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A B S T R A C T

The Immersed Boundary Method (IBM) is a popular numerical approach to impose boundary conditions
without relying on body-fitted grids, thus reducing the costly effort of mesh generation. To obtain enhanced
accuracy, IBM can be combined with high-order methods (e.g., discontinuous Galerkin). For this combination
to be effective, an analysis of the numerical errors is essential. In this work, we apply, for the first time, a
modified equation analysis to the combination of IBM (based on volume penalization) and high-order methods
(based on nodal discontinuous Galerkin methods) to analyze a priori numerical errors and obtain practical
guidelines on the selection of IBM parameters. The analysis is performed on a linear advection–diffusion
equation with Dirichlet boundary conditions. Three ways to penalize the immersed boundary are considered,
the first penalizes the solution inside the IBM region (classic approach), whilst the second and third penalize
the first and second derivatives of the solution. We find optimal combinations of the penalization parameters,
including the first and second penalizing derivatives, resulting in minimum errors. We validate the theoretical
analysis with numerical experiments for one- and two-dimensional advection–diffusion equations.
1. Introduction

Despite successful applications of Immersed Boundary Method
(IBM) in simulating complex flows [1,2] and fluid–structure interaction
problems [3–5], understanding and controlling numerical errors in
the IBM approach remains a challenge. IBM refers to a group of
numerical strategies that handle the boundary condition when the
solid is immersed in the computational domain, avoiding body-fitted
meshes and enabling the use of simple meshes (e.g., Cartesian or
Octree). The IBM approach originates from the idea of Peskin [6],
where singular forces represented by delta functions were positioned
at solid boundaries to mimic the effect of physical boundaries. Since
IBM reduces the complexity of mesh generation and handles moving
boundaries efficiently, it has received a lot of attention over the past
few decades. In general, IBM treatment can be achieved using the
cut-cell approach [7–10] or by introducing source terms, e.g., ghost
cell [11], projection method [12], direct forcing [13,14] or volume
penalization [15,16]. Although the cut-cell approach shows better
convergence properties, the extension to moving boundaries and the
treatment of different types of cut-cells remain challenging. A more
flexible approach is the IBM based on Volume Penalization (VP). The
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latter shows advantages in robustness, ease of implementation, and
theoretical convergence estimates [15,17].

Volume penalization is a classic IBM treatment based on modeling
the solid as a porous medium with low permeability [18,19]. The
method imposes the boundary condition by introducing a source term
(or penalty term) to the computational nodes located inside the solid.
This approach dates back to the work of Courant [20], where a penalty
method was used to transform constrained optimization problems into a
constraint-free problem. Volume penalization methods for the Navier–
Stokes equations were first proposed by Arquis and Caltagirone [17]
with a Brinkman-type penalization for the momentum equations. Af-
ter that, Angot et al. [15] and Carbou and Fabrie [21] proved the
convergence of volume penalization, showing that as the penalization
parameter 𝜂 approaches 0, the model error converges if no-slip bound-
ary conditions are considered. Subsequently, the volume penalization
was extended to allow Neumann boundary conditions [18,19] and
Robin boundary conditions [22], as well as spatially varying Neumann
and Robin boundary conditions [23]. The volume penalization method
was extended to compressible flows by Liu and Vasilyev [24], Brown–
Dymkoski et al. [25], Abgrall et al. [26] and Abalakin et al. [27]. This
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method has been applied to a variety of problems, including flapping
wings [16], two-phase flows [28], aeroacoustics [29], fluid–structure
interactions [30] and thermal flows [31]. So far, IBM research for high-
order methods has been relatively unexplored, with efforts focused on
Poisson problems [32,33] and cut-cell approaches [9,34]. In the context
of volume penalization, we have recently extended this approach to
high-order flux reconstruction schemes [35,36], and now to the high-
order Discontinuous Galerkin Spectral Element Method (DGSEM) in this
work.

There have been several attempts to analyze the errors of the IBM
approach. Bever and Leveque [37] analyzed the error of traditional
IBM applied to one-dimensional problems, and highlighted the im-
portance of choosing appropriate discrete delta functions to maintain
optimal accuracy. Following a similar strategy, the immersed interface
method [38], which modifies the finite difference scheme with a jump
condition for the immersed boundary, was derived [39]. Tornberg
and Engquist [40] performed error analyses of traditional IBM with
regularization and found first-order convergence for the standard cen-
tral difference scheme with smoothing discrete delta functions. This
error analysis was then extended to Stokes flows by Mori [41], Chen
et al. [42], and Liu and Mori [43] where error estimates for velocity
and pressure were reported. Most analyses focus on the traditional IBM
method, where the numerical property is based on the selection of
the appropriate delta functions. Error analyses for the direct forcing
approach were also explored in [44,45], where the importance of
maintaining smoothness in the solution and the choice of a suitable
temporal and spatial resolution was highlighted. For these types of
approach, the discretization error from space–time discretization and
the modeling error from particular IBM treatment are coupled. In con-
trast, volume penalization has the advantage that the modeling error
and the numerical error can be handled separately. The convergence of
modeling errors was studied rigorously by Angot et al. [15] and Carbou
and Fabrie [21]. The modeling errors for the incompressible flow past
a cylinder and a sphere were analyzed by Zhang and Zheng [46].
Therefore, the main concern is the discretization error, which depends
on the numerical scheme used, and where a detailed error analysis is
lacking, especially in the context of high-order methods.

In the present work, we perform error analyses of the IBM based on
combination of volume penalization and nodal DGSEM, and propose
new penalties to cancel spatial errors to improve the accuracy of the
solution. In particular, we use the modified equation analysis [47,48],
which has been extensively used to analyze the stability and accu-
racy of low-order numerical discretization, and to obtain high-order
schemes [49,50]. The relationship between the errors introduced by
the IBM based on volume penalization and high-order schemes remains
unclear and motivates this work. First, using a modified equation
analysis for volume penalization using DGSEM, we determine the shape
and relationship of the dominant errors (i.e. dissipative/dispersive
character). Second, we design the volume penalization scheme by
including additional penalty terms that cancel the undesired numerical
errors. In recent work, we have attempted to damp the numerical
errors that arise from the volume penalization approach, using second-
order derivatives [51] or combining it with a frequency damping
technique [52]. These studies have tried to minimize errors, without
explicitly considering the causes of such errors, and therefore can be
considered a posteriori palliative treatment. In this work, we consider a
ifferent perspective and analyze the source of these errors. By doing
o, we are able to cancel the errors at the source. This approach can be
onsidered an a priori error control. Note that we limit our analysis to
inear advection–diffusion equations. The results from our analysis can
hus be extended to linear systems (or linearized version of nonlinear
quations). Examples include acoustics [53] and stability analysis [54].

The article is organized as follows. In Section 2, the volume pe-
alization method and the DGSEM technique are introduced for the
overning equation. Next, Section 3 introduces the principal errors
2

n a volume penalization approach to investigate the discretization 𝛿
error using the modified equation analysis in Section 4. The numerical
results are shown in Section 5, to validate the conclusions of the analy-
sis, where one and two-dimensional advection–diffusion equations are
investigated. Finally, conclusions are given in Section 6.

2. Motivation

2.1. The governing equation

Let us introduce the problem by considering the following time-
dependent 1D advection–diffusion equation for the transported solution
𝑢 = 𝑢(𝑥, 𝑡),

𝜕𝑢
𝜕𝑡

+ 𝑐 𝜕𝑢
𝜕𝑥

− 𝜈 𝜕
2𝑢
𝜕𝑥2

= 0, for 𝑥 ∈ (0, 𝐿), 𝑡 > 0, (1a)

here the flow parameters are constant: velocity field 𝑐 and kinetic
iscosity 𝜈 ≥ 𝜈min > 0. The PDE is completed with the set of initial and
oundary conditions,

(𝑥, 0) = 𝑢0(𝑥), 0 ≤ 𝑥 ≤ 𝐿, (1b)

(0, 𝑡) = 𝑢0(𝑡), 𝑢(𝐿, 𝑡) = 𝑢𝐿(𝑡), 𝑡 ≥ 0. (1c)

he transport problem (1) is discretized in space based on a high-order
G method; in time, a Runge–Kutta method; and some of the solution
oints would be penalized by additional source terms to impose the
BM conditions.

.2. The volume penalization approach

Motivated by the characteristic-based VP [25] and the inclusion
f local dissipation [51], we consider the governing equation with
enalization terms for the solution (classic volume penalization [15,18,
0,55]) and additional first-order and second-order penalization terms:

𝜕𝑢
𝜕𝑡

+ 𝑐 𝜕𝑢
𝜕𝑥

− 𝜈 𝜕
2𝑢
𝜕𝑥2

+
𝜒
𝜂1

(

𝑢 − 𝑢s
)

+ 𝜕
𝜕𝑥

(

𝜒
𝜂2
𝑢
)

+ 𝜕2

𝜕𝑥2

(

𝜒
𝜂3
𝑢
)

= 0, (2a)

The additional term in Eq. (2a) helps to impose the immersed boundary
condition on a given region of the domain 𝛺 = [0, 𝐿]. In this work, we
consider a boundary condition of homogeneous Dirichlet type, namely
𝑢s = 𝑢s(𝑥, 𝑡) = 0 (that is, a no-slip wall). The other two parameters are
penalized terms determined in the modified equation analysis section,
where we focus only on the spatial errors of the discretization. The
penalization parameters for variable, first and second order derivatives
are 𝜂1, 𝜂2, and 𝜂3 respectively. In the classic volume penalization
approach [15,18,30,55], the mask function 𝜒 is sharp and discontin-
uous, which is 1 in the solid and 0 in the fluid. Here, to facilitate
the analysis, a continuous mask function represented by a hyperbolic
tangent function is used, defined as

𝜒 = 𝜒(𝑥, 𝑡) =

{

[

tanh (𝑑∕𝛿) + 1
]

∕2, If 𝑥 ∈ 𝛺s
[

tanh (−𝑑∕𝛿) + 1
]

∕2, Otherwise
, (2b)

which distinguishes between the fluid, 𝛺f, and the solid, 𝛺s, regions
uch that 𝛺 = 𝛺f ∪ 𝛺s. The distance of any solution point from the
oundary interface is defined as 𝑑 = 𝑑(𝑥, 𝑡). This smooth mask ensures
hat spatial derivatives can be calculated. The width of the hyperbolic
angent function is defined as 𝛿, which should be infinitely small to
educe the modeling error and approximate the sharp mask function.
he mask function at different 𝛿 is compared in Fig. 1, where the sharp
ask function can be well represented when 𝛿 ≈ 10−3. Note that in the

igure, the mask function at 𝛿 = 10−3 almost overlaps with the sharp
ask function. Later in Section 5.1, we will also show that both sharp

nd smooth masks result in similar behavior given a sufficiently small
(e.g., 𝛿 < 10−2).
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Fig. 1. Comparison of sharp and smooth mask function at different 𝛿. The interface
lies at 𝑥 = 0, therefore 𝑑 = |𝑥|. The sharp mask function is well represented when
𝛿 < 10−3.

