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Abstract: This paper provides an efficient method to compute an LDU decomposition of the Laplacian
matrix of a connected graph with high relative accuracy. Several applications of this method are
presented. In particular, it can be applied to efficiently compute the eigenvalues of the mentioned
Laplacian matrix. Moreover, the method can be extended to graphs with weighted edges.
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1. Introduction

In graph theory, the Laplacian matrix, also called the Kirchhoff matrix, is a matrix
representation of a graph that has played a key role in many applications (see [1,2]). It can
be viewed as a discrete analog of the Laplacian operator in multivariable calculus. In fact,
it is a matrix form of the negative discrete Laplace operator on a graph approximating the
negative continuous Laplacian obtained by the finite difference method. The Laplacian
matrix also arises in the analysis of random walks and electrical networks on graphs [3]
and, in particular, in the computation of resistance distances. Other application fields of
Laplacian matrices include graph isomorphism problems, numerical methods for differential
equations, physical chemistry, organic chemistry, biochemistry, computer science, and design
of statistical experiments. Further references on these applications can be found in [4,5].

As far as we know, there is no study concerning accurate computations with Laplacian
matrices. As for the conditioning of Laplacian matrices, we can mention [6]. In this paper,
we present an efficient method to compute an LDU decomposition of the Laplacian matrix
of a connected graph with high relative accuracy. The first application of this result is
devoted to the computation of the number of spanning trees of a connected graph with high
relative accuracy. The second application deals with the computation of the eigenvalues of
a Laplacian matrix with high relative accuracy.

It is well known that the number of connected components of a graph coincides with
the multiplicity of 0 as an eigenvalue of the Laplacian matrix and that the Laplacian matrix
is a symmetric positive semidefinite matrix. In a connected graph, the second smallest
eigenvalue of the Laplacian matrix provides the algebraic connectivity of the graph and has
many important applications. So, it is convenient to accurately approximate this minimal
positive eigenvalue of the Laplacian matrix. Furthermore, the lowest k eigenvalues and their
corresponding eigenvectors have a direct application to data science in spectral clustering
(see, for example, [7]). However, to date, the accurate computation of the eigenvalues of a
matrix has only been obtained for matrices satisfying very restrictive conditions. We show
in this paper that, for Laplacian matrices of connected graphs, their eigenvalues can be
computed with an efficient method with high relative accuracy. This application of the
minimal positive eigenvalue of the Laplacian matrix is an example of the application of the
spectrum of the Laplacian matrix to the graph structure, which corresponds to the area of
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spectral graph theory [8]. Many other applications could be mentioned and, for them, our
accurate and efficient method could be used.

High relative accuracy (HRA) is a very desirable property because, if an algorithm is
performed to HRA in floating-point arithmetic, then the relative errors in the computations
have the order of the unit round-off (or machine precision). In fact, a real value y ̸= 0 is
said to be computed to HRA whenever the computed ỹ satisfies

|y − ỹ|
|y| < ku,

where u is the unit round-off (or machine precision), and k > 0 is a constant that does
not depend on the arithmetic precision. It is known that an algorithm computes with
HRA when it only uses products, quotients, additions of numbers with the same sign, or
subtractions of initial data (cf. [9]); that is, the only forbidden operation is the subtraction
of numbers (which are not initial data) with the same sign. Up to now, HRA linear
algebra computations have only been guaranteed for a few classes of matrices and using an
adequate parametrization of the matrices. Among them, we can mention some subclasses
of totally positive matrices (see, for instance, [10–13]) or matrices related to diagonal
dominance (cf. [14–16] ). In this last case, rank-revealing decompositions, which will be
presented below, have played a crucial role.

