
ll
OPEN ACCESS
Protocol
Protocol for building and using a maximum
power point output tracker for perovskite solar
cells
Arturo Sanz-Marco,

Rodrigo Jeronimo-

Cruz, Marta Haro,

Emilio J. Juarez-

Perez

arturosmarco@unizar.es

(A.S.-M.)

ejjuarezperez@unizar.es

(E.J.J.-P.)

Highlights

Steps to build a

maximum power

point tracker

Guidance on the

calibration process of

the device

Instructions for

setting up the device

in different

operational modes

Plotting data as

produced or stored

for further processing
Sanz-Marco et al., STAR
We recently developed a galvanostatic maximum power point output (MPPT) algorithm for high-

hysteresis perovskite solar cells (PSCs), enabling continuous and precise power tracking. Here,

we present a protocol for assembling the tracker, implementing the algorithm on a

microcontroller, and conducting JV scans and stabilized output power (SOP) or traditional

perturb and observe (P&O) tracking for small-area photovoltaic cells. We also describe steps for

collecting, storing, and plotting data and explain the device’s operational modes and functions.

Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional

guidelines for laboratory safety and ethics.

Protocols 5, 103394

December 20, 2024 ª 2024

The Author(s). Published by

Elsevier Inc.

https://doi.org/10.1016/

j.xpro.2024.103394

mailto:arturosmarco@unizar.es
mailto:ejjuarezperez@unizar.es
https://doi.org/10.1016/j.xpro.2024.103394
https://doi.org/10.1016/j.xpro.2024.103394
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2024.103394&domain=pdf

ll
OPEN ACCESS
Protocol
Protocol for building and using a maximum power point
output tracker for perovskite solar cells

Arturo Sanz-Marco,1,* Rodrigo Jeronimo-Cruz,1 Marta Haro,1 and Emilio J. Juarez-Perez1,2,3,4,*
1Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain

2Aragonese Foundation for Research and Development (ARAID) Government of Aragon, 50018 Zaragoza, Spain

3Technical contact

4Lead contact

*Correspondence: arturosmarco@unizar.es (A.S.-M.), ejjuarezperez@unizar.es (E.J.J.-P.)
https://doi.org/10.1016/j.xpro.2024.103394
SUMMARY

We recently developed a galvanostatic maximum power point output (MPPT) algo-
rithm for high-hysteresis perovskite solar cells (PSCs), enabling continuous and
precise power tracking. Here, we present a protocol for assembling the tracker, im-
plementing the algorithm on a microcontroller, and conducting JV scans and stabi-
lized output power (SOP) or traditional perturb and observe (P&O) tracking for
small-areaphotovoltaic cells.Wealsodescribe steps for collecting, storing, andplot-
ting data and explain the device’s operational modes and functions.
For complete details on the use and execution of this protocol, please refer to
Juarez-Perez et al.1
BEFORE YOU BEGIN

Researchers investigating emerging solar cell technologies, such as perovskite solar cells (PSCs), often

face challenges when conducting extended operational stability assessments due to the limited avail-

ability of cost-effective equipment. While determining solar cell efficiency through acquiring a JV curve

can be swiftly accomplished within seconds or minutes using a basic potentiostat under controlled illu-

mination, evaluating the operational stability of these devices, particularly by tracking themaximumpo-

wer point output (MPPT), requires prolonged time-consuming use of costly potentiostat and solar simu-

lator equipments. These equipments are often in high demand for other researching tasks, making it

difficult to dedicate them solely to stability assessments. To address this challenge, we have developed

a protocol that allows for a preliminary screening of the best performing solar cells without significant

economic and space impact in the laboratory. This protocol involves the use of a simple tracker and their

operational modes that enable the gathering of statistically significant stability data into a computer

(Figure 1A). Our recent work introduced a galvanostatic MPPT algorithm that offers continuous and pre-

cise power tracking, enhancing the performance, particularly of challenging high-hysteresis PSCs, which

is crucial for propelling PSCs closer to commercial feasibility.
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Arduino IDE Arduino IDE 2.3.2
Windows/macOS/Linux

https://www.arduino.cc/en/software

GitHub repository Perovskino: A Maximum Power
Point Tracking (MPPT) algorithm

https://github.com/ej-jp/perovskino/releases/tag/v0.1

(Continued on next page)