2.3. The VP-DG discrete equation

Eq. (2a) is discretized using the DG spectral element method. We
group the terms in Eq. (2a) that leads to the penalized equation:
𝜕𝑢
𝜕𝑡

+ 𝑢 = 0, (3a)

here the second-order differential operator is represented by

𝑢 = 𝜕
𝜕𝑥

(

𝑐𝑢 − 𝜈 𝜕𝑢
𝜕𝑥

)

+
𝜒
𝜂1
𝑢, (3b)

here 𝑐 = and 𝜈 are the VP velocity field and the VP viscosity,
espectively. Note that here we consider the element to be either a
ully solid or a fully fluid one. This implies that the solid boundary
ligns with the element interface, which is a natural choice for the DG
ethod when using the local r-refinement, e.g. [56].

The domain 𝛺 is divided into multiple subdomains named elements
𝑘 = [𝑥𝑘−1, 𝑥𝑘], 𝑘 = 1, 2,… , 𝐾, as can be seen in Fig. 2, and mapped to

he reference interval 𝜉 ∈ [−1, 1]. The global solution is assumed to be
pproximated by a piecewise polynomial defined as the direct sum ⊕
f the 𝐾 local polynomial solutions,

(𝑥, 𝑡) ≃ 𝑢ℎ(𝑥, 𝑡) =
𝐾
⨁

𝑘=1
𝑢𝑘ℎ(𝑥(𝜉), 𝑡), (4)

lso for the test function and the VP flux function. On each element,
e describe the local solution by the Legendre orthogonal interpolating
olynomial, which is written in the Lagrange form,

𝑘
ℎ(𝜉, 𝑡) =

𝑁
∑

𝑗=0
𝑢𝑘ℎ,𝑗 (𝑡) 𝑙𝑗 (𝜉). (5)

e select Gauss–Lobatto (GL) points, as they are becoming very pop-
lar in newly energy-stable and entropy-conserving schemes [57,58].
sing GL points, the nodal (grid point) values become 𝑢𝑘ℎ,𝑗 (𝑡) = 𝑢𝑘ℎ(𝜉𝑗 , 𝑡),
nd 𝑙𝑗 (𝜉) is the 𝑁th order Lagrange interpolating polynomial,

𝑗 (𝜉) ∶=
𝑁
∏

𝑖=0
𝑖≠𝑗

𝜉 − 𝜉𝑖
𝜉𝑗 − 𝜉𝑖

, (6)

which satisfies 𝑙𝑗 (𝜉𝑖) = 𝛿𝑖𝑗 , being 𝛿𝑖𝑗 the Kronecker delta. After obtaining
weak forms of Eq. (3a) and applying the Gaussian quadrature to the
inner product in the reference interval (see Appendix A for details),
the semi-discrete equation writes as follows:

d𝑢𝑘ℎ,𝑗
d𝑡 +

𝑁
∑

𝑖=0
𝐷𝑘
𝑖𝑗𝑢

𝑘
ℎ,𝑖 = 𝑘𝑗 , (7a)

or 𝑘 = 1, 2,… , 𝐾 and 𝑗 = 0, 1,… , 𝑁 where

𝑘
𝑖𝑗 ∶=

𝜒𝑘𝑗 𝛿𝑖𝑗 −
2 𝑐𝑘𝑖

𝑤𝑖 𝑙′𝑗 (𝜉𝑖) −
(

2
)2

𝜈𝑘𝑖
𝑤𝑖

𝑁
∑

𝑙′𝑗 (𝜉𝑟)𝑙
′
𝑟(𝜉𝑖), (7b)
3

𝜂1 𝛥𝑥𝑘 𝑤𝑗 𝛥𝑥𝑘 𝑤𝑗 𝑟=0
s

is the VP-DG derivative, and

𝑘𝑗 ∶= 2
𝛥𝑥𝑘

𝑘
−1𝑙𝑗 (−1) − 𝑘

1 𝑙𝑗 (1)
𝑤𝑗

+
(

2
𝛥𝑥𝑘

)2 𝜈𝑘0
𝑘
−1𝑙

′
𝑗 (−1) − 𝜈

𝑘
𝑁 𝑘

1 𝑙
′
𝑗 (1)

𝑤𝑗
,

(7c)

the numerical source. The weights of the GL quadrature are {𝑤𝑖}𝑁𝑖=0 and
𝑙′ represents the derivative of the Lagrange polynomial. In the previous
formula, we define the numerical fluxes as  and  (see Appendix A).
These fluxes are given by:

𝑘
−1 = f𝑘−12 𝑢𝑘−1ℎ,2 + f𝑘0𝑢

𝑘
ℎ,0,  𝑘

−1 = g𝑘−12 𝑢𝑘−1ℎ,2 + g𝑘0𝑢
𝑘
ℎ,0, (8a)

𝑘
1 = f𝑘2𝑢

𝑘
ℎ,2 + f𝑘+10 𝑢𝑘+1ℎ,0 ,  𝑘

1 = g𝑘2𝑢
𝑘
ℎ,2 + g𝑘+10 𝑢𝑘+1ℎ,0 . (8b)

The weights f and g depend on 𝑐, 𝜈, and some numerical param-
eters that determine the advective/diffusive flux scheme used; see
Appendix A for details . To calculate the viscous flux, we have consid-
ered the Bassi–Rebay 1 (BR1) scheme [59] and the Local discontinuous
Galerkin (LDG) scheme [60].

3. Errors in volume penalization

Rigorous proofs of the convergence of modeling errors have been
provided in previous work [15,21], showing that the numerical error
introduced from the penalization term can be controlled a priori [25].
Analysis of volume penalization suggests that the two contributions to
total error are modeling and discretization errors [30]:
‖

‖

‖

𝑢exact − 𝑢num.
𝜂

‖

‖

‖

≤ ‖

‖

‖

𝑢exact − 𝑢𝜂
‖

‖

‖

+ ‖

‖

‖

𝑢𝜂 − 𝑢num.
𝜂

‖

‖

‖

, (9)

where 𝑢exact is the exact solution of the governing equation, 𝑢𝜂 and
𝑢num.
𝜂 are the exact and numerical solutions of the penalized equation,

respectively, and ‖⋅‖ is the 𝐿𝑝 norm used to quantify the error. The
modeling error depends on the penalization parameter [55]:
‖

‖

‖

𝑢exact − 𝑢𝜂
‖

‖

‖

∝ 𝜂𝛼1 . (10)

This explains that the convergence of the solution to the exact
solution requires the error norm to approach zero for small penalization
parameter limit, i.e.,

lim
𝜂1→0

‖

‖

‖

𝑢exact − 𝑢𝜂
‖

‖

‖

= 0. (11)

According to Angot et al. [15] and Carbou and Fabrie [21], the volume
penalization gives 𝛼 = 1∕2, indicating that the penalization error has a
decay rate of (

√

𝜂1) for Dirichlet boundary conditions. For the Neu-
ann boundary conditions, a decay rate of (𝜂1) can be obtained [61].

t should be noted that the theory is based on the classical volume
enalization approach, where a sharp mask function is considered. In
he present theoretical analysis, the result holds when we consider 𝛿
n Eq. (2b) to be infinitely small approximating the sharp mask.

The second part of the overall error is the discretization error, which
efers to the error between the exact solution and the numerical solu-
ion of the penalized equation. As pointed out by Schneider et al. [18,
5], the discretization error is not only determined by the numerical
cheme, but also limited by the regularity of the penalized solution.
egularity is characterized by the smoothness/continuity of the exact
enalized solution 𝑢𝜂 at the boundary of the penalized problem. The
rder of convergence in the discretization error becomes the minimum
rder between the numerical scheme and the regularity of the exact
enalized solution. In the modified equation analysis, we are interested
n the error of the numerical scheme. Details are given in the next
ection.
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. The modified equation analysis

When we discretize the penalized equation (3a) numerically, we
ranslate it into a semi-discrete system (7a) for each element. This
cheme is an approximation of our original equation. A different view
s that the discrete system is the solution of modified differential
quations but with some extra terms. This equation is named as the
odified equation (or reduced PDE):

𝜕𝑢ℎ
𝜕𝑡

+ ℎ𝑢 +𝐻𝑂𝑇 = 𝑠(𝑢⋆ℎ ) (12)

nd is obtained by expanding the solutions in Eq. (7a) with a Taylor
eries around a point in the mesh 𝑥(𝜉𝑗 ). We omit the superscript
. 𝐻𝑂𝑇 is the high-order term due to the Taylor series. ℎ is the

operator  applied at 𝑥(𝜉𝑗 ) and 𝑠(𝑢⋆ℎ ) is a function of 𝑢⋆ℎ that is the
solution transported from the element 𝛺𝑘 at the interfaces; see Fig. 2.
The purpose of the modified equation is to obtain the local spatial
truncation error, 𝑇𝐸𝑗 , which is defined as the difference between
the original equation and the modified equation. The overall: 𝑇𝐸 =
∑

𝑗 𝑇𝐸𝑗 . With a consistent discretization and a stable numerical scheme,
the discretization error or the 𝑇𝐸𝑗 term writes as follows:

𝑇𝐸𝑗 = 𝐶0ℎ
𝑝 + 𝐶1ℎ

𝑝+1 + 𝐶2ℎ
𝑝+2 + 𝐶3ℎ

𝑝+3 +⋯ = (ℎ𝑝), (13)

where ℎ is a geometric discretization parameter representative of the
grid spacing, 𝑝 the order of accuracy of the numerical scheme, and
𝐶0, 𝐶1, 𝐶2, … some constants that are independent of ℎ and 𝑝. How-
ever, as discussed in the previous section, the discretization error is not
only determined by the numerical scheme, but is also limited by the
regularity of the penalized solution [18,55]. For high-order methods,
with good regularity of the penalized solution 𝑢𝜂 (see the previous
section) at the interface, the high-order convergence property can be
recovered, that is, O(ℎ𝑁+1). This has been shown in the recent work
of Kou et al. [36]. Here, we further analyze the spatial discretization
errors of the numerical scheme (the first source of the discretization
error) to control and reduce errors and improve accuracy.

Note that finite-volume/difference methods are local by nature. In
contrast, DGSEM is local within the whole domain but global within
the element. Due to the non-local character of DG within each element,
the solution depends on every point at the GL mesh. To perform the
analysis, we center the solution at the same point of the source for each
component of the discrete equation. Let us simplify the analysis to three
GL points (𝑁 = 2), which are located at 𝜉0 = −1, 𝜉1 = 0 and 𝜉2 = 1 with
weights 𝑤0 = 1∕3, 𝑤1 = 4∕3 and 𝑤2 = 1∕3 respectively. The Lagrange
polynomials are

𝑙 = 1 𝜉(𝜉 − 1), 𝑙 = −(𝜉 + 1)(𝜉 − 1), 𝑙 = 1 𝜉(𝜉 + 1), (14)
4

0 2 1 2 2 d
and the VP-DG matrix,

⎛

⎜

⎜

⎜

⎝

𝐷𝑘
00 𝐷𝑘

10 𝐷𝑘
20

𝐷𝑘
01 𝐷𝑘

11 𝐷𝑘
21

𝐷𝑘
02 𝐷𝑘

12 𝐷𝑘
22

⎞

⎟

⎟

⎟

⎠

= 1
𝜂1

⎛

⎜

⎜

⎜

⎝

𝜒𝑘0 0 0
0 𝜒𝑘1 0
0 0 𝜒𝑘2

⎞

⎟

⎟

⎟

⎠

− 2
𝛥𝑥𝑘

⎛

⎜

⎜

⎜

⎜

⎝

−3
2
𝑐𝑘0 −2𝑐𝑘1

1
2
𝑐𝑘2

1
2
𝑐𝑘0 0 −1

2
𝑐𝑘2

−1
2
𝑐𝑘0 2𝑐𝑘1

3
2
𝑐𝑘2

⎞

⎟

⎟

⎟

⎟

⎠

−

(

2
𝛥𝑥𝑘

)2 ⎛
⎜

⎜

⎜

⎝

𝜈𝑘0 4𝜈𝑘1 𝜈𝑘2
−1
2
𝜈𝑘0 −2𝜈𝑘1 −1

2
𝜈𝑘2

𝜈𝑘0 4𝜈𝑘1 𝜈𝑘2

⎞

⎟

⎟

⎟

⎠

.

