
y

∂y
+

h3

2
∂θ

(3)
y

∂y
,

h2

2
∂θ

(2)
x

∂y
+

h3

2
∂θ

(3)
x

∂y
+

h2

2
∂θ

(2)
y

∂x
+

h3

2
∂θ

(3)
y

∂x

 (19)

(
εxx, εyy, γxy

)m f (1)
=

−

 h2

2
∂θ

(2)
x

∂x
+

h1

2
∂θ

(1)
x

∂x
,

h2

2
∂θ

(2)
y

∂y
+

h1

2
∂θ

(1)
y

∂y
,

h2

2
∂θ

(2)
x

∂y
+

h1

2
∂θ

(1)
x

∂y
+

h2

2
∂θ

(2)
y

∂x
+

h1

2
∂θ

(1)
y

∂x

 (20)

For each layer k, the transverse shear deformations are calculated as follows:

(
γxz, γyz

)(k)
=

(
θ
(k)
x +

∂w0

∂x
− u0

Rx
, θ

(k)
y +

∂w0

∂y
− v0

Ry

)
(21)

3.3. Stresses

The current layerwise approach disregards transverse normal deformations by pre-
suming a uniform transverse displacement across each layer. Disregarding σzz for each
orthotropic layer, the stress-strain relationships in the fiber’s local coordinate system can be
described as: 

σ11
σ22
τ12
τ13
τ23


(k)

=


C11 C12 0 0 0
C12 C22 0 0 0
0 0 C66 0 0
0 0 0 C55 0
0 0 0 0 C44


(k)

·


ε11
ϵ22
γ12
γ13
γ23


(k)

(22)

The material coefficients C(k)
ij are expressible in terms of the engineering constants,

specifically the elastic coefficients v(k)12 , E(k)
1 , E(k)

2 , and G(k)
12 :

C(k)
11 =

E1(k)
1 − v12(k) · v21(k)

; C(k)
12 = C(k)

21 = v21
(k) · C11

(k); v21
(k) = v12(k)

E(k)
2

E(k)
1

C(k)
22 =

E(k)
2

1 − v(k)12 · v21(k)
; C66

(k) = G12
(k); C55

(k) = G13
(k); C44

(k) = G23
(k) (23)

This theory does not necessitate the application of shear correction factors. The stress-
strain relations for each layer in shell coordinates are derived using material coefficients
transformation rules as outlined by [5]

σxx
σyy
τxy
τxz
τyz


(k)

=


C̄11 C̄12 C̄16 0 0
C̄12 C̄22 C̄26 0 0
C̄16 C̄26 C̄66 0 0
0 0 0 C̄55 C̄45
0 0 0 C̄45 C̄44


(k)

·


εxx
ϵyy
γxy
γxz
γyz


(k)

(24)
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4. Equations of Motion

We can get the equations of motion from the dynamic form of the principle of vir-
tual displacements:

0 =
∫ T

0
(δU + δV − δK)dt (25)

The virtual strain energy (δU), the virtual work performed by applied forces (δV),
and the virtual kinetic energy (δK) for a three-layer laminate are defined as follows:

δU =
∫

Ω0

3

∑
k=1

{∫ hk/2

−hk/2

[
σ
(k)
xx · δε

(k)
xx + σ

(k)
yy · δε

(k)
yy + τ

(k)
xy · δγ

(k)
xy + τ

(k)
xz δγ

(k)
yz + τ

(k)
yz δγ

(k)
yz

]
dz
}

dxdy (26)

δV = −
∫

Ω0

[q · δw0]dxdy −
∫

Γσ

3

∑
k=1

{∫ hk/2

−hk/2
[σ̂nnδun + σ̂nsδus + σ̂nzδw]

}
dzds (27)

δK =
∫

Ω0

3

∑
k=1

{∫ hk/2

−hk/2
ρk
[
u̇(k)δu̇(k) + v̇(k)δv̇(k) + ẇ(k)δẇ(k)

]}
dzdxdy (28)

