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1. Introduction

Pancreatic cancer stands as a major global
health issue, characterized by its high
mortality rate and escalating incidence.
The American Cancer Society’s estimates
about 64 050 new cases and 50 550 deaths
in its 2023 report for US, making up ≈3%
of all cancers and 7% of cancer deaths.
This trend reflects the global patterns
reported by the World Health Organization
(WHO) and Global Cancer Observatory
(GLOBOCAN), which indicate a steady rise
in pancreatic cancer incidence, linked to
aging populations, lifestyle changes, and
risk factors such as smoking and
obesity.[1,2]

Notably, regional variations in pancre-
atic cancer incidence and mortality suggest
the influence of genetic, dietary, and envi-
ronmental factors. Developed nations often
report higher cancer rates, potentially due
to greater exposure to risk factors and
more robust cancer registries. In Europe,

Pancreatic ductal adenocarcinoma (PDAC) poses a considerable diagnostic and
therapeutic challenge due to the lack of specific biomarkers and late diagnosis.
Early detection is crucial for improving prognosis, but current techniques are
insufficient. An innovative approach based on differential scanning calorimetry
(DSC) of blood serum samples, thermal liquid biopsy (TLB), combined with
machine-learning (ML) analysis, may offer a more efficient method for diagnosing
PDAC. Serum samples from a cohort of 212 PDAC patients and 184 healthy
controls are studied. DSC thermograms are analyzed using ML models. The
generated models are built applying algorithms based on penalized regression,
resampling, categorization, cross validation, and variable selection. The ML-
based model demonstrates outstanding ability to discriminate between PDAC
patients and control subjects, with a sensitivity of 90% and an area under the
ROC receiver operating characteristic curve of 0.83 in the training and test
groups. Application of the model to an independent validation cohort of 113
PDAC patients confirms its robustness and utility as a diagnosis tool. The
application of ML to serum TLB data emerges as a promising methodology for
early diagnosis, representing a significant advance for detecting and managing
PDAC, envisaging a minimally invasive and more efficient methodology for
identifying biomarkers.
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variations are evident across the continent, with Eastern Europe
showing higher rates, possibly influenced by lifestyle and health-
care disparities.[3]

These patterns underscore the urgency of targeted prevention
strategies and research to better understand the disease’s
pathophysiology. Implementing effective screening programs
for at-risk populations could improve early detection rates
and, consequently, treatment outcomes for pancreatic cancer.[1]

One of the primary challenges in diagnosing pancreatic cancer
is the absence of specific symptoms in its early stages, often ren-
dering it undetectable until it has advanced too far.[1,4] The man-
ifestation of symptoms largely depends on the location, size, and
spread of the tumor. Common areas affected by metastasis
include the liver, peritoneum, lungs, and bones. This late diag-
nosis, due to nonspecific or absent early symptoms, significantly
impacts treatment options and prognosis, highlighting the
urgent need for improved diagnostic methods.[3]

While there are no general pancreatic cancer detection pro-
grams that have proven useful in the general population, imag-
ing tests are mainly applied in high-risk groups, with low-quality
evidence in relation to their efficiency, with current biomarkers
being not useful as early diagnosis. For this reason, research is
increasingly focusing on high-risk groups.[1] These include
individuals with a family history of pancreatic cancer or genetic
syndromes like Peutz–Jeghers syndrome and hereditary pancre-
atitis. For these groups, the use of regular imaging tests, such as
endoscopic ultrasound (EUS) or magnetic resonance imaging
(MRI), combined with biomarkers, is being explored to improve
early detection.[1] Furthermore, advancements in genomic
sequencing are enhancing our ability to identify individuals at
increased risk, allowing for more targeted screening approaches.
This shift toward personalized screening reflects a nuanced
understanding of the disease’s risk factors and
underscores the need for ongoing research in biomarker
development.[5]

In the study of pancreatic ductal adenocarcinoma (PDAC), the
most prevalent type of pancreatic neoplasm, standard blood tests
including biochemistry markers, complete blood count, and
coagulation profile play a crucial role. The principal biomarker
is the carbohydrate antigen 19-9 (CA19.9). This tumor marker
is not exclusive to pancreatic cancer, but it is used for prognostic
and follow-up purposes. Its utility is limited in asymptomatic
individuals due to low negative predictive value. Genetic factors,
such as the Lewis negative genotype, can affect CA19.9 produc-
tion, influencing its effectiveness as a diagnostic tool.[6–8] These
biomarkers, while useful, have limitations, and, therefore, there
is a need for more specific and sensitive markers for PDAC.

