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ABSTRACT 

Six different remediation procedures for removing hydrogen sulfide (H2S) and methanethiol 
(MeSH) from a small selection of wines have been studied. Procedures include three 
modifications of classical copper fining (two precipitation adjuvants and filtration), purging 
wine in the reductive state with N2, and oxidation with or without thiol-functionalised polymeric 
silica (SH-Sil). Free and brine-releasable (BR), H2S, and MeSH contents of wine were 
determined after the treatments and after accelerated reductive ageing. Results have shown that 
neither the use of precipitation adjuvants nor filtration improved the results of classical copper 
fining. Purging wine in the reductive state with N2 can decrease significantly the ability of wine 
to further accumulate H2S and MeSH, but several cycles are required and success depends on 
the amounts of precursors present in the wine and on copper levels. Oxidation, regardless of the 
presence of SH-Sil, was the most efficient treatment to remove “reductive” off-odours in both 
the short and long term.
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INTRODUCTION
The development of “reductive” off-odours constitutes a 
recurrent problem in the wine industry, being a significant 
fraction of wine faults (Goode and Harrop, 2008). 
Furthermore, these problems have now become a bottleneck 
for some relevant industrial projects, such as canned wine or 
the use of completely anoxic stoppers (The_AWRI, 2021). 
The main ones responsible for “reductive” off-odours 
are hydrogen sulfide (H2S) and methanethiol (MeSH), 
plus, eventually, a number of thiols and derivatives that 
can be formed from them (Franco-Luesma et al., 2016; 
Siebert et al., 2010). Both components are normal by-products 
of yeast metabolism (Swiegers and Pretorius, 2007) and may 
play a role in detoxification and signalling processes (Huang et 
al., 2017). The production of H2S can be sometimes very high 
and, often, it is not possible to attribute such overproduction 
to a single cause. This suggests that there are multiple non-
independent causes for the development of “reductive” off-
odours, including the strain of yeast, assimilable nitrogen 
levels of must (Jiranek et al., 1995; Ugliano et al., 2009; 
Ugliano  et  al., 2011), the oxygenation received during 
fermentation (Bekker et al., 2016) or the presence of residual 
sulfur in the grapes (Jastrzembski  et  al., 2017).

While part of the H2S produced during fermentation is lost 
by evaporation, a significant part of it remains in the wine 
under three different types of chemical forms. A first and 
generally minor part is present as free H2S. A second fraction 
remains in the wine bound to metal cations, such as Cu (I), 
Zn (II), or Fe (II) (Franco-Luesma and Ferreira, 2014), 
forming a series of non-volatile complex structures. The 
specific composition of this fraction is poorly known, but it 
can be stated that the S atom in all these cases remains in its 
(-II) valence. The third fraction accumulates in the form of 
oxidised precursors (Kreitman et al., 2016b). This fraction, 
particularly in the case of H2S, can be very complex since 
an endless number of possible polysulfides, polysulfanes and 
polythionates (Müller et al., 2022; Müller and Rauhut, 2018) 
involving glutathione, cysteine and other thiol-containing 
wine molecules can be formed (Bekker et  al.,  2018; 
Kreitman et al., 2017; van Leeuwen et al., 2020). As it has 
been reported that these oxidised precursors have different 
stabilities, they will rend back H2S at different rates influenced 
by the presence of SO2 (Bekker et al., 2018). The possibility 
that metal cations, particularly copper, take part in this third 
fraction of oxidised precursors cannot be ruled out, nor that 
the presence of copper could catalyse the release of H2S and 
MeSH from these precursors, as it has been suggested by 
some authors (Bekker et al., 2018; Kreitman et al., 2017). 

When wine develops “reductive” off-odours during 
fermentation, winemakers aerate the fermenting mash. Such 
a process will eliminate by evaporation part of the H2S and 
MeSH and will induce mild oxidation of the wine since 
part of the oxygen will be consumed by yeasts. Those mild 
oxidative conditions, similar to those of micro-oxygenation, 
can most likely lead to the formation of non-volatile odourless 
polysulfides and polysulfanes. These compounds will act as 

a reservoir for “reductive” off-odours and, as soon as the 
wine is stored in anoxic conditions, MeSH and H2S will be 
released again (Vela et al., 2018). The processes ultimately 
responsible for the release of these molecules are not well 
understood, but a number of spontaneous condensation and 
sulfonation reactions of polyphenols in which electrons are 
released, are known to occur when wine is stored under 
anoxic conditions (Ontañón et al., 2020).

Almost every additional action aimed at remediating 
“reductive” off-odours in the cellar involves copper fining. 
This is carried out by adding Cu (II) salts, such as sulfate or 
citrate, or diverse Cu (II)-containing formulations, including 
Cu (II) adsorbed by inactivated yeasts or mixtures of Cu (II) 
salts with oenological tannins (Vela et al., 2017). These 
operations produce an immediate decrease in the intensity of 
the off-odours; not because copper can precipitate CuS, as 
is commonly thought, but because Cu (II) oxidises sulfides 
to disulfides (Kreitman et al., 2016a), being itself reduced 
to Cu (I), which forms strong complexes with the free H2S 
and thiols remaining in solution. The copper added in excess 
integrates the Cu fraction I (Zhang et al., 2021a) which 
contains Cu complexed with tartaric acid. This fraction acts 
as a sink for the MeSH and H2S released during wine ageing 
so that it is progressively transformed to Cu fractions  II 
(Cu bonded to mercaptans) and III (Cu bonded to H2S), 
respectively. Once the Cu fraction I is depleted, H2S and 
MeSH will accumulate again, so that copper fining, delays 
but may not completely avoid, the apparition of “reductive” 
off-odours. Additionally, an excess of copper may induce 
the catalytic decomposition of methionine and cysteine to 
produce MeSH and H2S (Ferreira et al., 2018), and make the 
wine more susceptible to oxidation (Clark et al., 2015a).

Several lines of research have tried to improve this situation. 
Some researchers focussed on understanding and controlling 
fermentation to limit the formation of these compounds 
(Jimenez-Lorenzo et al., 2021; Jiranek et al., 1995; 
Kinzurik et al., 2015; Scott et al., 2020; Song et al., 2020; 
Spiropoulos et al., 2000; Ugliano et al., 2009; Vos 
and Gray,  1979; Walker et al., 2021), while others 
studied how to remove copper and copper-bonded 
sulfides (Bekker  et  al.,  2016, 2021; Clark et  al.,  2015b; 
Kontoudakis  et  al., 2019; Zhang et al., 2021a; 
Zhang  et  al.,  2021b) or the effectiveness of different 
strategies for remediation of “reductive” aromas in wine 
(Bekker et al., 2021; Day et al., 2015; Day et al., 2021). Yet, 
the wine industry needs more efficient treatments.