In this context, δ quantities are defined as virtual. The symbol Ω0 indicates the
midplane of the laminate, while Γσ signifies the natural boundary. The variable q represents
the external distributed load. The notation (·) is used to denote time differentiation, and ρk

refers to the density of the material for layer k.
The virtual strain energy (δU) can now be expressed in terms of the stress resultants

and bending moments as

δU =
∫

Ω0

3

∑
k=1

{(
N(k)

xx · δεm
xx + M(k)

xx · δε
f (k)
xx + N(k)

xx · δε
m f (k)
xx + N(k)

xx · δεw0
xx

)
+
(

N(k)
yy · δεm

yy + M(k)
yy · δε

f (k)
yy + N(k)

yy · δε
m f (k)
yy + N(k)

yy · δεw0
yy

)
+
(

N(k)
xy · δγm

xy + M(k)
xy · δγ

f (k)
xy + N(k)

xy · δγ
m f (k)
xy + N(k)

xy · δγw0
xy

)
+Q(k)

x · δγ
(k)
xz + Q(k)

y · δγ
(k)
yz

}
dxdy (29)

where the in-plane stress resultants and bending moments are defined as

(
Nxx, Nyy, Nxy

)
=

3

∑
k=1

∫ hk
2

− hk
2

(
σxx, σyy, τxy

)(k)dz (30)

(
Mxx, Myy, Mxy

)
=

3

∑
k=1

∫ hk
2

− hk
2

z
(
σxx, σyy, τxy

)(k)dz (31)

and where the out-of-plane stress resultants are defined as

(
Qx, Qy

)
=

3

∑
k=1

∫ hk
2

− hk
2

(
τxz, τyz

)(k)dz (32)

The work done by the external applied forces is defined as

δV = −
∫

q · δw0dxdy (33)

whereas the virtual kinetic energy is defined as

δK =
∫

Ω0

3

∑
k=1

{∫ hk/2

−hk/2
ρk
[
u̇(k)δu̇(k) + v̇(k)δv̇(k) + ẇ(k)δẇ(k)

]}
dzdxdy (34)
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By gathering the coefficients of each virtual displacement and applying integration
by parts, the dynamic equilibrium equations are derived by equating the coefficients of(

δu0, δv0, δw0,
{

δθ
(k)
x , δθ

(k)
y , k = 1, 2, 3

})
to zero individually over Ω0:

δu0 :
3

∑
k=1

∂N(k)
xx

∂x
+

∂N(k)
xy

∂y
+

Q(k)
x

Rx

 = I(1)0

(
∂2u0

∂t2 − h2

2
∂2θ

(2)
x

dt2 − h1

2
∂2θ

(1)
x

dt2

)
+

I(2)0
∂2u0

∂t2 + I(3)0

(
∂2u0

∂t2 +
h2

2
∂2θ

(2)
x

dt2 +
h3

2
∂2θ

(3)
x

dt2

)
(35)

δv0 :
3

∑
k=1

∂N(k)
yy

∂y
+

∂N(k)
xy

∂x
+

Q(k)
y

Ry

 = I(1)0

∂2v0

∂t2 − h2

2
∂2θ

(2)
y

dt2 − h1

2
∂2θ

(1)
y

dt2

+ I(2)0
∂2v0

∂t2

+ I(3)0

∂2v0

∂t2 +
h2

2
∂2θ

(2)
y

dt2 +
h3

2
∂2θ

(3)
y

dt2

 (36)

δw0 :
3

∑
k=1

−N(k)
xx

Rx
−

N(k)
yy

Ry
+

∂Q(k)
x

∂x
+

∂Q(k)
y

∂y

+ q = I(1)0
∂2ω0

∂t2 + I(2)0
∂2ω0

∂t2 + I(3)0
∂2ω0

∂t2 (37)

δθ
(1)
x :

∂M(1)
xx

∂x
− h1

2
∂N(1)

xx
∂x

+
∂M(1)

xy

∂y
− h1

2
∂N(1)

xy

∂y
− Q(1)

x

= I(1)0

(
−h1

2
∂2u0

dt2 +
h1h2

4
∂2θ

(2)
x

dt2 +
h2

1
4

∂2θ
(1)
x

dt2

)
+ I(1)2

∂2θ
(1)
x

∂t2 (38)

δθ
(1)
y :