STAR Protocols 5, 103394, December 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

mailto:arturosmarco@unizar.es
mailto:ejjuarezperez@unizar.es
https://doi.org/10.1016/j.xpro.2024.103394
https://www.arduino.cc/en/software
https://github.com/ej-jp/perovskino/releases/tag/v0.1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2024.103394&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Miniconda Miniconda
Windows/macOS/Linux

https://docs.anaconda.com/free/miniconda/index.html

Other

8-bit MC (ATmega328) as found in Arduino
UNO (Rev3) or equivalent

Arduino https://www.arduino.cc/en/hardware

12-bit digital-to-analog converter
breakout (MCP4725)

Digikey https://www.digikey.es/es

N-channel MOSFET (IRLZ34N) Infineon Technologies https://www.mouser.es/manufacturer/infineon/

12-bit digital power monitor
breakout (INA219)

DigiKey https://www.digikey.es/es

NTC 10 kOhm thermistor (MF52) DigiKey https://www.digikey.es/es

100 nF ceramic capacitor DigiKey https://www.digikey.es/es

2 3 1 kOhm resistors DigiKey https://www.digikey.es/es

10 kOhm resistor DigiKey https://www.digikey.es/es

Two screw terminal with 2 pins DigiKey https://www.digikey.es/es

ll
OPEN ACCESS Protocol
STEP-BY-STEP METHOD DETAILS

Software installation

Timing: 10 min

Here, we describe the steps for downloading and installing the software and algorithms needed

before assembling the Perovskino.
Figure 1. Solar tracking system components and electrical connections

(A) General overview of the system usage consisting of PC, two trackers and two solar cells.

(B) Arduino UNO and Perovskino shield (the tracker) device connection scheme.

2 STAR Protocols 5, 103394, December 20, 2024

https://docs.anaconda.com/free/miniconda/index.html
https://www.arduino.cc/en/hardware
https://www.digikey.es/es
https://www.mouser.es/manufacturer/infineon/
https://www.digikey.es/es
https://www.digikey.es/es
https://www.digikey.es/es
https://www.digikey.es/es
https://www.digikey.es/es
https://www.digikey.es/es

ll
OPEN ACCESSProtocol
1. Install Arduino IDE software and libraries for the breakouts.

a. Go to https://www.arduino.cc/en/software and download the proper version according to the

operating system of the computer (Windows/macOS/Linux).

b. Once the Arduino IDE is installed, open the Library Manager tab and install the software li-

braries listed below:
> git

> con
i. Install library ‘‘Adafruit MCP4725’’.

ii. Install library ‘‘Adafruit INA219’’.
2. Download the algorithm code of the Perovskino.

Note: The Perovskino firmware version used in this protocol and the previous publication was

frozen as a first-release version and deposited in the Zenodo repository.

a. Download and unzip the file in https://doi.org/10.5281/zenodo.10647187 where you

can find all the scripts and files mentioned in this protocol. This release also can be

reached in the GitHub repository under this link https://github.com/ej-jp/perovskino/

releases/tag/v0.1.

Note: This firmware is a work in progress. Well tested improvements will be released as new

versions or releases in the GitHub perovskino web page. The user also can test and/or

contribute in this main repository but this is not recommended for deployment. If you still pre-

fer to use this more updated repository, please follow the step 2.b below.

b. Go to https://github.com/ej-jp/perovskino and download all the fold by ZIP. Or cloning the

GitHub repository, by executing the following command in your terminal (if you have installed

Git in your computer).
clone https://github.com/ej-jp/perovskino.
3. Install Miniconda and libraries.

Note: For data acquisition and recording of serial data for further processing, an environment

with a modern Python 3 is necessary. We use a minimal subset of Conda called Miniconda to

manage this Python environment in the computer.

a. Go to https://docs.anaconda.com/free/miniconda/index.html and download the proper

version for your computer system (Windows/macOS/Linux).

b. Install Miniconda on your computer following the steps recommended in the web page.

c. Open the terminal and execute the next command to know if the installation was correct.
da info
Note: For Microsoft system, open the Anaconda Powershell system (miniconda3) as a

Terminal.

Note: For MacOS/Linux, open the default terminal system.