Given an n × n matrix A, let X be n × r, D be r × r and Y be r × n matrices. We say
that A = XDYT is a rank-revealing decomposition (RRD) if X and Y are well conditioned, and
D is a nonsingular diagonal matrix. The interest in obtaining an RRD of a matrix comes
from the fact that it can be used to compute its singular values (and so, its eigenvalues
when it is symmetric) efficiently and with HRA using the algorithm introduced in Section 3
of [9]. Here, we present an efficient algorithm to obtain an RDD of a Laplacian matrix of a
connected graph.

The paper is organized as follows: Section 2 presents the basic definitions, notations, and
results. Section 3 provides the HRA and efficient method to obtain an LDU decomposition
of a Laplacian matrix of a connected graph, and we also include the corresponding algorithm
in pseudocode. The main result is applied to compute the number of spanning trees of
a connected graph with high relative accuracy, which is illustrated with an example from
chemistry in Section 3.1. In Section 3.2, the main result is applied to the computation of the
eigenvalues of a Laplacian matrix of a connected graph with high relative accuracy using an
RRD of the matrix. The concept of the Laplacian matrix extends naturally to a graph with
non-negative weights on the edges (cf. [2,17]). Section 4 extends the result of Section 3 to these
graphs. Section 5 includes numerical examples to illustrate the accuracy of the proposed
methods. Finally, Section 6 summarizes the main conclusions of the paper.

2. Basic Definitions, Notations, and Results

We say that a real matrix A = (aij)1≤i,j≤n is a Z-matrix if all its off-diagonal entries are
nonpositive, i.e., aij ≤ 0 for all (i, j) such that i ̸= j.

We say that A = (aij)1≤i,j≤n is a (row) diagonally dominant (DD) matrix if

|aii| ≥ ∑
j ̸=i

|aij| for all i = 1, . . . , n, (1)

and we say that A = (aij)1≤i,j≤n is a column DD matrix if AT is a row DD matrix. Let
us recall that the singular value decomposition (SVD) of a real n × n matrix A is the
factorization A = UΣVT , where U and V are orthogonal matrices, and Σ is non-negative
and diagonal. The diagonal entries of Σ are the singular values of A. For the particular case
that A is positive semidefinite, the singular values are equal to the eigenvalues.

Let us denote by Qk,n the set of strictly increasing sequences of k integers chosen
from {1, . . . , n}. Let α = (α1, . . . , αk1) and β = (β1, . . . , βk2) be sequences of Qk1,n and
Qk2,n, respectively. Then, A[α|β] denotes the k1 × k2 submatrix of A formed using the rows
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numbered by α1, . . . , αk1 and the columns numbered by β1, . . . , βk2 . If α = β, we use the
abbreviated notation A[α] := A[α|α].

Given a simple graph G with n vertices v1, . . . , vn and a set of edges connecting
different pairs of nodes, we build the adjacency matrix A = (aij)1≤i,j≤n of G as

aij :=

{
1, if vi is connected to vj,
0, otherwise.

The degree deg(vi) is defined as the number of neighbors of the node vi. The degree
matrix D := diag(d1, . . . , dn) is a diagonal matrix such that di = deg(vi). Then, the Laplacian
matrix L = (lij)1≤i,j≤n is defined as L = D − A. Hence, its entries are given by

lij :=


deg(vi), if i = j,
−1, if i ̸= j and vi is adjacent to vj,
0, otherwise.

(2)

This special structure of the Laplacian matrix translates into many interesting proper-
ties. The Laplacian spectra provide a lot of information about the graph and have many
applications. For instance,

lii = ∑
k ̸=i

−lik, i = 1, . . . , n. (3)

Hence, Le = 0, where e = (1, . . . , 1)T and so it has zero as an eigenvalue. Moreover,
the multiplicity of λ1 = 0 as an eigenvalue shows the number of connected components
of the graph. The second smallest eigenvalue, λ2 (the first nonzero eigenvalue), is known
as the Fiedler eigenvalue and gives information about the connectivity of the graph [8].
Moreover, the lowest k eigenvalues and their corresponding eigenvectors have a direct
application to data science in spectral clustering (see, for example, [7]).

