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Abstract

Deep learning has revolutionized the field of machine learning, outperforming traditional meth-
ods in a wide range of areas such as computer vision, robotics or natural language processing.
However, deep learning models are often treated as a black box, providing high accuracy but
with little insight into how the model arrived at its predictions. This lack of transparency can be
a major drawback in certain applications where the ability to understand and trust the model’s
predictions is crucial. For instance, in some tasks such as medical diagnosis or autonomous
driving, it is as important to achieve high accuracy as it is to have an accurate uncertainty
estimation. In these scenarios, a well-calibrated uncertainty estimate can provide valuable in-
formation for decision-making and can prevent risky situations.

Bayesian deep learning and specifically Bayesian neural networks try to address the chal-
lenge of estimating uncertainty assuming that their parameters and predictions follow a specific
distribution instead of deterministic values. This enables the use of Bayesian inference, a sta-
tistical technique based on the Bayes rule, that allows for updating our distributions of interest
with the arrival of new observations. However, performing Bayesian inference in deep learn-
ing algorithms is not easy due to the complexity, dimensionality of the models and the large
amounts of data they are trained on. This has led to the development of approximate Bayesian
inference methods such as Ensembles and Monte Carlo dropout, which provide approximate
solutions to the problem of uncertainty estimation in deep learning. Even so, these methods
do not fully solve the overconfidence problem in deep learning models. This has motivated
to reconsider in the last years a statistical technique called Laplace approximation which was
introduced in 1992 by David Mackay.

The focus of this Master’s thesis is to study the opportunities of Laplace approximation in
Bayesian deep learning. We conduct a thorough investigation and analysis of this powerful
technique that allows us to tackle the overconfidence problem. Additionally, we evaluate its
performance on benchmark datasets by comparing it with the most commonly used uncertainty
estimation methods such as deep ensembles and Monte Carlo dropout. We demonstrate the ef-
fectiveness of Laplace approximation in providing accurate and reliable uncertainty estimates
for deep learning models. Specifically, our experiments show that Laplace approximation out-
performs the other techniques in estimating uncertainty in out-of-distribution regions.

As an example of real application, this work explores the use of Laplace approximation in
the field of reinforcement learning (RL). While Laplace approximation has been widely used
in other fields, its potential benefits in RL have yet to be fully explored. Exploration is a cru-
cial problem in RL that involves exploring the environment to maximize an agent’s knowledge
and, consequently, its ability to solve different tasks. Nevertheless, efficient exploration in
high-dimensional environments remains an unsolved challenge. A promising approach is to
use the degree of novelty as a reward signal. To address this, we propose integrating Laplace
approximation into a model-based RL algorithm that performs active exploration by utilizing
estimated uncertainty as novelty measure. Our experiments show that this approach outper-
forms the baselines.
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Chapter 1

Introduction

1.1 Motivation

Bayesian deep learning-. Deep learning has revolutionized the field of artificial intelligence in
recent years. The ability of deep neural networks to learn complex patterns and features from
large amounts of data has led to incredible achievements in a variety of applications, including
computer vision, robotics or natural language processing. Even so, deep learning models are
not infallible yet, and their reliability is crucial in applications such as medical diagnosis and
autonomous driving, where the consequences of model’s mistakes can be fatal (Figure 1.1).
Therefore, measuring the uncertainty of deep learning models is essential to ensure their safety
and reliability [1]. In autonomous driving, for example, deep learning models are used to make
critical decisions such as when to brake or turn. Incorporating uncertainty in the predictions
could help the car to make more cautious decisions when the model is uncertain, which can
reduce the risk of accidents [2, 3]. Other scenario where measuring uncertainty could be crucial
is language models. Despite their impressive performance, they often provide unreliable or
false responses. Therefore, quantifying how sure the model is about its predictions could be
extremely helpful to users.

One approach for incorporating uncertainty in deep learning models is Bayesian deep learn-
ing [4, 5]. Bayesian deep learning is a subfield of machine learning that combines the principles
of Bayesian statistics and deep learning. Recently, different techniques of Bayesian deep learn-
ing have appeared to deal with the uncertainty estimation problem from different perspectives
[6, 7, 8]. Consequently, many works have explored these techniques in different topics such as
computer vision, reinforcement learning or Graphics [9, 10, 11]. In addition to providing un-
certainty estimates, Bayesian deep learning can also improve the generalization and robustness
of the models. By incorporating prior information into the model, it can prevent overfitting
-i.e when a model fits accurately on the training data, but performs poorly on unseen data- and
make the model more robust to changes in the data distribution [12].

Laplace approximation-. Most of the Bayesian techniques that estimate model’s uncertainty
are overconfident. The overconfidence problem refers to the scenario where the model’s esti-
mated uncertainty is lower than it should be for new data that is out-of-distribution -i.e quite
different from the data which the model was trained on- (Figure 1.2). To address this issue, the
statistical technique known as Laplace approximation, originally introduced by David Mackay
in 1992 [13], has gained increasing attention in recent years [14, 15, 16]. Laplace approxima-
tion is a powerful method that approximates the posterior distribution of model’s parameters
through a Gaussian distribution, allowing for inference and avoiding overconfidence.

1
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(a) Object detector in AV [2]. (b) Breast cancer DL detection. (c) Language model invent.

Figure 1.1: Deep learning applications that require high reliability.

(a) Regression problem. (b) Classification problem.

Figure 1.2: Illustration of the overconfidence problem. In both problems there are two test points in which the
uncertainty estimated is the same. Is it correct?.

Recently, it has been released Laplace-Redux library that allows to easily leverage Laplace
approximation [17] in popular deep learning models integrated with Pytorch. Many works
have shown that Laplace approximation is better calibrated and more effective in various fields
as image classification and active learning [18, 19, 20]. However, to the best of our knowledge,
Laplace approximation has not yet been applied in the rapidly growing field of reinforcement
learning, which has a broad range of potential applications. As result, in this work, we decided
to explore its capability in this field.

Active exploration in RL-. Reinforcement learning (RL) is a subfield of machine learning
that deals with agents learning how to take actions in an environment to maximize a reward
signal (Figure 1.3). One of the key challenges in this field is exploration, which involves explor-
ing the environment to learn about it and improve the agent’s performance at solving different
tasks. In model-based RL, where a model is trained to describe the dynamics, exploration is
even more crucial so as to collect diverse data for training the model [21, 22].
However, in high-dimensional environments, efficient exploration becomes an unsolved chal-
lenge in model-based RL. First approaches were reactive exploration methods which were
based on the agent encountering something "novel" by chance and then deciding to investi-
gate it further [23, 24]. Existing formulations of measuring novelty include visitation count
[25, 26], prediction error [27, 28] or disagreement among models [29]. However, exploration
can be more effective if it is active, with the agent proactively seeking out novelty based on
its own estimate of which action sequences will lead to interesting outcomes. Specifically,
our work is inspired by the framework developed in [30] which actively measures novelty as
disagreement among the next state predictions of a set of models.
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(a) Pancake flipping by robot. (b) Learning to grasp objects. (c) RL wins playing Go.

Figure 1.3: Three examples of applications of reinforcement learning.

This formulation suggest that active exploration problem could be optimally formulated by
taking the model uncertainty estimated by Laplace approximation as novelty measure.