Note: If the installation was correct, you will get all the information about your Miniconda

version.
STAR Protocols 5, 103394, December 20, 2024 3

https://www.arduino.cc/en/software
https://doi.org/10.5281/zenodo.10647187
https://github.com/ej-jp/perovskino/releases/tag/v0.1
https://github.com/ej-jp/perovskino/releases/tag/v0.1
https://github.com/ej-jp/perovskino
https://docs.anaconda.com/free/miniconda/index.html
https://github.com/ej-jp/perovskino

>

s

>

ll
OPEN ACCESS

4

Protocol
d. Create a specific environment for the dependencies instead of the base environment called

perovskino-env.
conda create -n perovskino-env python=3.12.2 pyserial=3.5 pandas=2.2 matplotlib=3.8.4

cipy=1.12.0
e. Check that the new environment was created with the next command.

Note: If the new environment was correctly created, this command shows ‘‘perovskino-env’’

and its binaries route.
conda env list
f. Active the new environment with the next command.

Note: The new environment is activated if the line command of the terminal starts with the

string (perovskino-env) user@computer:�$
> conda activate perovskino-env
Assembling the perovskino shield for the arduino UNO device

Timing: 2 h

This section provides a guide for assembling the Perovskino shield. An Arduino UNO device and this

shield coupled on top constitute the MPP tracker.

4. Assemble the tracker device connections as shown in schematic of Figure 1B.

Note: An example of Perovskino shield assembled in perfboard is shown in Figure 2.

Note: The perfboard version of the Perovskino used digital and analog outputs to power

the INA219 and MCP4725 breakouts. A newer and more convenient version of the Perov-

skino shield was specifically designed in PCB board and it is available at Aisler https://aisler.

net/p/SDRQAOGS under demand. Also, the Gerber files can be found in the Zenodo or

GitHub 0.1 Perovskino firmware release. Finally, a full assembled tracker (Perovskino

shield + Arduino UNO) or only the PCB edition of the Perovskino shield with breakouts

and components as employed in this study is available on request, but we may require a

payment and/or a completed materials transfer agreement if there is potential for commer-

cial application.

Note: The PCB version board is dimensioned so it can be connected directly on the top of

the Arduino device. The location of each component is clearly specified in the PCB board.

The PCB board scheme and a picture of the components assembled in it are shown in

Figure 3.

Note: This PCB board can accommodate various commercially available versions of the

MCP4725 breakout. If employing the 5-pin Adafruit pin configuration, solder the pad connect-

ing VGATE and pin 5.
STAR Protocols 5, 103394, December 20, 2024

https://aisler.net/p/SDRQAOGS
https://aisler.net/p/SDRQAOGS

Figure 2. Perfboard version assembling scheme of the Perovskino shield

ll
OPEN ACCESSProtocol
Upload the firmware to the arduino microcontroller

Timing: 10 min

Here, we describe the steps needed to upload firmware to the microcontroller.

Note: After assembling the Perovskite shield and connecting it to the Arduino board, the

initial recommended step would involve uploading an I2C address checker using the Arduino

IDE to scan the I2C bus. This scan aims to identify the addresses assigned to the INA219 and

MCP4725 breakouts on the Perovskino shield. It is essential to modify if necessary these

addresses in the .ino files. For instance, the addresses for our breakouts were 0 3 40 and

0 3 60 for the INA219 and MCP4725, respectively. A useful tool for finding I2C device ad-

dresses can be found here https://playground.arduino.cc/Main/I2cScanner/.

5. Download the i2c_scanner.ino file from this URL (https://playground.arduino.cc/Main/

sourceblock_1/index.txt?action=sourceblock&num=1).

6. Open the i2c_scanner.ino file using the Arduino IDE software.

7. Connect the power tracker (Perovskino shield + Arduino UNO) to the computer with a USB

cable.

8. Select the Arduino UNO board and the appropriate COM/Serial Port from the top menu of the

Arduino IDE.
Figure 3. The PCB version of the Perovskino shield

(A) Perovskino shield PCB board scheme and (B) picture of the shield with assembled components.