∂M(1)
yy

∂y
− h1

2
∂N(1)

yy

∂y
+

∂M(1)
xy

∂x
− h1

2
∂N(1)

xy

∂x
− Q(1)

y

= I(1)0

−h1

2
∂2v0

dt2 +
h1h2

4
∂2θ

(2)
y

dt2 +
h2

1
4

∂2θ
(1)
y

dt2

+ I(1)2
∂2θ

(1)
y

∂t2 (39)

δθ
(2)
x :

∂M(2)
xx

∂x
+

h2

2
∂N(3)

xx
∂x

− h2

2
∂N(1)

xx
∂x

+
∂M(2)

xy

∂y
+

h2

2
∂N(3)

xy

∂y
− h2

2
∂N(1)

xy

∂y
− Q(2)

x (40)

= I(1)0

(
−h2

2
∂2u0

dt2 +
h1h2

4
∂2θ

(1)
x

dt2 +
h2

2
4

∂2θ
(2)
x

dt2

)
+ I(2)2

∂2θ
(2)
x

∂t2

+I(3)0

(
h2

2
∂2u0

dt2 +
h2

2
4

∂2θ
(2)
x

dt2 +
h2h3

4
∂2θ

(3)
x

dt2

)
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δθ
(2)
y :

∂M(2)
yy

∂y
+

h2

2
∂N(3)

yy

∂y
− h2

2
∂N(1)

yy

∂y
+

∂M(2)
xy

∂x
+

h2

2
∂N(3)

xy

∂x
− h2

2
∂N(1)

xy

∂x
− Q(2)

y

= I(1)0

−h2

2
∂2v0

dt2 +
h1h2

4
∂2θ

(1)
y

dt2 +
h2

2
4

∂2θ
(2)
y

dt2

+ I(2)2
∂2θ

(2)
y

∂t2

+ I(3)0

h2

2
∂2v0

dt2 +
h2

2
4

∂2θ
(2)
y

dt2 +
h2h3

4
∂2θ

(3)
y

dt2

 (41)

δθ
(3)
x :

∂M(3)
xx

∂x
+

h3

2
∂N(3)

xx
∂x

+
∂M(3)

xy

∂y
+

h3

2
∂N(3)

xy

∂y
− Q(3)

x

= I(3)0

(
h3

2
∂2u0

dt2 +
h2h3

4
∂2θ

(2)
x

dt2 +
h2

3
4

∂2θ
(3)
x

dt2

)
+ I(3)2

∂2θ
(3)
x

∂t2 (42)

δθ
(3)
y :

∂M(3)
yy

∂y
+

h3

2
∂N(3)

yy

∂y
+

∂M(3)
xy

∂x
+

h3

2
∂N(3)

xy

∂x
− Q(3)

y

= I(3)0

 h3

2
∂2v0

dt2 +
h2h3

4
∂2θ

(2)
y

dt2 +
h2

3
4

∂2θ
(3)
y

dt2

+ I(3)2
∂2θ

(3)
y

∂t2 (43)

where the inertia moments are defined as

(I0, I2)
(k) =

3

∑
k=1

∫ hk
2

− hk
2

ρk
(

1, z2
)

dz (44)

The equations of motion and boundary conditions will thereafter be interpolated and
resolved as a system of linear equations for the static scenario, or as a generalized eigenvalue
problem for free vibrations, utilizing the differentiation matrices delineated before

5. Numerical Examples
5.1. Spherical Shell in Bending

A laminated composite square spherical shell is examined, including a side length a
and a thickness h, constructed from layers of uniform thickness with stacking sequences
[0◦/90◦/90◦/0◦] and [0◦/90◦/0◦]. The shell experiences a bisinusoidal vertical pressure
represented by the equation

pz = P sin
(πx

a

)
sin
(πy

a

)
where the coordinate system’s origin is positioned at the lower left corner of the midplane,
and P denotes the maximum load at the shell’s center. The orthotropic material properties
for each layer are specified as follows:

E1 = 25.0E2 G12 = G13 = 0.5E2 G23 = 0.2E2 v12 = 0.25

The transverse displacements are presented in normalized form as:

w̄ =
103w(a/2,a/2,0)h3E2

Pa4

The shell is supported at all edges. Table 1 evaluates the accuracy of the current model
for the scenario of a flat plate (R → ∞). We juxtapose the deflections derived from the three
pseudospectral approaches (PS, as delineated in Section 2) with the LW analytical solution
presented in [24] and the outcomes acquired utilizing two distinct shell finite elements:
MITC4 and MITC9. The elements are derived from the Carrera Unified Formulation (CUF)
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and are elaborated upon in [25]. Different thickness ratios and laminations are evaluated.
The findings in Table 1 indicate that the current approaches align well with the FEM
solution in all instances.