Research must continue by exploring novel biomarkers toward
more effective diagnosis and management of pancreatic cancer.

Imaging techniques play a pivotal role in diagnosing PDAC,
enabling assessment of tumor extent and treatment planning.
Commonly used modalities include abdominal ultrasound, com-
puted tomography, MRI, and EUS. These techniques facilitate
PDAC staging using the system developed by the American
Joint Committee on Cancer (AJCC),[9] considering tumor
size (T), nodal involvement (N), and distant metastasis (M).
Imaging reveals tumor size and metastasis, while nodal spread
is typically confirmed surgically by anatomopathological analysis
of the surgical specimen. The eighth edition of AJCC (2017) out-
lines stages IA to IV based on these criteria, aiding in therapeutic
decision-making and prognostication. This imaging-based classi-
fication is crucial for tailoring treatment approaches to each
cancer stage.

Beyond the stage classification, PDAC is also classified from a
surgical perspective into resectable and unresectable categories.
Resectable PDAC is confined to the pancreas or has limited
spread and can be entirely removed. Unresectable PDAC, subdi-
vided into locally advanced and metastatic, cannot be fully
removed by surgery. Locally advanced PDAC has grown around
major blood vessels but has not spread to distant organs.
Metastatic PDAC involves distant organ spread.

However, challenges remain in early detection and precise
monitoring due to the lack of highly sensitive biomarkers,
emphasizing the need for developing noninvasive or minimally
invasive techniques, such as blood sample analysis for improved
diagnosis and patient management.

Peripheral blood samples represent another valuable tool in
clinical evaluation for diagnosing and monitoring diseases,
including PDAC. They influence about 60%–70% of medical
decisions due to their ease of collection and minimal invasive-
ness. Blood reflects nearly everything happening in the body,
containing more than 3000 proteins and peptides. Despite the
dominance of a few proteins in the blood proteome, the remain-
ing 1% includes low-abundance proteins with strong disease cor-
relation. Advances in mass spectrometry and electrophoresis
have highlighted the relevance of minor components, known
as the peptidome. The interactome theory suggests that these
potential biomarkers form complexes with abundant proteins,
complicating their study but highlighting the multi-protein
involvement in disease states. This complexity necessitates inno-
vative biochemical and analytical approaches for successful bio-
marker discovery, as no single method suffices using current
technologies. Differential scanning calorimetry (DSC) offers a
novel analytical biophysical approach to study the proteome
and peptidome based on sample thermal stability.[10]

DSC is a biophysical technique traditionally used to study
protein thermal stability, which has been proven invaluable in
providing information on many diseases. In DSC, protein sam-
ples are heated in a controlled environment, allowing observation
of unfolding processes. The DSC thermogram of a single protein
informs about its structural stability which, for certain proteins,
can be altered by the effect of a disease. This method provides
unique insights into the protein composition of biological sam-
ples, such as blood serum or plasma, revealing potential disease
markers. Changes in the DSC thermogram of blood serum/
plasma may indicate alterations in protein composition and/or
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interactions, which are significant in understanding disease
pathology and progression. While not directly identifying low-
abundance biomarkers, DSC offers relevant information about
the overall state of the proteome, making it a promising tool
for disease diagnosis and monitoring.[11]

Recently, thermogram analysis in DSC has evolved signifi-
cantly, particularly in diagnosing and monitoring of tumoral
diseases.[12–17] This technique, named as thermal liquid biopsy
(TLB), involves comparing thermograms from healthy individu-
als and patients to extract specific, differential thermodynamic
parameters.[10,16,18–32] Notable developments include nonpara-
metric methods for thermogram classification, high-dimensional
data analysis, and algorithms that adjust for variable
penalization.[33–38] These approaches have been applied to a
range of diseases, demonstrating the versatility of TLB in clinical
diagnostics. The ongoing research focuses on refining these
methods, particularly in the context of PDAC, to develop robust
classification models (such as the TLB score) that can distinguish
between healthy individuals and patients with PDAC. The ulti-
mate goal is to improve early diagnosis and assess treatment effi-
cacy using a minimally invasive technique, making TLB a
promising tool in the realm of precision medicine.