1.2 Goal and tasks
The main objective of this master’s thesis is to conduct a comprehensive study and analysis
of the Laplace approximation, comparing it to other uncertainty estimation techniques that
are commonly used in deep learning. Furthermore, we aim to demonstrate the versatility
of Laplace approximation by showing its applicability in complex deep learning problems,
beyond some benchmarks. Specifically, we will apply Laplace approximation to the active
exploration problem in reinforcement learning. In order to achieve the planned goals, the fol-
lowing tasks were executed throughout the project (its distribution along the months may be
observed in Table 1.1):

1. A thorough study of state-of-the-art methods for uncertainty estimation in deep learning
algorithms. This task aimed to provide a clear understanding of the current state of the
art in the field and to identify areas where Laplace approximation can be particularly
useful.

2. Unifying theoretical concepts and exploring the boundaries of the Laplace approxima-
tion. In this task, the theoretical foundations of the Laplace approximation were solid-
ified, its strengths and limitations were identified, and recent solutions that have been
proposed to cope with its limitations were studied.

3. Testing the approximation with benchmark datasets and analyzing the results. This task
aimed to evaluate the performance of the Laplace approximation on several tasks with
different levels of complexity, and to compare its performance to other baselines such as
Ensemble or MC dropout. Besides, we explore different variations of Laplace approxi-
mation that attempt to overcome its limitations, in order to determine which approach is
the best suited for more complex problems.

4. Integrating and evaluating the Laplace approximation in a reinforcement learning prob-
lem. The purpose of this task is to demonstrate the applicability of the Laplace approx-
imation in the context of a more complex problem, as model-based active exploration.
In this topic, the uncertainty of the model is used as reward to actively explore the states
space and, then, build the agent to solve different tasks.
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We assess the performance of this approach in different environments and compare it
with models that estimate uncertainty using alternative Bayesian techniques, as well as
models with different underlying architectures.

5. Documentation and intermediate presentations. Write a comprehensive report detailing
the work done, the methodology followed, and the results obtained. This report also in-
cludes a thorough review of the literature relevant to the project, as well as a discussion
of the implications, limitations and potential future steps of the research. Complemen-
tary, give several intermediate presentations to my advisors and colleagues throughout
the project, allowing for feedback and discussion to ensure the quality and rigor of the
research conducted.

Task Oct Nov Dec Jan Feb Apr
Study

Exploring boundaries
Benchmarks

RL Application
Documentation

Table 1.1: Gantt diagram representing the distribution of the tasks done along the months.

1.3 Contribution
The contribution of this master’s thesis may be grouped in the next points:

• We provide a comprehensive evaluation of main Bayesian uncertainty estimation
techniques including MC dropout, deep ensembles and different approaches of
Laplace approximation, in two regression datasets. One of these datasets is created
by us to provide a better understanding of uncertainty. Additionally, we have developed
a Python notebook that enables users to explore and experiment with all these configura-
tions and intuitively visualize the main differences among them https://github.com/
cplou99/BayesianDL.

• We integrate Laplace approximation into the active exploration problem in rein-
forcement learning. To the best of our knowledge, this is the first time Laplace approx-
imation has been applied to this problem. Our experiments demonstrate that the per-
formance of our proposed method outperforms other models that estimate uncertainty
using alternative Bayesian techniques in certain environments. These results show the
potential of Laplace approximation in addressing the challenging problem of efficient
exploration in high-dimensional spaces.

1.4 Context and tools
This work was developed in the Robotics, Perception and Real-time group at the University of
Zaragoza, in the Institute of Engineering and Research of Aragon (i3A). In fact, this project
serves as the starting point for my PhD thesis and will be further developed in future research.

https://github.com/cplou99/BayesianDL
https://github.com/cplou99/BayesianDL
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The main programming language used for this project was Python, using the PyCharm in-
tegrated development environment. The experiments were run using popular machine learning
libraries such as numpy (base version 1.23.4) and PyTorch (version 1.12.1). Additionally, the
project delved into the novel Laplace library (version 0.1a2) which is specifically designed to
exploit the power of the Laplace approximation [17]. To address the reinforcement learning
problem, the python library gym (version 0.13.1) [31] was used and the environments were im-
plemented using the physics engine mujoco-py (version 2.1.2.14) [32]. Specifically, the code
setup of the RL problem was inspired by [30].

The hardware used to run the experiments was a local machine with a NVIDIA GeForce
RTX 3090 GPU. PyTorch library leverages this high-performance GPU allowing for efficient
and fast execution of the experiments carried out in this master’s thesis. Furthermore, in or-
der to optimize these resources and identify the main bottlenecks in terms of computational
resources, we use SCALENE library [33] to profile the implemented code.

The project documentation was written with the widely-used and well-established typeset-
ting system LATEX and it was edited using Overleaf.

1.5 Project structure
The master’s thesis documentation is divided into the following chapters:

• Chapter 1 of the project, the introduction, provides an overview of the context, tools,
objectives, contribution and tasks of the project.

• Chapter 2 of the project is dedicated to Bayesian inference. It begins with a recap of
the background concepts such as Bayes theorem or supervised learning. Afterwards, it
focuses on Bayesian deep learning, motivating its use and detailing the main Bayesian
inference techniques in deep learning, such as deep ensembles and MC dropout. The
section concludes by introducing the Laplace approximation and motivating its use as a
powerful method for approximating the posterior distribution of the model’s parameters.

• Chapter 3 focuses on the Laplace approximation. It covers the theoretical proofs and
provides results from benchmark datasets. The chapter also compares the performance
of the Laplace approximation to other baselines, providing a thorough analysis of the
method’s strengths and limitations. Besides, it analyzes the performance of different
variations of Laplace approximation that attempt to overcome these limitations.

• Chapter 4 covers the active exploration RL problem. The chapter presents the problem
and explains the role of the uncertainty measured by Laplace approximation. Results
from different environments are shown, comparing its performance with respect to esti-
mating uncertainty using alternative Bayesian techniques, as well as the state-of-the-art
methods in this problem. Overall, we provide a comprehensive analysis of the method’s
effectiveness in the context of reinforcement learning.

• Chapter 5 presents the conclusions drawn from the obtained results, as well as a discus-
sion on the limitations of the work and possible future steps to be taken.





Chapter 2

Bayesian Inference

2.1 Background

2.1.1 Probability basics
Probability is a mathematical concept that is used to describe and analyze random events.
There are two main interpretations of probability: the frequentist interpretation and the Bayesian
interpretation.

The frequentist interpretation of probability is based on the idea of long-term frequency
of occurrence. In this interpretation, the probability of an event is defined as the limit of the
relative frequency of the event occurring in a sequence of independent trials, as the number of
trials approaches infinity. For example, if we say that the probability of a coin landing heads is
0.5, we mean that if you flip a coin 1000 times, it should land heads about 500 times.

The Bayesian interpretation of probability is based on the idea of subjective degree of
belief. In this interpretation, probability is not a measure of frequency, but rather a measure
of our uncertainty or ignorance about something. In the coin scenario, the statement would
mean that we believe the coin is equally likely to land heads or tails on the next toss. From
here on, we will refer to probability from this perspective.

