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Abstract: Obtaining accurate forecasts for the evolution of epidemic outbreaks from deterministic
compartmental models represents a major theoretical challenge. Recently, it has been shown that
these models typically exhibit trajectory degeneracy, as different sets of epidemiological parameters
yield comparable predictions at early stages of the outbreak but disparate future epidemic scenarios.
In this study, we use the Doi–Peliti approach and extend the classical deterministic compartmental
models to a quantum-like formalism to explore whether the uncertainty of epidemic forecasts is
also shaped by the stochastic nature of epidemic processes. This approach allows us to obtain a
probabilistic ensemble of trajectories, revealing that epidemic uncertainty is not uniform across
time, being maximal around the epidemic peak and vanishing at both early and very late stages
of the outbreak. Therefore, our results show that, independently of the models’ complexity, the
stochasticity of contagion and recovery processes poses a natural constraint for the uncertainty of
epidemic forecasts.

Keywords: epidemic dynamics; compartmental models; Doi–Peliti formalism

1. Introduction

Understanding the temporal dynamics of epidemic outbreaks is critical for pandemic
management [1,2]. Classical compartmental models for disease transmission, grounded
in the pioneering work of Kermack and McKendrick [3], are considered the keystones of
mathematical epidemiology to quantify the public health threat posed by a novel pathogen.
Indeed, different indicators, such as the effective reproduction number [4] or the expected
outbreak size, have long served as hallmarks for the design of non-pharmaceutical inter-
ventions or vaccine rollouts to mitigate the social impact of infectious diseases.

The use of compartmental models for the assessment of epidemic scenarios implicitly
assumes that the ultimate consequences of control policies on disease outbreaks can be
predicted. However, forecasting the long-term evolution of infectious disease outbreaks
still remains a major challenge [5,6], both theoretically [7–9] and from a data-driven per-
spective [10,11].

Focusing on real data, such challenge can be attributed to the unpredictability and
intricacies of the variety of biological and social factors neglected in simple compartmental
models but ultimately shaping the long-term propagation of infectious diseases [12,13].
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Along this line, multimodel forecasting efforts [14,15], integrating predictions from multiple
frameworks with different underlying assumptions, have been recently proposed as a
solution to partially overcome the former fundamental limitation and to extend the time
horizon over which accurate forecasts can be made.

Beyond external factors not included in their formulation, the intrinsic mathemat-
ical properties of simple deterministic compartmental models also pose limitations for
the reliability of their long-term epidemic forecasts. Recent works have shown that the
parameter identification issue [16,17], measuring whether epidemiological parameters can
be retrieved when calibrating models with limited data, represents an important source of
uncertainty for epidemic forecasts. This issue is exacerbated when noisy points [18] or very
early stages of the outbreak [19] are considered for calibration purposes, as trajectory degen-
eracy ultimately makes divergent predictions compatible with these data. The latter issue
hampers the accuracy of the predictions of key quantities in mathematical epidemiology
such as the time and size of the epidemic peak or the duration of an epidemic wave [20].

Recognizing the limitations of deterministic models, the role of stochasticity in epi-
demic models has been also addressed over recent years [21–23]. For instance, stochastic
Markovian models allow for capturing the uncertain course of epidemic trajectories in
small size populations [24–27] and improving the calibration of epidemic frameworks to
real noisy data through the use of adapted Kalman filters [28,29]. In general, accounting
for the inherent stochastic dynamics in epidemic processes requires moving from a set
of equations governing the time evolution of the expected number of cases to a master
equation approach yielding a probabilistic ensemble of epidemic trajectories. One simple
approach consists of introducing random fluctuations in the spreading dynamics to im-
prove the compartmental differential equations [30], while more sophisticated frameworks
rely on the use of quantum mechanics tools to study different dynamic systems [31,32] or
the Doi–Peliti formalism to study the critical behaviour of epidemiological models using
the Hamilton–Jacobi equations [33].

Despite these novel approaches, determining the influence of the inherent stochasticity
of epidemic processes on forecast uncertainty remains an open problem. To fill this gap, we
follow previous works and propose a quantum-like formalism to model epidemic dynamics
by extending the Doi–Peliti approach [34,35] to the classical susceptible–infected–susceptible
(SIS) and susceptible–infected–recovered (SIR) models. By leveraging the Doi–Peliti for-
malism, our paper aims at (i) unravelling hidden behaviours in classical deterministic
compartmental models and (ii) showcasing how stochasticity shapes the uncertainty of
epidemic outbreaks. In particular, the main contribution of this study is to reveal that the
stochastic nature of epidemic processes hinders obtaining faithful long-term forecasts on
the magnitude and position of the epidemic peak at early stages of an epidemic outbreak.