In advanced diagnostic research, machine-learning (ML) algo-
rithms are employed to analyze complex biomedical data for dis-
tinguishing between healthy and diseased states.[39,40] These
algorithms can effectively process vast datasets, such as geno-
mics, proteomics, and complex imaging results, enabling the
identification of subtle biomarkers and patterns indicative of spe-
cific diseases. In the context of conditions where early detection
is paramount, ML algorithms can significantly improve diagnos-
tic accuracy, facilitating early intervention and personalized treat-
ment plans. This approach represents a transformative step in
precision medicine, leveraging computational power to interpret
intricate biological data.

Therefore, the objective of this study was to propose a new
methodology for analyzing thermogram curves of biological sam-
ples, in this case peripheral blood serum samples. This method-
ology uses ML tools to get direct information from the DSC
curves and to obtain a robust classification model that differen-
tiates between healthy control patients and patients with PDAC.
We named it the intelligent TLB [iTLB] model.

2. Experimental Section

2.1. Subjects

For developing a new methodology for thermogram analysis and
creating a patient classification model (iTLB model), retrospec-
tive serum samples from a discovery cohort, separated into
two collections at Blood and Tissue Bank of Aragon and provided
by the Biobank of the Aragon Health System, integrated in the
Spanish National Biobanks Network, were used: a group of
healthy control subjects (blood donors from Zaragoza,
n= 184) and a group of patients diagnosed with PDAC in the
University Miguel Servet Hospital of Zaragoza (n= 212). The
PDAC group provided clinical information including AJCC
eighth edition staging classification indexes (stages 0–IV) and

resectability status (resectable, non-resectable, locally advanced,
or metastatic).

Then, the iTLB model was applied to an external and indepen-
dent cohort of 113 PDAC patients from the University Clinical
Hospital of Zaragoza (validation cohort).

To provide a comprehensive comparison of the populations
studied, we present the demographic and clinical characteristics
of both the training and validation cohorts in Table 1.

Serum samples from PDAC group were obtained after the
diagnosis and before starting the treatment.

2.2. Thermograms Acquisition

An amount of 5 mL of peripheral blood were collected from each
patient into separator gel tubes (BD Vacutainer). The samples
were allowed to coagulate before centrifugation at 3000 rpm
for 10min. The serum was aliquoted and stored at �80 °C for
later analysis. To ensure patient anonymity, each sample was
labeled with an internal code, adhering to the protocol approved
by the Ethics Committee.

Thermograms from serum samples were obtained using a
high-sensitivity automated capillary VP-DSC differential scan-
ning calorimeter (MicroCal, Malvern-Panalytical). A thermogram
consisted of the sample excess heat capacity, CP, compared to a
reference solution as a function of temperature, CP(T ), during
thermal denaturation. Serum samples were diluted (1:25) in fil-
tered phosphate-buffered saline and 400 μL was used for testing.
The experiments were conducted at a scan rate of 1 °Cmin�1

from 10 to 95 °C. In case of not being possible to obtain a ther-
mogram from a serum sample, this patient was excluded from
the study. In other words, a complete-case analysis was applied
without imputation values.

Table 1. Demographic and clinical characteristics of the training and
validation cohorts. The table compares key characteristics between the
two cohorts, including age distribution, gender, tumor stage, and
resectability status. This comparison underscores the similarity between
the cohorts, which is crucial for the validation of the iTLB model.

Characteristic Training cohort
(n= 396)

Validation cohort
(n= 113)

Age, years (median,
interquartile range)

58 [48; 68] (n.a.= 4) 68 [60; 73] (n.a.= 29)

Sex, n [%] (n.a.= 1) (n.a.= 29)

Male 257 (65.06%) 45 (53.57%)

Female 138 (34.94%) 39 (46.43%)

Tumor Stage, n [%] (n.a.= 46) (n.a.= 29)

Stage I 0 (0.00%) 15 (17.86%)

Stage II 14 (8.43%) 19 (22.62%)

Stage III 13 (7.83%) 10 (11.90%)

Stage IV 139 (83.74%) 40 (47.62%)

Resectability status, n [%]: (n.a.= 6) (n.a.= 29)

Resectable 21 (10.19%) 21 (25.00%)

Locally advanced 46 (22.33%) 23 (27.38%)

Metastatic 139 (67.48%) 40 (47.62%)
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Thermograms were processed using software developed by
the group and implemented in Origin 7 (OriginLab), which
involved baseline subtraction and correction, interpolation to
get evenly distributed data points in the temperature range
(ΔT= 0.25 °C) and restricting the analysis to the 40–95 °C inter-
val. Each curve was normalized by area before the detailed analy-
sis of changes in the thermograms and their correlation with
clinical data.