In this article, we consider the computation of an LDU factorization of the Laplacian
matrix to HRA. Then, we will show some applications of this factorization such as the com-
putation of the number of spanning trees of G, t(G), and the obtention of a rank-revealing
decomposition that can be used to obtain the eigenvalues of L to HRA. In particular, prop-
erty (3) will be key to achieving accurate computations with this class of matrices. Given
a DD Z-matrix with non-negative diagonal entries, a parametrization that can be used to
achieve accurate computations is given by its off-diagonal entries and the row sums. Taking
these parameters as input, we can then use a modified version of Gaussian elimination to
compute an LDU factorization with HRA that serves as an RRD. RRD has been recalled in the
Introduction, and we also highlighted that it can be used to compute singular values efficiently
and with HRA using the algorithm introduced in Section 3 of [9]. The RRD obtained in this
paper uses unit triangular DD matrices. In order to illustrate that these matrices are very
well conditioned, let us recall the bound below for the condition number of such matrices
introduced in [15]. Previously, recall that, given a nonsingular matrix A, we can consider the
following condition: number

κ∞(A) := ∥A∥∞ ∥A−1∥∞.

Proposition 1 (Proposition 2.1 of [15]). Let T = (tij)1≤i,j≤n be a unit triangular matrix
diagonally dominant by columns (resp. rows). Then, the elements of T−1 are bounded in absolute
value by 1 and κ∞(T) ≤ n2 (respectively, κ∞(T) ≤ 2n).

In the main result of this manuscript, we will show that it is possible to obtain an
LDU decomposition of a Laplacian matrix with HRA using an adapted version of Gaussian
elimination without pivoting. This LDU decomposition can be used to compute the number
of spanning trees of a graph with HRA and obtain an RRD. In ref. [14], pivoting was used to
derive RRD for DD M-matrices. Recall that a nonsingular Z-matrix A is an M-matrix if A−1

is non-negative. Applications of M-matrices and related classes can be found in [18,19] and
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references therein. Our approach does not use pivoting and leads to a factorization LD̂LT

with L lower triangular and column DD (and LT row DD) in contrast to the factorization
obtained in [14] with complete symmetric pivoting, where LT only satisfies if the diagonal
entries have absolute values greater than or equal to the absolute value of the entries of
their rows. Moreover, no pivoting reduces the computational cost, and it also has the
additional important advantage that, when the Laplacian matrix is banded, no pivoting
preserves its banded structure.

There is a sufficient condition to assure the high relative accuracy of an algorithm, the con-
dition of no inaccurate cancellations (NICs) (cf. [20]): the algorithm only uses multiplications,
divisions, sums of real numbers of the same sign, and subtractions of initial data. So, an algo-
rithm that avoids subtractions (with the exception of subtractions of initial data) can be carried
out with high relative accuracy. An algorithm that avoids all subtractions is called subtraction-free
(SF), and it also satisfies the NIC condition. Hence, SF algorithms assure high relative accuracy.

3. Main Result and Some Consequences

We start this section by presenting the main result of the paper. We give an efficient
method with HRA to obtain an LDU decomposition of a Laplacian matrix of a connected
graph. The corresponding algorithm is included later. After that, we will show two appli-
cations of this factorization to achieve accurate computations with the Laplacian matrices.

Theorem 1. Let L = (lij)1≤i,j≤n be the Laplacian matrix of a connected graph. Then, we can
compute its LDU decomposition L = LD̂LT with an SF algorithm (and so, with HRA) of at most
O(n3) elementary operations, where L is column DD, and D̂ is non-negative.