Bayesian inference

Let X be a random variable that takes values in the state space X, we denote its probability
mass/density function as p(x), x ∈ X. Bayesian inference refers to the process of updating
a distribution over unknown values of some quantity of interest p(X = x), given relevant ob-
served data Y = y. It is based on Bayes theorem,

p(X = x|Y = y) =
p(Y = y | X = x)p(X = x)

p(Y = y)
. (2.1)

Each term of (2.1) plays a meaningful role in Bayesian inference. First, p(X = x) receives
the name of prior distribution. It represents the prior knowledge about X before taking any
observation. Similarly, p(Y = y) represents the probability of observed data, also known as
evidence. In high dimensional continuous problems its computation is often infeasible. The
conditional probability of having observed such data assuming that our variable of interest take
the unknown values p(Y = y | X = x) is known as likelihood function. As result, we get the
posterior distribution p(X = x|Y = y) which represents the updated knowledge about X after
observations.

7
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(a) Prior distribution. (b) Posterior distribution.

Figure 2.1: Overview of Monty Hall problem when you choose door 1 and door 3 is opened.

Example 1. The Monty Hall problem is a probability puzzle that was first introduced on the
American television show “Let’s Make a Deal” (Figure 2.1). It is named after the show’s
original host, Monty Hall. Here’s how the puzzle works: You are a contestant on a game show
and are presented with three doors. Behind one of the doors is a prize, while behind the other
two are goats. You are asked to choose a door, and you do so. The game show host, knowing
what is behind each door, then opens one of the other two doors, revealing a goat. The host
then asks you if you would like to switch your choice to the other remaining door. The question
is, should you switch your choice?

Our variable of interest is the door xi which hides the prize X = {x1,x2,x3}. Theoreti-
cally, its prior distribution is equally spread between the three doors. Besides, the observa-
tion you will receive is the door y j that they will open to you after you choose one of them
Y = {y1,y2,y3}. So, let us suppose that you choose door number 1 (the other two scenarios
would be equivalent), then the likelihood of the different feasible observations (y2,y3) are:

Pr(y2 | x1) = Pr(y3 | x1) =
1
2
, Pr(y3 | x2) = Pr(y2 | x3) = 1, Pr(y2 | x2) = Pr(y3 | x3) = 0.

Now, let us assume Y = y3 (again the other scenario is equivalent). Then, the evidence is

Pr(Y= y3)=Pr(y3 | x1)Pr(x1)+Pr(y3 | x2)Pr(x2)+Pr(y3 | x3)Pr(x3)=
1
2
· 1
3
+1 · 1

3
+0 · 1

3
=

1
2
.

Therefore, the posterior distribution is:

Pr(x1 | y3) =
Pr(y3 | x1)Pr(x1)

Pr(Y = y3)
=

1
3
, Pr(x2 | y3) =

Pr(y3 | x2)Pr(x2)

Pr(Y = y3)
=

2
3
, Pr(x3 | y3) = 0.

So, it is twice more likely to win if you switch your initial choice!

Uncertainty

In Bayesian inference, uncertainty is a fundamental concept that describes the lack of defi-
nite knowledge about the true values of our variable of interest or just the parameters of our
model. There are two types of uncertainty that are typically considered in Bayesian inference:
epistemic uncertainty and aleatoric uncertainty.

Epistemic or model uncertainty refers to the uncertainty that arises from a lack of knowl-
edge or information about the system being modeled. This type of uncertainty can be reduced
as more data is collected or more information is acquired about the system.
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(a) Regression dataset. (b) Classification dataset.

Figure 2.2: Overfitting example in a regression and a classification problem.

For example, if we are trying to estimate the true mean of a population, our estimate will be
more uncertain if we only have a small sample of data compared to if we have a larger sample.

Aleatoric or data uncertainty, on the other hand, refers to the uncertainty that arises from
random variations or noise in the system. This type of uncertainty cannot be reduced by col-
lecting more data or acquiring more information. For example, if we are trying to predict the
weather, there will always be some uncertainty in our predictions due to random fluctuations
in the atmosphere.

In Bayesian inference, we typically try to model both uncertainties.

2.1.2 Supervised Learning
Supervised learning is a field of machine learning whose algorithms are trained on a labeled
dataset, which contains D inputs or features X = {xn}N

n=1 ∈ RN×D and the corresponding cor-
rect output or target y = {yn}N

n=1. Their goal is to learn a mapping from inputs to outputs, so
that it is able to make predictions on new data.

We will refer to the dataset as D = {(xn,yn)}N
n=1 = (X,y). Usually, we divide data in

three disjoint sets that play a specific role. The training set is used to train the model. The
model learns the relationship between the features (inputs) and the outputs minimizing a loss
function. The validation set is used to evaluate the model while it is being trained. This is
used to tune the hyperparameters of the model. The test set is used to evaluate the performance
of the final, trained model by way of some metrics. This gives an estimate of the performance
of the model on unseen data. It is important to keep the test set separate and not use it for
training or validation in order to avoid overfitting, which occurs when a model fits accurately
on the training data, but performs poorly on unseen data (Figure 2.2).

There are two main problems within supervised learning: regression and classification. A
detailed description of these problems can be seen in Appendix A.1. There, we define several
key concepts of supervised learning that will be used in this work from here on.

2.2 Bayesian Deep Learning
Deep learning is a subset of machine learning that uses neural networks with multiple layers
to learn representations of data. These algorithms are most commonly trained to find the max-
imum likelihood estimation (MLE) of their parameters, that is, they pursue a point estimation
of their parameters, ignoring any uncertainty about them. This often leads to overconfident
predictions, especially in areas that are weakly covered by training data. This problem is ad-
dressed by Bayesian deep learning which refers to the application of Bayesian inference to
deep learning.
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Figure 2.3: Comparison of a MLP with point estimate (left) vs distribution (right) for each weight.

2.2.1 Bayesian neural networks
Bayesian neural networks (BNN) are a popular type of neural network due to their ability to
quantify the uncertainty in their predictive weights and output. In contrast to other neural
networks, BNN train the model weights as a distribution rather than searching for an optimal
value (Figure 2.3). This makes them more robust and allows them to generalize better with less
overconfidence.

BNN impose a prior distribution p(θθθ) on the parameters with the aim of computing their
posterior given the data, p(θθθ |D); a typical choice is to assume a Gaussian prior
p(θθθ) ∼ N(0,γ−1IP), where γ2 denotes the prior precision. Consequently, Bayes theorem al-
lows us to compute the posterior distribution.

p(θθθ |D) =
p(D|θθθ)p(θθθ)

p(D)
=

L(D|θθθ)p(θθθ)∫
p(D|θθθ ′)p(θθθ ′)dθθθ ′

, (2.2)

This is never the final step since our variables of interest are not the parameters of the neural
network, but the output. Then, once we compute the posterior distribution p(θθθ |D), we could
translate this uncertainty into the predictive variable. Thus, for new inputs x∗, the predictive
distribution could be computed by way of,

p(y∗|x∗,D) = Ep(θθθ |D) [p(y∗| f (x∗;θθθ))] =
∫

p(θθθ |D)p(y∗| f (x∗;θθθ))dθθθ . (2.3)

Unfortunately, both computations are only feasible in linear functions and, as we know,
current neural networks are complex nonlinear functions. Additionally, we should face two
other drawbacks: first, the order of parameters in current neural networks usually scale to
millions and, second, the size of datataset used to train them is stunningly high. We therefore
have to approximate both computations by way of some inference techniques.

2.2.2 Approximate Bayesian inference
In this section, we take an overview about the main techniques that put the ideas described in
section 2.2.1 into practice.