Because of this, the main goal of the present research 
is to assess six different alternative strategies for the 
effective removal of wine H2S and MeSH and, the effect 
on the tendency of wine to accumulate them. The three first 
strategies studied are based on copper-fining procedures, the 
fourth uses inert gas, and the fifth and sixth use oxidative 
conditions. Beyond looking for a definitive procedure, our 
work aims to identify the most promising strategies and the 
most pressing associated challenges.
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MATERIAL AND METHODS

1. Solvents and chemical standards

Ethanol was purchased from Merck (Darmstadt, Germany). 
Water with a resistance of 18.2 mΩ·cm at 25 °C was purified 
in a Milli-Q system from Millipore (Merck, Germany), and 
sodium hydroxide and tartaric acid were purchased from 
Panreac ApplyChem (Barcelona, Spain). Pure standards 
(> 95 %) for VSC calibration: H2S, MeSH, were produced 
by the addition of water solution of sodium sulfide, Na2S, 
and sodium methanethiolate, CH3SNa (all supplied by 
Sigma‑Aldrich, St. Louis, MO, USA) at pH 9.6. This 
solution was prepared daily and kept in an anoxic chamber 
P[box]  (Jacomex, France) with Argon. The standards are 
stored in a desiccator to avoid hydration. Ethyl methyl 
sulfide (EMS) and 1-propanethiol (PrSH) were provided by 
Sigma-Aldrich (Steinheim, Germany). Stock solutions of 
EMS and PrSH were prepared in iso-octane in amber vials 
and were stored at –20 °C. Intermediate methanolic solutions 
were stored at –20 °C in amber vials with Mini-inert valves 
(Supelco, Ca, USA). All these solutions were prepared in the 
anoxic chamber.

The brine contained 350 g/L of sodium chloride 
NaCl (Panreac, Barcelona, Spain) in Milli-Q water. Synthetic 
wine was a pure water solution containing 5 g/L of tartaric 
acid, 12 % v/v ethanol, and pH 3.4 adjusted with diluted 
NaOH (0.1 m)

2. Wine samples
Five red wines, one rosé wine, and one white wine were 
selected: W1 (Ribera del Duero, 2017), W2 (Ribera del Duero, 
2016), W3 (Ribera del Duero 2018 without SO2 addition), 
W4 (rosé wine, Cariñena, 2016), W5 and W6 (La Rioja, 2017 
and 2020, respectively) and W7 (white wine, Ribeiro, 2017). 
W5 and W6 were made in an experimental cellar with grapes 
spiked with micronised S. The rest of the samples were sent 
from different wineries to be analysed for having “reductive” 
off-odours or being suspects of developing them.

3. Analysis of free and BR-VSCs by GC-pFPD
These compounds were analysed following the procedure 
proposed by Franco-Luesma and Ferreira (Franco-Luesma 
and Ferreira, 2014) with some modifications. For free VSCs, 
12 mL of wine and 40 µL of the internal standard solution 
(EMS and PrSH at 2 mg/L) were transferred to a 20 mL vial. 
After incubation, 1 mL of the headspace was injected and 
analysed in a Varian CP-3800 gas chromatograph equipped 
with a pulsed flame photometric detector (GC-pFPD) 
[Walnut Creek, CA, USA]. For the BR fraction, 0.4 mL of 
wine diluted with 9.6 mL of brine and 40 µL of the internal 
standard solution were added to a 20 mL vial. After the 
incubation, the extraction was carried out with an SPME fibre 
and then it was desorbed in the injector of the GC-pFPD.

4. Accelerated anoxic ageing assay (RA2w) 
The methodology developed by Franco-Luesma and Ferreira 
(Franco-Luesma and Ferreira, 2016b) was carried out to 

simulate and accelerate the ageing of wines under anoxic 
conditions. For that, samples were stored under anoxia 
at  50  °C during 2 weeks. Samples were prepared in the 
anoxic chamber by distributing three 60 mL aliquots of 
each wine in three 60 mL screw-capped glass tubes (Wit 
Deluxe, Denmark), tightly closed and double vacuum 
bagged, including an O2  scavenger (AnaeroGen™ from 
Thermo Scientific Waltham, Massachusetts, USA) between 
both bags.

5. Redox potential measurements
Measurements of redox potential were carried out according 
to Vela et al. (2018) with a commercial electrode integrated 
by a Pt electrode, an Ag–AgCl(s) reference electrode, and a 
HI-98191 ORP meter (Hanna Instruments, Woonsocket, RI, 
USA). All measurements were carried out inside the anoxic 
chamber. Readings were taken by immersing the electrode 
into 5 mL samples and letting 35 min of equilibration.

6. Analysis of metals

Iron, copper, manganese, and zinc were determined by 
inductively coupled plasma-mass spectrometry (ICP-MS) 
as described by Gonzálvez et al. (2008). Analyses were 
performed in triplicate. 

7. Studied remediation strategies

7.1. Copper fining with precipitation adjuvants
Two red wines (W1 and W2) were divided into four aliquots 
of 500 mL each: one of them was the control and the others 
were treated with three different treatments: 0.5 mg/L of 
Cu (added as CuSO4), 0.5 mg/L of Cu and 120 mg/L of 
potato protein and 0.5 mg/L of Cu and 1 g/L of bentonite, 
respectively. All treatments were performed in duplicate.

The addition of adjuvants was carried out 24 hours after the 
addition of copper, allowing the formation of complexes 
with H2S and thiols. Samples were stored for 7 days and 
were then centrifugated for 15 min at 4500 RPM and 10 °C. 
Free and BR-VSCs and redox potential were measured after 
the centrifugation. Finally, the RA2w assay was applied to 
the samples and the same analyses were carried out. All the 
experiment was performed under anoxia.