2.3. Methodology for Developing a Classification Model
(TLB Model) from Thermograms

To reduce the number of predictors and avoid overfitting, the
information for each degree of temperature was selected for tem-
peratures ranging from 60 to 80 °C. This range was chosen as a
target for the ML algorithm, chosen based on prior studies indi-
cating major thermogram changes within this range. This
resulted in 21 temperature/predictor variables.

The analysis methodology relied on creating a classification
model based on thermogram shapes. The K-Top Scoring
Pair (KTSP) function (from R switchBox library)[41] used temper-
ature pairs as predictors, an ideal tool for high-dimensional
data, reducing overfitting risks and facilitating biological inter-
pretation. The switchBox package was applied to convert CP

values into categorical data. This was possible because the
algorithm selected a pair of temperatures (T2, T1) when there
was a strong correlation between the sign of the CP difference
between that pair of temperatures in a group, CP(T2)>CP(T1)
or CP(T2)< CP(T1), and a correlation of the opposite sign in
the other group. For this reason, every thermogram from each
patient could achieve the condition of the temperature pairs
or not (1/0). Then, a logistic regularized regression applying
ncvreg package in R, employing Lasso or non-convex penalties
and cross validation, was used for model adjustment, trained
on 70% of the data, and tested on the remaining 30%, with
100-fold randomization.

Briefly, the methodological procedure consisted of the follow-
ing steps: 1) creating a resampling matrix to split data 100 times
into 70% training data and 30% test data; because the response
variable is PDAC or non-PDAC (healthy control group), it is
important that the sampling was stratified, that is, maintaining
the percentage observed in the initial cohort; 2) determining the
optimal range for the number of temperature pairs needed to be
compared in the model; 3) selecting the most frequently picked
temperature pairs from the 100 fittings; 4) training the model
using the most frequently selected temperature pairs; and
5) choosing the best-performing model from the 100 trained
models, based on the largest area under the curve (AUC) in
the test group.

The outcome of the classification model was a numerical real
value per patient within (�∞, þ∞), with zero as the standard
cutoff. Values below zero classified a patient as a healthy control,
and values above zero indicated a patient with pathology (PDAC).
The model’s performance was evaluated using common indexes
from a confusion matrix (sensitivity, specificity, positive predic-
tive value, and negative predictive value), receiver operating char-
acteristic (ROC) curve, and ROC AUC with the 95% confidence
interval (CI).

2.4. Statistical Analysis

The study used Kolmogorov–Smirnov–Lilliefors or Shapiro–Wilk
tests (based on sample size) to assess variable normality. When
appropriate, t-tests (unpaired) compared means between two
groups, with Bartlett’s test used to verify homoscedasticity for
normally distributed variables. Wilcoxon’s test was employed
to compare medians for non-normally distributed variables.
A p-value <0.05 was significant. Statistical analyses were per-
formed with R version 4.3.2 (October 31, 2023).

3. Results

3.1. Training and Test of iTLB Classification Model:
Discriminating between Healthy Subjects and PDAC Patients

To develop the iTLB model, serum samples from 396 individuals
were analyzed, comprising two independent groups: a control
group of 184 (46.46%) healthy blood donors and a second group
consisting of 212 (53.54%) patients diagnosed with PDAC.
The majority of the PDAC patients were at stage IV (83.73%,
139/166), while 8.43% (14/166) and 7.83% (13/166) were at
stages= II and III, respectively (n.a.= 46) (Figure 1A).
According to tumor resectability (n.a.= 6), 10.19% (21/206) were
resectable, 22.33% (46/206) were locally advanced, and more
than half, 67.48% (139/206), were metastatic (Figure 1B).