This article is organized as follows. We first introduce the theoretical formalism of
our work in Section 2, including the basic rules to describe the system and the Master
Equation. Then, in Section 3, we present the main results of our work, related to the
simulation of the Master Equation, the probability of finding minor outbreaks and the
stochastic determinants for the uncertainty of epidemic forecasts. Finally, we discuss the
implications of our findings and future research venues in Section 4.

2. Doi–Peliti Approach to Compartmental Models

In this section, we present the theoretical background of our work, both the classical
compartmental models and Doi–Peliti formalism, with equations that lead to the description
of this new approach. In both cases, we consider a closed population with N individuals,
thus neglecting any changes in the population size as a result of birth–death processes.
Regarding the structure of contacts, we restrict to the simplest scenario and follow a
mean-field assumption considering well-mixed populations.
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2.1. Deterministic Equations for the SIS and SIR Models

The most usual way to tackle the modelling of SIS and SIR dynamics is to consider a
set of ordinary differential equations (ODEs) governing the time evolution of the expected
occupation of the different compartments. In the simplest case, the SIS model assumes that
each individual can be either in the Susceptible or in the Infected state and that transitions
between them correspond to contagion and recovery processes. In particular, Susceptible
individuals become infectious at a β rate upon contact with Infected individuals. Moreover,
Infected individuals recover at a γ rate, without acquiring any immunity against the
circulating pathogen. Denoting the occupation of the Susceptible (Infected) compartment
by S (I), the deterministic equations capturing the SIS dynamics are as follows:

d
dt

S = −βS
I
N

+ γI,
d
dt

I = βS
I
N

− γI. (1)

The SIR model, instead, accounts for those infections conferring immunity to the host
upon recovery. This aspect is included by assuming that infectious individuals recover at a
γ rate and enter into a new compartment, the Removed state R, rather than returning to
the Susceptible state. From these simple rules, the differential equations of the SIR model
read as follows:

d
dt

S = −βS
I
N

,
d
dt

I = βS
I
N

− γI,
d
dt

R = γI. (2)

2.2. The Doi–Peliti Master Equation

Going beyond the traditional deterministic approach, epidemic dynamics can be
interpreted as stochastic birth–death processes. In these models, individuals transition
(or ‘die’) from one compartment to ‘be born’ into another. In this context, Doi–Peliti
formalism [34,35] takes advantage of the quantum field theory to build a Markovian Master
Equation (MME). This approach requires two fundamental components: the vectors, |φ⟩,
describing the dynamical state of the system, and the creation–annihilation operators, a, a†,
which create or annihilate individuals, respectively, in the compartments described in the
epidemic models.

Regarding the first component, we follow a probabilistic approach considering that
the state of our system |φ⟩ exists in the space in which the elements of the basis |ϕ⟩ span,
with each one representing a possible configuration of the model under consideration.
Mathematically, we assume the following:

|φ⟩ = ∑
ϕ

P(ϕ)|ϕ⟩ . (3)

The elements |ϕ⟩ of the basis depend on the compartmental model and are explained
below for both the SIS and the SIR models. The second component concerns the ladder
operators for each compartment, a and a†, creating or removing individuals, respectively.
Assuming that |x⟩ represents the element of the basis corresponding to an occupation
number x of a given compartment, the previous operators are defined as follows:

a†|x⟩ = |x + 1⟩, (4)

a|x⟩ = x|x − 1⟩. (5)

Likewise, these operators follow some quantum mechanics principles: their eigenvalues
allow us to write the states as |x⟩ =

(
a†)x|0⟩, and they satisfy the usual commutation

rule
[
a, a†] = aa† − a†a = Î. Furthermore, it is also possible to define a number operator,

n̂ = a†a, which returns the occupation number of the state n̂|x⟩ = x|x⟩.
With these two ingredients, one can construct the Hamiltonian-governing different

dynamics in systems with many-body interactions as outlined in [33,36]. Regardless of the
chosen dynamics, the Doi–Peliti approach allows us to capture the evolution of the system
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state, |φ⟩, using a backward master equation (BME) [34,35], analogous to Schrödinger’s
equation with an imaginary time as follows:

d
dt
|φ⟩ = H|φ⟩. (6)

2.3. The Doi–Peliti Approach to the SIS Model

In an SIS dynamics with a closed population of N individuals, the number of infected
individuals I provides enough information to describe the state of the system |φSIS⟩, given
the constraint S = N − I. Thus, the state |φSIS⟩ can be written as a combination of all
possible occupation numbers, {|I⟩}I=0,...,N , forming the following basis of the system:

|φSIS⟩ = ∑
I

P(I)|I⟩. (7)

In the former linear combination, the coefficients P(I) = ⟨I|φSIS⟩ measure the probability
associated with each occupation number, unequivocally defining the state |φSIS⟩ by the
set {P(I)}I=0,...,N .

