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Abstract: The World Health Organization (WHO) cancer agency predicts that more than 35 million
cases of cancer will be experienced in 2050, a 77% increase over the 2022 estimate. Currently, the
main cancers diagnosed are breast, lung, and colorectal. There is no standardized tool for cancer
diagnoses; initially, clinical procedures are guided by the patient symptoms and usually involve
biochemical blood tests, imaging, and biopsy. Label-free non-linear optical approaches are promising
tools for tumor imaging, due to their inherent non-invasive biosafe contrast mechanisms and the
ability to monitor collagen-related disorders, and biochemical and metabolic changes during cancer
progression. In this review, the main non-linear microscopy techniques are discussed, according to
three main contrast mechanisms: biochemical, metabolic, and structural imaging.
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1. Introduction

The prognosis of cancer depends mainly on early detection, the type of tumor, treat-
ments outcomes, and genetic factors [1]. Tumor markers help diagnose the type and stage
of cancer, and to decide which treatment might be effective. Tumor markers also inform
about aggressiveness, whether the treatment is effective, or whether the cancer has recurred.
However, tumor markers are not universal for each type of cancer, and the same type of
tumor marker can show various expression levels, even in two patients with the same stage
and type of cancer.

In contrast, cancer cells share common characteristics such as activation, metabolism
and dynamic nuclear activity [2]. Tumors require a microenvironment conducive to tumori-
genesis. As a consequence, the extracellular matrix undergoes remodeling through tumor
cell-matrix interaction that favors progression and metastasis [3].

Non-linear optical microscopy techniques, such as Raman techniques (i.e., stimulated
coherent and anti-stokes Raman scattering) [4] and multiphoton microscopy [5], provide
powerful tools for cancer detection and diagnosis. Their ability for deep tissue imaging
with high-resolution and minimal photo-damage capabilities makes them invaluable in
both research and clinical settings. These techniques enable the visualization of struc-
tural [6], biochemical [7], and molecular [8] changes in tissues, offering insights into cancer
development, progression, and treatment response.

Traditional immunofluorescence microscopy and spectroscopy techniques in oncology
require fluorescent dyes that may interfere with the metabolism of cancer cells [9].

Such limitations are overcome with the label-free nature of the reviewed techniques
due to their inherent contrast mechanisms. Furthermore, the potential over other non-linear
techniques lies in the ability to be combined with each other, providing joint biochemical,
metabolic, and structural information on the same sample under study [10,11]. In this
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review, major advances in non-linear optical imaging modalities that provide chemical,
structural, and metabolic information about tumor tissues are discussed.

In particular, the operating principles and applications in cancer detection for bio-
chemical (spontaneous, stimulated and coherent anti-stokes Raman scattering), metabolic
(two-photon excitation microscopy, lifetime fluorescence microscopy and transient ab-
sorption microscopy), and structural (second and third-harmonic generation microscopy)
imaging techniques are analyzed.

2. Biochemical Imaging
2.1. Spontaneous Raman Scattering

Although spontaneous Raman scattering is not a non-linear but a linear effect, it has
been added to this section for a better understanding of the principles of non-linear Raman
techniques as described in Sections 2.2 and 2.3.

2.1.1. Principle

Raman spectroscopy is an optical scattering imaging technique that provides non-
destructive analysis of the chemical structure of biological tissues [4]. Raman scattering
occurs upon the interaction of high-power lasers with the chemical bonds composing the
biological sample. The Raman scattered light undergoes a wavelength shift of the incident
light whose intensity and spectrum depend on the vibrational (chemical) bond of the
specific molecules. Figure 1 schematizes the Raman scattering principle: During an elastic
scattering event, the energy of the molecule would not change, and therefore, the scattered
light retains the wavelength of the incident source (i.e., Rayleigh scattering). However, a
Raman event is an inelastic scattering process in which an energy transfer occurs between
the molecule and the scattered photons. If during the light-matter interaction the molecule
is excited to a higher vibrational state (i.e., the molecule gains energy) the process is called
Stokes Raman scattering. Conversely, if the molecule is relaxed to a lower vibrational state,
the scattered photons gain energy with decreasing wavelength; this process is known as
anti-Stokes Raman scattering [12].
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Raman scattering shift is related to the vibrational state of the constituent atoms, where

the interaction of the external electric field
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If the molecular polarizability is expanded into a Taylor series to the first order for a
generalized coordinate r = r0cos(ω0t), which is expressed as follows:

=
α(r) =

=
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)
0

+ . . . (2)

The scattered electric field
→
E scatt proportional to the induced dipole moment can be

expressed as follows:

→
E scatt =

=
α0E0cos(ω0t) + 1/2

(
∂
=
α

∂r

)
0

r0E0[cos(ω0 − ω)t + cos(ω0 + ω)t] (3)

In Equation (3), the first term corresponds to elastic (Rayleigh) scattering. The second
term represents the Raman scattering effect, where the shift frequencies (ω 0 − ω) and
(ω0 + ω) correspond to the Stokes and anti-Stokes Raman processes.