3.2. iTLB Model Step by Step

For the iTLB classification model based on normalized thermo-
grams of serum samples, 396 serum samples were analyzed:
184 from the healthy control group and 212 from PDAC group.
Figure 2A,B shows the mean and standard deviation of the ther-
mogram curves (normalized by area) for each group. Figure 2C
overlays these means, highlighting the differences between
groups. The temperature range 60–80 °C, which contained major
thermogram differences, was used for training the classification
model.

The automated ML methodology proposed for the analysis of
thermograms was applied to obtain a classification model using
the thermograms obtained from the 184 healthy subjects and the
212 PDAC patients. First, a resampling matrix was generated to
randomize the assign of samples to the training and test groups
and repeat this process 100 times. The proportion of patients in
each group can be seen in Figure 3(1). Second, pairs of temper-
atures were selected from the 21 predictor temperatures using
the KTSP algorithm. The optimal number of pairs was deter-
mined by observing the median AUC in the test group
(Figure 3(2)). Third, in each training group, temperature pairs
were picked, and a classification model was fitted. The pairs
selected at least 50 times are shown in Figure 3(3). Fourth,
the classification model was trained using only the three most
frequent temperature pairs from the last step. These three pairs
were picked always (100 times) and are displayed in Figure 3(4).
And fifth, at this point, there were 100 trained models, assigning
each of them a coefficient to each pair of temperatures. The var-
iability of the coefficients can be visualized by representing the
mean plus or minus two times its standard deviation for each of

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400308 2400308 (4 of 10) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400308 by U

niversidad D
e Z

aragoza, W
iley O

nline L
ibrary on [08/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Figure 2. Mean normalized thermogram for each group: A) healthy control subjects in green, and B) PDAC subjects in red, with green/red shading
indicating the standard deviation. C) The 60–80 °C temperature range, used for model training, is highlighted with dashed vertical lines. CP: heat capacity;
a.u.: arbitrary units.

Figure 3. Step-by-step representation of the proposed machine-learning methodology for analyzing thermograms and obtaining a classification model
(iTLB model). 1) Left panel: proportion of patients in each group (control subjects in green and PDAC patients in red); right panel: proportion from
discovery cohort used for model training and test; 2) median AUC of the 100 test replicates in each temperature pair range. The objective is to determine
the optimal number of temperature pairs (elbow method); 3) frequency of each temperature pair’s selection in the 100 training replicates when applying
the ncvreg function. Temperature pairs with a selection frequency higher than 50% over the 100 replicates, which are optimal for the next step; 4) frequency
of the selected temperature pairs that passed the 50% cutoff criterion in the previous step in the 100 training replicates; and 5) mean, plus or minus two
times the standard deviation, of the coefficients for each temperature pair that makes up the iTLB model.

Figure 1. Frequency diagrams of clinical variables in the PDAC patient group. A) Proportion of patients in each stage according to the AJCC eighth edition;
B) proportion of patients according to whether the tumor is resectable or not. Stage of the eighth edition of the AJCC (American Joint Committee on
Cancer).
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the temperature pairs of the iTLB model (Figure 3(5)). Of the 100
trained and validated models, a mean AUC value of 0.83 (�0.01)
was obtained in the training groups and 0.83 (�0.03) in the test
groups.

3.3. iTLB Model

An iTLB model was obtained consisting of only three
predictive variables (three pairs of temperatures for which there
is a systematic CP difference in the thermograms from the
two groups), where the pair formed by temperatures 64 and
70 °C was clearly the one with the highest statistical weight
for differentiating healthy subjects from PDAC patients
(Figure 4A). Figure 4B shows the location of the three tempera-
ture pairs making the iTLB model along the mean thermogram
of each group.

The iTLB model provided a numerical value or TLB index for
each patient. In the test group, statistically significant differences
were observed in the median TLB index between the healthy
subject group (�1.03 [�1.03;0.17]) and the PDAC patient group
(1.46 [0.26;9.66]) (Wilcoxon test: p-value< 0.001) (Figure 4C),
with an AUC of 0.90 (95% CI= 0.85–0.96) (Figure 4D) in the
test group.