To construct the Hamiltonian governing SIS dynamics, we consider different ladder
operators acting on each compartment. We consider that the operators a, a† act on the
susceptible states, whereas b, b† act on the infectious ones. Therefore, the operator

(
ab†)

models contagion processes, creating an infectious individual and removing a susceptible
one, whereas

(
ba†) captures recovery processes. Consequently, the Hamiltonian of the SIS

dynamics, HSIS , reads as follows:

HSIS = − β

N
nI

(
nS − ab†

)
− γ

(
nI − ba†

)
. (8)

2.4. The Doi–Peliti Approach to the SIR Model

The SIR model requires a basis that accounts for the occupation numbers of two of
the three compartments (S, I, and R). Here, without loss of generality, we take the infected
and susceptible occupation numbers to fully capture the system composition. Therefore,
we define the state basis as {|S, I⟩}S, I=0,...,N; S+I≤N . Hence, the state |φSIR⟩ is expressed
as follows:

|φSIR⟩ = ∑
S, I

P(S, I)|S, I⟩, (9)

with P(S, I) = ⟨S, I|φSIR⟩. Analogous to the SIS case, we assume that the set {P(S, I)}
defines |φSIR⟩, simplifying the notation and the representation of the states.

To construct the SIR Hamiltonian, we must define the ladder operators c and c† acting
on the recovered compartment. In the SIR model, the transition of an infected individual
moving to the recovered state

(
bc†) replaces the transition to the susceptible state of the

SIS model. Then, the Hamiltonian HSIR is as follows:

HSIR = − β

N
nI

(
nS − ab†

)
− γ

(
nI − bc†

)
. (10)

3. Results

In this section, we present the main results of our work, derived from simulations of
the Master Equation discussed earlier. The results are organized into three subsections: the
dynamics of both models (Section 3.1), a formal analysis and computational solution for
the probability of no-outbreak results (Section 3.2), and an examination of the predictability
problem using entropy measures of temporal dynamics (Section 3.3).
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3.1. Dynamics of the Doi–Peliti Master Equation

Figure 1 summarizes the two different approaches of classical compartmental models,
highlighting the conceptual differences between both the determistic ODEs for the SIS and
SIR models and their corresponding equations based on the Doi–Peliti approach.

𝛾

I

S SI

𝛽
𝛾

I

S RI

𝛽

Differential equations Doi-Peliti formalism

ሶ𝜌𝑆 = 𝑓(𝜌𝑆, 𝜌𝐼) 

ሶ𝜌𝐼 = 𝑔(𝜌𝑆, 𝜌𝐼) 

𝑎, 𝑎† 𝑏, 𝑏†

𝑑

𝑑𝑡
𝜑𝑆𝐼𝑆 = ℋ𝑆𝐼𝑆 𝜑𝑆𝐼𝑆

Differential equations Doi-Peliti formalism

ሶ𝜌𝑆 = 𝑓(𝜌𝑆, 𝜌𝐼, 𝜌𝑅) 

ℋ𝑆𝐼𝑅

𝑎, 𝑎† 𝑏, 𝑏†

𝑑

𝑑𝑡
𝜑𝑆𝐼𝑅 =ℋ𝑆𝐼𝑅 𝜑𝑆𝐼𝑅

ሶ𝜌𝐼 = 𝑔(𝜌𝑆, 𝜌𝐼, 𝜌𝑅) 

ሶ𝜌𝑅 = ℎ(𝜌𝑆, 𝜌𝐼, 𝜌𝑅) 

𝑐, 𝑐†

(a) (b)

ℋ𝑆𝐼𝑆

Figure 1. Comparison between theoretical approaches to compartmental models based on differential
equations and the Doi–Peliti equations for the SIS (Panel (a)) and SIR (Panel (b)) models. The
classical approach consists of deriving a set of deterministic ODEs governing the time evolution
of the expected occupation of each compartment m, denoted by ρm. Conversely, the Doi–Peliti
approach involves a quantum-like approach, constructing the Hamiltonian for both dynamics from
the ladder operators determining the occupation of each compartment and using the time-dependent
Schrödinger equation for the evolution of the dynamical state of the system.