(15)

coming from Eq. (7b). Due to the non-local character of DG within
each element, the solution depends on every point at the GL mesh. To
perform the analysis, we center the solution at the same point of the
source for each component of the discrete equation. For example, the
discrete equation for the 𝑗 = 0 component is

d𝑢𝑘ℎ,0
d𝑡 +𝐷𝑘

00𝑢
𝑘
ℎ,0 +𝐷

𝑘
10𝑢

𝑘
ℎ,1 +𝐷

𝑘
20𝑢

𝑘
ℎ,2 = 𝑘0 . (16a)

nd the numerical source,

𝑘
0 = 2

𝛥𝑥𝑘

[

3𝑘
−1 −

3
𝛥𝑥𝑘

(

3𝜈𝑘0
𝑘
−1 + 𝜈

𝑘
2

𝑘
1
)

]

. (16b)

Expanding 𝑢𝑘ℎ,1 and 𝑢𝑘ℎ,2 around 𝑢𝑘ℎ,0, we have

𝑢𝑘ℎ,1 = 𝑢𝑘ℎ,0 + 𝛥𝜉
𝜕𝑢𝑘ℎ
𝜕𝜉

|

|

|

|

|𝜉0

+
𝛥𝜉2

2!
𝜕2𝑢𝑘ℎ
𝜕𝜉2

|

|

|

|

|𝜉0

+
𝛥𝜉3

3!
𝜕3𝑢𝑘ℎ
𝜕𝜉3

|

|

|

|

|𝜉0

+⋯ (17)

𝑢𝑘ℎ,2 = 𝑢𝑘ℎ,0 + 2𝛥𝜉
𝜕𝑢𝑘ℎ
𝜕𝜉

|

|

|

|

|𝜉0

+
22𝛥𝜉2

2!
𝜕2𝑢𝑘ℎ
𝜕𝜉2

|

|

|

|

|𝜉0

+
23𝛥𝜉3

3!
𝜕3𝑢𝑘ℎ
𝜕𝜉3

|

|

|

|

|𝜉0

+⋯ (18)

being 𝛥𝜉 = 𝜉1 − 𝜉0 = 𝜉2 − 𝜉1 = 1, we get

𝜕𝑢𝑘ℎ,0
𝜕𝑡

+
(

𝐷𝑘
00 +𝐷

𝑘
10 +𝐷

𝑘
20
)

𝑢𝑘ℎ,0+
∞
∑

𝑚=1

(

𝐷𝑘
10 + 2𝑚

(

𝐷𝑘
20 +

6
𝛥𝑥2𝑘

𝜈𝑘2g
𝑘
2

))

𝛥𝜉𝑚

𝑚!
𝜕𝑚𝑢𝑘ℎ
𝜕𝜉𝑚

|

|

|

|

|𝜉0

= 𝑘0 ,
(19)

where the numerical source now reads:

𝑘0 = 2
𝛥𝑥𝑘

[

(

3f𝑘−12 − 9
𝛥𝑥𝑘

𝜈𝑘0g
𝑘−1
2

)

𝑢𝑘−1ℎ,2 − 3
𝛥𝑥𝑘

𝜈𝑘2g
𝑘+1
0 𝑢𝑘+1ℎ,0 +

(

3f𝑘0 −
3
𝛥𝑥𝑘

(

3𝜈𝑘0g
𝑘
0 + 𝜈

𝑘
2g

𝑘
2
)

)

𝑢𝑘ℎ,0

]

.

(20)

either 𝑢𝑘−1ℎ,2 nor 𝑢𝑘+1ℎ,0 can be expanded using Taylor series due to the
iscontinuous nature of DG. The terms in brackets of Eq. (19) simplify
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A

t

Table 1
The reaction parameter and the coefficient Ж in the modified equations for a three-point GL grid.

𝑗 𝜉𝑗 𝑟̃𝑘𝑗 Ж(𝑚)𝑘
𝑗

0 −1
3𝑐𝑘0 + 4𝑐𝑘1 − 𝑐𝑘2

𝛥𝑥𝑘
− 4

𝜈𝑘0 + 4𝜈𝑘1 + 𝜈𝑘2
𝛥𝑥2𝑘

22−𝑚𝑐𝑘1 − 𝑐𝑘2
𝛥𝑥1−𝑚𝑘

− 4
22−𝑚𝜈𝑘1 + 𝜈𝑘2

(

1 − 3∕2g𝑘2
)

𝛥𝑥2−𝑚𝑘

1 0 −
𝑐𝑘0 − 𝑐𝑘2
𝛥𝑥𝑘

+ 2
𝜈𝑘0 + 4𝜈𝑘1 + 𝜈𝑘2

𝛥𝑥2𝑘
−2−𝑚

(−1)𝑚𝑐𝑘0 − 𝑐𝑘2
𝛥𝑥1−𝑚𝑘

+ 21−𝑚
(−1)𝑚𝜈𝑘0

(

1 + 3g𝑘0
)

+ 𝜈𝑘2
(

1 + 3g𝑘2
)

𝛥𝑥2−𝑚𝑘

2 1
𝑐𝑘0 − 4𝑐𝑘1 − 3𝑐𝑘2

𝛥𝑥𝑘
− 4

𝜈𝑘0 + 4𝜈𝑘1 + 𝜈𝑘2
𝛥𝑥2𝑘

(−1)𝑚
(

𝑐𝑘0 − 22−𝑚𝑐𝑘1
𝛥𝑥1−𝑚𝑘

− 4
𝜈𝑘0

(

1 − 3∕2g𝑘2
)

+ 22−𝑚𝜈𝑘1
𝛥𝑥2−𝑚𝑘

)

f
h
I
𝑐
T

⎧

⎪

⎨

⎪

⎩

p

to

𝐷𝑘
00+𝐷

𝑘
10+𝐷

𝑘
20 =

𝜒𝑘0
𝜂1

+
3𝑐𝑘0 + 4𝑐𝑘1 − 𝑐𝑘2

𝛥𝑥𝑘
−4

𝜈𝑘0 + 4𝜈𝑘1 + 𝜈𝑘2
𝛥𝑥2𝑘

=∶
𝜒𝑘0
𝜂1

+ 𝑟̃𝑘0 , (21)

and

𝐷𝑘
10 + 2𝑚

(

𝐷𝑘
20 +

6
𝛥𝑥2𝑘

𝜈𝑘2g
𝑘
2

)

=32
𝑚+1

𝛥𝑥2𝑘
𝜈𝑘2g

𝑘
2 + 4

𝑐𝑘1 − 2𝑚−2𝑐𝑘2
𝛥𝑥𝑘

−

16
𝜈𝑘1 + 2𝑚−2𝜈𝑘2

𝛥𝑥2𝑘
=∶

(

2
𝛥𝑥𝑘

)𝑚
Ж(𝑚)𝑘

0 .

(22)

For the Taylor term of first order, 𝑐𝑘0 = Ж(1)𝑘
0 ; and the second order

term, 𝜈𝑘0 = −Ж(2)𝑘
0 ∕2. Finally, we find the modified equation at the

left-boundary element,

𝜕𝑢𝑘ℎ,0
𝜕𝑡

+ 𝛥𝜉 𝑐𝑘0
2
𝛥𝑥𝑘

𝜕𝑢𝑘ℎ
𝜕𝜉

|

|

|

|

|𝜉0

−𝛥𝜉2 𝜈𝑘0

(

2
𝛥𝑥𝑘

)2 𝜕2𝑢𝑘ℎ
𝜕𝜉2

|

|

|

|

|𝜉0

+

𝜒𝑘0
𝜂1
𝑢𝑘ℎ,0 +𝐻𝑂𝑇

𝑘
0 = 𝑠𝑘DG,0,

(23a)

where

𝑠𝑘DG,0 = 𝑘0 − 𝑟̃𝑘0𝑢
𝑘
ℎ,0, (23b)

and

𝐻𝑂𝑇 𝑘0 =
∞
∑

𝑚=3

(

2
𝛥𝑥𝑘

)𝑚
Ж(𝑚)𝑘

0
𝛥𝜉𝑚

𝑚!
𝜕𝑚𝑢𝑘ℎ
𝜕𝜉𝑚

|

|

|

|

|𝜉0

. (23c)

dditionally, the original PDE at the left-boundary element is

𝜕𝑢𝑘ℎ,0
𝜕𝑡

+ 𝑐𝑘0
2
𝛥𝑥𝑘

𝜕𝑢𝑘ℎ
𝜕𝜉

|

|

|

|

|𝜉0

− 𝜈𝑘0

(

2
𝛥𝑥𝑘

)2 𝜕2𝑢𝑘ℎ
𝜕𝜉2

|

|

|

|

|𝜉0

+
𝜒𝑘0
𝜂1
𝑢𝑘ℎ,0 = 0. (23d)

and, therefore, the truncation error at the left-boundary element be-
comes:

𝑇𝐸𝑘0 = 𝑠𝑘DG,0+
(

𝑐𝑘0 − 𝛥𝜉 𝑐𝑘0
) 2
𝛥𝑥𝑘

𝜕𝑢𝑘ℎ
𝜕𝜉

|

|

|

|

|𝜉0

−

(

𝜈𝑘0 − 𝛥𝜉2 𝜈𝑘0
)

(

2
𝛥𝑥𝑘

)2 𝜕2𝑢𝑘ℎ
𝜕𝜉2

|

|

|

|

|𝜉0

−𝐻𝑂𝑇 𝑘0 .

(23e)

We can proceed in a similar manner to obtain the modified equa-
ions and truncation errors for the inner point, 𝑗 = 1, and the right-

boundary point, 𝑗 = 2. For 𝑗 = 1, 𝑢𝑘ℎ,0 and 𝑢𝑘ℎ,2 are centered on 𝑢𝑘ℎ,1; for
𝑗 = 2, 𝑢𝑘ℎ,0 and 𝑢𝑘ℎ,1 are centered on 𝑢𝑘ℎ,2. Their formulae can be written
using Eqs. (23), but with differences in the reactive parameter, 𝑟̃𝑘𝑗 , the
coefficient Ж and the numerical source, 𝑘𝑗 , for 𝑗 = 0, 1, 2, see Tables 1
and 2. The source of the DG, 𝑠𝑘DG,𝑗 , arises from the discontinuous nature
of the DG approach (discontinuous boundary values) and the selected
diffusive scheme.