7.2. Copper fining combined with filtration
The wine W1 was spiked with 0.5 mg/L of Cu and was 
stored under anoxia for seven days to allow enough time for 
the formation of complexes with VSCs. Then, the sample 
was filtered inside the anoxic chamber using 0.45 µm pore 
size and 25 mm diameter nylon filters. Seven days later, 
the filtration was repeated with a 0.20 µm pore size filter. 
Filters were kept within the anoxic chamber at least 24 hours 
before the experiment to ensure they were free from oxygen. 
After that, free and BR-VSCs were quantified, RA2w was 
applied and the analyses were repeated. The copper content 
was measured after the second filtration. Copper was not 
added to the control sample, which was also not filtered. The 
experiment was carried out entirely in the anoxic chamber 
and was carried out in duplicate.

https://oeno-one.eu/
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7.3. Purge with nitrogen
Two different experiments were performed. In the first one, 
wines W2 and W3 were used. Firstly, accelerated anoxic 
ageing was applied to the samples to be sure that the redox 
potential of wines was negative (less than –50 mV). After 
that, samples were purged with N2 at 100 mL/min for 60 min. 
Free and BR-VSCs and redox potential were then measured. 
The RA2w was applied to the samples and the same 
measurements were carried out again. The same protocol was 
performed with the control samples except for the purging 
step. Experiments were carried out in duplicate.

Samples W4, W6, and W7 with an extreme “reductive” 
off‑odour, were used for the second experiment. Moreover, 
this experiment was also carried out with W7 spiked with 
100 µg/L of copper as copper sulfate. Two cycles of reductive 
ageing plus purging were applied to the wine, which was then 
further subjected to a third RA2w. The purge was carried out 
with 100 mL/min N2 for 75 min. Free and BR-VSCs and 
redox potential were measured after each RA2w assay or 
purging. The experiments were carried out in duplicate. 

7.4. Strong aeration with or without polymeric thiol-
functionalised silica
The experiment was carried out with the samples W1 and 
W5. Silica was functionalised with 3-mercaptopropyl 
(1 mM thiol groups) from SiliCycle (Quebec, Canada) and 
was added to each wine inside the anoxic chamber. After 
that, samples (with and without silica) were put into 500 mL 
glass jars outside the anoxic chamber and were saturated 
with air by gentle shaking, following the procedure described 
by Ferreira et al. (2015), to ensure the oxidation of VSCs 
and the eventual formation of disulfides, polysulfides and 
polysulfanes. The oxygen-saturated samples were stored 
for 3 days inside the anoxic chamber and then the silica 
was removed by centrifugation at 4500 RPM and 10 °C for 
15 min. Samples were stored again inside the anoxic chamber 
until they consumed the remaining oxygen dissolved, which 
was controlled by measuring the redox potential. Once they 
reached negative redox potential, free and BR-VSCs were 
analysed. Finally, accelerated anoxic ageing was carried 
out and the measurements of VSCs were repeated. The 
experiment was performed in duplicate. 

8. Statistical analysis and data treatment
Data processing, graphical representation of data, and 
statistical analyses were carried out with Excel 2016 
(Microsoft, Washington, USA) and XLSTAT (Addinsoft, 
version 2019 1.1).

RESULTS AND DISCUSSION

In the present paper, several alternatives for remediating the 
“reductive” off-odours of wines have been studied. Three of 
them make use of copper and intend to eliminate part of the 
copper-bonded sulfhydryls using two different precipitation 
adjuvants, or using filtration. The fourth uses a stream of an 
inert gas (N2) to purge off thiols, once the wine has become 
in a “reductive” state. The fifth uses strong oxidation induced 

by air saturation, combined or not with the addition of 
polymeric silica functionalised with thiols. 

Due to the difficulties linked to the work under a strict anoxic 
atmosphere, and the timing for some of the experiments, the 
work spanned nearly two years. This has made it impossible 
to work with exactly the same wine samples. Then, the 
efficiency of the different treatments was assessed by 
measuring free and BR forms of H2S and methanethiol after 
and before accelerated reductive ageing in which samples 
were incubated at 50 °C in strict anoxia for 2 weeks (RA2w). 
As it has been demonstrated that free forms measured 
after RA2w correspond, approximately, to the free levels 
of these molecules accumulated in the wine after 1 year of 
anoxic ageing at room temperature (Franco-Luesma and 
Ferreira,  2016a), this measurement provides a reasonable 
estimate of the long-term efficacy of the treatment, while 
levels of free forms immediately after the treatment (without 
RA2w) assess its immediate efficacy. On the other hand, the 
analysis of BR-forms provides information about the fraction 
of H2S and MeSH bonded to transition metals. However, this 
measurement is sometimes imprecise, due to the complexity 
of the interactions between H2S and copper, and between 
copper cations and different wine constituents, such as 
tartaric acid, tannins, polyphenols, cysteine, or glutathione 
(Clark et al., 2015a).

1. Copper fining with precipitation adjuvants
The first treatment consisted of the combination of copper 
sulfate with two different precipitation adjuvants, potato 
protein, and bentonite, with the aim of removing from the wine 
colloidal forms of copper sulfide. Some previous works have 
demonstrated the metal binding abilities of those materials, 
which reach Cu-removal efficiencies of up to 43 % for potato 
protein and 99 % for bentonite (Bertagnolli  et  al.,  2011; 
Chaves and Tit, 2011; Claus, 2020; Ulmanu et al., 2003; 
Wang and Xiong, 2005). As detailed in the experimental 
section, the adjuvants were added after 24 hours of the copper 
treatment and were left to act for 7 days. The results of this 
experiment are shown in Table 1. As can be seen, the addition 
of copper brings about a strong decrease in the levels of free 
H2S in the two wines (W1 and W2) and the three treatments. 
Levels of free H2S became undetectable in all cases, except 
in the bentonite-treated sample of the first wine. 

Levels of BR forms were also markedly affected by the 
copper treatments, but in this case, copper addition brought 
about strong increments in all cases. A similar increment of 
BR-forms was previously observed in one (out of three) of 
the cases studied by Vela et al. (2017). Such increases were 
not expected, since Cu (II) has a known oxidant character, 
which does not seem to be compatible with an increase in 
levels of reduced forms of H2S. However, the consistency of 
the increments observed in the three treatments and with the 
two wines (plus the one in the previous work), indicates that 
those increments are not artefacts caused by poor analytical 
precision, as suggested by Vela et al. (2017) Instead, these 
results suggest that the addition of Cu (II) has quite complex 
effects on the distribution of the different forms of H2S, 
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including the fraction of oxidised precursors. In fact, the 
results in the table may indicate that a significant fraction 
of oxidised forms of H2S has been reduced to form HS–Cu 
and/or Cu2S, which are the major chemical species measured 
in the BR fraction. While this thermodynamically can make 
sense, since Cu(I)-S(-2) bonds are very strong, the question 
of the chemical species providing the electrons for reducing 
Cu(II) to Cu(I) and S(-I) to S(-II) remains unanswered.