To simplify the interpretation of the iTLB model and the
TLB index, a cutoff point can be used, which has a standard
value of zero. Individuals with TLB index< 0 are classified as
healthy subjects, whereas individuals with TLB index> 0
are classified as disease subjects. According to the confusion
matrix (Figure 4E), iTLB model had a better sensitivity and

negative predictive value than specificity and positive predictive
value.

3.4. Patterns Obtained from the iTLB Model

Since dichotomous predictive variables were used, the TLB index
(numerical result from the prediction model) could be consid-
ered as a discrete quantitative variable with 2n possible outcome
options (where “n” is the number of predictor variables).
Therefore, a maximum of eight results were obtained. By group-
ing the thermograms of patients with the same TLB index and
representing the mean thermograms in each group (control sub-
jects and PDAC patients), several patterns and differences in
them could be appreciated (Figure 5).

3.5. iTLB Model Applied to an External Cohort of PDAC
Patients: Validation of the iTLB Model

An independent, additional cohort of 113 patients diagnosed
with PDAC was used to assess the developed iTLB on an external
validation group. Thermograms from these 113 PDAC patients
were obtained, and the iTLB model was applied to obtain a TLB
index for each patient. According to the standard cutoff of zero, if
TLB index was greater than zero, the result was considered true
positive, but if the TLB index was less than zero, the result was
considered false negative. From 113 PDAC patients, 110 were
true positive (TLB> 0) and 3 were false negative (TLB< 0).
Or in other words, a sensitivity of 97.35% and a false negative
rate of 2.65% were obtained.

Figure 4. Results of the optimal iTLB model to differentiate the thermograms from healthy control subjects and from PDAC patients. A) Absolute value of
the coefficients of the iTLB model in each of the predictor variables (three pairs of temperatures), with X> Y representing each selected pair of temper-
atures, meaning that the difference CP(X ) – CP(Y ) has systematically a different sign in the thermograms in the PDAC patient group compared to those in
the control group; B) means of normalized thermograms in each group (healthy controls and PDAC patients) and the three relevant pairs of temperatures
(shown in the x-axis in panel A) in the model are marked with black dots; C) TLB index for the individuals in the test group; D) area under the ROC curve of
the iTLB model in the test group; and E) in the top part, contingency table for the test group using the standard cutoff of zero. The bottom part shows the
performance indexes of the iTLB model. CP: heat capacity; a.u.: arbitrary units; iTLB: intelligent thermal liquid biopsy; AUC: area under the ROC curve;
Acc: accuracy; Sens: sensitivity; Spec: specificity; PPV: positive predictive value; and NPV: negative predictive value.
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4. Discussion

Pancreatic cancer is one of the deadliest and most aggressive can-
cers. Patients are often diagnosed in advanced stages due primar-
ily to the lack of early symptoms, the absence of diagnostic tools
with sufficient sensitivity and specificity for early-stage detection,
and poor response to chemotherapeutic treatments. CA19.9 is
the most commonly used biomarker in patients with PDAC,
which is more notable for monitoring disease progression as
an indicator of tumor burden rather than as a diagnostic tool,
due to its low negative predictive value.

Given these challenges, pancreatic cancer is an area where the
search for new complementary tools for patient management is
particularly relevant. The pursuit of biomarkers in peripheral
blood samples is a primary goal, given the ease, speed, and min-
imal invasiveness of such samples. However, the discovery of
new biomarkers has become increasingly difficult. Advances
in proteomics and interactome theories suggest that a set of pro-
teins, rather than a single biomarker, may better explain the
body’s response to a disease. Therefore, new experimental inte-
grative approaches with different biophysical bases should be
considered. In this scenario, DSC emerges as a sound option
for observing the proteome and peptidome and their
interactions.

In our study, the differences observed in the DSC thermo-
grams between PDAC patients and healthy controls may be
attributable to several underlying biological mechanisms. The
tumor microenvironment in PDAC is known to induce

considerable alterations in the serum proteome, reflecting both
the systemic inflammatory response and the specific secretion of
tumor-related proteins and metabolites. For instance, the pres-
ence of elevated levels of acute-phase proteins, such as C-reactive
protein and serum amyloid A, as well as changes in the abun-
dance and structure of carrier proteins like albumin, could result
in the distinct thermal profiles observed.[42] These proteins, due
to their role in the response to malignancy, may form protein
complexes or undergo posttranslational modifications,[43] leading
to altered thermal stability and denaturation profiles detectable
by DSC. Additionally, the release of exosomes and other extracel-
lular vesicles by PDAC cells, which contain a variety of proteins,
nucleic acids, and metabolites, could further contribute to the
unique thermal signatures seen in the serum of PDAC
patients.[44] These mechanisms underscore the potential of
DSC as a tool for capturing complex and diverse proteomic alter-
ations associated with PDAC.