2.1.2. Applications in Cancer Detection

The contrast mechanism of Raman spectroscopy lies in the differences between the
wavelength of incident and scattered light. Furthermore, Raman scattering is a label-free
optical technology that is sensitive to changes in cells and macromolecules occurring
during carcinogenesis; therefore, it is a powerful tool for tumor diagnosis at the molecular
level [14,15].

Raman scattering imaging extends classical spectroscopy to 3D visualization of the
molecular structure and morphology of tumors [16] and then to the classification of types
and subtypes of malignant lesions in cancer diagnosis.

Raman scattering is able to distinguish between normal and cancerous tissues by
identifying specific molecular biomarkers. Each tissue type exhibits a unique Raman
spectrum based on its molecular constituents, allowing researchers to detect chemical
changes indicative of malignancy, such as brain [17] and breast cancer [18,19].

Raman scattering has been employed in surgical settings to provide real-time diagnosis
of tumor margins [20]. During cancer surgery, it is crucial to ensure complete removal of
the tumor, which typically requires histopathological evaluation by a pathologist. Raman
scattering allows for rapid assessment of tissue at the surgical site, potentially reducing
waiting time and improving surgical outcomes [21].

The tumor microenvironment plays a critical role in cancer metabolism [22] and
progression. Raman scattering can be used to map and analyze the molecular components
of the tumor microenvironment, such as the extracellular matrix and infiltrating immune
cells. This helps to understand how the environment surrounding the tumor contributes to
its growth and resistance to treatment [22].

Raman scattering offers label-free chemical imaging, which has sparked interest in
pharmacokinetic research due to the ability to track the biodynamics of anti-cancer drug
delivery in real-time [21]. Figure 2a shows the confocal Raman imaging spectra from a
human hepatocellular carcinoma cell line (HepG2) in the lipids, cytoplasm, and nucleus
regions of the cell. Figure 2b compares the Raman spectra of HepG2 before (green spectrum)
and after incubation (dark blue spectrum) with drug delivery polymers based on poly
(lactic-co-glycolic acid) nanoparticles (PLGA NPs). The pink spectrum corresponds to the
PLGA NPs in the dry state. The cells under study are shown in the insets.
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2.2. Stimulated Raman Scattering
2.2.1. Principle

While spontaneous Raman scattering is an incoherent process, in stimulated Raman
scattering (SRS) a pump and a Stokes photon interact with the tissue, resulting in the
coherent generation of a new photon whose frequency is shifted by the vibrational energy
of the molecules in the tissue [24].

SRS enhances the weak Raman signals by transferring energy from the pump to the
Stokes beam, enabling the detection of molecular fingerprints with higher spatial resolution
and faster acquisition times compared to conventional spontaneous Raman scattering [25].

2.2.2. Applications in Cancer Detection

SRS has emerged as a powerful tool for cancer detection due to its ability to provide
high-resolution, label-free imaging of biological tissues. SRS takes advantage of the intrinsic
vibrational properties of biomolecules, allowing for the identification and differentiation
of cancerous cells from normal tissues based on their different molecular signatures [26].
Recently, the SRS technique has been improved by incorporating high-content SRS histology
platforms [27] that have been shown to successfully map unsaturated and saturated lipids,
extracellular matrix, cellular proteins, and water in breast tissue, and thereby provide both
morphological and chemical information on unstained cancer breast tissues.

One of the major advantages of SRS microscopy in cancer detection is its ability
to generate real-time in vivo images without the need for exogenous markers and the
visualization of tumor margins.

This feature is particularly valuable in complex clinical procedures such as brain tumor
surgery [28], ensuring complete removal of cancerous tissue while preserving healthy
surrounding tissue [29]. This precise delineation is critical to reducing the likelihood of
cancer recurrence and improving patient outcomes.

Recently, focal therapy has been proposed as a way to precisely remove the malignant
mass in prostate cancer while preserving surrounding healthy tissue.

