000145675 001__ 145675
000145675 005__ 20260112133233.0
000145675 0247_ $$2doi$$a10.3390/agriculture14081301
000145675 0248_ $$2sideral$$a140692
000145675 037__ $$aART-2024-140692
000145675 041__ $$aeng
000145675 100__ $$aOrtiz, Carlos
000145675 245__ $$aSustainability of Organic Fertilizers Use in Dryland Mediterranean Agriculture
000145675 260__ $$c2024
000145675 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145675 5203_ $$aOrganic fertilization is a key issue in European Union (EU) regulations, particularly in the context of promoting a circular nutrient economy, maintaining soil quality, and sequestering carbon to face climate change. In a rainfed system in Northeastern Spain, an experiment was set up (split-plot design). It included five pre-sowing N fertilization treatments: control, mineral, pig slurry, and composted sewage sludge (two rates). The average N rates were 0, 30, 141, 176, and 351 kg N ha−1, respectively. They were combined with mineral N topdressings (0, 50, and 100 kg N ha−1). Three crops were grown: barley (nine years), wheat (three years), and rapeseed (one year). In the driest years (c. 350 mm rainfall), the yields averaged 2.5, 2.0, and 1.9 Mg ha−1, respectively. The maximum yields were for barley (6.5 Mg ha−1) and wheat (5.5 Mg ha−1). The avoidance of a significant increase in soil residual NO3−-N, plus the control of soil build up of available P, micronutrients, and Cd, defines the fertilization strategies. (i) With a previous spring drought season, no fertilization is needed in the following year, if devoted to winter cereals. (ii) In rainier seasons, pig slurry or composted sewage sludge (lowest rate) applied at sowing is sufficient; however, 50 kg of mineral-N ha−1 at the topdressing can be applied. The study found that pig slurry favors K, Mg, Cu, and Zn availability, while composted sewage sludge enhances Fe availability. Although it is possible to reduce N inputs from organic fertilizers, organic C build-up will be constrained.
000145675 536__ $$9info:eu-repo/grantAgreement/ES/INIA/RTA2017-88-C3-3
000145675 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000145675 590__ $$a3.6$$b2024
000145675 592__ $$a0.704$$b2024
000145675 591__ $$aAGRONOMY$$b19 / 129 = 0.147$$c2024$$dQ1$$eT1
000145675 593__ $$aAgronomy and Crop Science$$c2024$$dQ1
000145675 593__ $$aPlant Science$$c2024$$dQ1
000145675 593__ $$aFood Science$$c2024$$dQ2
000145675 594__ $$a6.3$$b2024
000145675 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145675 700__ $$aYagüe, María Rosa
000145675 700__ $$aValdez, Alcira Sunilda
000145675 700__ $$aMolina, María Gabriela
000145675 700__ $$aBosch-Serra, Àngela Dolores
000145675 773__ $$g14, 8 (2024), 1301 [18 pp.]$$pAgriculture (Basel)$$tAgriculture (Basel)$$x2077-0472
000145675 8564_ $$s3847485$$uhttps://zaguan.unizar.es/record/145675/files/texto_completo.pdf$$yVersión publicada
000145675 8564_ $$s2681995$$uhttps://zaguan.unizar.es/record/145675/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145675 909CO $$ooai:zaguan.unizar.es:145675$$particulos$$pdriver
000145675 951__ $$a2026-01-12-12:50:14
000145675 980__ $$aARTICLE