STAR Protocols 5, 103394, December 20, 2024 5

https://playground.arduino.cc/Main/I2cScanner/
https://playground.arduino.cc/Main/sourceblock_1/index.txt?action=sourceblock&num=1
https://playground.arduino.cc/Main/sourceblock_1/index.txt?action=sourceblock&num=1

Figure 4. Screenshot of the Arduino IDE window

After compiling and loading the algorithm to the Arduino, a notification will pop-up (zoomed in the inset for an easier reading).

ll
OPEN ACCESS Protocol
9. Validate the code for any errors (e.g., absence of libraries) by compiling it using the

button located in the top-left corner. Upload the code with the upload button in the top-left

corner (Figure 4).

10. Open serial monitor to check that the power tracker release data to the serial data port.

11. Record the I2C addresses assigned to the INA219 and MCP4725 breakouts.

Note: To identify the COM/Serial port without doubts, disconnect the Arduino and then re-

connect it to observe the appearance of the new COM/Serial port.
Figure 5. Screenshot of the Terminal window showing the data collection while running the ‘‘capture-datos-mpp-

temperature.py’’ script

6 STAR Protocols 5, 103394, December 20, 2024

>

>

ll
OPEN ACCESSProtocol
Note:Once the breakout I2C addresses have been identified and the .ino files variables stor-

ing these values were modified if their I2C addresses were different, any of the five operational

modes firmware offered in the initial release of Perovskite v0.1 can be employed. However, it

is recommended to upload the INA219 voltage and current calibration procedure to the mi-

crocontroller when using the tracker for the first time.
General overview of the python scripts in the PC side collecting, storing and plotting data

from the tracker

Timing: 1–3 h

In this section, we describe the steps for the general process for obtaining, storing and plotting the

data obtained by the Perovskino.

Note: The Serial Monitor window in the Arduino IDE is the first step to check that the firmware

was correctly uploaded in the MC. Data displayed in this window could already be used with

simple copy and paste operations into our preferred program for plotting. However, we

wanted to accompany the tracker with a series of Python scripts that automate all these tasks.

Note: As a general rule, all scripts starting with the suffix ‘‘capture-...’’ are scripts that collect

data lines from the serial port and save them in CSV files in the dataraw folder by default.

Scripts of this type run in parallel while the tracker is collecting data.

Note: A common step before running these Python scripts is the activation of the proper envi-

ronment. Open the terminal and activate the new environment previously created with the

next command.
Note: For Microsoft system, open the Anaconda Powershel system (miniconda3) as a

Terminal.

Note: For MacOS/Linux, open the default terminal system.

12. Collecting and storing data.

> conda active perovskino-env
l

c

a. Identify the COM/Serial port using the tracker device plugged into the computer. It will

depend on which operating system you use.

i. ForWindows/macOS/Linux, identify the COM/Serial port that appeared previously on the

Arduino IDE software. In case of macOS/Linux system changing the prefix ‘‘cu.*’’ instead

‘‘tty.*’’. In case of windows will appear as a ‘‘COM#’’.

ii. For macOS/Linux in the terminal, execute the next command.
s /dev/tty.*
b. For Windows in the terminal, execute the next command.
hgport
c. Edit the python script ‘‘capture-datos-mpp-temperature.py’’ in the directory perovskino-0.1/

codes/02_MPP-algorithms/capture_and_grapher with the correct ‘‘portpc’’ (line 7–9).
STAR Protocols 5, 103394, December 20, 2024 7

>

>

>

>

>

ll
OPEN ACCESS

8

Protocol
Note: For Windows system the name of the portpc is as a ‘‘COM#’’. For macOS/Linux system

the name of the portpc is as a ‘‘/dev/tty.*’’.

Note: In the script code ‘‘capture.’’ other portpc appear by default, for disability these lines

code you can comment starting the line with ‘‘#’’ symbol.

Note: To edit the python script, you can do it directly in the terminal using text editor as ‘‘vim’’

for macOS/Linux system or ‘‘notepad’’ editor for Windows or opening directly the file into the

directory.

d. Execute the python script ‘‘capture-datos-mpp-temperature.py’’ in the directory with the

next command on the terminal.
python capture-datos-mpp-temperature.py
Note: All captured data is saved in a file .csv in the directory ‘‘perovskino-0.1/codes/02_MPP-

algorithms/capture_and_grapher/dataraw’’

Note: The starting of the data collection will be observed with the constant refresh of the

screen with data in 9 columns, as shown in Figure 5.

e. To stop the script use de command ctrl/control + C.