This has been made possible by the emergence of real-time histopathological capabili-
ties of artificial intelligence-enhanced SRS [30]. As an example, Figure 3 (left column) shows
stimulated Raman histology (SRH) images corresponding to a non-Hodgkin lymphoma
specimen, non-small cell lung cancer brain metastasis (b), and glioblastoma specimens.
After image acquisition, a trained convolutional neural network (CNN prediction) displays
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probability heat maps (middle column) corresponding to the tumor (red), low-quality
regions (blue), and regions outside the tumor (green). If the probability maps and SRH are
superimposed, the color-coded SRH images can help the surgeon to better interpret the
histological information.
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2.3. Coherent Anti-Stokes Raman Scattering
2.3.1. Principle

Stimulated Raman scattering and coherent anti-Stokes Raman scattering (CARS) are
non-linear optical methods used in vibrational spectroscopy but with different signal
generation mechanisms and biomedical applications.

While in SRS, the signal is generated when the energy difference between a pump
and a Stokes laser beam matches the vibrational frequency of a molecular bond, CARS
generates a new frequency at the anti-Stokes wavelength after the interaction between the
pump and Stokes beams. This new signal is a coherent light wave at a frequency that is the
sum of the pump frequency and the vibrational frequency of the sample [31].

In CARS, the generated coherent signal is amplified along the propagation direction
of the incident beams, allowing high-contrast three-dimensional biochemical imaging [32].
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CARS provides stronger signals and the ability to suppress non-resonant fluorescence
background signals, making it suitable for applications in biomedical imaging and materials
science [33,34].

Furthermore, the incorporation of polarization units into CARS microscopes has made
it possible to make the intensity of the anti-Stokes radiation sensitive to the directionality of
molecular bonds and then add molecular orientation sensitivity to the regular chemical in-
formation of CARS microscopy [35]. These polarimetric approaches added new capabilities
to CARS microscopy allowing for the determination of Raman polarization ratios and to
study those polarization-sensitive features in CARS spectra from biological specimens [36].

2.3.2. Applications in Cancer Detection

CARS microscopy has emerged as a powerful tool in neuroscience and cancer research
due to its ability to provide a coherent signal of vibrational signatures that are also char-
acteristics of specific chemical bonds of biomolecules [37]. Lipid-rich tumor tissues have
been related to cancer metastasis; however, if the role of lipids in carcinogenesis is not
well understood, lipid-rich tumors cannot be distinguished from carcinoma. One of the
potentials of CARS imaging is to visualize the intracellular lipid aggregation in tumor
cells [38]. Furthermore, CARS microscopy has been employed to detect circulating tumor
cells in the peripheral blood of metastatic patients [39]. Then, the subcellular information
provided by CARS microscopy has helped to reveal metabolism in cancer progression [22]
and anti-cancer drugs [40].

As an example, Figure 4 shows the ability of CARS microscopy to image cancer cells
and their main sub-cellular components. Figure 4a maps the intracellular distribution of
nucleic acid (blue), proteins (green), and lipids (red) from a HepG2 cancer cell line. The
corresponding CARS spectra are shown in Figure 4b.
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3. Metabolic Imaging
3.1. Two-Photon Excitation Fluorescence Microscopy
3.1.1. Principle

Multiphoton imaging arises from the second and third-order non-linear interaction
between a high-power ultrafast infrared pulsed laser (traditionally titanium–sapphire
lasers) and biological tissues [42]. When the addition of the energy of two or more photons
allows the ground fluorophore to be excited to a higher energy excitation state, an electronic
transition occurs in a manner similar to regular fluorescence [43] (single photon absorption).
Biological molecules in the excited state then fall back to the ground state with spontaneous
emission of a photon of lower energy than the sum of the incident photons due to the
non-radiative vibrational relaxation process. If two photons are absorbed, the process
is known as two-photon excitation fluorescence (TPEF) and has the ability to produce
endogenous excitation fluorescence from biomolecules such as lipofuscin, melanin, flavin,
and NADPH [44].
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In multiphoton imaging, the excitation is confined to a focal volume where the scat-
tered light is inversely proportional to the fourth power of the wavelength of the excitation
source. Furthermore, the emission intensity of endogenous fluorophores is proportional
to the square of the excitation source; these particular features provide the multiphoton
imaging modality with intrinsic optical sectioning capabilities and high penetration power
within scattering tissues [45].

Since the experimental demonstration of the suitability of two-photon excitation flu-
orescence (TPEF) for biological imaging in the 1990s [46], TPEF microscopy has been
employed for deep tissue imaging [47], functional imaging in neurons [48], studying the
dynamics of stromal cells interaction [49], or intravital subcellular imaging [50]. Subse-
quently, applications of TPEF microscopy in tumor research have been expanded to tumor
microenvironment, metabolism, angiogenesis, and metastasis [51].