To obtain the time evolution of epidemic outbreaks in both the SIS and the SIR model
under the Doi–Peliti approach, we should use the matrix representation of the Hamiltonian
operator and compute its elements Hx, x′ = ⟨x|H|x′⟩ capturing the transitions between the
possible configurations |x⟩ and |x′⟩ for each model. Once the Hamiltonian is defined, the
analytical solution of Equation (6) can be readily obtained as follows [37]:

|φ(t)⟩ = eHt|φ(0)⟩, (11)

where expHt represents the propagator of each dynamics.
The computation of the system propagator for each time t might be cumbersome,

especially for high-dimensional systems where the diagonalization of the Hamiltonian is
computationally expensive. To overcome this limitation, we rely on the Markovian property
of the master equation and consider the time evolution of the system over multiple discrete
time steps of duration ∆t. In each time step, the state of the system is updated as follows:

|φ(t + ∆t)⟩ = eH∆t|φ(t)⟩. (12)

Therefore, the time evolution of the system can be obtained as the subsequent action of a
single propagator eH∆t on the updated state according to Equation (12), thus saving the
computational time associated with the computation of the propagator. Throughout the
manuscript, we assume ∆t = 0.1.

As explained above, the evolution of epidemic outbreaks in the SIS model is fully
characterized by monitoring the time evolution of the probabilities P(I(t)) of finding I
individuals in the infected compartment at time t. Without any loss of information, let
us instead focus on the probability of finding a fraction of population ρI(t) in such a
compartment at time t, with ρI(t) = I(t)/N . Figure 2a represents the evolution of this set
of probabilities for an epidemic triggered by a single infectious individual in a population of
NSIS = 1000 individuals, characterized by β = 0.6, γ = 0.1, thus with a basic reproduction
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number R0 = β/γ = 6. We also represent the analytical solution of the deterministic ODE,
Equation (1) in the same figure, governing the evolution of the SIS model (dashed line of
Figure 2a).

Figure 2. (a): Time evolution of the probability of finding a fraction ρI of individuals in the infected
state P(ρI) (color code) for an SIS dynamics. (b,c) The time evolution of the probability of finding a
fraction ρm of the population in the compartment m, P(ρm) (color code) for an SIR dynamics. The
compartments shown are (b) the Infected compartment and (c) the Recovered compartment. The
deterministic solutions of Equations (1) and (2) (dashed lines) are shown over the cloud probability
to compare both frameworks. In panel (a), we consider a population of NSIS = 1000 individuals and,
in panels (b,c), a population of NSIR = 100 individuals. In all panels, we fix the contagion rate to
β = 0.6 and the recovery rate to γ = 0.1, yielding a basic reproduction number R0 = 6.

The comparison between both probabilistic and deterministic approaches reveals
the wealth of information typically overlooked by classical deterministic models. First,
epidemic uncertainty is not uniform across time, being maximal at intermediate stages. For
instance, at t = 15, the deterministic equations predicts a widespread epidemic (ρI ≃ 0.4),
whereas the probabilistic ensemble of trajectories also shows a significant probability of
finding a small epidemic outbreak ρI ≃ 0. The latter shows how the classical indicator,
i.e., the expected fraction of population in the infected state, might not be a representative
quantity to capture the stochastic transient dynamics of epidemic outbreaks. This behaviour
cannot be reproduced by the deterministic model. Remarkably, this uncertainty shrinks
around the deterministic value at later stages t > 30, showing the robustness of classical
deterministic approaches in determining the metastable epidemic state of the system. Note,
however, that the steady state of the stochastic system is always ρ∞

I = 0. This occurs
because the absence of infected individuals represents an absorbing state with a probability
of occupation always increasing over time as a result of stochastic fluctuations destabilizing
the metastable epidemic state.