Table 1. Non-dimensional central deflection, w = w 103E2h3

P0a4 for [0◦/90◦/0◦] and [0◦/90◦/90◦/0◦]
cross-ply laminated plate under sinusoidal load.

Method Grid a/h = 10 a/h = 100

[0◦/90◦/0◦] LW [24] 7.4095 4.3400
MITC4 (21 × 21) 7.3657 4.3082
MITC9 (13 × 13) 7.4095 4.3399
Trefethen’s cheb.m (13 × 13) 7.3273 4.2947

(17 × 17) 7.3273 4.2947
(21 × 21) 7.3273 4.2947

RBF-tensor-product grids (13 × 13) 7.3275 4.2953
(17 × 17) 7.3281 4.2942
(21 × 21) 7.3275 4.2946

RBF-PS general grids (13 × 13) 7.3269 4.2928
(17 × 17) 7.3272 4.2944
(21 × 21) 7.3273 4.2946

[0◦/90◦/90◦/0◦] LW [24] 7.3148 4.3420
MITC4 (21 × 21) 7.2711 4.3102
MITC9 (13 × 13) 7.3147 4.3420
Trefethen’s cheb.m (13 × 13) 7.2189 4.2893

(17 × 17) 7.2189 4.2893
(21 × 21) 7.2189 4.2893

RBF-tensor-product grids (13 × 13) 7.2189 4.2898
(17 × 17) 7.2192 4.2890
(21 × 21) 7.2190 4.2892

RBF-PS general grids (13 × 13) 7.2189 4.2874
(17 × 17) 7.2188 4.2890
(21 × 21) 7.2188 4.2892

Figure 1 illustrates the deformed shape of the plate, discretised with a 31 × 31 grid,
revealing a smooth deformation profile.

Tables 2 and 3 present a comparison of the static deflections derived from the current
shell model with the outcomes of Reddy’s shell formulation, utilizing both first-order
and third-order shear-deformation theories [2], in addition to the LW analytical solution
from [24]. We examine nodal grids comprising 11 × 11, 13 × 13, 17 × 17, and 21 × 21 points,
alongside different values of R/a and two values of a/h (10 and 100), in addition to
stacking sequences of the form [0◦/90◦/0◦] for Table 2 and [0◦/90◦/90◦/0◦] for Table 3.
The findings from our three PS methods show strong concordance across different a/h
ratios when compared to Reddy’s higher-order results and the LW analytical solution.

Table 2. Non-dimensional central deflection for a spherical shell (R1 = R2), w = w 103E2h3

P0a4 variation
with various number of grid points N × N, for different R/a ratios, and for a [0◦/90◦/0◦] laminate.

Method Grid R/a

a/h 5 10 100 109

10 Trefethen’s cheb.m (13 × 13) 7.0097 7.2452 7.3265 7.3273
(17 × 17) 7.0097 7.2452 7.3265 7.3273
(21 × 21) 7.0097 7.2452 7.3265 7.3273

RBF-tensor-product grids (13 × 13) 7.0059 7.2444 7.3266 7.3275
(17 × 17) 7.0083 7.2454 7.3272 7.3281
(21 × 21) 7.0096 7.2453 7.3266 7.3275

RBF-PS general grids (13 × 13) 7.0088 7.2447 7.3261 7.3268
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Table 2. Cont.