In any case, the result confirms that the addition of copper (II) 
to wine does not bring about any loss of H2S, confirming 
previous results (Clark et al., 2015b; Vela et al., 2017). 
As expected, the main effect of the copper treatment is the 
decrease in the ratio of free to BR H2S, designated alpha 
in Table 1, which simply indicates that the fraction of H2S 
complexed with metals increases.

After anoxic ageing, levels of free H2S were in all treatments 
much lower than those measured in the control, confirming 
the effectiveness of copper treatments in delaying the 
release of free H2S during anoxic ageing. Levels of free 
H2S accumulated were in all cases less than half of those 
accumulated in the control wine. It can be observed, however, 
that levels accumulated in the treatments with adjuvants 
were higher than those accumulated in the standard copper 
treatment, although the differences were only significant in 
the second wine. These results can be explained by attending 
to the levels of copper remaining in the wines after the 
treatments, as seen in the last rows of Table 1. It can be 
observed that both adjuvants removed significant amounts of 
copper, particularly potato protein, which eliminated more 
than 220 µg/L of copper, while bentonite removed between 

TABLE 1. Copper-fining with precipitation adjuvants. Effect of different copper treatments on free and BR forms of 
H2S and MeSH (µg/L) after the treatment (Tx) and after 2 weeks of accelerated anoxic aging at 50 °C (RA2w).

W1 Moment of analysis Untreated Cu standard Cu + Potato Cu + Bentonite

Free H2S
Tx 1.1 ± 0.1a < LDc < LQc 0.7 ± 0.0b

RA2w 13.5 ± 0.9a 1.9 ± 1.9b 3.4 ± 0.6b 3.7 ± 0.6b

BR H2S
Tx 66.0 ± 8.3b 138 ± 3.8a 173 ± 38.6a 146 ± 10.7a

RA2w 56.7 ± 1.2a 45.6 ± 17.0a 50.2 ± 2.2a 53.4 ± 10.4a

Alpha
Tx 1.7 ± 0.26 %a < 0.2 %b < 0.2 % b 0.47 ± 0.04 %c

RA2w 23.8 ± 1.7 %a 4.2 ± 4.4 %b 6.8 ± 1.2 %b 6.9 ± 1.8 %b

Free MeSH
Tx 1.7 ± 0.0a 1.2 ± 0.3a 1.4 ± 0.2a 1.4 ± 0.0a

RA2w 1.0 ± 0.2a 1.0 ± 0.4a 0.8 ± 0.1a 0.7 ± 0.0a

BR MeSH
Tx 2.7 ± 0.2a 2.3 ± 0.2a 3.3 ± 1.3a 2.3 ± 0.2a

RA2w 2.5 ± 0.2a 2.2 ± 0.2a 2.4 ± 0.1a 2.7 ± 0.3a

Redox potential (mV)
Tx +2.6 +0.6 –11.7 +13.0

RA2w –63.4 –81.7 –60.4 –78.3

Copper (µg/L) Tx 112 ± 1.8d 556 ± 8.2a 337 ± 5.4c 402 ± 2.1b

W2 Moment of analysis Untreated Cu standard Cu + Potato Cu + Bentonite

Free H2S
Tx 1.8 ± 0.6a < LDb < LDb < LDb

RA2w 13.1 ± 0.6a 2.2 ± 0.2d 6.2 ± 0.8b 4.2 ± 0.3c

BR H2S
Tx 24.6 ± 0.2c 104 ± 1.1a 72.1 ± 9.3b 93.4 ± 0.0a

RA2w 56.0 ± 4.0a 31.7 ± 4.9b 46.3 ± 6.7ab 40.5 ± 7.1ab

Alpha
Tx 7.3 ± 2.4 %a <0.2 %b <0.2 %b <0.2 %b

RA2w 23.4 ± 2.0 %a 6.9 ± 1.2 %c 13.4 ± 2.6 %b 10.4 ± 2.0 %bc

Free MeSH
Tx 1.9 ± 0.2a 1.4 ± 0.0ab 1.1 ± 0.8bc < LQc

RA2w 2.1 ± 0.6a 1.6 ± 0.7a 1.4 ± 0.2a 1.2 ± 0.0b

BR MeSH
Tx 2.3 ± 0.1a 2.0 ± 0.3a 1.9 ± 0.3a 1.8 ± 0.2a

RA2w 3.2 ± 0.1a 2.7 ± 0.1b 2.8 ± 0.1b 2.8 ± 0.1b

Redox potential (mV)
Tx –2.6 +8.9 –9.6 –8.7

RA2w –52.2 –59.2 –75.0 –85.2

Copper (µg/L) Tx 61.5 ± 0.3d 525 ± 7.7a 293 ± 6.0c 339 ± 1.9b

LD H2S: 0.2 µg/L; LQ H2S: 0.6 µg/L; LQ MeSH: 0.6 µg/L. Alpha is the ratio in percentage between free and BR forms of H2S. Redox 
potential is expressed in mV vs a standard Ag/AgCl reference electrode. Copper levels were measured after the treatments. Different 
superscript letters denote significant differences according ANOVA test.
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150 and 190 µg/L. Smaller levels of copper, lead to higher 
levels of free H2S and increased alpha, as seen in the table. 
This indicates that most copper removed was free copper and 
not copper bound to sulfur species. 

Anoxic ageing also brought strong changes in the levels of 
BR forms, as can be seen in the table. Quite surprisingly, 
levels of BR forms in all copper-treated samples were much 
smaller than those found before RA2w and were similar (W1) 
or smaller (W2) than those measured in the corresponding 
controls. This result contrasts with the highest levels of 
BR forms measured before the reductive ageing and could 
indicate that little amounts of Cu2S (200–250 µg/L) have 
precipitated, or alternatively, that they have evolved into 
polymeric forms no longer measurable as BR-forms.

The other clear and expected effect of anoxic ageing was the 
increase in the fractions of H2S in free form. In the original 
wines, the ratio of free to BR forms (alpha) increased to 
23 %, while in the copper-treated samples, the final levels 
of this ratio were in all cases below 14 %. Alpha was clearly 
higher in the samples treated with adjuvants, particularly in 
wine 2, and particularly in the potato protein, in agreement 
with the lower copper levels measured in these samples. 