For the SIR model, we characterize the evolution of epidemic outbreaks by monitoring
the occupation of both the infected and the recovered compartments. As the state of
the system is described by {P(S, I)} (see Section 2.4), we should compute the marginal
probabilities {P(I)(t)} and {P(R)(t)} as follows:

P(I) = ∑
S

P(S, I), (13)

P(R) = ∑
S,I|S+I=N−R

P(S, I). (14)

Figure 2b,c represent the time evolution of the infected and recovered compartments,
respectively, considering a population of NSIR = 100 individuals due to computational
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memory limits, including the deterministic solution of Equation (2) with dashed lines. In
these plots, we can observe that the Doi–Peliti approach reproduces the wave-like behaviour
of the epidemic outbreaks under the SIR model. As in the case of the SIS model, we observe
that epidemic uncertainty is not uniform across time and that the deterministic trajectories
capture the time evolution of the expected value of the probability distributions yielded by
the Doi–Peliti approach. Additionally, we observe a bimodal probability density function of
the recovered individuals. While the region closer to the deterministic equations captures
major epidemic outbreaks, the probabilistic cloud with negligible recovered population is a
consequence of the stochastic effects driving the system to the absorbing state before any
epidemic is observed in the population.

Our results reveal that epidemic uncertainty is not uniform in a single epidemic
trajectory for both the SIS and SIR models. To fully characterize the impact of stochasticity
on epidemic dynamics, we now analyze the uncertainty of the order parameters of both
models as a function of the basic reproduction number R0 of the disease, as shown in
Figure 3. For the SIS model, Figure 3a represents the prevalence of the disease in the
metastable epidemic state, at t = 1000 days, with a deterministic value that is given by
ρSIS,met

I = 1 −R−1
0 . Conversely, for the SIR model, we analyze in Figure 3b the attack

rate of the disease ρ∞
R defined as the fraction of recovered individuals at equilibrium.

The deterministic value for this parameter is obtained by solving the implicit equation

ρ∞
R = 1 − s0e−R0(ρ∞

R −r0), where s0 and r0 represent the initial proportion of susceptible
and recovered individuals in the population. In both cases, the Doi–Peliti framework
proves that there is a high probability of observing the order parameters predicted by
the deterministic ODEs. Notably, as previously stated, the SIR model reveals a notable
feature: a non-negligible probability of having a minor outbreak in the stationary state,
even for values of R0 > 1.0, as shown in Figure 3b. We further explore this phenomenon in
Section 3.2.

Figure 3. (a,b): Evolution of the cloud probability of the order parameters as R0 evolves, using the
prevalence of the metastable epidemic state computed at t = 1000 days ρSIS,met

I in the SIS model
(Panel (a)) and the attack rate ρ∞

R in the SIR model (Panel (b)). The deterministic solution for the order
parameters of both models is also shown in both panels with dashed lines. (c) The evolution of the
entropy as a function of R0 for the SIS (solid lines) and SIR (dashed lines) and three different initial
conditions, varying the number of initially infected individuals I0 (color code). For the SIS model,
we consider a population of NSIS = 1000 individuals and, for the SIR, a population of NSIR = 100
individuals. In all panels, we fix the recovery rate to γ = 0.1 and modify the infection rate β, such
that R0 ∈ [0.8, 4.0].

Qualitatively, Figure 3 reveals that the uncertainty of the predictions for the order
parameter is not uniform but instead varies as a function of the basic reproduction number
of the disease R0. To quantify such behaviour, we compute the entropy H of the marginal
probability distributions for the occupation of a single compartment X in each epidemic
model, denoted by P(X) as follows:
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H = −∑
X

P(X) log P(X), (15)

where X stands for the infected (recovered) compartment I (R) in the case of the SIS
(SIR) model.

Figure 3c represents the evolution of entropy for both models as a function of R0
and the number of individuals initially infected I0. First, we observed that entropy does
not follow a monotonic dependence on R0 for the SIR model. Instead, entropy reaches a
maximum value and then drops as R0 increases. This behaviour is driven by the presence
of a no-outbreak probability, which significantly influences the system when R0 ∼ 1.0,
leading to a greater uncertainty. As R0 grows further, the probability of a minor outbreak
diminishes, and the cloud probability around ρ∞

R ∼ 0 shrinks. Analogously, for the SIS
model, there is a high probability of falling into the absorbing state in the vicinity of R0 ≃ 1,
which starts decreasing with R0, favoring the occupation of the epidemic metastable state
to the detriment of the absorbing state. This phenomenon is reflected by the increase in
entropy observed for the SIS model with R0, which might give rise to a non-monotonic
behaviour when the occupation of the metastable epidemic state becomes dominant over
the absorbing one. Note that the entropy for the SIS model is analyzed at t = 1000 as
in the steady state H∞

SIS = 0, provided the absorbing state is the single equilibrium of
the dynamics.