Proof. Let L = (lij)1≤i,j≤n be a Laplacian matrix of a connected graph of n nodes. By
Lemma 13.1.1 of [2], rankL = n − 1. Let us apply Gaussian elimination to L. Since L has
the special sign structure of a Z-matrix, we can adapt Gaussian elimination to be an SF
algorithm. Let us recall that Gaussian elimination is an algorithm that produces zeros below
the main diagonal of a matrix. It consists of n − 1 steps when applied to an n × n matrix,
producing matrices L(t) = (l(t)ij )1≤i,j≤n, t ≤ n:

L = L(1) → L(2) → . . . → L(n),

where L(n) is an upper triangular matrix. While the pivots are nonzero, the matrix L(t+1)

can be obtained from L(t) in the following way: We produce zeros at the t-th column by
subtracting multiples of the t-th row from the rows below it as follows:

l(t+1)
ij =


l(t)ij , i f 1 ≤ i ≤ t,

l(t)ij −
l(t)it

l(t)tt

l(t)tj , i f t < i ≤ n.

Observe that the first pivot l(1)11 = l11 is nonzero and thus positive by (3) because L is a

Z-matrix. In fact, if l(1)11 = l11 = 0 then, by (3), 0 = ∑j>1 −l1j, which implies that l1j = 0 for
all j since L is a Z-matrix. This contradicts that L is the Laplacian of a connected graph.

Let k > 1 be the first index such that l(k)kk = 0. Let us see that all submatrices
L(r)[r, . . . , n] with r ≤ k preserve the property (3):

l(r)ii = ∑
j ̸=i

−l(r)ij , r ≤ k. (4)

Property (3) is equivalent to Le = 0, where e = (1, . . . , 1)T . After t (t < k) steps of
Gaussian elimination, e is again the solution of the equivalent linear system with coefficient
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matrix L(t+1): L(t+1)e = 0. So, L(r)e = 0 for r = 1, . . . , k and then the diagonal entries of
L(r) satisfy (4).

Let us now see that we can obtain matrices L(2)[2, . . . , n], . . . ,L(k)[k, . . . , n] with an
SF algorithm.

For the first step of Gaussian elimination, we subtract multiples of the first row of L(1)

from the rows below it to produce zeros in the first column. All the off-diagonal entries
of L(2)[2, . . . , n] are computed as the sum of two nonpositive numbers so that they can be
obtained without subtractions, and they are again nonpositive. Only the diagonal entries
would be computed as a true subtraction. However, these entries can be computed without
subtractions using (4) for r = 2 and we also infer that they are non-negative. In particular,
we can compute the second diagonal entry after performing the first elimination step as
l(2)22 = −∑n

j=3 l(2)2j , and if it is nonzero, then we use it as a pivot for the next elimination step.

Analogously, all off-diagonal entries of matrices L(3)[3, . . . , n], . . . ,L(k−1)[k − 1, . . . , n] are
nonpositive. Hence, by (4), all the pivots l(t)tt are given by

l(t)tt = −
n

∑
j=t+1

l(t)tj , for t = 1, . . . , k − 1, (5)

so they are non-negative and can be computed with HRA.
Let us now assume that k < n, and we shall arrive at a contradiction. If k < n, then l(k)kk = 0

for k < n. By (4) for r = k, and taking into account that the off-diagonal entries of L(k) are
nonpositive, we have that the first row of L(k)[k, . . . , n] is null and, since it is well known that all
matrices L(r)[r, . . . , n] (r ≤ k) inherit the symmetry of L, the first column of L(k)[k, . . . , n] is also
null. Then, we can continue the Gaussian elimination with the pivot l(k+1)

k+1,k+1 := l(k)k+1,k+1, which

must be nonzero because, otherwise, L(k)[k + 1, . . . , n] would also have nulls its first row and
column. Then, rankL = rankL(k) ≤ n − 2, a contradiction with rankL = n − 1. Analogously,
all remaining pivots l(t)tt ̸= 0 for t = k+ 1, . . . , n and (4) also holds for all r = k+ 1, . . . , n. But (4)

for r = n implies that l(n)nn = 0 and, since we also have l(k)kk = 0, we again obtain a contradiction
with rankL = n − 1. In conclusion, since rankL = n − 1, k = n.