Now suppose that an element,𝛺𝑘, belongs to a solid region,𝛺s, then
𝜒𝑘𝑗 = 1 for 𝑗 = 0, 1, 2, and the truncation error still remains inside the
solid. If we want to eliminate all the error terms in 𝑇𝐸𝑘 for 𝑗 = 0, 1, 2,
5

𝑗

we need to solve the system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑠𝑘DG,𝑗 = 0,
𝑐𝑘𝑗 − 𝛥𝜉 𝑐

𝑘
𝑗 = 0,

𝜈𝑘𝑗 − 𝛥𝜉 𝜈
𝑘
𝑗 = 0,

Ж(𝑚)𝑘
𝑗 = 0,

(24)

or 𝑗 = 0, 1, 2 and 𝑚 ≥ 3. However, the problem is given by Eq. (24)
as an infinite number of equations and a finite number of unknowns.
n total, there are 10 unknowns, which are the 4 weights f and g,
𝑘̂
0 = 𝑐𝑘1 = 𝑐𝑘2 = 𝑐 + 1∕𝜂2 =∶ 𝑐 and 𝜈𝑘0 = 𝜈𝑘1 = 𝜈𝑘2 = 𝜈 − 1∕𝜂3 =∶ 𝜈.
he solution to the system is as follows:

𝜂2 = −1∕𝑐, 𝜂3 = 1∕𝜈
f𝑘−12 = f𝑘0 = f𝑘2 = f𝑘+10 = 0
for all g𝑘−12 , g𝑘0 , g

𝑘
2 and g𝑘+10

(25a)

This solution will be referred to as the trivial solution of the problem.
At this point, one may wonder if there is any other set, a nontrivial
family, that cleans up almost all the errors within the solid region. To
investigate this, a determined system should be formed. Ideal errors
remaining within the solid region should be:

𝑇𝐸𝑘𝑗 ∼ 𝐻𝑂𝑇 𝑘𝑗 ∼ (𝛥𝑥𝑚𝑘 ), 𝑗 = 0, 1, 2, (26)

for 𝑚 ≥ 3 as a representation of high order. However, the investigation
of non-trivial solutions did not meet the previous requirement; see
more details in Appendix B. Table 3 summarizes both the trivial and
non-trivial solutions that have been found.

The trivial solution is the condition for DGSEM to compensate (or
kill) spatial truncation errors within the body region, but additional
insight can be obtained. If we substitute the values for 𝜂2 and 𝜂3 in our
enalized equation and isolate 𝜒 , we get the following equation:
𝜕𝑢
𝜕𝑡

+ 𝜕
𝜕𝑥

[

(1 − 𝜒)
(

𝑐𝑢 − 𝜈 𝜕𝑢
𝜕𝑥

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Physical term

+
𝜒
𝜂1
𝑢 = 0. (27)

If we are in the solid region, 𝜒 = 1, then the physical contribution of
the PDE is removed, so this region is modeled with only the reaction
penalization term, and therefore only time integration methods will
lead to errors within the solid. This result agrees with the use of
a typical characteristic-based volume penalization approach [25,27],
where the RHS term vanishes to smooth out the errors in the solid
region but without a theoretical explanation, which is provided here.
Cancellation of particular terms can reduce the error inside the solid,
thus improving the accuracy in the fluid region. To find the overall
accuracy in both the solid and the fluid regions, the present results
can be coupled with the classic modified equation analysis for the fluid
region [48]. The local error in both fluid and solid elements is coupled
across elements via the numerical fluxes. This topic is currently out of
scope and is worth investigating in future works.

5. Numerical results

In this section we introduce two numerical experiments to evaluate
and validate the trivial solution derived from the modified equation
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Table 2
Numerical source for the DG source, 𝑠𝑘DG,𝑗 = 𝑘

𝑗 − 𝑟̃𝑘𝑗 𝑢
𝑘
ℎ,𝑗 .

𝑗 𝑘
𝑗

0 2
𝛥𝑥𝑘

[(

3f𝑘−12 − 9
𝛥𝑥𝑘

𝜈𝑘0g
𝑘−1
2

)

𝑢𝑘−1ℎ,2 − 3
𝛥𝑥𝑘

𝜈𝑘2g
𝑘+1
0 𝑢𝑘+1ℎ,0 +

(

3f𝑘0 −
3
𝛥𝑥𝑘

(

3𝜈𝑘0g
𝑘
0 + 𝜈

𝑘
2g

𝑘
2

)

)

𝑢𝑘ℎ,0

]

1 6
𝛥𝑥2𝑘

[

𝜈𝑘0g
𝑘−1
2 𝑢𝑘−1ℎ,2 + 𝜈𝑘2g

𝑘+1
0 𝑢𝑘+1ℎ,0 +

(

𝜈𝑘0g
𝑘
0 + 𝜈

𝑘
2g

𝑘
2

)

𝑢𝑘ℎ,1
]

2 − 2
𝛥𝑥𝑘

[

3
𝛥𝑥𝑘

𝜈𝑘0g
𝑘−1
2 𝑢𝑘−1ℎ,2 +

(

3f𝑘+10 + 9
𝛥𝑥𝑘

𝜈𝑘2g
𝑘+1
0

)

𝑢𝑘+1ℎ,0 +
(

3f𝑘2 +
3
𝛥𝑥𝑘

(

3𝜈𝑘2g
𝑘
2 + 𝜈

𝑘
0g

𝑘
0

)

)

𝑢𝑘ℎ,2

]

Table 3
Summary of family of solutions for VP-IBM DGSEM, the trivial solution is the last row. ∗ means equivalent to a continuous Galerkin (CG) method.

𝑐 = 𝑐 + 1
𝜂2

𝜈 = 𝜈 − 1
𝜂3

fs gs ≡ CG * 𝑇𝐸𝑘
𝑗

𝜂2 free 𝜂3 free free g𝑘2 = g𝑘0 = 2

g𝑘−12 = g𝑘+10 = 0


(

𝛥𝑥0𝑘
)

𝜂2 free 𝜂3 free f𝑘−12 = −f𝑘2 = 𝑐 + 4
𝛥𝑥𝑘

𝜈

f𝑘0 = f𝑘+10 = 0

g𝑘2 = g𝑘0 = 2

g𝑘−12 = g𝑘+10 = 0

! 
(

𝛥𝑥0𝑘
)

𝑐 + 4
𝛥𝑥𝑘

𝜈 = 0 0 g𝑘2 = g𝑘0 = 2

g𝑘−12 = g𝑘+10 = 0


(

𝛥𝑥0𝑘
)

𝜂2 free 0 f𝑘0 = −f𝑘2 = 𝑐

f𝑘0 = f𝑘+10 = 0

free ! 
(

𝛥𝑥2𝑘
)

𝜂2 free 0 free free 
(

𝛥𝑥0𝑘
)

Boundary


(

𝛥𝑥2𝑘
)

Inner

0 (𝜂2 = −1∕𝑐) 0 (𝜂3 = 1∕𝜈) 0 free 
(

𝛥𝑥∞𝑘
)

analysis. The first group of cases is the one-dimensional advection–
diffusion equation, where the influence of penalization parameters is
studied in detail. The optimal parameters obtained from the numerical
experiments and the analysis of the modified equations are then applied
to the two-dimensional advection–diffusion equation.

5.1. One-dimensional advection–diffusion equation

We start from the one-dimensional advection equation, where a
no-slip wall is placed in the middle of the computational domain.
This problem has been formulated in previous works [51,52], which
is illustrated in Fig. 3. Periodic boundary conditions are imposed on
both sides of the computational domain, while a sinusoidal wave with a
given wavenumber is considered as the initial condition. The advection
speed is set to 𝑐 = 1 and the computational domain is defined in 𝑥 ∈
[−1, 1], discretized by 𝐾 equispaced elements with mesh size 𝛥𝑥. The
solution points are selected according to the Gauss–Lobatto quadrature
rule, which is consistent with the previous analysis. An upwind flux for
the advection term is selected. The solid region is defined as a no-slip
wall, i.e., 𝑢s = 0. It lies in the middle of the computational domain and
starts from 𝑥 = 0, whose width is defined as 𝛥s, leading to the solid
region 0 ≤ 𝑥 ≤ 𝛥s.

For consistency with the analysis of the modified equations, we
consider 𝛥s = 𝛥𝑥, which means that the solid boundaries lie exactly
at the interface between the elements (if we have an even number
of elements). This allows us to define the solid ratio 𝑟 = 1∕𝐾 as
the ratio between the solid region and the computational domain. As
shown in Fig. 3, the initial wavelike solution passes through the no-
slip wall in the middle, and the damped solution moves to the right
as time evolves. Since periodic boundary conditions are considered,
the solution will eventually become 0. If the no-slip wall boundary
condition is exactly imposed, the solutions coming out of the wall
will be zero. However, in practice, the classic volume penalization
6

Fig. 3. Schematic illustration of the advection problem with IBM.

(where only the solution is penalized) is unable to cancel out all waves,
when 𝜂1 approaches zero, the modeling error still exists [51,52]. The
transported solution coming out of the wall (in the initial transient state
so that the solution passes through the wall only once) depends on
the damping provided by the volume penalization approach, where a
smaller 𝜂1 makes the solution closer to zero. Therefore, the accuracy of
the IBM imposition can be evaluated by comparing the exact solution
(zero) and the damped solution in both the flow and solid regions
(e.g., within a short advection time 0 < 𝑥 < 𝑡).

We first perform the numerical experiment of a linear advection
equation with a wavelike initial condition. The initial condition is
defined as a sinusoidal wave with wavenumber 𝜔, which is nondimen-
sionalized by the mesh size 𝛥𝑥 and the polynomial order 𝑁 , defined
as 𝜔𝛥𝑥∕(𝑁 + 1). Furthermore, due to the existence of a solid wall, the
actual fluid domain is shorter than the entire computational domain;
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Fig. 4. Mean squared error in the flow, between sharp and smooth mask function with
ncreasing mask width 𝛿.

herefore, the effective wavenumber in the fluid region is greater than
. This effective wavenumber is rescaled by the solid ratio 𝑟, defined

as 𝜔 = 𝜔∕(1 − 𝑟) [51]. We consider a spatial discretization with
= 40 elements in the computational domain (𝛥𝑥 = 0.05). Based

on this mesh, we set 𝛥s = 𝛥𝑥 with 𝑟 = 1∕40 and choose 𝑁 = 3 as a
epresentative order for high-order methods. The initial condition with
avenumber 𝜔𝛥𝑥∕(𝑁 + 1) = 0.3223 is considered, which lies in the

esolved wavenumber region of the scheme. The time integration is
ased on the third-order Runge–Kutta scheme. To reduce the temporal
rror, a sufficiently small time step is set to 𝛥𝑡 = 10−5. The final time is
et to 1.1 to obtain a sufficiently penalized solution in the right region
f the computational domain.

Different combinations of parameters (with and without the first-
rder term) are considered. To evaluate accuracy, the error (in the
low) is defined as the error in 𝑥 ∈ [𝛥s, 1] and the penalized value
s = 0. Defining the number of solution points inside the flow domain
f interest as 𝑁p = (𝑁 + 1)𝐾, we have the 𝐿2-norm of the error as

rror =

√

√

√

√

√

1
𝑁p

𝑁p
∑

𝑖=1
[𝑢(𝑥𝑖) − 𝑢exact(𝑥𝑖)]2 , 𝑥𝑖 ∈ [𝛥s, 1], 𝑢exact = 0, (28)

and the 𝐿2-norm of the error in the solid is defined as

errorsolid =

√

√

√

√

√

1
𝑁p

𝑁p
∑

𝑖=1
[𝑢(𝑥𝑖) − 𝑢exact(𝑥𝑖)]2 , 𝑥𝑖 ∈ [0, 𝛥s], 𝑢exact = 0, (29)

First, a numerical study is performed to justify the equivalence of
using sharp or smooth mask functions (given the small width 𝛿 for the
smooth mask function to reduce the modeling error). The mask function
in Eq. (2b) is a smooth mask function, while a sharp mask function is
used in the classic volume penalization [15,18,30,55]:

𝜒(𝑥, 𝑡) =

{

1, if 𝑥 ∈ 𝛺s

0, Otherwise
.