3.1.2. Applications in Cancer Detection

In some types of malignancies, the diagnosis often comes at a very late stage such as
gastric cancer [52]. Diagnosis of gastric cancer is made by visual assessment of gastroin-
testinal endoscopy and late confirmation by histopathology. However, misinterpretation in
the former (endoscopy) due to the lack of obvious signs by the naked eye, may cause a late
impact in the latter (histopathology). In that sense, TPEF microscopy enables the discrimi-
nation of normal gastric tissue from cancer, adenoma, or ulcers due to the capabilities of
two-photon imaging to visualize and measure enzymatic activity [53].

Cancer-associated fibroblasts (CAF) are cells within the tumor that promote cancer
proliferation and extracellular matrix remodeling [54]. They are one of the major stromal
cell populations in solid tumors and contribute to drug resistance [55]. In that regard, TPEF
microscopy has demonstrated the potential to analyze the structure and spatial organization
of gastric cancer cells and monitor spheroid growth. Figure 5 shows a single plane of TPEF
images of a bicellular spheroid acquired six days after the start of growth.
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bicellular HGT1/CAF (right). Scale bar: 100 µm. Image reproduced from [55].

Pathological assessment (i.e., histopathology) of treatment response requires tedious
and time-consuming labeling processes. As a label-free imaging technique, TPEF mi-
croscopy enables the evaluation of histopathological changes induced by neoadjuvant
therapy in the preoperative stage, revealing residual tumoral cells, fibrotic reactions, and
inflammatory cell infiltration [56].

Tumor cells invade adjacent tissues by secreting degradative enzymes that reduce the
pH of lysosomes, and then the extracellular pH of tumor tissues becomes acidic. TPEF
microscopy has been shown to be pH-sensitive in the case of human colon cancer [57].

Photodynamic therapy (PDT) is a modern non-invasive light-matter-based interac-
tion method that uses photosensitizers or light-activated drugs for the treatment of non-
malignant diseases and various types of cancer [58].
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Once the photosensitizers are activated by a selective wavelength, a process of selective
destruction of malignant or abnormal cells begins.

One of the main limitations of PDT was the photodamage induced by single-photon
excitation of the photosensitizers; however, the application of the concept of two-photon
absorption made it possible to overcome this medical limitation due to the negligible
photo-toxicity of the non-linear process that makes the technique suitable for the study of
living cells [59].

The combination of two-photon excitation (TPE) and PDT gave rise to a new therapy
concept (TPE-PDT) with greater penetration power in biological tissue and reduction of
cell phototoxicity with promising therapeutic applications in the treatment of tumors [60].

PDT can destroy cancerous cells in inoperable types of cancer [61] or before tumors
spread. PDT has demonstrated effectiveness in the treatment of colorectal [62], lung [63],
breast, liver, and pancreatic cancer [64]. The main therapeutic mechanisms of PDT are
immune response, vascular damage, and direct destruction of cancer cells.

TPEF lifetime microscopy measures the fluorescence decay of endogenous (or ex-
ogenous) fluorophore emission, allowing for label-free in-vivo imaging of metabolic dy-
namics [65] with promising applications in infectious, neurodegenerative, and cancer
diseases [66].

In particular, the characterization of NAD(P)H fluorescence lifetime has been shown to
be an intrinsic biomarker of the cellular metabolic state of living tissues, capable of tracking
tumor cell dynamics [67].

In a recent publication reported by Karrobi et al. [68], lifetime TPEF microscopy
was used to investigate changes in the cellular metabolism of breast spheroids, including
non-cancerous epithelial breast (MCF-10A) and breast cancer (MD-MB-231) cell spheroid
lines embedded in collagen. The findings revealed a greater shift in cancer spheroids
towards oxidative phosphorylation and how they invaded collagen over time with stronger
metabolic gradient modifications than MCF-10A spheroids.

Figure 6 shows an example of a time-integrated NAD(P)H two-photon excitation
fluorescence image from a non-cancerous epithelial breast cell spheroid line (a) and the
representative fluorescence decay signal (b).
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signal (b). I(t), IRF(t)m, and F(t) correspond to the intensity of the decay signal, the impulse response
function, and a model fitted, respectively. Reproduced from [68].

3.2. Transient Absorption Microscopy
3.2.1. Principle

Transient absorption microscopy (TAM) is an advanced non-linear optical technique
used in biology to study biodynamical processes at the subcellular scale with high spa-
tiotemporal resolution. TAM works by probing changes in the absorption of light by a
sample after being excited by a short laser pulse, allowing real-time observation of changes
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in the electronic states of molecules and providing information about fast processes such as
energy transfer, charge separation, or molecular dynamics [69].