3.2. The Probability of No-Outbreak in the Doi–Peliti Formalism

The interplay between the stochastic nature of compartmental models and the exis-
tence of absorbing states has been long studied in the mathematical epidemiology field. In
1955, Whittle [38] derived the probability to find a minor outbreak caused by a pathogen
with a given reproduction number R0. Using the theory of branching processes, the proba-
bility of extinction of an outbreak given a number of I0 individuals, πNO(I0), is fulfilled
as follows:

πNO(I0) =
βS0 I0/N

βS0 I0/N + γI0
πNO(I0 + 1) +

γI0

βS0 I0/N + γI0
πNO(I0 − 1) . (16)

Note that the two terms in the previous equation can be related to HSIR in the Doi–Peliti
approach. In particular, βS0 I0/N corresponds to the rate of transition H|S0,I0⟩,|S0−1,I0+1⟩,
whereas the term γI0 corresponds to H|S0,I0⟩,|S0,I0−1⟩.

Considering a small number of infectious individuals, we can assume S0 ≃ N, turning
Equation (16) into the following:

πNO(I0) =
R0

R0 + 1
πNO(I0 + 1) +

1
R0 + 1

πNO(I0 − 1) (17)

For the simplest case I0 = 1, and bearing in mind that πNO(0) = 1, since no outbreak can
take place without the initial infectious individuals, the equation is reduced to a quadratic
form with the following roots:

R0

R0 + 1
πNO(1)2 − πNO(1) +

1
R0 + 1

= 0 −→ πNO(1) =


1 R0 < 1
1
R0

R0 > 1
(18)

Finally, introducing a tree-like assumption [22] in the presence of multiple initially
infected individuals, i.e., π2 = (π1)

2, we can generalize the former equation as follows:

πNO(I0) =


1 R0 < 1(
1
R0

)I0

R0 > 1
(19)



Entropy 2024, 26, 888 9 of 15

To validate this theoretical expression, we perform agent-based simulations relying
on the τ-leap algorithm. In particular, we consider a population of N = 105 individuals
and compute the probability of not observing an outbreak by varying the initial number
of infected individuals I0 and the basic reproduction number of the pathogen R0. The
probability of no outbreak πNO(I0) is computed as the fraction of simulations giving rise to
minor outbreaks with little impact on the population. To compute such quantity, we classify
an epidemic trajectory as a minor outbreak when less than 20% of the expected attack rate
of the major outbreak, Rdet

∞ , has been infected throughout the dynamics. Mathematically,
we assume that the attack rate Rminor

∞ of minor outbreaks fulfils Rminor
∞ ≤ 0.2Rdet

∞ + I0. Since
no major outbreak can be reached when R0 < 1, we assume Rminor

∞ ≤ 0.2N + I0 in this case.
Figure 4 shows that the theoretical expression fairly captures the results from the stochastic
simulations. Note that the choice of R∞

minor is somehow arbitrary as there is not a unique
way of defining the attack rate corresponding to a minor outbreak in the SIR model as a
function of R0. Nonetheless, we have checked that the results remain consistent under
other choices for R∞

minor.

Figure 4. Probability of generating minor epidemic outbreaks as a function of the basic reproduction
number R0 and the number of individuals initially infected I0 (symbols and color code). Dashed
lines represent theoretical estimations obtained from Equation (19). Filled dots represent integration
in the region of low attack rates (see text for details) of the probability density function for recovered
individuals obtained through the Doi–Peliti equations. Empty dots represent the results from
agent-based simulations using the τ-leap algorithm. We simulate n = 1000 epidemic trajectories,
considering that a minor outbreak is characterized by an attack rate Rminor

∞ < 0.20N + I0 if R0 < 1
and Rminor

∞ < 0.05R∞ + I0 if R0 > 1.

Despite the former agreement, performing agent-based simulations comes with a high
computational cost. Obtaining significant results requires considering very large popula-
tions to avoid finite size effects, and many outbreaks should be simulated to attain enough
statistics to compare them with the theoretical predictions. In contrast, the Doi–Peliti equa-
tions can be readily leveraged to compute the probability of minor outbreaks. To do so,
we must restrict ourselves to the region of low attack rates and integrate the probability
density function of the recovered individuals once the steady state has been reached, fix-
ing the upper bound of integration to the values of Rminor

∞ considered in the agent-based
simulations. Figure 4 confirms that the Doi–Peliti equations allow for characterizing the
probability of observing minor outbreaks in the population without the need to perform
any agent-based simulations.
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3.3. The Predictability Problem of the SIR Model

Apart from capturing the probability of minor outbreaks, the Doi–Peliti equations can
be leveraged to quantify how the inherent stochasticity of epidemic processes shapes the
uncertainty of forecasts during an epidemic outbreak. This uncertainty does not come from
the model complexity or trajectory degeneracy in the space of parameters but instead is a
consequence of the existence of an underlying probabilistic ensemble of trajectories which
can be generated with fixed epidemiological parameters and initial conditions.