Two “heads” Bayesian neural network

This strategy arises to capture the aleatoric uncertainty in the predicted output. As we discuss
in Appendix (A.1), one of the first and strongest assumptions in regression problems is that
the model is homoscedastic. This limitation may be addressed adding a "head" at the end of
the network to predict the variance. Hence, the predicted output variance is input-dependent
(heteroscedastic), rather than a constant.
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(a) Simple Bayesian neural network. (b) Two "heads" Bayesian neural network.

Figure 2.4: From https://brendanhasz.github.io/2019/07/23/Bayesian-density-net.html.
Comparison scheme of homoscedastic and heteroscedastic (two “heads”) Bayesian MLP.

This kind of neural networks receive the name of two “heads” networks (one head predicts
the mean and the other the variance) and are trained minimizing the NLL (Figure 2.4).

Maximum A Posteriori (MAP)

This strategy suggests to introduce the prior knowledge over the parameters into the neural
network training. In this way, we could train them to find the maximum a posteriori (MAP)
estimation of its parameters θθθ MAP instead of θθθ MLE ,

θθθ MAP = argmax
θθθ

p(θθθ |D) = argmax
θθθ

L(D|θθθ)p(θθθ) = argmin
θθθ

[−ℓ(D|θθθ)− log p(θθθ)] . (2.4)

However, this is still a point estimation of the parameters. In other words, it does not
address the problem of approximating both distributions (2.2), (2.3). Other techniques, try
to capture model uncertainty in the output introducing certain randomness along the neural
network training or, even, prediction.

MC Dropout

Dropout is a regularization technique that randomly sets a portion of the input neurons of a
neural network layer to zero during training [34]. Monte Carlo (MC) dropout extrapolates
this idea to test time [35]. Hence, it performs several forward passes randomly dropping out
different hidden units during each one. As result, it generates multiple predictions for a given
input, which can be used to estimate the model’s uncertainty -i.e variance among forward
passes- and to improve the final predictions -i.e average among forward passes-,

p(y∗|x∗,D) =
1
M

M

∑
m=1

p(y∗|x∗,θθθ m),

where θθθ m is a version of θθθ MAP where some connections are dropped out with probability p.
This technique has been shown to be effective in a wide range of contexts, reducing overfitting
and improving the uncertainty estimation [36, 9, 37]. However, it requires multiple forward
passes through the network with different dropout masks during inference, which can be com-
putationally expensive, especially for large models.

https://brendanhasz.github.io/2019/07/23/Bayesian-density-net.html
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Figure 2.5: An scheme of MC dropout technique in a Multilayer Perceptron with M forward passes where black
hidden units are those that have been dropped out at test time.

Figure 2.6: Illustration of a Ensemble of N Multilayer Perceptrons.

Deep Ensembles

The name of deep ensembles comes from the idea of training N models with different architec-
tures, hyperparameters, or initial weights [38]. As result, you may combine their predictions
to produce a more accurate final prediction -i.e average among model predictions-,

p(y∗|x∗,D) =
1
N

N

∑
n=1

p(y∗|x∗,θθθ n),

and uncertainty estimation -i.e variance among model predictions-, where θθθ n are the trained
weights of model 1 ≤ n ≤ N. This technique has been effectively employed across diverse
topics [39, 30]. Comparing it with respect to MC dropout, it is observed that deep ensembles
technique involves training and maintaining multiple models, which can be quite resource-
intensive. An overview of this technique may be observed in Figure 2.6.

Overall, although both strategies tackle the uncertainty estimation problem, they have some
computational time and load constraints. Furthermore, they use some heuristic techniques
which, despite of being inspired by Bayesian methods, are not entirely Bayesian-based [40]. In
contrast, the Laplace approximation provides a more direct connection to Bayesian principles.
By approximating the posterior distribution of the model parameters, it offers a theoretically
grounded approach to uncertainty estimation.



Chapter 3

Laplace Approximation

In this section, we show that Laplace approximation presents several advantages over other
Bayesian inference techniques such as MC dropout or deep ensembles, particularly in terms
of robust theoretical foundations and out-of-distribution generalization. Although Laplace ap-
proximation is a quite old technique (1992), it has gained renewed popularity in recent years
in the context of Bayesian deep learning [17, 16]. Intense research efforts have been accom-
plished to overcome its limitations and explore new ways to apply the method in modern deep
learning problems [15, 41, 14].

First, in section 3.1, we prove that Laplace approximation is derived from Bayesian prin-
ciples. This offers a more reliable way to quantify uncertainty in deep learning models. The
strong theoretical basis of the Laplace approximation ensures consistency and interpretabil-
ity in various contexts. Second, in real-world applications, it is essential for a deep learning
model to provide accurate and well-calibrated uncertainty estimates when faces with out-of-
distribution data. Most techniques, including MC dropout and deep ensembles, tend to produce
overconfident predictions for out-of-distribution samples. In contrast, the Laplace approxima-
tion is capable of reflecting the true uncertainty on unfamiliar data and reduces the risk of
overconfident predictions [18, 42]. This will be shown in section 3.2 by way of some bench-
mark datasets.

3.1 Theoretical foundations
In this section, we present the theoretical basis of Laplace’s method which was first proposed in
this context by MacKay [?]. The idea behind Laplace’s method is to approximate the posterior
p(θθθ |D) by a Gaussian q(θθθ) = N(µµµ,ΣΣΣ). Since the posterior only depends on θθθ , it may be
expressed as,

p(θθθ |D) =
L(D|θθθ)p(θθθ)

p(D)
=

1
Z

g(θθθ)≈ q(θθθ),

where Z = p(D) is the constant that normalizes g(θθθ) = L(D|θθθ)p(θθθ), that is, Z =
∫

g(θθθ)dθθθ .
By definition of θθθ MAP (2.4), it is followed that g(θθθ) has a peak at θθθ MAP (Figure 3.1a).

In this way, it starts considering a truncated second-order Taylor expansion of logg(θθθ)
around its peak θθθ MAP (Figure 3.1b). Since the gradient is zero around its peak, we get

logg(θθθ)≈ logg(θθθ MAP)−
1
2

H(θθθ −θθθ MAP)
2 , (3.1)

where H denotes the hessian of logg(θθθ) at θθθ MAP (Figure 3.1c),

H =−∇
2
θθθθθθ

logg(θθθ)
∣∣
θθθ=θθθ MAP

. (3.2)

13
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(a) θθθ MAP is the maximum of g(θθθ). (b) Taking logarithm, we get logg(θθθ).

(c) Approach logg(θθθ) by Taylor. (d) Taking exponential, we approach g(θθθ).

Figure 3.1: Scheme of Laplace’s method in the scenario in which θθθ is 1-dimensional. We represent with dashed
lines the approximations done by the method of the continuous lines.

Taking the exponential from (3.1), we get (Figure 3.1d),

g(θθθ)≈ g(θθθ MAP)exp
{
−H

2
(θθθ −θθθ MAP)

2
}
.

This equation, in the absence of a pair of terms, resembles the pdf of a Gaussian. Consequently,
we approximate Z by the normalizing constant of this Gaussian,

Z =

√
(2π)P

|H|
g(θθθ MAP).