TAM can be employed for the study of photosynthetic processes, protein dynamics,
and the behavior of chromophores and fluorophores within cells. For instance, it has been
used to investigate how light energy is converted into chemical energy in photosynthe-
sis, revealing key details about the lifetimes and pathways of excited states in complex
biological systems [70].

Overall, transient absorption microscopy provides a unique window into the ultrafast
dynamics of biological systems, offering detailed information crucial for unraveling the
mechanisms underlying various biological functions [71].

3.2.2. Applications in Cancer Detection

In cancer detection, TAM is particularly useful for identifying molecular signatures
that distinguish cancerous cells from healthy ones. For example, TAM can detect differences
in the electronic states of chromophores and other biomolecules associated with cancer, such
as mitochondrial redox, and then provide insights into the metabolic and structural changes
that occur during neurodegenerative diseases, diabetes, or cancer [72]. Additionally, TAM
has been used to study the dynamics of photosensitizers in photodynamic therapy (PDT), a
cancer treatment that relies on light-activated compounds to kill cancer cells. By monitoring
the transient absorption signals of these photosensitizers, researchers can optimize PDT
treatment protocols and improve the efficacy of cancer therapy [73].

One of the most recent studies published by Xin and coworkers [74], showed the
power of combining stimulated Raman scattering and transient absorption microscopy for
real-time observation of subcellular components (i.e., proteins, lipids, and DNA). Their
findings revealed induced oxidative damage in a single live cancer cell during PDT.

4. Structural Imaging
4.1. Second Harmonic Generation

Cancer cells are responsible for tumor growth and migration to other organs; however,
the extracellular matrix undergoes remodeling that promotes the progression of metastasis
and tumorigenesis [75]. The next subsection discusses the “gold standard” non-linear
imaging modality to visualize the extracellular matrix primarily composed of collagen [76].

4.1.1. Principle

Multiphoton microscopy is sensitive to harmonic generations, where two or three
incident photons can be instantaneously converted into a single photon with half or one-
third of the excitation wavelength giving rise to second and third harmonic generation
microscopy (SHG and THG), respectively [77]. Those frequency conversions are not
absorptive processes and occur without energy dissipation as a result of excitation photons
summation and phase matching induced by the non-linear susceptibility of the biological
structures [78].

The contrast mechanism of SHG and THG microscopy, unlike TPEF which requires
endogenous fluorophores, arises from the frequency conversion of the incident photons
due to the non-linearity of the electromagnetic response of the specific molecular structures
of biological tissues. According to the non-linear optics theory, the excited non-linear polar-

ization (
→
P) is related to the excitation laser source by means of the non-linear susceptibility,

χ̂(n) [79]:
→
P = ε0+χ̂(1) ·

→
E + χ̂(2) ·

→
E
→
E + χ̂(3) ·

→
E
→
E
→
E + . . . (4)

Therefore, the generation of harmonics depends not only on the need for ultrafast and
intense pulsed laser but also on the non-linear susceptibility of the biological tissues. The
SHG signal is provided only in non-centrosymmetric media such as fibrillar collagen [80].
In contrast, THG arises from sources such as lipid-water interfaces [81] and myelinated
axons [82]. Figure 7 schematizes the main multiphoton imaging modalities, which provide
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label-free three-dimensional visualizations of biological structures at the cellular level with
negligible phototoxicity. These features make multiphoton microscopy a potential tool for
the analysis of tumor lesions.
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Figure 7. Illustration of the two-photon excitation fluorescence (a), second harmonic generation (b),
and third harmonic generation (c) non-linear processes.

The extracellular matrix is not only responsible for cell maintenance, but also for cell
migration and proliferation [83]. In the extracellular matrix (ECM) of connective tissues,
collagen is the most abundant protein and plays a fundamental role in functional structure
and cellular processes [84].

Type-I fibrillar collagen is organized in a non-centrosymmetric molecular structure
and possesses strong non-linear susceptibility. Nowadays, second harmonic generation
(SHG) microscopy (see Figure 6b for the illustration of the SHG concept) is considered
the gold standard imaging technique for visualizing and characterizing collagen-formed
tissues [85]. The SHG signal is endogenous; therefore, the contrast mechanism arises from
the structure of the sample, making this imaging technique sensitive to the molecular
structure of the collagen-based connective tissue [86].

Beyond collagen-based tissues, SHG microscopy allows visualization of the structural
proteins [86], membrane potential in neurons [87], or myosin filaments [88] when combining
SHG and TPEF microscopy.