Regarding MeSH, the copper treatments had little effects, 
smaller than those previously reported (Vela et al., 2017). 
In wine 1, no significant effect was observed for either the 
copper treatment or the filtration adjuvants. In wine two, 
the standard copper treatment reduced, non-significantly, 
levels of this thiol, while the filtration adjuvants, particularly 
bentonite, improved this result. Such differences were kept 
after reductive ageing. Results of BR forms of MeSH are 

consistent with those of free forms, although reveal that 
the differences introduced by the adjuvants decrease after 
reductive ageing. This result was expected, since MeSH can 
be formed by metal-catalysed decomposition of methionine 
(Ferreira et al., 2018), and this source of continuous 
formation gains relevance with aging (Ferreira et al., 2014). 
The observed decrease in levels of MeSH seems to be a 
secondary effect of the adjuvants and may not be directly 
related to the observed copper removal.

It can be concluded that the effective reduction in copper 
levels caused by the addition of the adjuvants does not 
cause any significant or consistent decrease in H2S or 
MeSH concentration in the wine, or in the wine’s ability to 
accumulate them during ageing. 

2. Copper fining combined with filtration
The results of this experiment are given in Table 2. As 
detailed in the material and methods section, the filters used 
were made of nylon, a material that had worked satisfactorily 
in a previous report to reduce copper levels in white wines 
(Kontoudakis et al., 2019). In our case, as can be seen in 
the table, the filters were unable to remove any copper from 
the red wine used in the study. Furthermore, the treatment 
was unable to decrease the ability of the wine to accumulate 
H2S and MeSH. In fact, the results reveal that filtration had 
some unexpected and undesirable effects. On the one hand, 
levels of free MeSH after filtration were surprisingly and 
significantly high. In any case, significantly higher than those 
found in the standard copper treatment. On the other hand, it 
can be also observed that filtration had apparently induced 
wine oxidation. This is evident in wine redox potential, which 

TABLE 2. Copper fining and filtration. Effects of a double filtration through nylon filters after a standard copper fining 
treatment on free and BR forms of H2S and MeSH (µg/L), after the treatment (Tx) and after 2 weeks of accelerated 
anoxic aging at 50 °C (RA2w).

LD H2S: 0.2 µg/L; LQ H2S:0.6 µg/L; LQ MeSH: 0.6 µg/L. Alpha is the ratio in percentage between free and BR forms of H2S. Redox 
potential is expressed in mV vs a standard Ag/AgCl reference electrode. Copper levels were measured after the treatments. Different 
superscript letters denote significant differences according ANOVA test.

W1 Moment of analysis Control Cu standard Cu + filtration

Free H2S
Tx 0.7 ± 0.0a < LDc < LQb

RA2w 14.0 ± 0.4a 1.9 ± 1.9b 4.3 ± 0.4b

BR H2S
Tx 42.0 ± 5.4c 138 ± 3.8a 56.2 ± 2.1b

RA2w 94.6 ± 21.1b 45.6 ± 17.0b 218 ± 2.7a

Alpha
Tx 1.7 % < 0.2 % < 0.4 %

RA2w 14.7 % 4.2 % 2.0 %

Free MeSH
Tx <LQc 1.2 ± 0.3b 3.9 ± 0.2a

RA2w 1.0 ± 0.0a 1.0 ± 0.4a 0.8 ± 0.0a

BR MeSH
Tx 1.6 ± 0.1b 2.3 ± 0.2a 1.3 ± 0.1b

RA2w 3.9 ± 0.3a 2.2 ± 0.2b 3.8 ± 0.2a

Redox Tx –10 mV 0 mV +50 mV

Potential (mV) RA2w –75 mV –82 mV –75 mV

Copper (µg/L) Moment of analysis 129.9 ± 0.7b 586 ± 8.2a 589.4 ± 3.4a
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immediately after the filtration reached a +50 mV value. Such 
an increase was unexpected since filtration was carried out in 
a completely anoxic environment, and filters were introduced 
into the chamber at least 24 hours after their use. Furthermore, 
the change in BR levels caused by filtration and the contents 
of BR forms in the filtered samples after reductive ageing, are 
compatible with those of oxidation. As can be seen, BR H2S 
levels after filtration were not very dissimilar to those of the 
control and were much smaller than those obtained in the 
standard copper treatment and also than those obtained in 
all the other copper-treated samples in the first experiment. 
However, after the 2 weeks of reductive ageing, levels of BR 
H2S increased to become the maxima levels registered in the 
present work, i.e., the results suggest that filtration prevented 
the unknown reductive processes mentioned in the previous 
section, so that the number of oxidised forms increased, part 
of which was reduced in the accelerated reductive ageing. In 
any case, this result indicates that filtration does not represent 
any improvement in copper fining in red wines.

3. Purge with the nitrogen of wines in 
a reduced state
This experiment was carried out with five different wines, 
all of them with reductive problems. All wines were first 
subjected to anoxic ageing, to ensure that they had a relatively 
high proportion of H2S and MeSH in free form so that 
purging was more effective. In the first experiment, carried 
out with wines 2 and 3, only one purging cycle was used. 
Results are presented in Table 3. Samples in the upper half 
of the table are the initial wines after the 1st reductive ageing 
(controls) and after the purging process (purged), while 
samples in the lower half of the table are those samples after 
reductive ageing. As expected, purging with nitrogen had an 
immediate effect the nearly complete removal of free forms 
of H2S and MeSH in both wines. In wine 2, levels of free H2S 

dropped from 13 µg/L to 1.1 µg/L, while in wine 3, free H2S 
dropped from an initial level of 63.3 µg/L to just 1.0 µg/L. 
The improvement is also seen in BR forms. BR forms of H2S 
decrease -non-significantly- from 100 µg/L to 77 µg/L in 
wine 2 and from 83 µg/L to 27 µg/L, in wine 3. Exactly the 
same observations can be made about MeSH, whose levels 
become undetectable in both cases with the treatment, and 
strong and significant decreases were also observed in the 
BR forms. However, after 2 weeks of additional reductive 
ageing (2nd RA2w), purged wines developed amounts of free 
H2S not significantly smaller than those found in the aged 
controls (after 2nd RA2w). The case of wine 3 is particularly 
intriguing, as despite having removed 62 µg/L of H2S in the 
purge, there was hardly any impact. This suggests that the 
amount of precursors of H2S that the wines can have is very 
large, in line with recent findings (Ferreira et al., 2023) so 
that the amount removed by the purge is just a little fraction. 
It can be also concluded that one purging cycle is not enough 
to improve significantly the wine’s tendency to accumulate 
reductive off-odours.