Method Grid R/a

a/h 5 10 100 109

(17 × 17) 7.0094 7.2451 7.3264 7.3272
(21 × 21) 7.0095 7.2452 7.3264 7.3273

HSDT [2] 6.7688 7.0325 7.1240 7.125
FSDT [2] 6.4253 6.6247 6.6923 6.6939
LW [24] 7.0834 7.3252 7.4087 7.4095

100 Trefethen’s cheb.m (13 × 13) 1.0308 2.3971 4.2610 4.2947
(17 × 17) 1.0308 2.3971 4.2610 4.2947
(21 × 21) 1.0308 2.3971 4.2610 4.2947

RBF-tensor-product grids (13 × 13) 1.0302 2.3965 4.2616 4.2953
(17 × 17) 1.0302 2.3963 4.2605 4.2942
(21 × 21) 1.0307 2.3970 4.2609 4.2946

RBF-PS general grids (13 × 13) 1.0298 2.3953 4.2590 4.2928
(17 × 17) 1.0304 2.3964 4.2607 4.2944
(21 × 21) 1.0305 2.3967 4.2609 4.2946

HSDT [2] 1.0321 2.4099 4.3074 4.3420
FSDT [2] 1.0337 2.4109 4.3026 4.3370
LW [24] 1.0340 2.4120 4.3055 4.3400

Table 3. Non-dimensional central deflection for a spherical shell (R1 = R2), w = w 103E2h3

P0a4 variation with
various number of grid points N × N, for different R/a ratios, and for a [0◦/90◦/90◦/0◦] laminate.

Method Grid R/a

a/h 5 10 100 109

10 Trefethen’s cheb.m (13 × 13) 6.9071 7.1383 7.2181 7.2189
(17 × 17) 6.9071 7.1383 7.2181 7.2189
(21 × 21) 6.9071 7.1383 7.2181 7.2189

RBF-tensor-product grids (13 × 13) 6.9157 7.1404 7.2181 7.2189
(17 × 17) 6.9056 7.1382 7.2184 7.2192
(21 × 21) 6.9070 7.1384 7.2182 7.2190

RBF-PS general grids (13 × 13) 6.9062 7.1378 7.2177 7.2185
(17 × 17) 6.9068 7.1382 7.2180 7.2188
(21 × 21) 6.9069 7.1383 7.2180 7.2188

HSDT [2] 6.7865 7.0536 7.1464 7.1474
FSDT [2] 6.3623 6.5595 6.6264 6.6280
LW [24] 6.9953 7.2322 7.3139 7.3148

100 Trefethen’s cheb.m (13 × 13) 1.0249 2.3878 4.2554 4.2893
(17 × 17) 1.0249 2.3878 4.2554 4.2893
(21 × 21) 1.0249 2.3878 4.2554 4.2893

RBF-tensor-product grids (13 × 13) 1.0244 2.3873 4.2559 4.2898
(17 × 17) 1.0244 2.3872 4.2551 4.2890
(21 × 21) 1.0248 2.3878 4.2553 4.2892

RBF-PS general grids (13 × 13) 1.0240 2.3862 4.2536 4.2874
(17 × 17) 1.0245 2.3872 4.2551 4.2890
(21 × 21) 1.0246 2.3875 4.2553 4.2892

HSDT [2] 1.0264 2.4024 4.3082 4.3430
FSDT [2] 1.0279 2.4030 4.3021 4.3368
LW [24] 1.0284 2.4048 4.3073 4.3420



J. Compos. Sci. 2024, 8, 448 13 of 17

Figure 1. Deformed shape of the [0◦/90◦/90◦/0◦] cross−ply laminated plate discretised with
21 × 21 points, before adimensionalisation, using the RBF-PS method in general grids.

5.2. Free Vibration of Spherical and Cylindrical Laminated Shells

This study examines nodal grids consisting of 13 × 13, 17 × 17, and 21 × 21 points.
Table 4 (stacking sequence [0◦/90◦/90◦/0◦]) and Table 5 (stacking sequence [0◦/90◦/0◦])
present a comparison of the nondimensionalized natural frequencies derived from the
current layerwise theory for various cross-ply spherical shells with the analytical solutions
reported by Reddy and Liu [2], who investigated both first-order (FSDT) and third-order
(HSDT) theories. The first-order theory often overestimates the fundamental natural
frequencies of symmetric thick shells and symmetric shallow thin shells. The current
method demonstrates strong concordance with the reference solutions, utilizing our three
PS methods.