The SHG signal is a coherent process of tensorial nature in which forward (F-SHG)
and backward (B-SHG) emissions coexist; the ratio of F/B-SHG depends on the structure
of the susceptibility tensor [89]. Therefore, SHG imaging is a powerful optical microscopy
technique to analyze collagen disorders (remodeling) associated to cancer and fibrous
connective tissues [90].

4.1.2. Applications in Cancer Detection

In cancer progression, the extracellular matrix is remodeled alongside abnormal cell
growth [91]. In particular, collagen undergoes fibrillation that induces increased stiffness in
the ECM and promotes angiogenesis and cancer invasion [92]. Furthermore, changes in
SHG directionality emission (i.e., the F/B-SHG ratio) have been found to be altered in the
tumor bulk but not at the stroma interface [93], where high values of the F/B-SHG ratio
describe highly organized ECM tissues.

Therefore, the characterization of spatial remodeling of collagen in the ECM is crucial
as tumor invasion and metastasis are facilitated by alterations in the ECM [94].

SHG microscopy images from collagen fibers require quantitative analysis to first
detect alteration in the spatial patterns and then numerically compute the collagen remod-



Optics 2024, 5 426

eling and degree of organization. The structure tensor, fast Fourier transform, Wavelet, or
Hough transforms are well-established image transformation methods from which struc-
tural information can be extracted. An overview of the main image processing techniques
for quantitative analysis of SHG imaging can be found in [95].

In particular, the structure tensor [96] has been demonstrated as a useful method to
quantify the organization of collagen-based tissues and classify different spatial patterns.
The Hough transform was successfully used to discriminate between normal and malignant
tissues, analyzing the surrounding collagen of thyroid cancer nodule capsules [97].

The SHG process exhibits a strong polarization dependence [98]. The polarization-
sensitive nature of SHG (P-SHG) microscopy has allowed the measurement of the second-
order non-linear optical susceptibility tensor [99], providing information about the ultra-
structure of collagen. As an example, Figure 8 compares the spatially-resolved components
of the non-linear susceptibility tensor in normal and cancerous breast tissues, obtained
using P-SHG.
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Figure 8. Second-order susceptibility values of normal (a) and tumor breast (b) tissues. Scale bar:
20 µm. Images reproduced from [100].

Tokarz et al. [101] used P-SHG microscopy to calculate the components of the suscepti-
bility tensor from histopathological samples of cancerous thyroid tissues. They were able to
measure the molecular chirality of the malignant tissues and found cancer-related collagen
disorders at molecular levels.

Polarimetric SHG microscopy reveals collagen orientation and ultrastructure that
cannot be accessed by non-polarized SHG imaging. P-SHG has also been used to distinguish
between breast, osteosarcoma, liver fibrosis, or melanoma tissues [102–105].

Therefore, pathologists can benefit from the invaluable ultrastructural information
provided by polarization-sensitive SHG microscopy.

4.2. Third Harmonic Generation
4.2.1. Principle

While SHG microscopy arises mainly from non-centrosymmetric proteins such as
Type-I collagen, the third-harmonic generation (THG) signal originates mainly from in-
terfaces between water and lipid-rich structures such as lipid droplets or membrane lipid
layers [106,107]. In this non-linear process, the frequency of the excitation light is tripled
after the interaction with biological tissue (see Figure 7c) and provides information about
the refractive index discontinuities of material interfaces via the third-order non-linear
susceptibility tensor χ(3) [108].

4.2.2. Applications in Cancer Detection

THG offers structural information of single cells with submicron resolution and intra-
cellular heterogeneities allowing discrimination between benign and tumorous tissues [109].
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Gavgiotaki et al. [110] reported quantitative differentiation of malignant cells in benign
and tumorous breast biopsies and found how disease severity altered cell morphological
information that distinguished cell malignant grade.

Figure 9 shows THG imaging of cells isolated from healthy tissue (left column) and for
different grades of breast cancer. The top and bottom rows compare nuclear irregularities
and nucleoli heterogeneities. The ability of THG to detect variability in tumor cell size and
shape in a non-invasive and label-free manner provides invaluable structural information
from cancer biopsies at the subcellular level of resolution.

Optics 2024, 5, FOR PEER REVIEW 12 
 

4.2. Third Harmonic Generation 
4.2.1. Principle 

While SHG microscopy arises mainly from non-centrosymmetric proteins such as 
Type-I collagen, the third-harmonic generation (THG) signal originates mainly from in-
terfaces between water and lipid-rich structures such as lipid droplets or membrane lipid 
layers [106,107]. In this non-linear process, the frequency of the excitation light is tripled 
after the interaction with biological tissue (see Figure 7c) and provides information about 
the refractive index discontinuities of material interfaces via the third-order non-linear 
susceptibility tensor χ(3) [108]. 