13. Plotting data.

Note: In addition to the "capture" type scripts, we developed the "grapher-" type scripts to

plot the data collected in these CSV files. These scripts are run once the serial port data collec-

tion is finished, with the exception of the ‘‘Alive’’ ‘‘grapher-‘‘ type scripts which are able to

plot data as it is collected and thus have a closer look at the performance of the solar

tracker-cell pair.
c

p

c

p

a. Plotting data during data collection using a python script.

i. In another terminal window, active the new environment previously created with the next

command.
onda active perovskino-env

yth

ond

yth

ST
ii. Execute the python script perovskino-0.1/codes/02_MPP-algorithms/capture_and_

grapher/grapher4_alive.py.
on grapher4_alive.py
iii. To stop the script use de command ctrl/control + C.

b. Plotting data after finishing the data collection using a python script.

i. In another terminal window, activate the new environment previously created with the

next command.
a active perovskino
ii. execute the python script perovskino-0.1/codes/02_MPP-algorithms/capture_and_

grapher/grapher2.py.
on grapher2.py

AR Protocols 5, 103394, December 20, 2024

Figure 6. Connection wiring scheme for the INA219 calibration procedure

Connection wiring for (A) voltage and (B) current calibration using a solar cell and the multimeter.

ll
OPEN ACCESSProtocol
iii. To stop the script use de command ctrl/control + C.

c. Use your preferred program to plot and process the collected data saved in a file .csv in the

directory ‘‘perovskino-0.1/codes/02_MPP-algorithms/capture_and_grapher/dataraw’’
Perovskino checks prior to use

Timing: 1–3 h

In this section, we describe the steps to follow to assure your Perovskino is working properly.

14. INA219 voltage and current calibration.

Note: The calibration procedure needs a reliable multimeter between the solar cell and

INA219 in the shield.
a. Assemble the complete tracker (Perovskino shield + Arduino UNO) and connect a silicon so-

lar cell or other stable solar cell.

b. Place themultimeter correctly in relation to the solar cell for calibrationmeasurements, either

in parallel for voltage or in series for current calibration, as shown in Figure 6.

c. Upload the file "INA219-calibration-ino.ino" in the Perovskino editing this file depending on

the type of calibration (voltage or current calibration). In any case, confirms that calibration

parameters correcV and correcI parameters are 0 and 1, respectively.

d. For voltage calibration, configure the MCP4725 to a voltage below the threshold voltage of

the MOSFET to achieve an open circuit condition (i.e., countermpp = 1) in the solar cell and

place the multimeter as indicated in Figure 6A.

e. Open the Serial Monitor in the Arduino IDE and vary light irradiation (5–6 different irradiation

powers to obtain 5–6 different points for the calibration) while noting the voltage values from

both the multimeter screen and serial monitor window.

f. Determine the correct voltage parameter (correcV) as the ordinate at the origin from linearly

fitting the multimeter and INA219 data, using a line equation with a slope of 1.

g. For current calibration, set theMCP4725 to a voltage higher than the threshold voltage of the

MOSFET (i.e., countermpp = 4095) to induce a short circuit condition in the solar cell and

place the multimeter as indicated in Figure 6B.

h. Open the Serial Monitor in the Arduino IDE and vary light irradiation (5–6 different irradiation

powers to obtain 5–6 different points for the calibration) while noting the current values from

both the multimeter screen and Serial monitor window.

i. Calculate the correcI as the slope derived from linearly fitting the multimeter and

INA219 data.
15. MOSFET Checker.
a. Assemble the complete tracker (Perovskino shield + Arduino UNO) and connect a silicon

solar cell or other stable solar cell under light irradiation close to 1 SUN or 100 mW/cm2.

b. Utilize the Arduino IDE to upload the file mosfet-checker-ino/mosfet-checker-ino.ino.

c. Connect the MOSFET for evaluation.
STAR Protocols 5, 103394, December 20, 2024 9

Figure 7. Current correction and Voltage correction fitting process example and correcI and correcV factors values obtained using the