As result, we get an analytical approximation of the posterior p(θθθ |D),

q(θθθ)∼N(θθθ MAP,H−1). (3.3)

3.1.1 Hyperparameter tuning
In regression scenario (see Appendix (A.3)), the hessian would be equal to

H =−∇
2
θθθθθθ

[logL(D|θθθ)+ log p(θθθ)]
∣∣
θθθ=θθθ MAP

=
1

2σ2 ∇
2
θθθθθθ

N

∑
n=1

(yn− f (xn,θθθ))
2
∣∣∣∣
θθθ=θθθ MAP

+ γ
2IP,

which means that both sigma noise σ and prior precision γ2 play a significant role in the
covariance of the posterior distribution (3.3). Therefore, it is typically beneficial to tune both
of them. The most substantiated alternative is to maximize (gradient ascent) the marginal log-
likelihood which was approximated by Mackay as [43],

log p(D) = logL(D | θθθ MAP)−
1
2

log
(

det
(

H
2π

))
.
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Meanwhile, in classification scenario (A.6), the procedure would be similar but, the unique
hyperparameter to tune is the prior precision γ2.

3.1.2 Approximations

Unfortunately, the main bottleneck of this technique comes from the hessian (3.2). The reason
is twofold: first and foremost, in terms of computation since you have to compute the second
derivatives of logg(θθθ) with respect to all the parameters of your model. Second, in terms of
storage, this matrix has as many rows/columns as parameters your model and, in the case of
deep learning algorithms, it may scale to the order of millions. Depending on the nature of the
problem, different solutions arise:

Hessian approximations

Intense research efforts have been accomplished to deal with the computation of the hessian.
Let us detail some of them (Figure 3.2),

• The default choice is to approximate the hessian by the generalized Gauss-Newton
(GGN) matrix [44],

H≈
N

∑
n=1

J(xn)
(

∇
2
f f log p(yn | f )

∣∣
f= f (xn,θθθ MAP)

)
J(xn)

T ,

where J(xn) = ∇θθθ f (xn,θθθ)
∣∣
θθθ=θθθ MAP

is the NN’s jacobian matrix. However, GGN matrix
is still quadratically large and further approximations are required.

• As explained in [14], Kronecker factored Laplace yields in block-diagonal factoriza-
tion, which defines the hessian Hl of each layer l as a Kronecker product of two smaller
matrixes,

Hl =
∂ 2E

∂Wl∂Wl
= Ql⊗Rl,

where Ql and Rl are the covariance of the pertinent activation and the pre-activation
hessian, respectively.

• However, previous approximations may not be enough for large NNs. In such cases, it is
typically implemented the diagonal factorization which ignores off-diagonal elements.

Subnetwork inference

As discussed in [41], a simple way to scale Laplace’s method is to only consider probabilisti-
cally a subset of the parameters. In other words, apply Laplace’s method to this subset, while
the remaining parameters would take their MAP estimate (Figure 3.3). In practice, the most
common choice is to just apply Laplace to the last layer of the NN, capturing all the model
uncertainty in its parameters and avoiding taking further approximations in the hessian. Other
common choice is to just consider as Bayesian weights the k weights with greatest absolute
values. This idea relies on the fact that the nearer the weights are from 0, the less significant
they are in the predictions.
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(a) GGN Matrix. (b) Kronecker Factorization. (c) Diagonal approximation.

Figure 3.2: Hessian approximations to address memory and computational cost challenges.

Figure 3.3: Schematic illustration of the approach proposed by [41]. (a) Train a neural network to obtain a
point estimate of the weights. (b) Choice a small subset of the weights. (c) Estimate a posterior distribution over
the selected subnetwork via Bayesian inference techniques. (d) Make predictions using the full network with a
mix of Bayesian and deterministic weights.
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3.1.3 Predictive distribution
Assuming the posterior approximation obtained from Laplace’s method (3.3), the uncertainty
captured in the model parameters may be translated into our predictions,

y∗ = f (x∗;θθθ)+ ε, θθθ ∼N(θθθ MAP,H−1). (3.4)

Theoretically, we could apply (2.3) to get an analytical distribution but, in general, it is in-
tractable. Alternatively, there exists the following approximations.

Monte Carlo

The simplest but the unique approximation which is valid for both regression and classification
problems is Monte Carlo integration. Monte Carlo takes K samples from (3.3) so as to average
the outputs,

y∗ ≈
1
K

K

∑
k=1

f (x∗;θθθ k); θθθ k ∼ p(θθθ |D).

The model uncertainty could be measured as the variance among the K samples.

Linearization

For Gaussian likelihoods, e.g regression problems, if we want to capture all the model uncer-
tainty in a predictive distribution, f must be linear with respect to θθθ . We may approximate the
network function by its truncated first-order Taylor expansion centered at θθθ MAP,

f (x∗;θθθ)≈ f (x∗;θθθ MAP)+ J(x∗)(θθθ −θθθ MAP) . (3.5)

Consequently, it is followed from (3.5) that,

E[ f (x∗;θθθ)] = f (x∗;θθθ MAP) , Var[ f (x∗;θθθ)] = J(x∗)T H−1J(x∗),

which, under the Gaussian assumption, allow us to get an analytical predictive distribution,

p( f (x∗;θθθ) |x∗,D)≈N
(

f (x∗;θθθ MAP) ,J(x∗)T H−1J(x∗)
)
. (3.6)

Linearization is the most mathematically rigorous technique for translating model uncer-
tainty, estimated using the Laplace approximation, into predictive distribution. To sum up, let
us review its main steps,

1. Train a neural network to obtain a point estimate of the weights θθθ MAP.

2. Estimate the hessian H of the weights leveraging the explained approximations (section
3.1.2).

3. In inference, for each new input x∗, compute the jacobians J(x∗) by way of backpropa-
gation. In fact, if model’s output dimension is n, the matrix covariance of (3.6) should
be n×n and, then, we will have to perform a backpropagation parting from each output
dimension.

4. Finally, equation (3.6) is applied to obtain the predictive distribution.

One of the main challenges of using linearization in the Laplace approximation is step
3, since it may significantly slow down the inference, making it impractical for real-time ap-
plications. As a result, researchers have been working to develop more efficient methods to
overcome this limitation [15, 16].
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Probit/Bridge

In classification problems, there exists two main alternatives to Monte Carlo. First, Mackay [?]
described the probit approximation. This technique approaches the logistic function with the
probit function (the inverse of the standard normal cumulative distribution function) enabling
us to compute (2.3) analytically. More recently, it appeared the bridge approximation which
estimates (2.3) via a Dirichlet distribution [45].

3.2 Benchmark Datasets
In this section, we will compare the performance of the Laplace approximation method with
three other commonly used techniques - MC dropout, deep ensembles, and default MAP
estimation - in two regression datasets. Our objective is to demonstrate the strengths of
Laplace’s method in out-of-distribution predictions in terms of accuracy, likelihood and cal-
ibration. Complementary, we have developed a Python notebook that enables users to explore
and experiment with all these configurations and intuitively visualize the main differences
among them https://github.com/cplou99/BayesianDL.

Laplace Library-. To implement the Laplace method, we will use Laplace-Redux library
[17]. This Python library was recently developed by Alex Immer in 2021 and can be easily
used with popular deep learning models integrated with PyTorch. It allows the use of all the
hessian approximations and prediction techniques explained in sections 3.1.2 and 3.1.3, as well
as the hyperparameter estimation by way of the marginal likelihood (section 3.1.1).
Architecture details-. Due to the simplicity of these datasets, we will employ a multilayer
perceptron (MLP) of 3 layers and 25 hidden size units. It is followed that our neural network
has 726 weights. To estimate θθθ MAP, we consider as loss (2.4) which will be minimized by Adam
optimizer with a learning rate of 0.01. Since the MLP is homoscedastic by default, we can add
another head that predicts the variance (section 2.2.2) in order to deal with heteroscedasticity
and thus, estimate aleatoric uncertainty in an input-dependent way. As result, the model outputs
(ŷ, σ̂2

a ) for each input. Refering to this model as base model, we implement the next Bayesian
techniques in order to estimate the epistemic uncertainty σ̂2

e :

• Deep ensembles: we build the deep ensembles from 10 base models with random
weights initialization. After training them independently, we estimate the final predic-
tions, the aleatoric uncertainty and the epistemic uncertainty as Avg(ŷ), Avg(σ̂2

a ) and
Var(ŷ) among model’s predictions, respectively.

