000145722 001__ 145722
000145722 005__ 20241220120719.0
000145722 0247_ $$2doi$$a10.1093/jxb/erae382
000145722 0248_ $$2sideral$$a140633
000145722 037__ $$aART-2024-140633
000145722 041__ $$aeng
000145722 100__ $$aDe la Peña, Marlon
000145722 245__ $$aNatural variation in the adjustment of primary metabolism determines ammonium tolerance in the model grass Brachypodium distachyon
000145722 260__ $$c2024
000145722 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145722 5203_ $$aNitrogen (N) fertilization is essential to maximize crop production. However, around half of the applied N is lost to the environment, causing water and air pollution and contributing to climate change. Understanding the natural genetic and metabolic basis underlying plants N use efficiency is of great interest to attain an agriculture with less N demand and thus more sustainable. The study of ammonium (NH4+) nutrition is of particular interest, because it mitigates N losses due to nitrate (NO3–) leaching or denitrification. In this work, we studied Brachypodium distachyon, the model plant for C3 grasses, grown with NH4+ or NO3– supply. We performed gene expression analysis in the root of the B. distachyon reference accession Bd21 and examined the phenotypic variation across 52 natural accessions through analyzing plant growth and a panel of 22 metabolic traits in leaf and root. We found that the adjustment of primary metabolism to NH4+ nutrition is essential for the natural variation of NH4+ tolerance, notably involving NH4+ assimilation and phosphoenolpyruvate carboxylase (PEPC) activity. Additionally, genome-wide association studies (GWAS) indicated several loci associated with B. distachyon growth and metabolic adaptation to NH4+ nutrition. We found that the GDH2 gene was associated with the induction of root glutamate dehydrogenase activity under NH4+ nutrition and that two genes encoding malic enzyme were associated with leaf PEPC activity. Altogether, our work underlines the value of natural variation and the key role of primary metabolism to improve NH4+ tolerance.
000145722 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113385RB-I00
000145722 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000145722 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145722 700__ $$aPoucet, Théo
000145722 700__ $$aMontardit-Tarda, Francesc
000145722 700__ $$aUrmeneta, Leyre
000145722 700__ $$aUrbano-Gámez, Jose Alberto
000145722 700__ $$aCassan, Cédric
000145722 700__ $$aVega-Mas, Izargi
000145722 700__ $$0(orcid)0000-0001-7793-5259$$aCatalán, Pilar$$uUniversidad de Zaragoza
000145722 700__ $$aIgartua, Ernesto
000145722 700__ $$aGibon, Yves
000145722 700__ $$aGonzalez-Moro, M Begoña
000145722 700__ $$aMarino, Daniel
000145722 7102_ $$15011$$2063$$aUniversidad de Zaragoza$$bDpto. CC.Agrar.y Medio Natural$$cÁrea Botánica
000145722 773__ $$g75, 22 (2024), 7237–7253$$pJ. Exp. Bot.$$tJournal of Experimental Botany$$x0022-0957
000145722 8564_ $$s4386462$$uhttps://zaguan.unizar.es/record/145722/files/texto_completo.pdf$$yVersión publicada
000145722 8564_ $$s2843584$$uhttps://zaguan.unizar.es/record/145722/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145722 909CO $$ooai:zaguan.unizar.es:145722$$particulos$$pdriver
000145722 951__ $$a2024-12-20-12:05:37
000145722 980__ $$aARTICLE