The results of the second experiment are given in Table 4. 
In this experiment a rosé (W4) a red (W6) and a white wine 
(W7), this last spiked or not with copper, were all subjected 
to two consecutive cycles of reductive ageing followed by 
purging with nitrogen. The resulting wines, after the two 
cycles were further aged again to assess their abilities to 
accumulate VSCs.

The rosé W4 contained after the 1st RA 63.3 µg/L and 
133  µg/L free and BR H2S, respectively, and the 1st 
purge brought those levels down to 2.8 µg/L and 37 µg/L, 
respectively. The one-time purged wine was then subjected 
to RA, after which it accumulated 37.7 µg/L and 71.8 µg/L 
of free and BR H2S, respectively, which are 60 % and 54 % 
of that accumulated after 1st RA. The 2nd purge, brought 

TABLE 3. Use of inert gas for purging VSCs, experiment 1. Effects of purging wines in reductive state (induced by 
a first accelerated reductive aging) with a stream of N2 on free and BR forms of H2S and MeSH (µg/L), after the 
treatment and after 2 weeks of additional accelerated anoxic aging at 50 °C (2nd RA2w). 

LD H2S: 0.2 µg/L; LQ H2S:0.6 µg/L; LD MeSH: 0.45 µg/L; LQ MeSH: 0.6 µg/L. Redox potential is expressed in mV vs a standard 
Ag/AgCl reference electrode. Different superscript letters denote significant differences according ANOVA test.

W2 W3

After the 1st RA2w Control Purged Control Purged 

Free H2S 13.4 ± 0.3a 1.1 ± 0.0b 63.1 ± 1.1a 1.0 ± 0.1b

BR H2S 100 ± 5.5a 77.1 ± 32.8a 83.2 ± 3.6a 27.0 ± 0.7b

Free MeSH 1.0 ± 0.0a < LDb 2.8 ± 0.3a < LDb

BR MeSH 3.4 ± 0.2a 2.0 ± 0.4b 4.5 ± 0.3a 1.3 ± 0.1b

Redox potential –35.2 –10.6 –133.6 –50.9

After the 2nd RA2w Control Purged Control Purged 

Free H2S 10.0 ± 0.2a 8.9 ± 0.7a 44.0 ± 0.8a 40.4 ± 2.4a

BR H2S 32.1 ± 4.3a 25.7 ± 2.5a 47.0 ± 6.8a 48.7 ± 0.0a

Free MeSH 0.9 ± 0.0a 0.7 ± 0.0b 3.8 ± 0.1a 3.2 ± 0.1bww

BR MeSH 1.1 ± 0.0a < LQb 4.5 ± 0.1a 3.7 ± 0.3a

Redox potential –85.3 –84.6 –121.6 –114.0
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TABLE 4. Use of inert gas for purging VSCs, experiment 2. Effects of treating three wines with two consecutive cycles 
of accelerated reductive aging, immediately followed by purging with a stream of N2, on free and BR forms of H2S 
and MeSH (µg/L). 

LD MeSH: 0.035 µg/L; LQ MeSH: 0.12 µg/L. n.m. not measured. Redox potential is expressed in mV vs a standard Ag/AgCl 
reference electrode. Different superscript letters denote significant differences according ANOVA test.

Wine Initial 1st RA2w 1st purge 2nd RA2w 2nd purge 3rd RA2w

W4

Free H2S 116.0 ± 3.9a 63.3 ± 1.5b 2.79 ± 0.88e 37.7 ± 0.67c 2.81 ± 0.37e 22.5 ± 1.3d

BR H2S 138.1 ± 4.0a 133 ± 15a 36.9 ± 0.6c 71.8 ± 1.5b 29.0 ± 0.4c 65.6 ± 5.8b

Free MeSH 1.84 ± 0.01b 2.83 ± 0.23a < LQc 2.24 ± 0.03a 0.75 ± 0.39c 2.68 ± 0.06a

BR MeSH 3.7 ± 0.1b 5.1 ± 0.1a 2.1 ± 0.2c 3.9 ± 0.8ab 1.8 ± 0.7c 3.8 ± 0.0b

Redox potential +6 –85.7 +38.2 –73.5 +45.1 –47.7

W6

Free H2S (control)
1.67 ± 0.06g 34.1 ± 0.96c

13.2 ± 0.18f 32.8 ± 0.78c 17.5 ± 0.32e 45.6 ± 0.45a

Free H2S (purged) 0.79 ± 0.01g 27.2 ± 0.11d 0.88 ± 0.01g 41.1 ± 1.5b

BR H2S (control)
23.9 ± 0.4f 69.7 ± 0.7a

29.8 ± 3.0e 36.2 ± 0.25d 29.9 ± 1.4e 57.9 ± 0.05b

BR H2S (purged) 48.6 ± 1.2c 42.2 ± 2.9d 39.2 ± 2.0d 56.4 ± 1.3b

Free MeSH (control)
2.6 ± 0.02g 5.9 ± 0.04d

4.9 ± 0.27f 7.1 ± 0.30c 5.1 ± 0.25ef 10.6 ± 0.18a

Free MeSH (purged) 0.17 ± 0.02h 5.5 ± 0.04e 0.36 ± 0.02h 9.0 ± 0.04b

BR MeSH (control)
4.3 ± 0.36ef 5.7 ± 0.67de

5.7 ± 1.2de 7.9 ± 0.26c 6.1 ± 0.13d 13.1 ± 0.01a

BR MeSH (purged) 1.8 ± 0.24g 5.4 ± 0.49de 3.0 ± 0.13fg 11.2 ± 0.37b

Redox potential (control)
–14.8 –58.1

26.3
n.m. n.m.

–118.4

Redox potential (purged) –6.3 –77.1

W7

Free H2S (control)
0.38 ± 0.01e 1.5 ± 0.24c

0.64 ± 0.02de 1.4 ± 0.06cd 0.98 ± 0.22cde 17.1 ± 0.73a

Free H2S (purged) 0.72 ± 0.16cde 0.67 ± 0.04de 0.90 ± 0.07cde 5.1 ± 0.17b

BR H2S (control)
55.7 ± 20.5ab 36.7 ± 4.6abc

30.9 ± 3.6c 23.3 ± 0.26c 32.2 ± 7.2bc 60.4 ± 2.6a

BR H2S (purged) 43.3 ± 7.8abc 32.7 ± 0.75bc 20.1 ± 1.6c 19.8 ± 3.6c

Free MeSH (control)
1.3 ± 0.02ef 7.2 ± 0.33c

1.7 ± 0.04e 7.6 ± 0.29c 5.2 ± 0.08d 19.4 ± 0.8a

Free MeSH (purged) 0.32 ± 0.06g 5.5 ± 0.01d 0.54 ± 0.06fg 9.5 ± 0.02b

BR MeSH (control)
2.8 ± 2.08de 4.8 ± 0.62cd

3.2 ± 0.97d 6.1 ± 0.35c 5.1 ± 0.63cd 16.8 ± 0.42a

BR MeSH (purged) < LDe 5.1 ± 0.22cd 3.4 ± 0.05d 11.7 ± 0.59b

Redox potential (control)
3 –49.8

79.7
n.m. n.m.