• MC dropout: we add a dropout layer in the one-to-last layer with p = 0.25 and perform
10 forward passes during inference. We estimate the final predictions, the aleatoric un-
certainty and the epistemic uncertainty as Avg(ŷ), Avg(σ̂2

a ) and Var(ŷ) among forward
passes, respectively.

• Laplace: we consider different strategies to estimate both weights and predictive distri-
butions. In this way, we will test next approaches: first, we consider as Bayesian weights
either the full network or just the last layer or just the 200 parameters with highest ab-
solute values. The posterior distribution of the selected weights will be estimated by
GGN approximation. Afterwards, to estimate the predictive distribution we will use the
linearization technique since the neural network size is limited. The hyperparameters,
including the sigma noise σ2 and prior precision γ2, will be estimated using the marginal
likelihood.

https://github.com/cplou99/BayesianDL
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(a) Heteroscedastic Dataset. (b) Training and Test sets.

Figure 3.4: Two images of Simulated Regression Dataset in which we show its heterothedasticity and the out-
of-distribution points of the test set.

Regression Metrics-. We use the negative log likelihood (NLL) metric to measure the proba-
bility that the actual values (y) follow the predicted distributions N(ŷ, σ̂2

a + σ̂2
e ). Specifically,

we report the average of the NLL along the test set with lower values indicating better perfor-
mance. Besides, to measure accuracy, we use the root mean squared error (RMSE) since it is
quite sensitive to observations that are further from the mean. We leverage the area under the
sparsification error (AUSE) curve to measure the calibration of the uncertainty estimation [46].
AUSE measures the difference between the predictive uncertainty and an oracle based on true
prediction error (RMSE). Together, these metrics provide a comprehensive evaluation of the
performance of both the regression model and the uncertainty estimation techniques.

3.2.1 Simulated Dataset

Dataset-. This is a one-dimensional dataset designed to describe the meaning of both aleatoric
and epistemic uncertainty. It was constructed by applying a specific function f (x) to 1000
points within the interval x ∈ [−7,7], and adding certain noise ε ∼ N(0,σ2) to each point,
resulting y = f (x) + ε . The variance of the noise term σ2 varies based on the input value
(heteroscedastic dataset). The resulting dataset together with the chosen σ2 values may be
visualized in Figure 3.4a.
Training/Test split-. We split the dataset into training and test set, comprising 85% and 15%
of the data, respectively. Following the approach of Foong and Li [18], we define certain re-
gions where training points will not be present. Specifically, these regions are [−7,−5], [1,3],
and [5,7]. Any points within these intervals are removed from the training set. This approach
ensured that the test set contained data both inside and outside of the aforementioned regions,
representing both out-of-distribution and in-distribution data, respectively (Figure 3.4b).
Results-. We evaluate 6 different alternatives: (1) base model MAP estimation as base-
line since it does not estimate epistemic uncertainty, (2) deep ensembles, (3) MC dropout and
Laplace considering as Bayesian weights either the (4) full network (Laplace Full) or (5) the
last layer (Laplace LL) or (6) the Subnetwork (Laplace Subnet) with the 200 parameters with
highest absolute values. We may observe in Figure 3.4 the predictions and uncertainty estima-
tions along the x axis for each method and in Table 3.1 their belonging metric values in the
test set. If we focus on the predictions and take MAP predictions as reference, we realise that
whereas Laplace’s are identical to MAP’s just as (3.5) establishes, deep ensembles and MC
dropout predictions vary slightly since they are the average of 10 forward passes. This fact
leads to a slight improvement in accuracy terms (RMSE).
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It is highlighted the stochasticity of the MC dropout predictions due to Dropout layer. Regard-
ing aleatoric uncertainty, it is noticed that it fits accurately to the noise of each train set region
for all methods. Main differences come from the epistemic uncertainty. All methods detect
the outside regions as the most uncertain ones, however both deep ensembles, MC dropout
and Laplace LL seem to be still overconfident. This fact is even more noticeable in the inside
region that does not contain training points since there, only Laplace Full and, to a lesser ex-
tent, Laplace Subnet are able to predict high uncertainty values for these test points. These
observations are translated into analytic values by NLL metric. The performance of Laplace
Last Layer is clearly worse than the other two Laplace’s methods. This may be due to the fact
that with this method only 26 weights are considered as Bayesian and it does not seems to be
enough to capture the uncertainty of the model.
At AUSE values sight (their belonging plots may be observed in Appendix B.1), Laplace Full
and Subnet are the ones that show higher calibration, that is, higher correlation between uncer-
tainty and error.
Consequently, Laplace Full clearly outperforms the other techniques and Laplace Subnet arises
as the main alternative if we work with models or problems that require higher memory re-
sources.

3.2.2 Boston Dataset
Dataset-. The Boston dataset is a well-known benchmark dataset used in machine learning for
regression tasks. It is available in the scikit-learn library as part of its datasets module. The
dataset contains information about housing values in Boston and related factors, such as crime
rate, average number of rooms per dwelling, and distance to employment centers. It consists
of 506 samples, each with 13 features, making it a medium-sized dataset.
Training/Test split-. We randomly split the data into training and test sets using a 75%−25%
ratio. Additionally, we normalized the data to ensure that all features had the same scale.
Specifically, we used scikit-learn’s StandardScaler to transform the data such that each fea-
ture had a mean of 0 and standard deviation of 1. This preprocessing step is important, as it
can improve the convergence and performance of machine learning algorithms.
Results-. We evaluate the same 6 models as in the previous benchmark. We may observe in
Figure 3.4 the predictions, uncertainty estimations and ground truth of the test set. Besides,
just as before, we find in Table 3.1 their belonging metric values.
In this scenario, the best performance in terms of accuracy is achieved by MC dropout fol-
lowed by Laplace methods and, lastly, deep ensembles which means that the training of the
model benefits from certain randomness. However, regarding NLL values, we realise that the
epistemic uncertainty estimated by MC dropout is significantly more erroneous than deep en-
sembles or Laplace Full/Subnet. In fact, MC dropout seems to be high overconfident since
there are many wrong predictions with low estimated uncertainty. This fact is noticed in AUSE
metric (may be visualized in AUSE plots in Appendix B.2). Other techniques such as deep
ensembles or Laplace Subnet are slightly better calibrated (less AUSE) and are not as overcon-
fident as MC dropout. Just as before, the model that achieves the best performance in both NLL
and AUSE metrics is Laplace Full. In fact, in some cases, it seems to be too underconfident,
that is, it estimates quite high uncertainties when predictions are accurate.
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(a) MAP estimation. (b) Deep ensembles.

(c) MC dropout. (d) Laplace Full.

(e) Laplace Last Layer. (f) Laplace Subnet.

Figure 3.5: Prediction and uncertainty estimation along the x axis of the different models in simulated Dataset.
Both uncertainties are plotted as areas of different opacity centered on predictions (line with the same color).