Taking into account that L is a symmetric matrix, the result of Gaussian elimination is
therefore a factorization L = LD̂LT , where L is a lower triangular with unit diagonal, and
D̂ is a diagonal matrix with first n − 1 positive diagonal entries and a last zero diagonal
entry. Since the t-th row of the upper triangular matrix D̂LT is formed by t − 1 zeros and
the entries l(t)tj , j ≥ t, we deduce from the positivity of l(t)tt and the nonpositivity of the

off-diagonal entries that LT is a Z-matrix. Formula (5) for k = n also implies that the sum
of the entries of the first n − 1 rows of LT is zero. So, L is column DD.

In Algorithm 1, we present the pseudocode for the SF Gaussian elimination that
computes the matrices L and D for the LDU decomposition L = LD̂LT .

From the LDU decomposition, we can easily obtain the number of spanning trees of G
based on the well-known matrix-tree theorem.

Theorem 2 (Theorem 13.2.1 in [2]). Let G be a graph with a Laplacian matrix L. If u is an
arbitrary vertex of G numbered by i, then detL[1, . . . , i − 1, i + 1, . . . , n] is equal to the number of
spanning trees of G, t(G).

The number t(G) has been used in [21] to compute the number of spanning trees of a
polycyclic graph in the context of Chemistry.

Remark 1. Let us notice that t(G) can be obtained using Theorem 2 by computing the determinant
of the matrix L[1, . . . , n − 1] obtained after removing the last column and row of L. Since we know
how to compute the decomposition LD̂U of L with high relative accuracy by Theorem 1, we can
obtain this number with HRA from the matrix D of that decomposition as the product of the nonzero
diagonal entries.
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Algorithm 1 Adapted Gaussian elimination

Require: The off-diagonal entries of L : L = (lij)(i ̸= j)
Ensure: L and D̂ to HRA

for k = 1 : n − 1 do
lkk = −∑n

j=k+1 lkj
for i = k + 1 : n do

lik = lik/lkk
for j = k + 1 : n do

If i ̸= j then lij = lij − lik ∗ lkj
end for

end for
end for
L = tril(L) ▷ Taking the lower triangular part of L
for i = 1 : n − 1 do

xii = 1
end for
D̂ = diag(L) ▷ Diagonal matrix with the diagonal entries of L

3.1. Example

In this subsection, we will illustrate an example of a Laplacian and its LDU factoriza-
tion taking a well-known example from chemistry. We considered the polycyclic graph
associated with a molecule of anthracene corresponding to Figure 1.

Figure 1. Molecule of anthracene with numbered vertices.

We numbered the nodes from 1 to 14. Then, we built the matrix L associated with G
and applied Algorithm 1 to L. The result is the decomposition L = LDLT , with

L =



1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
−0.500 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 −0.667 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 −0.429 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 −0.636 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 −0.423 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 −0.634 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 −0.732 1.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.789 1.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 −0.423 −0.268 −0.196 −0.155 −0.953 1.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.782 1.000 0.000 0.000 0.000
0.000 0.000 −0.429 −0.273 −0.115 −0.073 −0.054 −0.042 −0.035 −0.164 −0.955 1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.793 1.000 0.000
−0.500 −0.333 −0.143 −0.091 −0.038 −0.024 −0.018 −0.014 −0.012 −0.055 −0.045 −0.207 −1.000 1.000



,

and D̂ = diag(2, 1.5, 2.3333, 1.5714, 2.3636, 1.5769, 1.3659, 1.2679, 1.2113, 1.2791, 1.2182, 1.2612,
1.2071, 0).



Mathematics 2024, 12, 3491 7 of 10

From this factorization, we can compute t(G) as the product of the nonzero diagonal
entries of D̂. Hence, t(G) = 204. From L and D̂, we can also obtain a rank-revealing
decomposition erasing the last column of L and the last row and column of D̂ as we will
remark in the next subsection.