The use of DSC with biological samples, i.e., TLB, has shown
promise as a potential new complementary tool for diagnosis,
monitoring, or prognosis of patients. However, the development
of a standardized methodology for analyzing thermograms to dif-
ferentiate between health/disease states represents a major chal-
lenge with TLB. Various groups have contributed with proposals
reporting increasingly sophisticated methodologies thanks to
bioinformatics advances, facilitating their application and
interpretation.

This work reports a new methodology for TLB analysis that is
easy to implement, interpret, and reproduce. This methodology

Figure 5. Thermogram patterns obtained after clustering the individuals according to their TLB index. The mean thermograms in each group (control
subjects, in green, and PDAC patients, in red) are represented, with shaded area indicating the standard deviation. Each pattern includes the TLB index,
the number of control subjects and PDAC patients corresponding to that pattern, and the proportion of control subjects and PDAC patients belonging to
each pattern (pie chart). CP: heat capacity; a.u.: arbitrary units; PDAC: pancreatic ductal adenocarcinoma; and iTLB: intelligent thermal liquid biopsy.
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employs direct information from thermograms and ML tools,
taking advantage of validated algorithms for other types of data,
such as omics. The aim is to create a classification model that
distinguishes, in this case, between thermograms of healthy con-
trol subjects and PDAC patients. The temperature range of 60–
80 °C in the thermograms was considered as the main location
for relevant changes between both groups, and the CP value at
each temperature (within the 60–80 °C interval) was used as a
predictive variable, similar to other groups’ approaches.[34] The
novel aspect of this methodology for thermogram data analysis
is the search for a reduced set of specific temperature pairs con-
taining the relevant information for discriminating between ther-
mograms using the KTSP function. The model was adjusted
using the ncvreg function, which selects relevant temperature
pairs applying cross validation and an embedded classification
algorithm with penalization. The use of penalized classification
tools for thermogram data has been advocated to avoid
overfitting.[35]

The methodology comprises five simple steps, with some sub-
jectivity degree when selecting the most frequent pairs standing
out as predictive elements after many replicates within a random-
ized scheme (step 3). It is proposed to test several model options
to achieve an optimal model without overfitting. The methodol-
ogy was applied to a balanced population of 396 patients, divided
into 184 healthy individuals and 212 PDAC patients, to obtain an
iTLB classification model. Most PDAC patients were in advanced
disease stages. Although this reflects the reality in pancreatic can-
cer diagnosis, it is advisable to expand the sample size and
include more early-stage patients in a future work.

The TLB model developed consists of three pairs of temper-
atures that provide the relevant information for subject classifi-
cation. Thus, the data analysis of the complete thermogram is
reduced to compare the value of CP at these three temperature
pairs and it provides a unique real value, the TLB index. The
model achieved a median AUC of 0.83 (�0.01) in the training
groups, and 0.83 (�0.03) in the test groups, with significant dif-
ferences between the TLB index in the healthy subjects group
and the PDAC patients group. When training a model, balanced
groups are recommended, but if not feasible, balanced training is
essential. An unbalanced trained classification model is when
one of the groups is more represented than the other category.
This leads to biased model training to the detriment of the
minority group, which usually contains the cases of greatest
interest. For this reason, a balanced training is important to avoid
these bias problems.

The interpretation of the TLB index is straightforward, consist-
ing of a single value, for which a cutoff point can be applied to
classify subjects. The standard cutoff is zero, so that negative TLB
indexes correspond to individuals classified as healthy, and posi-
tive TLB indexes correspond to individuals classified as diseased
(in this case, with PDAC). The sensitivity and specificity of the
iTLB model are comparable to those for CA19.9, but with higher
negative predictive value, around 80% for the iTLB model com-
pared to 58% for CA19.9.