We run the simulation at different widths 𝛿 with the penalization
parameter 𝜂1 = 10−3, until the final time 1.1, and compare the mean
squared error in the flow between the results from the sharp and the
smooth mask function. This error is compared in Fig. 4, where the
results based on the sharp or smooth mask are almost identical at
small 𝛿, and the difference becomes dominant when 𝛿 is sufficiently
large, 𝛿 > 0.01. Similar results are obtained when 𝛿 < 0.01, which is
sufficient to guarantee the equivalence of the analysis for smooth and
sharp masks. As 𝛿 further increases, the mask becomes too smooth and
the penalized region occupies the flow, resulting in additional modeling
errors due to the wrong representation of the interface. Therefore, since
the equivalence of sharp and smooth mask functions exists for a small
range of 𝛿, in the numerical tests, a sharp mask function for the classic
volume penalization [15,18,30,55] is used.
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A comparison of the solution at the final time is shown in Fig. 5.
Four cases are tested, where the first three cases contain only the
volume penalization term for the solution, while the first-order pe-
nalization term with 𝜂2 = −1∕𝑐 is added to the last case. The figure
shows that as the penalization parameter 𝜂1 decreases, the solution ap-
proaches zero, indicating that the boundary condition is imposed more
accurately. Note that in the last case, a large penalization parameter
(i.e. weaker penalization) 𝜂1 = 10−3 is used. In addition, when the first-
order term is added, improved accuracy is seen as the solution is closer
to zero. The errors in the fluid region of the four cases are 3.071 ⋅ 10−2,
5.385 ⋅ 10−3, 5.698 ⋅ 10−4, and 1.022 ⋅ 10−4, respectively. This indicates
that by introducing the first-order term with a proper selection of the
penalization parameter, it is possible to improve the accuracy.

Furthermore, to study the effect of 𝜂2, we run additional simulations
for a range of 𝜂2, and show the errors in Fig. 6. The errors in the
flow and solid regions for 𝜂1 = 10−3, 𝜂1 = 10−4, and 𝜂1 = 10−5 are
hown in Figs. 6a, 6b, 6c and 6d, respectively. For consistency with the
nalysis of modified equations, the first group of cases is performed in
olynomial order 𝑁 = 2, and the second group of cases is performed
n polynomial order 𝑁 = 3. Improved accuracy is seen when the
enalization parameter is decreased. In addition, there exists an optimal
2 that leads to minimal errors in both the flow and solid regions,
hich is the same for all penalization parameters. This optimal value

s 𝜂2 = −1∕𝑐, indicating that inside the solid the first-order penalization
erm becomes −𝜕𝑢∕𝜕𝑥 thus the physical advection is canceled out. From
ig. 6b and 6d, this cancellation will lead to almost zero error inside
he solid, indicating that the boundary condition is satisfied exactly.
t a larger 𝜂1, this optimal value remains valid, but the optimal error

ncreases, as shown in Fig. 6c and 6e. Therefore, to reach the optimal
ccuracy, we need to use a small penalization parameter 𝜂1, in combina-
ion with the optimal 𝜂2. These findings are consistent with the theory
hat the modeling error of volume penalization converges with 𝜂1 → 0.
urthermore, the conclusion of the modified equation analysis is also
alidated, since choosing 𝜂2 = −1∕𝑐 leads to improved accuracy and
lmost satisfies the boundary conditions exactly. In addition, numerical
ests on the same problem, with non-body-fitted grid are given in
ppendix C, where the same conclusions as this example can be drawn.

To investigate the effect of the viscous term, the advection–diffusion
quation is investigated. Since the optimal 𝜂2 in the advection equation
as been obtained, 𝜂2 = −1∕𝑐 is selected for all cases. We proceed as for
he advection equation, by setting 𝐾 = 40 elements, 𝛥s = 𝛥𝑥, 𝑟 = 1∕40
nd 𝑁 = 3. The initial condition with wavenumber 𝜔𝛥𝑥∕(𝑁 + 1) =

0.3223 is used and marched in time to 𝑡 = 1.5. Taking into account the
effect of diffusion, the error in the flow region is limited to 𝑥 ∈ [𝛥s, 0.7].

For the discretization of the viscous flux, either the BR1 or the LDG
scheme is considered. The results for two physical viscosities 𝜈 = 0.001
and 𝜈 = 0.01 are shown in Figs. 7 and Figs. 8, respectively. For both
cases, it is observed that the optimal second-order coefficient 𝜂3 exists
and can lead to a minimal error within the solid (as shown in Fig. 7b
and 7d and Fig. 8b and 8d). This optimal value shows the relationship
1∕𝜂3 = 𝜈, which also indicates the cancelation of the viscous term inside
the solid. This agrees with the optimal 𝜂3 derived from the modified
equation analysis. However, when looking at the error inside the flow,
the optimal second-order penalization term does not lead to the lowest
error when the BR1 scheme is used. This highlights the importance of
choosing appropriate Riemann solvers to maintain good accuracy in the
flow region. When the LDG scheme is selected, the optimal 𝜂3 will reach
the lowest error in the flow region, indicating that this flux is more
suitable for the present problem. Therefore, when handling the viscous
term, the LDG scheme is preferred, which gives consistent results of
errors in the solid and in the fluid. In summary, the one-dimensional
test case shows that the optimal penalization parameters derived from
the modified equation analysis achieve minimal numerical errors in
imposing the boundary conditions.
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Fig. 5. Simulation under different penalization parameters (𝑟 = 1∕40, 𝑁 = 3, initial wavenumber 𝜔𝛥𝑥∕(𝑁 + 1) = 0.3223, 𝐾 = 40) at 𝑡 = 1.1: (a) Global view; (b) Enlarged view.
Fig. 6. Error comparison for the advection equation, vertical dashed line refers to 𝜂2 = −1∕𝑐, and horizontal dashed line refers to 𝜂2 → ∞. (a) Error in the flow (𝑁 = 2). (b)
Error in the solid, the optimal solution is zero (𝑁 = 2). (c) Error in the flow (𝑁 = 3). (d) Error in the solid, the optimal solution is zero (𝑁 = 3). (e) Error in the flow (larger
penalization parameter, 𝑁 = 3). (f) Error in the solid (larger penalization parameter, 𝑁 = 3).
5.2. Two-dimensional advection–diffusion equation

In this section, a numerical experiment is performed for the two-
dimensional advection–diffusion equation, using the conclusions of
the modified equation analysis. The one-dimensional test case in the
previous section is extended to two space directions. Again, periodic
boundary conditions are imposed on both sides of the computational
domain, while a sinusoidal wave with a given wavenumber is consid-
ered as the initial condition. Therefore, the optimal parameters derived
from one-dimensional test cases are then dependent on each space
direction. Extensions for GL points can be found in [62]. The governing
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equation is (the solid region is the no-slip wall):

𝜕𝑢
𝜕𝑡

+ ∇ ⋅ (𝐟adv + 𝐟diff) +
𝜒
𝜂1
𝑢 + ∇ ⋅ (𝐠𝜒𝑢) + ∇ ⋅ (𝐇∇ (𝜒𝑢)) = 0, (30)

where the advection flux is 𝐟adv = (𝑐𝑥𝑢, 𝑐𝑦𝑢)𝑇 , the diffusion flux is 𝐟diff =
(−𝜈𝑥𝜕𝑢∕𝜕𝑥,−𝜈𝑦𝜕𝑢∕𝜕𝑦)𝑇 , 𝐠 = (1∕𝜂2,𝑥, 1∕𝜂2,𝑦)𝑇 , and 𝐇 =
diag

(

1∕𝜂3,𝑥, 1∕𝜂3,𝑦
)

. The first-order and second-order penalization pa-
rameters in each direction is denoted by the second subscript. Here we
set 𝑐𝑥 = 𝑐𝑦 = 1 and 𝜈𝑥 = 𝜈𝑦 = 0.001, therefore, the optimal parameters
satisfy 𝜂2,𝑥 = 𝜂2,𝑦 and 𝜂3,𝑥 = 𝜂3,𝑦. Note that, for the present linear
equation, the extension to different advection velocities and viscosities
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Fig. 7. Error comparison for the advection–diffusion equation (𝜈 = 0.001), vertical dashed line refers to 1∕𝜂3 = 𝜈 = 0.001, horizontal dashed line refers to 𝜂3 → ∞ (without
second-order term) (a) Error in the flow (𝜂2 = −1∕𝑐), BR1. (b) Error in the solid (𝜂2 = −1∕𝑐), BR1. (c) Error in the flow (𝜂2 = −1∕𝑐), LDG. (d) Error in the solid (𝜂2 = −1∕𝑐), LDG.
Fig. 8. Error comparison for the advection–diffusion equation (𝜈 = 0.01), vertical dashed line refers to 1∕𝜂3 = 𝜈 = 0.01, horizontal dashed line refers to 𝜂3 → ∞ (without second-order
term). (a) Error in the flow (𝜂2 = −1∕𝑐), BR1. (b) Error in the solid (𝜂2 = −1∕𝑐), BR1. (c) Error in the flow (𝜂2 = −1∕𝑐), LDG. (d) Error in the solid (𝜂2 = −1∕𝑐), LDG.
in each direction is straightforward, while the optimal penalization
parameter (i.e., trivial solution from modified equation analysis) also
varies in different directions. As in the one-dimensional test case, the
solid wall is considered in the middle of the computational domain. A
schematic illustration of the two-dimensional problem for the present
study is shown in Fig. 9. The solid no-slip region has an 𝐿 shape,
which is centered in the middle of the square domain, making the
top right region amplified by the wall. If the advection direction is set
appropriately, the initial wave will move towards the wall. After that,
we can solve the equation until all the solutions in the top right region
have been penalized (which are then expected to be zero), and compute
the error in this region. The error is again the difference between the
numerical and exact solution (here set to zero).
9

We consider a square computational domain in 𝑥 ∈ [−0.1, 0.1]
and 𝑦 ∈ [−0.1, 0.1], with periodic boundary conditions. The domain
is discretized into 20 equispaced elements in both the 𝑥 and the 𝑦
directions, resulting in 400 square elements in total and uniform mesh
size 𝛥𝑥 = 𝛥𝑦 = 0.01. The penalization parameter and the explicit
time step is set to 𝜂1 = 𝛥𝑡 = 10−4. The polynomial order 𝑁 = 3 is
selected. Due to the preset flow advection parameters, the advection
moves towards the top right direction. The width of the solid region is
set to the size of a uniform grid 𝛥s = 𝛥𝑥, resulting in the solid ratio
𝑟 = 1∕20. We use the wavelike initial condition 𝑢(𝑥, 𝑦) = sin(𝜔𝑥 + 𝜔𝑦),
where a nondimensional wavelength 𝜔𝛥𝑥∕(𝑁 + 1) = 0.3307 is selected.
Again, like the one-dimensional test case, we are only interested in the
initial transient state (i.e., 𝑡 ≈ 0.1) where the solution is damped by
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Table 4
Error comparison (error region in Fig. 9) of the two-dimensional advection–diffusion equation with IBM wall under different
diffusive flux schemes and different combinations of penalization parameters.
Diffusive flux scheme 𝜂1 = 10−4 𝜂1 = 10−4

𝜂2 = −1
𝜂1 = 10−4

𝜂2 = −1
𝜂3 = 103

BR1 1.6610 × 10−4 1.3513 × 10−4 1.5874 × 10−4

LDG 6.4091 × 10−5 7.1993 × 10−6 2.2669 × 10−7
Fig. 9. Schematic illustration of the advection problem with IBM.

the solid only once. We check the accuracy by comparing the solution
inside the error region (after it all gets damped by the wall) against the
expected solution in the solid (e.g., zero in the present example).

