000145725 001__ 145725
000145725 005__ 20250923084440.0
000145725 0247_ $$2doi$$a10.3390/math12223459
000145725 0248_ $$2sideral$$a140649
000145725 037__ $$aART-2024-140649
000145725 041__ $$aeng
000145725 100__ $$0(orcid)0000-0001-7603-9380$$aCalvete, Herminia I.$$uUniversidad de Zaragoza
000145725 245__ $$aA Bilevel Approach to the Facility Location Problem with Customer Preferences Under a Mill Pricing Policy
000145725 260__ $$c2024
000145725 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145725 5203_ $$aThis paper addresses the facility location problem under a mill pricing policy, integrating customers’ behavior through the concept of preferences. The problem is modeled as a bilevel optimization problem, where the existence of ties in customers’ preferences can lead to an ill-posed bilevel problem due to the possible existence of multiple optima to the lower-level problem. As the commonly employed optimistic and pessimistic strategies are inadequate for this problem, a specific approach is proposed bearing in mind the customers’ rational behavior. In this work, we propose a novel formulation of the problem as a bilevel model in which each customer faces a lexicographic biobjective problem in which the preference is maximized and the total cost of accessing the selected facility is minimized. This allows for a more accurate representation of customer preferences and the resulting decisions regarding facility location and pricing. To address the complexities of this model, we apply duality theory to the lower-level problems and, ultimately, reformulate the bilevel problem as a single-level mixed-integer optimization problem. This reformulation incorporates big-M constants, for which we provide valid bounds to ensure computational tractability and solution quality. The computational study conducted allows us to assess, on the one hand, the effectiveness of the proposed reformulation to address the bilevel model and, on the other hand, the impact of the length of the customer preference lists and fixed opening cost for facilities on the computational time and the optimal solution.
000145725 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E41-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-139543OB-C43$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130961B-I00
000145725 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000145725 590__ $$a2.2$$b2024
000145725 592__ $$a0.498$$b2024
000145725 591__ $$aMATHEMATICS$$b29 / 483 = 0.06$$c2024$$dQ1$$eT1
000145725 593__ $$aEngineering (miscellaneous)$$c2024$$dQ2
000145725 593__ $$aMathematics (miscellaneous)$$c2024$$dQ2
000145725 593__ $$aComputer Science (miscellaneous)$$c2024$$dQ2
000145725 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145725 700__ $$0(orcid)0000-0002-5630-3719$$aGalé, Carmen$$uUniversidad de Zaragoza
000145725 700__ $$0(orcid)0000-0003-4420-7567$$aHernández, Aitor$$uUniversidad de Zaragoza
000145725 700__ $$0(orcid)0000-0001-9993-9816$$aIranzo, José A.$$uUniversidad de Zaragoza
000145725 7102_ $$12007$$2265$$aUniversidad de Zaragoza$$bDpto. Métodos Estadísticos$$cÁrea Estadís. Investig. Opera.
000145725 773__ $$g12, 22 (2024), 3459 [25 pp.]$$pMathematics (Basel)$$tMathematics$$x2227-7390
000145725 8564_ $$s398721$$uhttps://zaguan.unizar.es/record/145725/files/texto_completo.pdf$$yVersión publicada
000145725 8564_ $$s2635340$$uhttps://zaguan.unizar.es/record/145725/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145725 909CO $$ooai:zaguan.unizar.es:145725$$particulos$$pdriver
000145725 951__ $$a2025-09-22-14:50:27
000145725 980__ $$aARTICLE