3.2. Rank-Revealing Decomposition

From the accurate LDU decomposition of L obtained in Theorem 1, we can obtain an
RRD for this matrix. This representation of a Laplacian matrix can be used to achieve HRA
when we compute its singular values and eigenvalues, as recalled in the Introduction.

Corollary 1. Let L = (lij)1≤i,j≤n be the Laplacian matrix of a connected graph. Then, we can
compute its rank-revealing decomposition L = XDXT with an SF algorithm of most O(n3)
elementary operations, where X is column DD. Moreover, all the eigenvalues of L can be computed
to HRA with an algorithm of complexity of most O(n3) elementary operations.

Proof. By Theorem 1, we obtain the factorization L = LD̂LT with HRA. Let us notice that
this factorization implies that L is a positive semidefinite matrix since D̂ is a non-negative
diagonal matrix. Hence, its singular values coincide with its eigenvalues. Let us define
the matrices X := L[1, . . . , n|1, . . . , n − 1] and D := D̂[1, . . . , n − 1]; thus, we obtain the
decomposition L = XDXT , where X is a DD matrix by columns. This fact implies that X
is very well conditioned (cf. Proposition 1). Since our adaptation of Gaussian elimination
was SF, A = XDXT gives an RRD decomposition that can be taken as input to compute the
singular values with HRA applying the algorithm presented in cf. [9].

4. An Extension of the Main Result

Let us notice that the proof of Theorem 1 can be extended to more general matri-
ces. In fact, the proposition below shows which hypotheses are sufficient in the proof of
Theorem 1 to assure the computation of the eigenvalues with HRA with an algorithm of
O(n3) elementary operations.

Proposition 2. Let A = (aij)1≤i,j≤n be a symmetric Z-matrix that satisfies Property (3) and such
that rank(A) = n − 1. Then, we can compute its LDU decomposition A = LDLT with an SF
algorithm of most O(n3) elementary operations, where L is column DD.

Thanks to Proposition 2, we can extend Theorem 1 to the Laplacian of weighted
connected graphs. Let us consider a weighted graph G, where wij is the non-negative
weight associated with the edge between the nodes i and j, with 1 ≤ i, j ≤ n. Then, the
Laplacian of G is the n × n matrix L = (l̂ij)1≤i,j≤n, defined as follows:

l̂ij :=


wi, if i = j,
−wij, if i ̸= j and vi is adjacent to vj,
0, otherwise,

(6)

where wi = −∑ lij is the degree of the node i, which is the sum of the weights of edges
incident on vertex i. Whenever G is a connected graph, the vector e = (1, . . . , 1) is the only
eigenvector associated with the eigenvalue λ = 0 of L, and we have that rankL = n − 1.
Hence, the Laplacian of a weighted connected graph satisfies Proposition 2. Finally, for the
Laplacian of a weighted graph, we can obtain an RRD following the same strategy.

Corollary 2. Let A = (aij)1≤i,j≤n be a symmetric Z-matrix that satisfies Property (3) and such
that rank(A) = n − 1. Then, we can compute its rank-revealing decomposition A = XDXT with
an SF algorithm (and so, with HRA) of most O(n3) elementary operations, where X is column DD.
Moreover, all the eigenvalues of A can be computed with HRA with an algorithm of complexity of
most O(n3) elementary operations.
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5. Numerical Experiments

In this section, we will introduce some examples to showcase some of the results
presented in this article. In Theorem 1, we have seen that we can compute an RRD
decomposition of a Laplacian matrix with HRA. We extended this result to more classes of
matrices in Proposition 2. Now, we will consider some ill-conditioned examples belonging
to this class.