The first simulation for pure advection problem is performed when
only the first penalization term (𝜂1 for 𝑢) is included. Fig. 10 shows
three typical solution fields at different times. As shown in the figure,
the penalized solution will move towards the top right corner, and
finally dominate the entire domain due to the periodic boundary con-
ditions. To compare the accuracy of simulation, the final simulation
time is set to 0.11. Two solution fields, without and with the optimal
first-order penalization term, are shown in Fig. 11, where the values of
𝜂2, 𝑥 and 𝜂2, 𝑦 are set to −1 to match the physical advection speed. The
improved accuracy from adding the optimal first-order term is seen in
both the solution field and in the error. The error in the fluid region has
been greatly reduced from 0.0207 to 1.4616 ⋅10−5. To test the proposed
analysis, a more challenging test case is included in Appendix D, where
different velocities and diffusivities are considered in each direction.
In this case, when penalizing with optimal parameters also leads to
minimal error. This numerical experiment extends and validates the
conclusions obtained from the modified equation analysis, where the
optimal first-order penalization term cancels the advection term and
leads to improved accuracy.

Additional numerical experiments are performed for the advection–
diffusion equation. The space and time discretizations remain the same
as in the advection case. The final time is set to 𝑡 = 0.15. Three
10
strategies are considered: (1) only volume penalization for the no-slip
wall boundary condition, (2) volume penalization for both the value
and the first-order term, and (3) volume penalization for all terms.
Two types of viscous fluxes with either the BR1 or the LDG scheme are
considered. The errors inside the fluid region are compared in Table 4,
where conclusions similar to one-dimensional advection can be drawn.
When the BR1 scheme is used, adding additional first-order and second-
order penalization terms improves the overall accuracy, compared with
the standard case (the first strategy). However, the addition of a second-
order term does not lead to improved accuracy in the flow region.
When the LDG scheme is used, adding first- and second-order terms
will lead to a greater reduction of the error. This is consistent with
the observations for the one-dimensional advection equation, where the
LDG scheme is shown to provide more accurate results than the BR1
scheme. This numerical experiment validates the proposed modified
equation analysis for the second-order derivative in two-dimensional
linear equations.

6. Conclusions

This study contributes to a better understanding of the numerical
errors for Immersed Boundary Methods based on volume penalization,
in combination with a high-order nodal discontinuous Galerkin scheme.
For this purpose, an analysis of the modified equation is provided.

The modified equation is a useful tool to analyze dissipative/
dispersive errors related to the numerical discretizations. In this paper,
we focus on the spatial errors introduced by the Immersed Boundary
Method. Nodal solutions are expanded as Taylor series, and by rear-
ranging the pseudo-differential equation new terms arise. These terms
allow us to obtain insight into the dissipative/dispersive characteristics
of the errors and guidelines for their minimization. For example, the
inclusion of extra penalization terms of the first and second derivatives,
in addition to the classic penalization of the variable, is considered.
Through this analysis, we provide optimal values for the first- and
second-order penalization parameters to cancel the advection/diffusive
errors inside the solid, which in turn lead to improved errors in the
flow.

Numerical experiments validate the theoretical findings obtained
from the analysis of modified equations, where optimal penalization
parameters can lead to minimal errors (with a sufficiently small penal-
ization parameter 𝜂1). When combined with an appropriate numerical
scheme (here, Local discontinuous Galerkin for viscous terms), minimal
errors in the flow region are reached.
Fig. 10. Simulation under different parameters (𝑟 = 1∕20, 𝑁 = 3, initial wavenumber 𝜔𝛥𝑥∕(𝑁 + 1) = 0.3307, 𝐾 = 20). (a) t = 0.01. (b) t = 0.04. (c) t = 0.08.
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Fig. 11. Simulation under different parameters (𝑟 = 1∕20, 𝑁 = 3, initial wavenumber 𝜔𝛥𝑥∕(𝑁 + 1) = 0.3307, 𝐾 = 20). The difference lies in the upper right flow region. (a)
error = 0.0207, errorsolid = 0.0552. (b) error = 1.4616 ⋅ 10−5, errorsolid = 0.
Future work will extend these findings to systems of partial differen-
tial equations with non-linearities, and extend the theoretical analysis
to multi-dimensional systems.
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Appendix A. The DGSEM technique

We re-write Eq. (3) in its weak form:

∫

𝐿

0

(

𝜕𝑢
𝜕𝑡

+
𝜕𝑓
𝜕𝑥

+
𝜒
𝜂1
𝑢

)

𝜓 d𝑥 = 0, (A.1)

where 𝜓 = 𝜓(𝑥, 𝑡) is a local smooth test function. Given that 𝛺 = [0, 𝐿]
is divided into 𝐾 elements, the integral is split into the sum of element
integrals:
𝐾
∑

𝑘=1

{

∫

𝑥𝑘

𝑥𝑘−1

(

𝜕𝑢
𝜕𝑡

+
𝜕𝑓
𝜕𝑥

+
𝜒
𝜂1
𝑢

)

𝜓 d𝑥
}

= 0. (A.2)

Each element, 𝑥 = 𝑥(𝜉), is transformed according to: 𝑥 = 𝑥𝑘−1 + (𝜉 +
1)𝛥𝑥𝑘∕2, where 𝛥𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1 and −1 ≤ 𝜉 ≤ 1. Then, d𝑥 = (𝛥𝑥𝑘∕2)d𝜉
and 𝜕∕𝜕𝑥 = (2∕𝛥𝑥𝑘)𝜕∕𝜕𝜉. Thus the weak form becomes:
𝐾
∑

𝑘=1

{

𝛥𝑥𝑘
2 ∫

1

−1

(

𝜕𝑢
𝜕𝑡

+ 2
𝛥𝑥𝑘

𝜕𝑓
𝜕𝜉

+
𝜒
𝜂1
𝑢

)

𝜓 d𝜉
}

= 0. (A.3)

Assuming that global variables are represented by 𝐾 local polynomial
variables and substituting the Lagrange interpolation of the test func-
tion into the Galerkin weak form, 𝜓 =

∑

𝜓𝑗 𝑙𝑗 , we get the following:

𝛥𝑥𝑘
2 ∫

1

−1
𝑙𝑗
𝜕𝑢𝑘ℎ
𝜕𝑡

d𝜉 + ∫

1

−1
𝑙𝑗
𝜕𝑓𝑘ℎ
𝜕𝜉

d𝜉 +
𝛥𝑥𝑘
2𝜂1 ∫

1

−1
𝑙𝑗𝜒

𝑘𝑢𝑘ℎd𝜉 = 0, (A.4)

for 𝑘 = 1, 2,… , 𝐾 and 𝑗 = 0, 1,… , 𝑁 . The first and third integrals are
evaluated as follows:

∫

1

−1
𝑙𝑗
𝜕𝑢𝑘ℎ
𝜕𝑡

d𝜉 =
𝑁
∑

𝑖=0
∫

1

−1
𝑙𝑖𝑙𝑗d𝜉

d𝑢𝑘ℎ,𝑖
d𝑡 , (A.5)

∫

1

−1
𝑙𝑗𝜒

𝑘𝑢𝑘ℎd𝜉 =
𝑁
∑

𝑖=0
∫

1

−1
𝜒𝑘𝑙𝑖𝑙𝑗d𝜉𝑢𝑘ℎ,𝑖, (A.6)

whereas the second integral is integrated by parts,

∫

1

−1
𝑙𝑗
𝜕𝑓𝑘ℎ
𝜕𝜉

d𝜉 = 𝑙𝑗𝑘|
|

|

1

−1
− ∫

1

−1
𝑙′𝑗𝑓

𝑘
ℎd𝜉, (A.7)

being 𝑙′𝑗 = d𝑙𝑗∕d𝜉. The VP flux function in the first term is substituted
by a numerical flux, i.e.,

𝑘
1 ∶=  (𝑢𝑘ℎ,𝑁 , 𝑢

𝑘+1
ℎ,0 ; +𝐞𝑘𝑥), (A.8)

𝑘
−1 ∶=  (𝑢𝑘−1ℎ,𝑁 , 𝑢

𝑘
ℎ,0; −𝐞

𝑘
𝑥), (A.9)

depending on the normal at the boundary, ±𝐞𝑘𝑥, and the solution at two
adjacent elements. We discuss the choice of the numerical flux later.

http://www.upm.es
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a

{

𝑐

Ж

The remaining integral is divided as follows:

∫

1

−1
𝑙′𝑗𝑓

𝑘
ℎd𝜉 =

𝑁
∑

𝑖=0
∫

1

−1
𝑐𝑘𝑙𝑖𝑙

′
𝑗d𝜉 𝑢

𝑘
ℎ,𝑖 +

𝑁
∑

𝑖=0
∫

1

−1
𝑙𝑖𝑙

′
𝑗d𝜉 𝑓

𝑘
diffℎ,𝑖. (A.10)

with 𝑓diff = −𝜈𝜕𝑢∕𝜕𝑥 the VP diffusive flux. Substituting the integrals
(A.5), (A.6), (A.7), and (A.10), we get the following:
𝑁
∑

𝑖=0

{

𝛥𝑥𝑘
2

⟨𝑙𝑖, 𝑙𝑗⟩
d𝑢𝑘ℎ,𝑖
d𝑡 +

(

𝛥𝑥𝑘
2𝜂1

⟨𝜒𝑘𝑙𝑖, 𝑙𝑗⟩ − ⟨𝑐𝑘𝑙𝑖, 𝑙
′
𝑗⟩

)

𝑢𝑘ℎ,𝑖 − ⟨𝑙𝑖, 𝑙
′
𝑗⟩𝑓

𝑘
diffℎ,𝑖

}

= − 𝑙𝑗𝑘|
|

|

1

−1
,

(A.11)

for 𝑘 = 1, 2,… , 𝐾 and 𝑗 = 0, 1,… , 𝑁 where the inner product of the
given functions 𝑎 = 𝑎(𝜉) and 𝑏 = 𝑏(𝜉) is defined as follows:

⟨𝑎, 𝑏⟩ ∶= ∫

1

−1
𝑎𝑏d𝜉. (A.12)

Additionally, the VP diffusive flux involves the derivative of 𝑢 and must
be discretized consistently with the rest of the scheme. If we write the
VP diffusive flux in weak form,
𝐾
∑

𝑘=1

{

𝛥𝑥𝑘
2 ∫

1

−1

(

𝑓diff + 𝜈
2
𝛥𝑥𝑘

𝜕𝑢
𝜕𝜉

)