‘‘INA219_calibration.odes’’ template file included in the downloaded folder in Step 3

ll
OPEN ACCESS

10

Protocol
d. Start data acquisition by running ‘‘capture_and_grapher/capture-datos.py’’. Edit the script

to reflect the correct serial USB port on the computer assigned to the tracker device, if

needed.

e. Generate the graphs based on the collected data running ‘‘capture_and_grapher/

grapher2.py’’.
EXPECTED OUTCOMES

Perovskino operational modes

This section outlines the main operational modes of the Perovskino shield and the expected ob-

tained results for each operational mode. After installing the necessary software in the computer

and assembling the power tracker (Perovskino shield + Arduino UNO), the next tasks include testing

its basic functionality, and confirming the correct operation of all components. This procedure may

involve connecting a single solar cell to the tracker under a light source for testing purposes. The first

step, common to all five operational modes of the shield, involves uploading the firmware associ-

ated with the intended operational mode to the Arduino microcontroller.
INA219 voltage and current calibration

As described in step 13 in step-by-step section, you will obtain a voltage correction factor (correcV)

as the ordinate at the origin from linearly fitting the multimeter and INA219 data, using a line equa-

tion with a slope of 1; and a current correction factor (currentI) as the slope derived from linearly

fitting the multimeter and INA219 data. Refer to the "INA219_calibration.ods" file for an example,

as shown in Figure 7.
STAR Protocols 5, 103394, December 20, 2024

Figure 8. Example of bad (red) and good (green) condition MOSFET for the Perovskino Shield

ll
OPEN ACCESSProtocol
Note: Instead of capturing data directly from the Serial Monitor window in the Arduino IDE, a

data acquisition by executing the "capture-datos-INA219_calibration.py" script recording

the data in csv files can be carried out. Data visualization can be performed using a "grapher"

python script in the calibration folder.

MOSFET checker

To illustrate an example of a broken or not OK MOSFET and a good one, please check Figure 8 the

transfer curve and JV curve traced using an example of both.

Note: For the INA219 calibration of the Perovskino shield, the N-MOSFET was set to induce

open or short circuit conditions in the solar cell by adjusting the integer countermpp variable

to 1 or 4095 in the MCP4725 DAC, which controls the gate voltage of the MOSFET. However,

verifying the proper function of the MOSFET in the range of interest between these two extreme

values is necessary for generating smooth JV curves and efficiently driving the MPPT routines.

The MOSFET-Checker operational mode ensures that the selected N-Channel MOSFET does

not exhibit glitches or noise when the gate voltage is controlled by the MCP4725 DAC. This

check should be performed before running the tracker device and for periodic maintenance.

JV-SOP operational mode

Upon the calibration andMOSFET checker routines validates the correct functioning of the tracker, it

is time to run a basic experiment tracking the maximum power output of well-behave (no JV hyster-

esis) solar cell like a silicon solar cell. This basic MPPT algorithm alternates a JV measurement stage

to determine the voltage of the cell delivering the maximum power (VMPP) and then sets the solar cell

voltage at this VMPP value during a determined time interval (SOP: Stabilized Output Power) stage.

This basic MPPT routine repeats the JV and SOP steps cyclically and infinitely.

As before during calibration or MOSFET checking operational modes, the first step to run this

routine is to upload the firmware in the .ino file in the folder perovskino-0.1/codes/02_MPP-algo-

rithms/SOP to the tracker. Modify the cycling time of each stage as needed in this .ino file.

As an example of this operational mode, refer to Figure 3 in ref.,1 which validates the galvanostatic

approach in a Si-cell. The figure displays the JV, power vs. cell voltage, andMOSFET gate voltage vs.

cell voltage curves obtained with a Si solar cell. The maximum power released by the cell is obtained

in a specific gate voltage in theMOSFET which set indirectly the VMPP for the cell. This gate voltage is

maintained during the subsequent SOP stage.