Table 6 displays the nondimensionalized natural frequencies derived from the current
layerwise theory for cross-ply cylindrical shells featuring lamination schemes [0/90/0] and
[0/90/90/0]. Our results were compared with the analytical solutions provided by Reddy
and Liu Reddy and Liu [2], who employed both FSDT and HSDT theories. The comparison
shows strong agreement across all PS methods, even with a limited number of grid points.

Figure 2 presents the eigenvalues (“eig”) for the initial four vibrational modes of a
cross-ply laminated plate, represented by ω̄ = ω a2

h

√
ρ/E2, with a laminate configuration

of [0◦/90◦/90◦/0◦], utilizing a grid of 21 × 21 points and a ratio of a/h = 100.

Table 4. Nondimensionalized fundamental frequencies of cross−ply laminated spherical shells,
ω = ω a2

h
√

ρ/E2, laminate ([0◦/90◦/90◦/0◦]).

Method Grid R/a

a/h 5 10 100 109

10 Trefethen’s cheb.m (13 × 13) 11.9532 11.7886 11.7334 11.7328
(17 × 17) 11.9532 11.7886 11.7334 11.7328
(21 × 21) 11.9532 11.7886 11.7334 11.7328

RBF-tensor-product grids (13 × 13) 11.9453 11.7868 11.7334 11.7328
(17 × 17) 11.9545 11.7887 11.7331 11.7325
(21 × 21) 11.9533 11.7885 11.7333 11.7328

RBF-PS general grids (13 × 13) 11.9537 11.7889 11.7336 11.7331
(17 × 17) 11.9533 11.7886 11.7334 11.7329
(21 × 21) 11.9532 11.7886 11.7334 11.7328

HSDT [2] 12.040 11.840 11.780 11.780

100 Trefethen’s cheb.m (13 × 13) 31.1257 20.4451 15.3284 15.2679
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Table 4. Cont.

Method Grid R/a

a/h 5 10 100 109

(17 × 17) 31.1258 20.4451 15.3284 15.2679
(21 × 21) 31.1258 20.4451 15.3284 15.2679

RBF-tensor-product grids (13 × 13) 31.1334 20.4474 15.3275 15.2670
(17 × 17) 31.1326 20.4480 15.3290 15.2685
(21 × 21) 31.1261 20.4453 15.3286 15.2690

RBF-PS general grids (13 × 13) 31.1428 20.4545 15.3326 15.2730
(17 × 17) 31.1325 20.4480 15.3290 15.2684
(21 × 21) 31.1300 20.4468 15.3286 15.2680

HSDT [2] 31.100 20.380 15.230 15.170

Table 5. Nondimensionalized fundamental frequencies of cross−ply laminated spherical shells,
ω = ω a2

h
√

ρ/E2, laminate ([0◦/90◦/0◦]).

Method Grid R/a

a/h 5 10 100 109

10 Trefethen’s cheb.m (13 × 13) 11.8715 11.7068 11.6516 11.6510
(17 × 17) 11.8715 11.7068 11.6516 11.6510
(21 × 21) 11.8715 11.7068 11.6516 11.6510

RBF-tensor-product grids (13 × 13) 11.8748 11.7075 11.6514 11.6509
(17 × 17) 11.8727 11.7066 11.6509 11.6504
(21 × 21) 11.8716 11.7067 11.6515 11.6509

RBF-PS general grids (13 × 13) 11.8720 11.7071 11.6518 11.6513
(17 × 17) 11.8716 11.7069 11.6516 11.6511
(21 × 21) 11.8715 11.7068 11.6516 11.6510

HSDT [2] 12.060 11.860 11.790 11.790
100 Trefethen’s cheb.m (13 × 13) 31.0383 20.4060 15.3186 15.2584

(17 × 17) 31.0383 20.4060 15.3186 15.2584
(21 × 21) 31.0383 20.4060 15.3186 15.2584

RBF-tensor-product grids (13 × 13) 31.0469 20.4086 15.3175 15.2573
(17 × 17) 31.0463 20.4096 15.3195 15.2593
(21 × 21) 31.0386 20.4063 15.3188 15.2690

RBF-PS general grids (13 × 13) 31.0499 20.4133 15.3237 15.2635
(17 × 17) 31.0400 20.4070 15.3191 15.2590
(21 × 21) 31.0387 20.4062 15.3187 15.2586

HSDT [2] 31.0398 20.350 15.240 15.170

Table 6. Nondimensionalized fundamental frequencies of cross−ply cylindrical shells, ω = ω a2

h
√

ρ/E2.