𝜓 d𝜉
}

= 0. (A.13)

and repeat the interpolating and integration-by-part procedures, we
get:
𝑁
∑

𝑖=0

{

𝛥𝑥𝑘
2

⟨𝑙𝑖, 𝑙𝑗⟩𝑓
𝑘
diffℎ,𝑖 − ⟨𝜈𝑘𝑙𝑖, 𝑙

′
𝑗⟩𝑢

𝑘
ℎ,𝑖

}

= −𝑙𝑗𝜈𝑘 𝑘|
|

|

1

−1
, (A.14)

for 𝑘 = 1, 2,… , 𝐾 and 𝑗 = 0, 1,… , 𝑁 where  𝑘 is another numerical
flux for the solution, that is,

 𝑘
1 ∶=  (𝑢𝑘ℎ,𝑁 , 𝑢

𝑘+1
ℎ,0 ), (A.15)

 𝑘
−1 ∶=  (𝑢𝑘−1ℎ,𝑁 , 𝑢

𝑘
ℎ,0). (A.16)

The computation of the inner products is done via Gaussian quadrature:

⟨𝑙𝑖, 𝑙𝑗⟩ ≈
𝑁
∑

𝑚=0
𝑤𝑚𝑙𝑖(𝜉𝑚)𝑙𝑗 (𝜉𝑚) = 𝑤𝑗𝛿𝑖𝑗 , (A.17)

⟨𝑙𝑖, 𝑙
′
𝑗⟩ ≈

𝑁
∑

𝑚=0
𝑤𝑚𝑙𝑖(𝜉𝑚)𝑙′𝑗 (𝜉𝑚) = 𝑤𝑖𝑙

′
𝑗 (𝜉𝑖), (A.18)

⟨𝜒𝑘𝑙𝑖, 𝑙𝑗⟩ ≈
𝑁
∑

𝑚=0
𝑤𝑚𝜒

𝑘
𝑚𝑙𝑖(𝜉𝑚)𝑙𝑗 (𝜉𝑚) = 𝑤𝑗𝜒

𝑘
𝑗 𝛿𝑖𝑗 , (A.19)

⟨𝑐𝑘𝑙𝑖, 𝑙
′
𝑗⟩ ≈

𝑁
∑

𝑚=0
𝑤𝑚𝑐

𝑘
𝑚𝑙𝑖(𝜉𝑚)𝑙

′
𝑗 (𝜉𝑚) = 𝑤𝑖𝑐

𝑘
𝑖 𝑙

′
𝑗 (𝜉𝑖), (A.20)

⟨𝜈𝑘𝑙𝑖, 𝑙
′
𝑗⟩ ≈

𝑁
∑

𝑚=0
𝑤𝑚𝜈

𝑘
𝑚𝑙𝑖(𝜉𝑚)𝑙

′
𝑗 (𝜉𝑚) = 𝑤𝑖𝜈

𝑘
𝑖 𝑙

′
𝑗 (𝜉𝑖), (A.21)

where 𝑤𝑚 are the Gauss–Lobatto weights (
∑𝑁
𝑚=0𝑤𝑚 = 2) and 𝜒𝑘𝑚 =

𝜒𝑘(𝜉𝑚, 𝑡), 𝑐𝑘𝑚 = 𝑐𝑘(𝜉𝑚, 𝑡) = 𝑐 + 𝜒𝑘𝑚∕𝜂2, and 𝜈𝑘𝑚 = 𝜈𝑘(𝜉𝑚, 𝑡) = 𝜈 − 𝜒𝑘𝑚∕𝜂3.
When all of them are combined, Eqs. (7) are obtained.

Finally, the last stage of a DGSEM is the calculation of  and  to
reproduce the physics of advection and diffusion. A variety of fluxes
are available for DG, and most are summarized by Arnold et al. [63].
Here, we use a unifying function:

𝑊 𝑘
± (𝑎, 𝑏; 𝜆) ∶= {{𝑎𝑏}}𝑘± − 1

2
𝜆[[|𝑎|𝑏]]𝑘±, (A.22)

for 𝜆 ∈ R. If 𝜆 = 0 the discretization becomes a central scheme; 𝜆 = −1,
upwind; 𝜆 = 1, downwind. The subscript ‘‘+’’ means the right boundary
element and ‘‘–’’ the left boundary element. We also denote {{⋅}} as the
veraging operator:

{𝑎}}𝑘 ∶=
𝑎𝑘ℎ,𝑁 + 𝑎𝑘+1ℎ,0 , {{𝑎}}𝑘 ∶=

𝑎𝑘ℎ,0 + 𝑎
𝑘−1
ℎ,𝑁 , (A.23)
12

+ 2 − 2
and [[⋅]] as the jump operator:

[[𝑎]]𝑘+ ∶= 𝑎𝑘ℎ,𝑁 − 𝑎𝑘+1ℎ,0 , [[𝑎]]𝑘− ∶= 𝑎𝑘−1ℎ,𝑁 − 𝑎𝑘ℎ,0. (A.24)

Once these operators are defined, we divide the numerical flux into an
advective term and a diffusive term:  = adv +diff. The computation
of the advective numerical flux is as follows:

𝑘
1,adv = 𝑊 𝑘

+ (𝑐, 𝑢; 𝛼), (A.25)

𝑘
−1,adv = 𝑊 𝑘

− (𝑐, 𝑢; 𝛼), (A.26)

and the diffusive numerical flux is:

𝑘
1,diff = 𝑊 𝑘

+ (1, 𝑓diff; 𝛽), (A.27)

𝑘
−1,diff = 𝑊 𝑘

− (1, 𝑓diff; 𝛽). (A.28)

The values of 𝑓diff at the boundary elements are computed with:

𝑓𝑘diffℎ,0 = 𝑊 𝑘
−

(

𝜈, 𝑢
𝛥𝑥𝑘

; 𝛾
)

, 𝑓𝑘−1diffℎ,𝑁 = 𝑊 𝑘
+

(

𝜈, 𝑢
𝛥𝑥𝑘−1

; 𝛾
)

, (A.29)

𝑓𝑘diffℎ,𝑁 = 𝑊 𝑘
+

(

𝜈, 𝑢
𝛥𝑥𝑘

; 𝛾
)

, 𝑓𝑘+1diffℎ,0 = 𝑊 𝑘
−

(

𝜈, 𝑢
𝛥𝑥𝑘+1

; 𝛾
)

. (A.30)

Finally,  is computed as

 𝑘
1 = 𝑊 𝑘

+ (1, 𝑢; 𝛿), (A.31)

 𝑘
−1 = 𝑊 𝑘

− (1, 𝑢; 𝛿). (A.32)

BR1 is recovered by setting 𝛼 = −1 and 𝛽 = 𝛾 = 𝛿 = 0, while LDG is
obtained by setting 𝛼 = 𝛾 = −1 and 𝛽 = −𝛿 = −1. The weights f and g

of (8) are obtained by finding the 𝑢s at 𝑥𝑘−1 and 𝑥𝑘 from the function
𝑊 described in Eq. (A.22).

Appendix B. Non-trivial solutions

In all the cases, the considered element is inside the solid region.
The first case is related to an inviscid problem without a second
derivative penalty term or a viscid problem with 𝜂3 = 1∕𝜈. The second
case includes second derivatives and is therefore more general.

Case 1: Problem with 𝜈 = 0

The parameters 𝑇𝐸 and 𝐻𝑂𝑇 are listed in Tables B.5 and B.6. The
main findings include the following:
𝑘̃
𝑗 = Ж(1)𝑘

𝑗 = 𝑐, ∀𝑗 = 0, 1, 2 (B.1)

𝜈𝑘𝑗 = −1
2
Ж(2)𝑘

𝑗 = 0, ∀𝑗 = 0, 1, 2 (B.2)
(2𝑝)𝑘
1 = 0, 𝑝 ∈ N (B.3)

In total, we have five unknowns (𝑐, f𝑘−12 , f𝑘0 , f
𝑘
2 , f

𝑘+1
0 ) and, therefore,

a determined system would be:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

f𝑘−12 𝑢𝑘−1ℎ,2 +
(

f𝑘0 − 𝑐
)

𝑢𝑘ℎ,0 = 0,
f𝑘+10 𝑢𝑘+1ℎ,0 +

(

f𝑘2 + 𝑐
)

𝑢𝑘ℎ,2 = 0,
Ж(3)𝑘

0 = 0,
Ж(3)𝑘

1 = 0,
Ж(3)𝑘

2 = 0.

(B.4)

whose errors are 𝑇𝐸𝑘𝑗 ∼ Ж(4)𝑘
𝑗 ∼ 

(

𝛥𝑥3𝑘
)

for 𝑗 = 0, 1, 2 within 𝛺s.
However, the unique solution of the system is the trivial one. If we
leave 𝜂2 free, the system that determines the numerical flux weights
becomes
{

f𝑘−12 𝑢𝑘−1ℎ,2 +
(

f𝑘0 − 𝑐
)

𝑢𝑘ℎ,0 = 0,
f𝑘+10 𝑢𝑘+1ℎ,0 +

(

f𝑘2 + 𝑐
)

𝑢𝑘ℎ,2 = 0,
(B.5)

being 𝑇𝐸𝑘𝑗 ∼ Ж(3)𝑘
𝑗 ∼ 

(

𝛥𝑥2𝑘
)

for 𝑗 = 0, 1, 2. A non-trivial solution
would be:
𝑘−1 𝑘+1 𝑘 𝑘
f2 = f0 = 0, f0 = −f2 = 𝑐, (B.6)
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Table B.5
The reaction parameter and the coefficient Ж in the modified equations for a
three-point GL grid and a problem with 𝜈 = 0.
𝑗 𝜉𝑗 𝑟̃𝑘𝑗 Ж(𝑚)𝑘

𝑗

0 −1 6
𝛥𝑥𝑘

𝑐 22−𝑚 − 1
𝛥𝑥1−𝑚𝑘

𝑐

1 0 0 −2−𝑚
(−1)𝑚 − 1
𝛥𝑥1−𝑚𝑘

𝑐

2 1 − 6
𝛥𝑥𝑘

𝑐 (−1)𝑚 1 − 22−𝑚

𝛥𝑥1−𝑚𝑘

𝑐

Table B.6
Numerical source in the DG source, 𝑠𝑘DG,𝑗 = 𝑘

𝑗 − 𝑟̃
𝑘
𝑗 𝑢

𝑘
ℎ,𝑗 ,

for a problem with 𝜈 = 0.
𝑗 𝑘

𝑗

0 6
𝛥𝑥𝑘

(

f𝑘−12 𝑢𝑘−1ℎ,2 + f𝑘0𝑢
𝑘
ℎ,0

)

1 0
2 − 6

𝛥𝑥𝑘

(

f𝑘+10 𝑢𝑘+1ℎ,0 + f𝑘2𝑢
𝑘
ℎ,2

)

Alternatively, if the upwinding numerical flux is the solution, i.e.

f𝑘0 = f𝑘+10 = 0, f𝑘−12 = −f𝑘2 = 𝑐. (B.7)

Then the system becomes:

𝑐
(

𝑢𝑘−1ℎ,2 − 𝑢𝑘ℎ,0
)

= 0, (B.8)

whose truncation error leads to:
{

𝑇𝐸𝑘𝑗 ∼ 
(

𝛥𝑥2𝑘
)

,∀𝑗 = 0, 1, 2, If 𝑢𝑘−1ℎ,2 = 𝑢𝑘ℎ,0
𝑇𝐸𝑘0 ∼ 

(

𝛥𝑥0𝑘
)

, 𝑇𝐸𝑘1 , 𝑇𝐸
𝑘
2 ∼ 

(

𝛥𝑥2𝑘
)