We generated some 100 × 100 banded matrices that satisfy the hypotheses of
Proposition 2, i.e., they are the Laplacian of a weighted undirected graph. We called
these matrices Ak for k = 1, 2, 3, 4, 5. These matrices have 100 columns and 100 rows,
and most of their entries are zero. The nonzero entries always appear in the diagonal
entries, and the off-diagonal entries are closer to the diagonal. In order to decide how many
off-diagonal entries below the main diagonal are different from zero, we chose a random
integer bi between 1 and 5 for every column. For example, the first column of the matrix A1
has the first two off-diagonal entries different from zero, i.e., b1 was chosen as 2. Then, we
would do the same for the second column, the third column, etc. The only extra condition
used is that, whenever the number bi chosen for the i-th column is equal or smaller than
bi−1 − 2, we would set it to bi = bi−1 − 1 instead. In the case of the matrix A1, the second,
third and fourth columns have one off-diagonal entry below the main diagonal different
from zero. Then, the fifth row has b5 = 4, and hence, four entries below the main diagonal
were chosen to be different from zero. For all the examples, we used this procedure to
decide the nonzero entries below the main diagonal, and then we ensured that the matrices
were symmetric. By doing so, we obtained the block structure of nonzero entries, which is
illustrated in Figure 2. The quantities nz appearing in these graphics refer to the number of
nonzero entries of the matrices. For each of these examples, we generated random integers
cij between 1 and 100 for the off-diagonal nonzero entries of the lower part. Finally, we
built the symmetrical matrix Ak = (aij)1≤i,j≤100 such that

aij =


−(cij)

7 if i > j,
−(cji)

7 if i < j,
−∑j ̸=i aij if i = j.

In order to test the advantages of using our proposed HRA method, we used Matlab
to implement both classical Gaussian elimination without pivoting and an adaptation of
Gaussian elimination following the pseudocode presented in Algorithm 1. We used both
methods to compute the same LiDiLT

i decomposition of the matrix Ai. Then, we computed
this decomposition in Mathematica using a 100-digit precision. In Table 1, we show the
largest componentwise relative errors for the approximations of the matrix L computed
with both Matlab methods, considering the results from Mathematica as exact.

Table 1. Largest componentwise relative errors for nonzero entries of Li in the decomposition
Ai = LiDi LT

i .

i κ∞(Ai[1, . . . , n − 1]) κ∞(Li) max |xij−x̂ij|
|xij| for HRA max |xij−x̂ij|

|xij| for Gauss

1 1.8471 × 1011 474.4763 4.5563 × 10−16 5.1702 × 10−8

2 1.0001 × 1011 436.1355 4.0695 × 10−16 5.1630 × 10−7

3 5.6660 × 106 410.2576 4.0484 × 10−16 3.9087 × 10−12

4 7.2833 × 108 387.2842 3.9370 × 10−16 2.2108 × 10−9

5 4.7916 × 1010 393.6934 4.7924 × 10−16 7.0798 × 10−7

Let us remark that even though the original matrix is quite ill conditioned, the matrix
Li computed by this method is well conditioned as expected. In Table 1, we also compare the
conditioning of the matrix Ai with the condition number of the matrix Li. For the estimation
of the condition number of the matrix Ai, we considered the submatrix obtained by deleting
the last row and column since the matrix is singular, and the multiplicity of the eigenvalue
λ = 0 is one. We can see that κ∞(Li) satisfies the bound given in Proposition 1.
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Figure 2. Structure of the nonzero entries of the numerical examples.

6. Conclusions

A method for efficient computation of the LDU decomposition of the Laplacian matrix
of a connected graph was presented. Moreover, it was proved that the method can be
performed with high relative accuracy. In particular, it provides a rank-revealing decompo-
sition of the Laplacian matrix of a connected graph, which in turn can be the starting point
of the methods in [9] to compute all its eigenvalues with high relative accuracy.

We also highlighted another application of our method, namely computing the number
of spanning trees of a connected graph. We also showed the extension of our method to
graphs with weighted edges. Numerical examples confirmed the theoretical results.
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