7.1

Redox potential (purged) 76.5 –23.6

W7 
(with 
Cu2+)

Free H2S (control)
0.38 ± 0.01c 0.27 ± 0.001c

0.35 ± 0.03c 0.54 ±0.002c 0.30 ± 0.05c 14.0 ± 0.46a

Free H2S (purged) 0.40 ± 0.001c 0.25 ± 0.02c 0.38 ± 0.01c 1.2 ± 0.26b

BR H2S (control)
55.7 ± 20.5bcde 77.6 ± 6.8ab

40.5 ± 4.4e 60.9 ± 0.49abcde 66.9 ± 2.7abc 85.8 ± 1.6a

BR H2S (purged) 41.6 ± 4.8de 65.8 ± 8.4abcd 47.8 ± 0.12cde 66.0 ± 6.7abcd

Free MeSH (control)
1.3 ± 0.02g 5.0 ± 0.07c

0.15 ± 0.17i 3.0 ± 0.07e 3.3 ± 0.01d 15.1 ± 0.04a

Free MeSH (purged) < LDi 2.8 ± 0.11f 0.59 ± 0.06h 11.0 ± 0.06b

BR MeSH (control)
2.8 ± 2.08cde 2.9 ± 0.06cde

1.4 ± 0.28de 4.4 ± 0.38c 4.0 ± 0.44c 15.1 ± 0.23a

BR MeSH (purged) < LDe 3.6 ± 0.60cd 3.9 ± 1.0c 11.7 ± 0.32b

Redox potential (control)
3 –59.3

84
n.m. n.m.

–86

Redox potential (purged) 91.3 –72
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down those values to 2.8  µg/L and 29 µg/L, respectively. 
The two-times purged wine was further subjected to RA, 
accumulating then 22.5  µg/L and 65.6 µg/L of free and 
BR H2S, respectively, which are 60 % and 91 % of that 
accumulated after 2nd RA. Even if 22.5 µg/L of free H2S 
is still too high a value, it represents an improvement with 
respect to initial values. In the case of MeSH, whose initial 
levels were relatively modest, the decline is not produced. 

The same process was carried out with W6, a red wine that 
was made with grapes spiked with S powder to get a high level 
of VSCs and their precursors (Jastrzembski et al., 2017). In 
this and the following cases, a control was kept throughout 
the process. The control suffered exactly the same operations 
as the wine, except for the purging processes. As can be 
seen, a large part of the free H2S measured after the RA 
is spontaneously lost, most likely by evaporation, even 
in the control sample. The purging process introduces 
additional losses of free H2S of 12.4 (13.2–0.79) µg/L 
and 16.7  (17.5‑0.88)  µg/L in the first and second purging 
processes, respectively. However, the two-times purged 
wine, after the 3rd RA, still accumulates 41.1 µg/L of free 
H2S, an amount which is significantly, but just slightly, 
smaller than that accumulated by the control. A very similar 
result is observed for free MeSH. These results confirm 
that purging improves just slightly the ability of the wine to 
accumulate free H2S and MeSH. The improvement cannot 
be appreciated in the BR fractions of both H2S and MeSH. It 
should be noted, in comparison with the results obtained in 
W4, in which levels after RA of both free and BR H2S, were 
smaller in the two‑times purged wines, that in this case, final 
levels of all forms are maxima. This may suggest that this 
wine contains a higher pool of oxidised precursors of H2S 
and MeSH, which is consistent with the way it was made.

The same procedure was applied to a third wine, (W7) and 
the same wine spiked with Cu2+ at 100 µg/L before the 1st 
RA. Both samples, W7 and W7_Cu, had particularly low 
levels of free H2S after the first RA (1.5 µg/L and 0.27 µg/L, 
respectively), because of a previous copper finning carried 
out in the cellar. Under these conditions, the purging should 
have a limited effect on H2S levels. However, results reveal 
that after the two cycles of purging, the wines develop 
consistently smaller levels of free and BR H2S and MeSH 
than the corresponding controls. The improvements are 
clearly poorer in the wine containing more copper, which just 
confirms that copper limits, but does not prevent completely, 
the efficiency of the treatments. Despite the improvements, 
it should be noted that the problem has not been completely 
eradicated, since levels of free MeSH are still very high. In 
this case, the highest levels of free H2S and MeSH found in 
the control samples after three processes of reductive ageing 
are particularly noteworthy. This is just the consequence that 
free Cu cations are no longer available, as levels of H2S-
bonded Cu have increased during ageing, as demonstrated by 
Zhang et al. (2022).

All these experiments conclude that purging a wine under 
reductive conditions with an inert gas has limited efficacy 
in solving reductive problems. Several cycles of purging 

the wine in a reductive state are required to have significant 
effects, which can take a long time. In addition, the magnitude 
and relevance of the effects depend on the amounts of 
precursors of H2S and MeSH present in the wine and their 
copper levels. 

4. Strong aeration with or without polymeric 
thiol-functionalised silica
In the final experiments, two of the wines were subjected to 
an intense oxidation process during which they consumed 
two saturations of air. In half of the vessels, a silica 
functionalised with thiol was also added. The purpose of such 
addition was to ensure that if H2S, during oxidation, forms 
major disulfides, polysulfides, or polysulfanes, most of these 
oxidation products remain anchored to a solid support, which 
should facilitate their subsequent removal by centrifugation. 
After three days in contact with oxygen, silica was removed 
and all samples were further stored in complete anoxia until 
they spontaneously developed negative redox potential. Their 
contents in free and BR forms of H2S and MeSH after and 
before RA2w were analysed. Results are given in Table 5.

As can be seen, the oxidation was able to completely remove 
free H2S from wine 1 and removed two-thirds from wine 5. 
In the presence of functionalised silica, the amount removed 
rose to nearly 80 %. The effects on BR forms of H2S were 
also highly significant for both oxidation and the presence 
of silica. The small amounts of MeSH present in both wines 
were completely removed by oxygen.