Table 3.1: Metrics values for all the models in both benchmark datasets. Arrows indicate the direction of the
desired relationship between each metric and performance.

Simulated Dataset Boston Dataset

RMSE ↓ NLL ↓ AUSE ↓ RMSE ↓ NLL ↓ AUSE ↓

MAP 2.15 8.54 97.61 5.76 4.85 178.32
Deep ensembles 1.99 2.86 39.45 6.16 2.95 107.73

MC dropout 2.14 2.45 38.02 5.61 3.85 241.25
Laplace Full 2.15 1.81 26.17 5.76 2.78 92.29
Laplace LL 2.15 3.77 38.23 5.76 3.88 141.59

Laplace Subnet 2.15 1.85 24.42 5.76 2.95 95.08
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(a) MAP estimation. (b) Deep ensembles.

(c) MC dropout. (d) Laplace Full.

(e) Laplace Last Layer. (f) Laplace Subnet.

Figure 3.6: Prediction and uncertainty estimation of the different models in Boston dataset. Both aleatoric and
epistemic uncertainty are summed and plotted with lines of the same color as predictions (points in the middle of
the lines). Ground truth correspond to red points.
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RL: Active Exploration

4.1 Reinforcement Learning
Reinforcement learning (RL) is a branch of machine learning where an agent learns a policy
from trial-and-error interactions with an environment. The policy is in charge of making
decisions, that is, it returns the action that it should take in each state. The agent’s goal is
to maximize a cumulative reward signal, which is provided by the environment. All these
concepts are merged at Markov decision process (MDP), a formal framework that captures
the interaction between an agent and its environment. An MDP consists of a set of states, a set
of actions, a set of probabilities that describe the transitions between states when an action is
taken and a set of rewards associated to transitions.

Reinforcement learning can be divided into two categories: model-based and model-free.

• In a model-based RL approach, a model is trained to describe the dynamics of the system,
and uses this model to plan its actions. This model takes as input a pair state-action (s,a)
and outputs the resulting state s′ reached by the agent. This approach is useful when the
environment’s dynamics are known or can be learned accurately. A key advantage of the
model-based approach is that it allows the agent to plan ahead and consider long-term
consequences of its actions [47, 48].

• In a model-free RL approach, the agent does not try to explicitly model the environment’s
dynamics. Instead, the agent directly learns a policy that maps states to actions. This
approach is useful when the environment’s dynamics are complex or unknown [49, 50].

Usually, in most of RL problems, the agent’s policy should balance exploration and ex-
ploitation. On the one hand, it needs to explore the environment to discover new, potentially
more rewarding actions and states. On the other hand, it needs to exploit the current knowledge
to maximize the reward in the short term.

Efficient exploration in high-dimensional environments is an unsolved problem in rein-
forcement learning. High-dimensional environments are characterized by a large number of
possible states and actions, making it challenging for the agent to explore all relevant areas of
the state space. Current exploration methods are grouped in two branches:

• Reactive exploration methods rely on chance discoveries to drive exploration [23, 24].
The agent explores the environment in a more random manner, hoping to accidentally
find new and interesting areas. Once the agent has found a novel area, it will typically
receive a bonus or an intrinsic motivation reward to encourage further exploration in that
area.

23
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However, this approach can be inefficient because the agent has to unlearn the bonus
once the novelty finishes. This can lead to over-commitment, where the agent spends too
much time exploring an area that is no longer novel, instead of exploring other areas that
might be more promising.

• In Active exploration methods, the agent seeks out new and interesting areas based on
its internal estimate of what actions might lead to interesting transitions. These meth-
ods allow the agent to explore the environment in a more efficient way, reducing the
likelihood of over-commitment and enabling the agent to discover new areas of the en-
vironment more quickly. That is the reason why active exploration methods can be more
effective than reactive methods in high-dimensional environments.

In pure exploration RL problems, the agent’s goal is to learn as much as possible about the
environment without maximizing the external reward signal. In these problems, exploration
itself is the objective, and the agent uses a novelty measure as internal reward, where the
agent is incentivized to explore areas of the environment that it has not yet visited. However,
developing an effective novelty measure can be challenging, particularly in high-dimensional
environments. Existing formulations of measuring novelty include visitation count [25, 26],
prediction error [27, 28] and diversity in the visited states [51, 52].

4.2 Model-based Active Exploration
Model-based reinforcement learning involves learning a model of the environment, includ-
ing its transition dynamics or reward function, to inform the agent’s decision-making process.
Consequently, deep learning has been widely adopted in model-based reinforcement learning
due to its ability to learn complex representations of the state space and dynamics of the envi-
ronment. Besides, deep learning models can also generalize well to unseen situations, enabling
the agent to make informed decisions in novel situations.

Moreover, in pure exploration problems, it is required a method to predict the consequences
of actions and to measure their degree of novelty. One effective way to do this is by using
Bayesian deep learning, which provides an optimal framework to make predictions and esti-
mate the uncertainty associated to its predictions. In this setting, the novelty of a given state
transition can be measured by the degree of uncertainty associated with it [29, 30]. Thus,
we leverage the different Bayesian methods analyzed in previous sections as frameworks to
address Model-based Active Exploration problem.

4.2.1 Problem Formulation
The key idea behind the formulation of active exploration problem is to distinguish between
the two MDPs that we are considering. First, the internal MDP used to exploration where
novelty is defined as reward. Second, the external MDP that corresponds to the environment
whose aim is to perform a specific task and thus, employs an external reward that describes the
desired task. Consequently, the novelty of transitions are estimated before they are encountered
by the agent in the environment.

Let us define the external MDP as (S,A, t∗,r), where S is the state space, A is the action
space and t∗ is the unknown transition function that determines the probability p(s′|s,a, t∗) of
reaching state s′ after taking action a from state s. Lastly, r : S×A→ R refers to the external
reward function.
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Let T be the space of all transition functions and P(T ) the probability distribution over
transition functions that captures the current belief of how the environment works. In this way,
the internal MDP may be defined as (S,A, t̄,u), where the sets S,A are those of the external
MDP, the transition function t̄ is defined as,

p(s′|s,a, t̄) = Et∼P(T )p(s′|s,a, t),

and u refers to the utility u(s,a) of the pair state-action (s,a). Notice that the utility in the
internal MDP plays the same role as the reward of the task in the external MDP. Then, pure
exploration can be defined as an iterative process, where a policy πexp : S×A→ [0,1) is used
in each iteration to gather information about unexplored areas of the environment.

4.2.2 Pipeline
The pipeline of the problem may be divided in three main folds: exploration, evaluation and
policy creation. In this section, we carefully describe the pipeline belonging to each of these
folds. Complementary, we provide their corresponding pseudocodes in Appendix A.2. In this
way, we encourage to follow simultaneously the explanation with the pseudocode to achieve a
better understanding.
Exploration-. First of all, the backbone of the problem is the exploration algorithm (Algorithm
1 in Appendix A.2) which is represented in Figure 4.1 and may be summarized as follows:

1. The agent starts acting randomly along nex
warm steps. As our agent interacts with the

environment, it collects trajectories of the form {si,ai,s′i} in the buffer Φ, where i denotes
the number of exploration steps performed.

2. A model f ex that simulates the dynamics and a policy πex are built (Policy pipeline) from
the collected trajectories Φ. To achieve this, it uses the utility function that measures
novelty as reward.