Note: There is another algorithm in the Perovskino perovskino-0.1 code release called SOP-

Manual where the VGATE can bemodified on-the-fly manually on demand to observe the effect

in the power delivered by the solar cell or try to find the VMPP manually.
STAR Protocols 5, 103394, December 20, 2024 11

ll
OPEN ACCESS Protocol
This naive JV-SOPMPPT routine is limited to research contexts for short-term (minutes or hours) sta-

bility tests using constant irradiation where JV derivable PV parameters such as VOC, JSC, FF, RSERIES

and RSHUNT need of specific monitoring over time. Practical MPPT algorithms in real-world applica-

tions do not require a full JV curve analysis for MPP determination, as this approach is time-

consuming and results in suboptimal power production from the solar cell. Also, the search for

theMPP in a perovskite-based solar cell with high hysteresis needs a forward and a backward voltage

scan JV curve before the SOP stage. In the next section, the P&OMPPT routine and its special appli-

cation for high hysteresis perovskite solar cell will be discussed.
P&O operational mode

In a perovskite solar cell, the hysteresis phenomenon produces a significant difference in the VMPP

determined from JV curves if the voltage sweep has been done forward (FWD, from Jsc to Voc) or

backward (BWD, from Voc to Jsc), refer to Figure 4 in ref. 1 as an example of this behavior. This,

in principle, unpredictable behavior makes it nearly impossible or results in high uncertainty

when setting the solar cell at its maximum power point. However, the galvanostatic approach im-

plemented in the firmware and running in this tracker overcomes this problem with the

strategy explained in our recent article. Briefly, the voltage applied to the cell is controlled by

the N-MOSFET, working as a variable resistor. The optimal VGATE setting VMPP in the solar cells

is the value at which the maximum difference between the BWD and FWD appears, but setting

the value to the average of the VGATE for each FWD and BWD maximum power points leads to

a more robust and fast method for both non-hysteresis and high hysteresis devices.

The MPP determination of the P&O routine consists of two steps: firstly, a BWD and FWD JV scan is

made to determine both VGATE producing the maximum output power for each scan. Then, the cur-

rent established as a setpoint for the galvanostatic control of the MPP tracking will be determined as

the average of these VGATE. After obtaining this value, the P&O operational algorithm starts for 3 h.

The P&O stage modulates the VGATE applied in order to maintain the maximum power output. As an

example of this operational mode refer to Figure 10 in ref. 1 where this algorithm controls exception-

ally well a high hysteresis perovskite solar cell under a EN-50530-type variable illumination

conditions.

The .ino file of this operational mode can be modified to use other cycling stage times and other

parameters setting the P&O algorithm as needed. Finally, other algorithms for the track of the

maximum power delivered by the solar cell can be implemented by the user.
LIMITATIONS

The parameters limiting the operational range of the Perovskino shield are established by the digital

power monitor (INA219) component. This component cans measure up to +26V of solar cell voltage

and up to G3.2A current measurement. The relevant line in the .ino file setting the resolution of this

INA219 is the void setup(){ section. By default, we use ina219.setCalibration_16V_400mA() setting in

small single devices.

For measuring solar cells (modules and panels) that work at higher voltages and/or currents there are

two possibilities:Substitute the INA219 component for another that can measure higher voltages,

like the Adafruit INA228 that can measure voltages up to +85V and currents up to 10Aor connect

the solar cell to the INA219 through a voltage divider.

For the first option, a minimal change in the PCB is required because INA219 and INA228 have a

different order and number of pins in their respective breakouts. For the second option, we have

available a scheme for a breakout to install on the top of the Perovskino shield using the INA219.

We have been able to track PSCmodules releasing 39 V of VOC and Copper IndiumGallium Selenide

(CIGS) module releasing >3.2 A of Isc under full real Sun using this second approach.
12 STAR Protocols 5, 103394, December 20, 2024

ll
OPEN ACCESSProtocol
TROUBLESHOOTING

Problem 1

In Step 7 an Arduino error shows: avrdude: ser_open(): can’t set com-state for "\\.*’’.

Potential solution

Reset the Arduino board holding down the white button for 10 s. Unplug and plug the USB cable.

Problem 2

In Step 7 an Arduino error shows: serial.serialutil.SerialException: Cannot configure port, something

went wrong.

Potential solution

Verify and install an older o newer version of the usb serial driver.

Problem 3

In Step 7 an Arduino error shows: Adafruit XXXXXXXXXX doesn’t found.

Potential solution

Install missed libraries following Step 1.b.