To tackle this problem, we generate a synthetic trajectory with the deterministic
equations of the SIR model and assume that these data represent the actual time evolution
of an epidemic outbreak with R0 = 6.0. To address how epidemic uncertainty changes over
time, we run Equation (12), assuming that the initial conditions correspond to the epidemic
state of the system across different time points of the epidemic trajectory. Note that, for
each time step, starting the epidemic outbreak from an epidemic point resembles the effect
of measurements in quantum mechanics (epidemic data), which change the probabilistic
state of the system to a well-defined one.

Figure 5 represents the time evolution of the probability density functions for the
density of infected individuals assuming four different initial times: t0 = 0 (Panel a),
t0 = tpeak/2 (Panel b), t0 = tpeak (Panel c), and t0 = 20 (Panel d). Several key insights
can be drawn from this figure. First, the width of the probability cloud decreases as the
initial condition time increases, indicating a reduction in the uncertainty present in the
system. Moreover, the Doi–Peliti formalism reveals vastly different epidemic impacts
around the epidemic peak, which shows how deterministic approaches overlook many
possible epidemic scenarios [39]. Additionally, in Panels b–d, the probability of no outbreak
disappears due to the large initial conditions.

Figure 5. Time evolution of the probability of finding a fraction ρI of individuals in the infected
compartment I, P(ρI) (color code), for the SIR dynamics of a pathogen with R0 = 6 propagating
across a population of N = 100 individuals. The initial conditions to run the Doi–Peliti equations
(cross symbol) are set according to the values of the deterministic epidemic trajectories at different
stages t0 of the outbreak: (a) t0 = 0, (b) t0 = tpeak/2, (c) t0 = tpeak and (d) t0 = 20.

To further quantify the time evolution of the predictability of the outbreak, we con-
sider different initial time points and compute the entropy of the generated probability
distributions of infected individuals at the epidemic peak, Hin f (tpeak). The latter reads
as follows:
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Hin f (tpeak) = −∑
I

P
(

I(tpeak)
)

log P
(

I(tpeak)
)

(20)

For the sake of generality, we perform the former analysis by considering several
epidemic outbreaks characterized by different R0 values. For a fair comparison between
epidemic scenarios, we consider the time points t̃0 in terms of the relative difference
between the time where forecasts are made and the time of the epidemic peak. In particular,
we define ∆t̃0 =

(
t0 − tpeak

)
/tpeak with ∆t̃0 ∈ [−1, 0].

Figure 6a represents the time evolution of the epidemic uncertainty of the peak
Hin f (tpeak) as a function of the time taken for forecasting purposes ∆t̃0. There, we ob-
serve that the entropy Hin f initially rises around ∆t̃ ≈ −1, reaches a maximum, and then
drops to zero at ∆t̃ = 0. The initial rise in entropy may seem counterintuitive at first
sight, but it is linked to the no-outbreak probability. When I0 is small (∆t̃0 ≈ −1), there is
a non-negligible probability of no outbreak (P0 ≡ πNO(I0) > 0) present throughout the
time series (Figure 5a). As ∆t̃0 grows, P0 decreases, leading to a less defined state (inset
of Figure 6a). This loss of information about the state is reflected in the slight rise in the
entropy. Once the initial conditions discard minor outbreaks, the uncertainty of forecasts
decreases as they are made closer to the epidemic peak, thus replicating the observed
phenomena in classical deterministic models [20].

Figure 6. (a): Entropy of the marginal distribution of infected individuals at the epidemic peak
Hin f (tpeak) as a function of the time from which forecasts are made ∆t̃0 and the reproduction number
of the pathogen R0 (color code). The inset panel shows the time evolution of the marginal probability
distribution for the fraction of population in the infected state at the epidemic peak P(ρI(tpeak)) (color
code). (b) Relative position of the highest entropy observed in the epidemic trajectory ∆t̃Hmax

in f
as a

function of ∆t̃ and the reproduction number of the pathogen R0 (color code). In all panels, time is
measured in relative units to the position of the epidemic peak (see text for further details).