Since the iTLB classification model is based on dichotomous
predictive variables, responses can be considered discrete quan-
titative. Under that perspective, different patterns were observed
when comparing and grouping thermograms of individuals with
the same TLB index. Specific profiles correspond to TLB indexes

exclusive to PDAC patients and are not found in healthy individ-
uals. This “supervised clustering” is a novel approach in relation
to thermogram results using biological samples.

In recent years, there has been growing interest in the use of
nanoparticle–protein corona characterization as a novel approach
for early PDAC detection. These methods involve the analysis of
the protein corona that forms, through specific or unspecific
interactions, when nanoparticles are incubated with biological
fluids, such as serum. The composition of this corona may reflect
the pathological state of an individual and serve as a highly sen-
sitive diagnostic marker. For instance, recent studies have devel-
oped the nanoparticle-enabled blood test, providing a risk score
based on the characterization of the protein corona, which shows
potential as a first-level screening tool for PDAC.[45–48] Along our
own research, we have explored the use of nanoparticles incu-
bated with serum to detect different signals indicative of disease
presence, as demonstrated in our recent publication where we
combined TLB and fluorescence spectroscopy to detect serum
composition changes following bowel preparation for colonos-
copy.[49] Building on this, our ongoing work, which we plan to
submit for publication shortly, introduces artificial intelligence
(AI) tools for analyzing these complex datasets, further enhanc-
ing the diagnostic potential of these methods. Given these
advancements, it would be intriguing to explore whether the
DSC-based thermogram analysis could be integrated with
nanoparticle–protein corona characterization and AI-driven data
analysis. Such an integrated approach could enhance the sensi-
tivity and specificity of PDAC detection by capturing multiple
facets of the proteomic landscape associated with the disease.

The iTLB model was applied to an external cohort of 113
PDAC patients like validation cohort, where it was obtained a
sensitivity similar to that of the discovery cohort. This result con-
firms the robustness of the iTLB model in PDAC patients. It is
necessary to have an external healthy group to validate the iTLB
model. The next step is to further apply this methodology to a
larger sample to confirm the applicability of TLB in the diagnosis
of PDAC using a group symptomatic patients without cancer or
with pancreatic pathologies nonmalignant as a control group.

As a conclusion, a new methodology for analyzing thermo-
grams of biological samples is proposed, using serum samples
from healthy controls and PDAC patients as an example, to
obtain a robust iTLB model based on ML tools that differentiates
between these two groups. The results of the iTLB model dem-
onstrate diagnostic capability, in terms of sensitivity and speci-
ficity, comparable to the tumor marker CA19.9, which is
currently used in clinical settings. However, the iTLB model
shows a higher negative predictive value. This finding opens
the possibility of using the iTLB model as a complementary tool
to improve the diagnosis of pancreatic cancer patients.

While the DSC-based methodology for early PDAC diagnosis
shows considerable promise for diagnostic and patient monitor-
ing, there are several limitations that should be acknowledged.
First, the requirement for specialized equipment, such as a
high-sensitivity DSC instrument, may limit the widespread adop-
tion of this technique in routine clinical settings, particularly in
resource-limited environments. Additionally, the interpretation
of DSC thermograms necessitates expertise in both biophysical
methods data analysis and ML tools, which may not be readily
available in all clinical laboratories. Moreover, the current study
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focused on the application of this methodology to PDAC; how-
ever, further research is needed to evaluate its applicability across
other types of cancers and diseases, as well as in different sce-
narios and contexts. Another limitation is the retrospective
nature of the study, which, although mitigated by the use of
an independent validation cohort, still necessitates prospective
studies to confirm the utility of this approach in a real-world clin-
ical setting. Finally, while our method shows considerably high
sensitivity, the potential for false positives, particularly in patients
with inflammatory or benign pancreatic conditions, needs to be
carefully evaluated in future studies to ensure the specificity of
the approach.

Further studies are necessary to confirm these findings. The
methodology should also be applied to other diseases and types
of biological samples. It is also important to demonstrate that the
incorporation of clinically used biomarkers into the iTLB model
might improve the diagnosis, prognosis, or monitoring of some
diseases. This approachmay represent a significant advancement
in personalized medicine, offering more accurate and tailored
treatment strategies for patients.
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[29] A. Michnik, E. Sadowska-Krępa, J. Cholewa, I. Schisler, A. Kiełboń,
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