Problem 4

In Step 12.d a terminal error shows after executing ‘‘capture-datos-...py’’ type scripts: UnicodeDe-

codeError: ‘utf-80 codec can’t decode byte .

Potential solution

Clear the terminal with command ‘‘clear’’ and then execute again the capture Python script.

Problem 5

In Step 12.d a Miniconda error shows: "ModuleNotFoundError: No module named ‘serial’" and is

not solved after executing ‘‘pip install serial’’.

Potential solution

execute ‘‘pip install pyserial’’.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Emilio J.
Juarez-Perez (ejjuarezperez@unizar.es).

Technical contact

Technical questions on executing this protocol and general algorithm implementation should be directed to and will be
answered by the technical contact, Emilio J. Juarez-Perez (ejjuarezperez@unizar.es).

Materials availability

A full tracker or only the Perovskino shield used in this study will be made available on request, but we may require a pay-
ment and/or a completed materials transfer agreement if there is potential for commercial application.

Data and code availability

The example data and code generated during this study are available at GitHub: https://github.com/ej-jp/perovskino/
releases/tag/v0.1 The version of record is archived at Zenodo. DOI at Zenodo: https://doi.org/10.5281/zenodo.
10647187.

ACKNOWLEDGMENTS

The authors acknowledge the funding support from MCIN/AEI/10.13039/501100011033 and European Union NextGe-
nerationEU/PRTR for project grants PID2022-140516OB-I00 (E.J.J.-P. and M.H.), PID2019-107893RB-I00 (E.J.J.-P.),
EIN2020-112315 (E.J.J.-P.), and PID2019-108247RA-I00 (M.H.); a Ramón y Cajal fellowship (RYC-2018-025222-I;
STAR Protocols 5, 103394, December 20, 2024 13

mailto:ejjuarezperez@unizar.es
mailto:ejjuarezperez@unizar.es
https://github.com/ej-jp/perovskino/releases/tag/v0.1
https://github.com/ej-jp/perovskino/releases/tag/v0.1
https://doi.org/10.5281/zenodo.10647187
https://doi.org/10.5281/zenodo.10647187

ll
OPEN ACCESS Protocol
M.H.); and CPP2022-009766 (E.J.J.-P., A.S.-M., and R.J.-C.). Also, the authors acknowledge the funding support from the
Aragon Regional Government for the Program for Research Groups under grants T57_23R (E.J.J.-P., A.S.-M., and R.J.-C.)
and E31_20R (M.H.) and CIBER-BBN, ICTS ‘‘NANBIOSIS’’ (E.J.J.-P., A.S.-M., and R.J.-C.).

AUTHOR CONTRIBUTIONS

Conceptualization, E.J.J.-P.; software, E.J.J.-P.; writing – original draft, R.J.-C. and A.S.-M.; writing – review and editing,
E.J.J.-P. and M.H.; supervision, E.J.J.-P.; funding acquisition, M.H. and E.J.J.-P.

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCE
1. Juarez-Perez, E.J., Momblona, C., Casas, R., and
Haro, M. (2024). Enhanced power-point tracking
14 STAR Protocols 5, 103394, December 20, 202
for high-hysteresis perovskite solar cells with a
4

galvanostatic approach. Cell Rep. Phys. Sci. 5,
101885.

http://refhub.elsevier.com/S2666-1667(24)00559-8/sref1
http://refhub.elsevier.com/S2666-1667(24)00559-8/sref1
http://refhub.elsevier.com/S2666-1667(24)00559-8/sref1
http://refhub.elsevier.com/S2666-1667(24)00559-8/sref1
http://refhub.elsevier.com/S2666-1667(24)00559-8/sref1

	XPRO103394_proof_v5i4.pdf
	Protocol for building and using a maximum power point output tracker for perovskite solar cells
	Before you begin
	Key resources table
	Step-by-step method details
	Software installation
	Assembling the perovskino shield for the arduino UNO device
	Upload the firmware to the arduino microcontroller
	General overview of the python scripts in the PC side collecting, storing and plotting data from the tracker
	Perovskino checks prior to use

	Expected outcomes
	Perovskino operational modes
	INA219 voltage and current calibration
	MOSFET checker
	JV-SOP operational mode
	P&O operational mode

	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution

	Resource availability
	Lead contact
	Technical contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Reference