[0/90/0] [0/90/90/0]

R/a Method a/h = 100 a/h = 10 a/h = 100 a/h = 10

5 Trefethen’s cheb.m (13 × 13) 20.3552 11.6657 20.3988 11.7530
(17 × 17) 20.3553 11.6657 20.3989 11.7530
(21 × 21) 20.3553 11.6657 20.3989 11.7530

RBF-tensor-product grids (13 × 13) 20.3662 11.6692 20.4046 11.7452
(17 × 17) 20.3661 11.6668 20.4050 11.7540
(21 × 21) 20.3557 11.6657 20.3992 11.7530

RBF-PS general grids (13 × 13) 20.3689 11.6661 20.4102 11.7534
(17 × 17) 20.3572 11.6658 20.4005 11.7530
(21 × 21) 20.3557 11.6657 20.3992 11.7530

FSDT [2] 20.332 12.207 20.361 12.267
HSDT [2] 20.330 11.850 20.360 11.830
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Table 6. Cont.

[0/90/0] [0/90/90/0]

R/a Method a/h = 100 a/h = 10 a/h = 100 a/h = 10

100 Trefethen’s cheb.m (13 × 13) 15.2734 11.6511 15.2829 11.7329
(17 × 17) 15.2734 11.6511 15.2829 11.7329
(21 × 21) 15.2734 11.6511 15.2829 11.7329

RBF-tensor-product grids (13 × 13) 15.2722 11.6509 15.2820 11.7329
(17 × 17) 15.2742 11.6504 15.2835 11.7326
(21 × 21) 15.2735 11.6509 15.2831 11.7328

RBF-PS general grids (13 × 13) 15.2784 11.6513 15.2881 11.7331
(17 × 17) 15.2739 11.6511 15.2835 11.7329
(21 × 21) 15.2735 11.6511 15.2830 11.7329

FSDT [2] 15.198 12.163 15.199 12.227
HSDT [2] 15.19 11.79 15.19 11.78

Plate Trefethen’s cheb.m (13 × 13) 15.2584 11.6510 15.2674 11.7328
(17 × 17) 15.2584 11.6510 15.2674 11.7328
(21 × 21) 15.2584 11.6510 15.2674 11.7328

RBF-tensor-product grids (13 × 13) 15.2573 11.6509 15.2670 11.7328
(17 × 17) 15.2593 11.6504 15.2685 11.7325
(21 × 21) 15.2586 11.6509 15.2680 11.7328

RBF-PS general grids (13 × 13) 15.2635 11.6513 15.2730 11.7331
(17 × 17) 15.2590 11.6511 15.2684 11.7329
(21 × 21) 15.2586 11.6510 15.2680 11.7328

FSDT [2] 15.183 12.162 15.184 12.226
HSDT [2] 15.170 11.790 15.170 11.780

eig = 15.267996914396
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Figure 2. Illustration of the first 4 vibrational modes of cross−ply laminated plate, ω = ω a2

h
√

ρ/E2,
laminate ([0◦/90◦/90◦/0◦]) grid 21 × 21 points, a/h = 100.

6. Concluding Remarks

This paper presents a novel layerwise shell theory for laminated orthotropic elastic
shells. This theory employs collocation with radial basis functions (RBF) in a pseudospectral
framework, presented in three formulations, to tackle the equations of motion and boundary
conditions. Results for static deformations and natural frequencies are presented and



J. Compos. Sci. 2024, 8, 448 16 of 17

compared with existing sources. Our meshless approaches demonstrate high effectiveness
in analyzing static deformations and free vibrations of laminated composite shells. The
benefits of pseudospectral interpolation schemes encompass the lack of a mesh, ease of
discretizing boundary conditions, and the formulation of equilibrium or motion equations.
The results indicate that the static displacements and natural frequencies derived from the
three pseudospectral methods align closely with analytical and reference solutions.
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