After reductive ageing, however, all aerated samples 
behave similarly, regardless of the presence or absence of 
functionalised silica. As can be seen, all aerated samples 
accumulated during the anoxic ageing less than half of 
the free H2S accumulated by their corresponding controls. 
Furthermore, the levels of free H2S accumulated by aerated 
samples (between 6.3 µg/L and 7.1 µg/L in wine 1 and 
7.4‑7.6 µg/L in wine 5), fall within the low and safe range 
of H2S accumulation, so that it can be said that the oxidation 
treatment was completely successful in eliminating the risk 
of developing “reductive” off-odours from these two red 
wines. This statement seems to be confirmed by the very 
low levels of BR H2S and by levels of free and BR MeSH 
accumulated after reductive ageing, as seen in the table. These 
results confirm previous studies of some authors about the 
impact of aeration during fermentation (Bekker et al., 2016; 
Bekker et al., 2021; Day et al., 2015; Day et al., 2021).

The lack of effect of functionalised silica suggests that, in the 
present case, the oxidation induced by the wines provoked 
an intense formation of quinones which reacted with sulfides 
as nucleophiles (Nikolantonaki et al., 2010; Nikolantonaki 
and Waterhouse, 2012), so that, basically it seems that H2S, 
MeSH and, apparently, most of their forms and precursors, 
disappeared. It should be noted that this result is in apparent 
contradiction with those obtained by Vela et al. (2018). 
These authors reported that micro-oxygenation was not 
able to induce noticeable changes in the free or BR-forms 
of H2S and MeSH, once the wine had returned to negative 
potentials. It can be argued, however, that micro-oxygenation 
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is a mild oxidation in which O2 levels are never very high. 
Under those conditions, the availability of reactive quinones 
would be much smaller, so that the preferential reaction of 
H2S and thiols would be the formation of disulfides and 
polysulfides, likely by the direct reduction of the 1-HER 
radical formed by the Fenton-induced oxidation of ethanol 
(Kreitman et al.,  2013). Although diverse kinetic studies 
have demonstrated that the reaction between thiols and 
1-HER is fast (de Almeida et al., 2013; Lund et al., 2015), 
results obtained here suggest that such a reaction hardly takes 
place if wine oxidation is very fast.

Considering the poor performance of all the different 
remediation strategies essayed in this paper, the result 
obtained in this last experiment is highly promising. 
However, oxidation is a double-edged knife that can promote 
several unpleasant changes in wine, such as browning or 
aroma deterioration. As the development of these detrimental 
changes is strongly dependent on the particular chemical 
composition of the wine, particularly on its polyphenolic, 
amino acid, and metal cation contents (Bueno et al., 2018; 
Bueno-Aventín et al., 2021), further research will be needed 
to assess when and how oxidation can be safely carried out 
as a viable remediation alternative to “reductive” off-odours. 

CONCLUSION

Neither the use of precipitation adjuvants nor filtration aids 
can improve results obtained by classical copper fining. Even 
if copper can be partially removed, such removal takes place 
without significant reduction in the wine contents in H2S or 
MeSH, or in the wine’s ability to accumulate them during 
aging. 

Purging wine in a reductive state with inert gas can induce 
a significant reduction in the ability of wine to further 
accumulate H2S and MeSH, but several cycles of purging 
are required, which may question its practical application. In 
addition, the overall efficiency of the process depends on the 
size of the pool of precursors, which, up to this date, cannot 
be adequately measured, and on the presence of copper. 

Oxidation emerges, of all the tested strategies, as the most 
efficient to remove in the short and long-term, “reductive” 
off-odours. However, given its potential negative effects 
on wine quality, the development of safe procedures will 
require a systematic long-term research effort to understand 
the conditions under which H2S and MeSH are irreversibly 
removed while minimising oxidation-related damage.

These conclusions have been extracted from the results 
obtained with a small selection of wines due to problems 
linked to the work under a strict anoxic atmosphere and a long 
observation period and although all treatments have not been 
tested on all wines it is evident that new strategies should be 
studied to remove hydrogen sulfide and methanethiol from 
wine, however, results of this work suggest they could be 
more effective if their objective is eliminating the pool of 
precursors.
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TABLE 5. Aeration as reductive remediation. Effects of oxidation, in the presence or not of thiol- functionalised silica 
(SH-Sil), on free and BR forms of H2S and MeSH (µg/L), after the treatment and after 2 weeks of accelerated anoxic 
aging at 50 °C (3rd RA2w).

LD H2S: 0.003 µg/L; LQ H2S:0.01 µg/L; LD MeSH: 0.035 µg/L; LQ MeSH: 0.12 µg/L. Redox potential is expressed in mV vs 
a standard Ag/AgCl reference electrode. Different superscript letters denote significant differences according ANOVA test.

W1 W5

After treatment Control Aerated Aerated +SH-Sil Control Aerated Aerated + SH-Sil

Free H2S 2.7 ± 0.02a < LDc < LQb 7.0 ±0.2a 2.2 ± 0.1b 1.4 ± 0.3c

BR H2S 55.9 ± 1.8a 12.8 ± 5.9b < LQc 78.5 ± 7.3a 4.6 ± 2.6b < LQc

Free MeSH 0.51 ±0.01a < LDb < LDb 0.56 ± 0.0a < LDb < LDb

BR MeSH 1.66 ± 0.2a < LQb < LQb 1.9 ± 0.1a < LQb < LQb

Redox potential –15.7 +10.5 –8.9 –74.7 –55.3 –44.6

After RA2w Control Aerated Aerated +SH-Sil Control Aerated Aerated + SH-Sil

Free H2S 15.8 ± 1.3a 6.3 ± 0.2b 7.1 ± 1.2b 20.8 ± 0.41a 7.4 ± 1.1b 7.6 ± 0.5b

BR H2S 63.2 ± 0.1a 10.5 ± 2.7b 11.5 ± 6.8b 86.0 ± 6.52a 14.2 ± 8.5b 16.4 ± 7.6b

Free MeSH 1.13 ± 0.01a 0.8 ± 0.1b 0.7 ± 0.0b 0.99 ± 0.02a < LQb < LQb

BR MeSH 2.53 ± 0.31a < LQb < LQb 2.9 ± 0.21a < LQb < LQb

Redox potential –99.7 –97.3 –93.2 –91.8 –57.2 –65.6
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