In Figure 6b, we represent

∆t̃Hmax
in f

=

(
tHmax

in f
− tpeak

)
tpeak

(21)

against ∆t̃0, measuring the relative position of the maximum entropy found in the epidemic
trajectory, tHmax

in f
, compared to the time at which the peak of infected individuals occurs.

∆t̃Hmax
in f

< 0 indicates that the maximum of entropy occurs before the peak of contagions,

and ∆t̃Hmax
in f

> 0 implies that the uncertainty is higher at later stages. At early times of the
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outbreak, we find ∆t̃Hmax
in f

< 0, indicating that maximum uncertainty precedes the infection
peak. Regardless of the basic reproduction number R0, the latter position is delayed
as forecasts are performed at later stages. Interestingly, such delay is not linear with
the forecasting time, highlighting a complex interplay between the underlying stochastic
dynamics and the probabilistic output of epidemic processes in determining the uncertainty
associated with epidemic forecasts.

4. Discussion

Compartmental models are widely used to characterize mathematically epidemic
outbreaks, obtain short-term forecasts on their evolution, and design control policies
to mitigate their impact on society [40,41]. These models usually rely on deterministic
approaches based on ODEs to produce the expected time evolution of the number of cases
in the population. Therefore, most of the epidemic trajectories obtained do not account
for the stochastic nature of the underlying epidemiological processes driving the onset
of infectious diseases. To overcome this limitation, in this work, we have developed a
quantum-like approach, based on a Hamiltonian formulation of both the SIS and SIR
dynamics through Doi–Peliti equations. Our approach provides a probabilistic description
of the ensemble of possible epidemic trajectories yielded by the stochasticity of both
contagion and recovery processes.

The analysis of the probabilistic cloud of infections reveals interesting phenomena
which cannot be observed through the lens of deterministic models. For the SIR model, we
have first shown how such clouds typically present two disjoint areas with high density
of trajectories, corresponding to the propagation of major and minor outbreaks in the
population. Indeed, our results showed that the Doi–Peliti equations yield a fair estimation
of probability that a given pathogen generates a minor outbreak without the need of
performing computationally expensive agent-based simulations.

Focusing on major outbreaks, our results show that the uncertainty of epidemic
trajectories is not uniform across time, being maximal around the peak of contagions.
This finding poses theoretical constraints to the accuracy of long-term forecasts on the
position and magnitude of the epidemic peak. Indeed, for several pathogens with different
infectiousness, we show how the forecasts uncertainty around the epidemic peak is only
reduced when those are made considerably close to its position. Therefore, our results prove
that the reliability of epidemic forecasts is not only limited by the intrinsic complexity of
compartmental models [42,43] but also by the stochasticity of the epidemiological processes
determining the onset of pathogens in the population.

Regarding the limitations of the present work, one significant challenge is the amount
of memory needed to store the propagators in the equations. These propagators are
typically sparse as transitions between many epidemic states are not allowed given the
definition of the ladder operators. Nonetheless, memory demands can become a limiting
factor to analyze epidemic outbreaks in large size populations as the size of the propagators
scales with the number of individuals N. From a practical point of view, both the compart-
mental model describing the course of the disease and the assumptions on the structure
of contacts should be improved to use our formalism in a real epidemic scenario [44].
Factors such as political interventions, mobility patterns, demographic information, or
spatial structure must be incorporated to account for more complex behaviours within the
model [45]. However, yet improving the realism of the model, such refinements would also
enlarge the propagators of the system considerably, as more information would be required
to capture the evolution of any possible microstate in the system.

In summary, our study highlights that the mathematical characterization of epidemic
dynamics through deterministic ODEs misses very rich phenomena arising from the
stochasticity of epidemic outbreaks. We believe our theoretical framework provides a
solid ground for the future development of more complex models, leveraging advanced
probabilistic models to refine our understanding of epidemic phenomena reported in agent-
based simulations. For instance, the extension of this framework to networked populations
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could improve our understanding of the Griffiths phases [46,47] appearing close to the
epidemic threshold in complex networks. Likewise, the Doi–Peliti equations on metapopu-
lations could serve as a benchmark to characterize the so-called invasion threshold [48,49]
of pathogens driven by epidemic mobility without the need for agent-based simulations.
This ongoing development is promising for enhancing the predictive capabilities and im-
proving our responses to future outbreaks, contributing to better public health outcomes
and more accurate interventions.
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