4.2.2. Applications in Cancer Detection 
THG offers structural information of single cells with submicron resolution and in-

tracellular heterogeneities allowing discrimination between benign and tumorous tissues 
[109]. Gavgiotaki et al. [110] reported quantitative differentiation of malignant cells in be-
nign and tumorous breast biopsies and found how disease severity altered cell morpho-
logical information that distinguished cell malignant grade. 

Figure 9 shows THG imaging of cells isolated from healthy tissue (left column) and 
for different grades of breast cancer. The top and bottom rows compare nuclear irregular-
ities and nucleoli heterogeneities. The ability of THG to detect variability in tumor cell size 
and shape in a non-invasive and label-free manner provides invaluable structural infor-
mation from cancer biopsies at the subcellular level of resolution. 

 
Figure 9. THG images of cells isolated from healthy tissue (left column) and for different grades of 
breast cancer (third to fourth columns). The top (A) and bottom (B) panels compare the morphology 
of the nucleus and nucleoli, respectively. Red and white arrows indicate the irregular nucleus and 
nucleoli, respectively. Scale bar: 2 µm. Images reproduced from [109]. 

5. Discussion 
In this article, the main methods of non-linear optical microscopy were analyzed, 

considering three different contrast mechanisms: biochemical, metabolic, and structural. 
Table 1 summarizes the reviewed technique, the principle, the contrast mechanisms, and 
the main applications, as well as the main advantages and disadvantages. 

  

Figure 9. THG images of cells isolated from healthy tissue (left column) and for different grades of
breast cancer (third to fourth columns). The top (A) and bottom (B) panels compare the morphology
of the nucleus and nucleoli, respectively. Red and white arrows indicate the irregular nucleus and
nucleoli, respectively. Scale bar: 2 µm. Images reproduced from [109].

5. Discussion

In this article, the main methods of non-linear optical microscopy were analyzed,
considering three different contrast mechanisms: biochemical, metabolic, and structural.
Table 1 summarizes the reviewed technique, the principle, the contrast mechanisms, and
the main applications, as well as the main advantages and disadvantages.

Cancer cells exhibit non-linear optical properties that can also be considered as a
predictive indicator of cellular response induced by the treatment [111]. The emergence of
biocompatible nanomaterials has allowed the conversion of macroscopic analysis of tumor
tissues to molecular diagnosis tools in cancer research. Nanocluster enables low-toxicity,
biocompatible tumor labeling that constitutes optical contrast biomarkers exhibiting non-
linear optical properties [112] that can be analyzed with the reviewed optical methods at
the cellular and molecular scales. Furthermore, nanoparticles, including gold nanoparticles,
protein nanoparticles, cell membrane nanoparticles quantum dots, and others, can be
controlled externally by optical methods, magnetism, and enzymes that make them behave
like smart nanoparticles that are emerging as the new era of intelligent nanoparticle cancer
treatment [113]. Studying the non-linear optical properties of cancer tissues allows for
rapid estimation of cellular damage or response to treatments, spatial remodeling of the
ECM in cancer growth, and the optimization of two-photon photodynamic therapy [114].
Furthermore, a recent study reported by Hoque et al. [115] reported a promising method to
detect cancer by analyzing the non-linear optical properties of blood plasma. Their results
achieved an accuracy of 92% in discriminating between normal and cancerous samples.
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Table 1. Summary of the reviewed techniques, principles, contrast mechanisms, applications, and
key features. RS: spontaneous Raman scattering; SRS: stimulated Raman scattering; CARS: coherent
anti-Stokes Raman scattering; TPEF: two-photon excitation fluorescence; FLIM: fluorescence lifetime
imaging microscopy; TAM: transient absorption microscopy; SHG: second harmonic generation;
THG: third-harmonic generation.

Technique Principle Contrast Mechanism Applications Key Features

RS
Inelastic scattering of light,

where energy is transferred to
molecular vibrations.

Chemical composition
based on vibrational modes.

Chemical imaging, material
science, cancer diagnostics.

- Weak signal, requires longer acquisition times.
- Molecular specificity without labels.
- Sensitive to chemical bonds.

SRS

Enhanced Raman signal by
stimulating Raman-active

modes with pump and probe
lasers.

Chemical composition
based on vibrational modes

Fast imaging of live cells,
tissue imaging.