, If 𝑢𝑘−1ℎ,2 ≠ 𝑢𝑘ℎ,0,
(B.9)

etting 𝑢𝑘−1ℎ,2 = 𝑢𝑘ℎ,0 is very similar to using a Continuous Galerkin (CG)
ethod. A downwind numerical flux mimics the results of upwinding,

ut for the right-hand boundary element. Other numerical fluxes leave:

𝐸𝑘0 , 𝑇𝐸
𝑘
2 ∼ 

(

𝛥𝑥0𝑘
)

, 𝑇𝐸𝑘1 ∼ 
(

𝛥𝑥2𝑘
)

. (B.10)

ase 2: Problem with 𝜈 ≠ 0

In this second case (with second derivatives) we consider 𝜂3 free.
he parameters of 𝑇𝐸 and 𝐻𝑂𝑇 are listed in Tables B.7 and B.8. Again,
e conclude that

𝑘̃
0 = Ж(1)𝑘

0 = 𝑐 − 4
3 − 3∕2g𝑘2
𝛥𝑥𝑘

𝜈, (B.11)

𝑐𝑘1 = Ж(1)𝑘
1 = 𝑐 + 3

g𝑘2 − g𝑘0
𝛥𝑥𝑘

𝜈, (B.12)

𝑐𝑘2 = Ж(1)𝑘
2 = 𝑐 + 4

3 − 3∕2g𝑘0
𝛥𝑥𝑘

𝜈, (B.13)

and

𝜈𝑘0 = −1
2
Ж(2)𝑘

0 = (4 − 3g𝑘2)𝜈, (B.14)

𝜈𝑘1 = −1
2
Ж(2)𝑘

1 = −1
4
(

2 + 3
(

g𝑘0 + g𝑘2
))

𝜈, (B.15)

𝜈𝑘2 = −1
2
Ж(2)𝑘

2 = (4 − 3g𝑘0)𝜈, (B.16)

ince 𝑐𝑘𝑗 ≠ 𝑐 for 𝑗 = 0, 1, 2, the term 𝑐𝑘𝑗 − 𝛥𝜉𝑐𝑘𝑗 in the truncation error
should be suppressed since it is (𝛥𝑥−1𝑘 ). The choice is g𝑘2 = g𝑘0 = 2.
However, 𝜈𝑘𝑗 − 𝛥𝜉𝜈𝑘𝑗 ≠ 0 for 𝑗 = 0, 1, 2 and therefore 𝑇𝐸𝑘𝑗 ∼ 

(

𝛥𝑥0𝑘
)

.
If we want to find an optimal value of 𝜂3 to increase the order of the
scheme, we come to the conclusion that 𝜈 = 0, but this case was already
discussed previously. Keeping g𝑘 𝑘 𝑘−1 𝑘+1
13

2 = g0 = 2 and 𝜂3 free, g2 = g0 = 0
kills 𝑠𝑘DG,1, to have 𝑠𝑘DG,0, 𝑠
𝑘
DG,2 = 0,

⎧

⎪

⎨

⎪

⎩

f𝑘−12 𝑢𝑘−1ℎ,2 +
(

f𝑘0 − 𝑐 −
4
𝛥𝑥𝑘

𝜈
)

𝑢𝑘ℎ,0 = 0,

f𝑘+10 𝑢𝑘+1ℎ,0 +
(

f𝑘2 + 𝑐 +
4
𝛥𝑥𝑘

𝜈
)

𝑢𝑘ℎ,2 = 0.
(B.17)

In this case, a solution of the system is as follows:

f𝑘−12 = f𝑘+10 = 0, f𝑘0 = −f𝑘2 = 𝑐 + 4
𝛥𝑥𝑘

𝜈, (B.18)

Additionally, if upwind in such a way that

f𝑘0 = f𝑘+10 = 0, f𝑘−12 = −f𝑘2 = 𝑐 + 4
𝛥𝑥𝑘

𝜈, (B.19)

the second equation of the system is met, but the first one becomes:
(

𝑐 + 4
𝛥𝑥𝑘

𝜈
)

(

𝑢𝑘−1ℎ,2 − 𝑢𝑘ℎ,0
)

= 0. (B.20)

o eliminate this term, a relation of 𝜂s is obtained, 𝑐 + (4∕𝛥𝑥𝑘)𝜈 = 0,
ince in a DG method 𝑢𝑘−1ℎ,2 ≠ 𝑢𝑘ℎ,0. Note that in a CG method, it is not
ecessary to fill this relation, since the solution is continuous between
lements. In all cases described previously, 𝑇𝐸𝑘𝑗 ∼ (𝛥𝑥0𝑘) for 𝑗 = 0, 1, 2.

A summary of all the conditions derived can be found in Table 3.

ppendix C. One-dimensional advection problem based on non-
ody-fitted mesh

In this section, we perform numerical tests for the one-dimensional
dvection problem on a non-body-fitted mesh. We consider a solid
egion length 1.5𝛥𝑥. The purpose of this case is twofold: (1) analyzing
he effect of a solid region that spans several 𝛥𝑥; (2) mimic the non-
ody-fitted grid where the boundary interface lies within an element.
he solid domain spans from 𝑥 = −0.75𝛥𝑥 to 𝑥 = 0.75𝛥𝑥. The total

number of element remains to be 𝑁 = 40, leading to a solid ratio
𝑟 = 3∕80. The same initial condition with 𝜔𝛥𝑥∕(𝑁 + 1) = 0.3142 is
selected and the final solution time is set to 𝑡 = 1.1. The same simulation
is reproduced for the advection problem, considering a range of 𝜂1 and
𝜂2. The error comparison is shown in Fig. C.12.

From Fig. C.12, we can draw the same conclusions as the body-fitted
case. Firstly, as 𝜂1 decreases, the error in both the fluid and the solid
regions decreases, since the modeling error is reduced. Secondly, the
optimal 𝜂2 leads to the minimal error both in the fluid and the solid
regions at small 𝜂1. For different polynomial orders, when the optimal
parameter 𝜂2 = −1∕𝑐 is used, the boundary condition is satisfied almost
exactly.

Appendix D. Two-dimensional advection–diffusion problem with
different parameters

In this section, a more challenging two-dimensional problem is
studied. We simulate the two-dimensional advection–diffusion with
different parameters (velocities and diffusivities) in different directions.
We introduce two combinations of parameter. We fix the other problem
settings, while the time step is reduced to 10−5 to avoid numerical
instability. The LDG scheme is used for the viscous flux since it is
more accurate. The penalization parameter 𝜂1 is set to 10−-4, while the
ther penalization parameters 𝜂2 and 𝜂3 (if the corresponding terms are
mposed) are set to the optimal values. It should be noted that in these
ases, the optimal parameters 𝜂2 and 𝜂3 are different in each direction,
btained from the corresponding velocity and diffusivity. Numerical
rrors are compared in Table D.9, where different types of penalization
re included.

As shown in the table, we can observe the same trend as in Sec-
ion 5.2. The largest error can be seen for the classic volume pe-
alization, where only the solution is penalized. In addition, adding
dditional penalization on first-order and second-order terms (with
he optimal penalization parameters) can largely improve the overall
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Table B.7
The reaction parameter and the coefficient Ж in the modified equations for a three-point GL grid and a problem with 𝜈 ≠ 0.
𝑗 𝜉𝑗 𝑟̃𝑘𝑗 Ж(𝑚)𝑘

𝑗

0 −1 6
𝛥𝑥𝑘

𝑐 − 4 6
𝛥𝑥2𝑘

𝜈 22−𝑚 − 1
𝛥𝑥1−𝑚𝑘

𝑐 − 4
22−𝑚 + 1 − 3∕2g𝑘2

𝛥𝑥2−𝑚𝑘

𝜈

1 0 2 6
𝛥𝑥2𝑘

𝜈 −2−𝑚
(−1)𝑚 − 1
𝛥𝑥1−𝑚𝑘

𝑐 + 21−𝑚
(−1)𝑚

(

1 + 3g𝑘0
)

+ 1 + 3g𝑘2
𝛥𝑥2−𝑚𝑘

𝜈

2 1 − 6
𝛥𝑥𝑘

𝑐 − 4 6
𝛥𝑥2𝑘

𝜈 (−1)𝑚
(

1 − 22−𝑚

𝛥𝑥1−𝑚𝑘

𝑐 − 4
22−𝑚 + 1 − 3∕2g𝑘0

𝛥𝑥2−𝑚𝑘

𝜈

)

Table B.8
Numerical source in the DG source, 𝑠𝑘DG,𝑗 = 𝑘

𝑗 − 𝑟̃𝑘𝑗 𝑢
𝑘
ℎ,𝑗 , for a problem with 𝜈 ≠ 0.

𝑗 𝑘
𝑗

0 2
𝛥𝑥𝑘

[

3
(

f𝑘−12 𝑢𝑘−1ℎ,2 + f𝑘0𝑢
𝑘
ℎ,0

)

− 3
𝛥𝑥𝑘

(

3g𝑘−12 𝑢𝑘−1ℎ,2 + g𝑘+10 𝑢𝑘+1ℎ,0 +
(

3g𝑘0 + g𝑘2
)

𝑢𝑘ℎ,0
)

𝜈
]

1 6
𝛥𝑥2𝑘

[

g𝑘−12 𝑢𝑘−1ℎ,2 + g𝑘+10 𝑢𝑘+1ℎ,0 +
(

g𝑘0 + g𝑘2
)

𝑢𝑘ℎ,1
]

𝜈

2 2
𝛥𝑥𝑘

[

−3
(

f𝑘2𝑢
𝑘
ℎ,2 + f𝑘+10 𝑢𝑘+1ℎ,0

)

− 3
𝛥𝑥𝑘

(

g𝑘−12 𝑢𝑘−1ℎ,2 + 3g𝑘+10 𝑢𝑘+1ℎ,0 +
(

3g𝑘2 + g𝑘0
)

𝑢𝑘ℎ,2
)

𝜈
]

Fig. C.12. Error comparison for the advection equation based on the non-body-fitted mesh, vertical dashed line refers to 𝜂2 = −1∕𝑐, and horizontal dashed line refers to 𝜂2 → ∞.
(a) Error in the flow (𝑁 = 2). (b) Error in the solid, the optimal solution is zero (𝑁 = 2). (c) Error in the flow (𝑁 = 3). (d) Error in the solid, the optimal solution is zero (𝑁 = 3).
(e) Error in the flow (larger penalization parameter, 𝑁 = 3). (f) Error in the solid (larger penalization parameter, 𝑁 = 3).
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Table D.9
Error comparison (error region in Fig. 9) of the two-dimensional advection–diffusion equation with IBM
wall under different flow parameters and different penalization terms.
Parameters 𝜂1 term 𝜂1 , 𝜂2 terms 𝜂1 , 𝜂2 , 𝜂3 terms

𝑐𝑥 = 1, 𝑐𝑦 = 1.5,
𝜈𝑥 = 0.0015, 𝜈𝑦 = 0.001

1.7970 × 10−4 1.6067 × 10−5 5.4686 × 10−7

𝑐𝑥 = 1, 𝑐𝑦 = 2,
𝜈𝑥 = 0.001, 𝜈𝑦 = 0.002

4.4634 × 10−5 5.6013 × 10−6 6.8056 × 10−7
accuracy, where the best performance is observed when all three types
of penalization are considered.
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