- Higher sensitivity than spontaneous Raman.
- Rapid, real-time imaging.
- Requires synchronized lasers.

CARS

Non-linear process where
anti-Stokes shifted light is

generated, enhancing Raman
signal.

Chemical composition
based on vibrational modes

Label-free imaging, lipid
mapping, biomedical

imaging.

- High sensitivity, fast imaging.
- Non-resonant background can interfere with

signals.
- Complex instrumentation required.

TPEF

Non-linear excitation where
two photons are absorbed
simultaneously to excite a

fluorophore.

Fluorescence emission from
excited states

Deep tissue imaging,
neuroscience, cellular

imaging.

- Allows deep tissue penetration.
- Reduces photodamage and photobleaching.
- Requires pulsed lasers.

FLIM
Measures the decay time of

fluorescence after two-photon
excitation.

Temporal decay of
fluorescence signal,

independent of intensity.

Cellular metabolism,
protein interactions, cancer

diagnostics.

- Provides functional information.
- Requires complex lifetime analysis.
- Useful for multiparametric imaging.

TAM
Measures the absorption of a

probe pulse following
excitation by a pump pulse.

Differential absorption
signal revealing electronic
and vibrational dynamics.

Study of ultrafast dynamics,
excited state lifetimes, and
charge transfer in materials

and biological systems.

- High temporal resolution.
- Can study non-fluorescent molecules.
- Requires ultrafast lasers and sophisticated

analysis tools.

SHG

Non-linear optical process
where two photons combine
to form a single photon with

twice the energy.

Structural information from
non-centrosymmetric

molecules (e.g., collagen).

Imaging of collagen, muscle
fibers, and other

non-centrosymmetric
structures.

- Label-free imaging.
- Specific to non-centrosymmetric structures.
- No photobleaching or phototoxicity.

THG

Non-linear optical process
where three photons combine
to form a single photon with

three times the energy.

Interface-sensitive imaging
of boundaries between

different refractive indices.

Imaging of interfaces,
cellular structures, and
developmental biology.

- Label-free, subcellular resolution.
- Sensitive to interfaces and material properties.
- Limited to specific sample types with clear

interfaces.

6. Conclusions

Cancer cells induce non-linear optical properties in cell-matrix interaction [116] that
can be measured from multimodal optical approaches that also provide invaluable moni-
toring of anti-cancer drugs and support the application of photodynamic therapies and the
use of nanomaterials as an emerging paradigm for cancer treatment.

Non-linear optical techniques reviewed in this paper, such as multiphoton microscopy
and Raman approaches, are technically sophisticated and their complexity often requires
specialized equipment and expertise, limiting their clinical application. Those technical lim-
itations added to elevated costs as well as required training and infrastructure make the im-
plementation of these techniques in hospitals difficult. Thus, non-linear techniques are still
confined to research labs and not accessible to clinical practices for diagnostic procedures.

Other limitations of non-linear optical techniques for cancer detection are the penetra-
tion depth, the lack of standardization of clinical guidelines, and in-vivo applications, in
which motion artifacts, blood flow, and complexity of the tumor environment can alter the
image quality and then the diagnostic accuracy.

Those limitations may be substantially addressed by focusing on the recommendations
summarized in Table 2.
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Table 2. Main limitation and recommendations for future improvements of non-linear optical
approaches for cancer detection.

Limitation Recommendation

High-costs Cost reduction strategies, including the development of simplified designs based on
cost-effective materials, open-sources manufacturing processes.

Technological equipment Development of robust, affordable, and user-friendly systems and data analysis software.
Advancements in miniaturizing equipment.

Tissue penetration Enhance tissue penetration depth with the implementation of adaptive optics and the
combination with multimodal approaches.

Data Analysis Incorporating artificial intelligence for automatic image processing, pattern recognition,
and data analysis to enhance the differentiation of cancerous tissues.

In vivo trials
More in vivo studies and clinical trials are needed to demonstrate the efficacy and
reliability of non-linear optical techniques in real-clinic cancer detection, to ensure

broad applicability.

Multi-modal imaging Combining the contrast mechanisms of the reviewed techniques with other imaging
techniques such as PET or MRI could offer a more comprehensive diagnostic approach.

Standardization protocols
It is critical to establish standardized protocols for the use of non-linear optical techniques

in cancer detection. This includes guidelines for image acquisition, data analysis, and
interpretation of results.

To conclude, by addressing these limitations and focusing on the recommendations,
non-linear optical techniques could become a truly promising, more practical, and effective
tool for cancer detection implemented in clinical settings in the near future.
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