3. The agent acts along npol steps following policy πex. As our agent interacts with the en-
vironment, it continues collecting trajectories {si,ai,s′i} in Φ. Afterwards, the transition
model and, what is more, the policy πex are discarded.

4. We repeat stages 2-3 until the agent reaches nex
steps exploration steps, that is, until i =

nex
steps. Meanwhile, each neval exploration steps, we evaluate the exploration accom-

plished up to that moment, entering in the evaluation pipeline with all the collected
trajectories Φ.

Evaluation-. Similarly, the evaluation pipeline (Algorithm 2 in Appendix A.2) which is repre-
sented in Figure 4.2, may be explained in the next steps:

1. For each task of the environment, we repeat nk times the following stages in order to get
a more accurate estimate of the agent’s performance.

2. A transition model f ev that simulates the dynamics of the environment and a policy πev

are built (Policy pipeline) from the collected trajectories Φ. To achieve this, it leverages
the reward of the desired task.

3. The agent acts along nev
steps steps following policy πev. The final reward is the sum of the

task reward along these steps.



26 Chapter 4. RL: Active Exploration

Figure 4.1: Scheme of the Exploration Pipeline (Algorithm 1) detailing its steps. Specifically, this
example shows nex

steps = 100 exploration steps where the first nex
warm = 10 are warm-up (steps in red).

Each step is stored in buffer Φ which is the output. Policy πex (Figure 4.3) is recomputed each npol = 10
steps and Evaluation (Figure 4.2) is accomplished each neval = 25 steps.

Figure 4.2: Scheme of the Evaluation Pipeline (Algorithm 2) detailing its steps. Specifically, in this
example there are nk = 2 episodes per task. Each episode starts computing the policy πev (Figure 4.3)
and, subsequently, runs nev

steps = 50 steps. It stores the task reward achieved in each step and then, the
output is its sum.
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Policy-. As we have observed, the agent requires a policy to act in both exploration and
evaluation pipelines. These policies are created following the same steps, but varying the model
f and the reward function R. These steps (Algorithm 3 in Appendix A.2) are represented in
Figure 4.3 and may be summarized as follows,

1. The collected trajectories Φ are used to train the neural network f . Specifically, the
model is trained to map each pair state-action (si,ai) to the resulting state s′i.

2. Once the model is trained we can build the policy π running npol
eps episodes. Each episode

starts from an initial state sinit and carries npol
steps steps. Besides, in each step we simulate

the consequence of nact different actions with the trained model f . These actions are
sampled randomly in the first npol

warm episodes and, afterwards, are given by the policy.
After each step, the policy is updated with the nact tuples (s,a,s′,r), where the reward r
has been previously estimated according to the desired reward function R.

For learning both pure exploration and task-specific policies, we employed Soft-Actor Critic
(SAC) which is the state-of-the-art for efficient reinforcement learning [53]. SAC is a deep
reinforcement learning algorithm that optimizes a stochastic policy in an off-policy way -i.e,
the updated policy is different from the behavior policy-. Specifically, the policy is trained to
maximize a trade-off between expected return and entropy (randomness).

Figure 4.3: Scheme of the Policy Pipeline (Algorithm 3) together with an overview of its steps and model’s
training. In this scheme, after training the model, npol

eps = 50 episodes are performed (the first npol
warm = 2 episodes

are warm-up, shown in red). Each episode consists of npol
steps = 75 steps. After each step, policy π (output) is

updated by way of SAC.
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4.3 Approaches
In this section, we detail the different approaches employed as transition models to make pre-
dictions and estimate their uncertainty (section 4.3.1) as well as the utility measures configured
as rewards in the exploration pipeline (section 4.3.2).

4.3.1 Transition models
The role of the models is twofold: they are in charge of making predictions by simulating the
dynamics of the environment and also, they estimate the uncertainty of their predictions in
the exploration pipeline. In this way, all the models share a base_model as backbone. This
base_model f is a two "head" Bayesian MLP (section 2.2.2) that receives as input a pair state-
action (s,a) and outputs both the next state estimation fŝ′(s,a;θθθ) and its variance f

σ̂2
s′
(s,a;θθθ)

(aleatoric uncertainty). In this way, the model is trained to find the MAP θθθ MAP (section 2.2.2),
where the likelihood is given by

Nθθθ ∼N
(

fŝ′(s,a;θθθ), f
σ̂2

s′
(s,a;θθθ)

)
, (4.1)

and the prior distribution of the base_model weights is N(0,1/γ2), where γ2 is their prior pre-
cision. From this baseline and with the aim of capturing the epistemic uncertainty, we consider
the following Bayesian approaches as transition models.
Deep ensembles-. We stack nens base_models and initialize their weights randomly (section
2.2.2). Hence, the input of each of these nens base_models is the same and their outputs
should vary showing the model uncertainty. Although the training and inference of these nens
base_models can be easily parallelized, it could be a bottleneck in terms of memory resources.
MC dropout-. We include Dropout in a layer of the base_model and perform n f p forward
passes to capture the model uncertainty among the n f p predictions (section 2.2.2). This ap-
proach allows us to store and train only a model but, it still requires many forward passes at
inference.
Laplace-. Trying to quantify uncertainty in a more reliable way, we may approximate first the
posterior distribution of the base_model parameters through Laplace’s approximation and,
subsequently, translate this uncertainty into the predicted variable (section 3.1). Among all dif-
ferent alternatives to approximate the posterior (section 3.1.2) and the predictive distribution
(section 3.1.3 ), we have chosen the next ones:

• LaplaceLLMC: we apply Laplace’s method to the last layer of the base_model, cap-
turing all the model uncertainty in its parameters and avoiding taking further approx-
imations in the Hessian. To translate this uncertainty into the predicted variable, we
apply Monte Carlo. Specifically, we take nMC samples of the Last Layer weights from
Laplace’s distribution and perform a forward pass per sample. Since the remaining pa-
rameters would take their MAP estimate, it is not necessary to perform the forward pass
over the full network nMC times. We could make the forward pass up to the one to
last layer once, and then for each sample make the last layer forward. Furthermore, the
reason why we did not apply the linearization technique in this scenario is that if you
backpropagate only a linear layer you get the same result (input neuron) independently
the ouput neuron you part from and, consequently regarding equation (3.5), the covari-
ance is a diagonal matrix with all its entries equal.

• LaplaceSubnetMC: we consider as Bayesian weights the nsub weights with greatest ab-
solute values, estimating their posterior distribution with Laplace’s method.
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This approach allows us to consider the weights that are theoretically more relevant in
the base_model predictions. Nevertheless, if we use Monte Carlo as before, we must
perform a forward pass along the full network per sample (similarly to MC dropout).

• LaplaceSubnetLinearized: we apply linearization technique instead of Monte Carlo to
estimate the predictive distribution from the posterior distribution of the Subnetwork.
This approach returns an analytical and well-calibrated predictive distribution, but it may
significantly slow down the pipeline since it must compute the Jacobians -i.e perform
dim(S) backward propagations, one from each output dimension of fŝ′(s,a;θθθ)- per each
input (s,a). This is the reason why we only tested this approach in the simplest (smaller
state spaces) environments.

4.3.2 Utilities
In RL, the utility function is usually used to assign a value to each state and action based on
how much reward the agent can expect to receive from taking that action in that state until
termination. In our scenario, we employ utility as reward function of the exploration MDP and
it assigns to each state-action pair (s,a), the expected novelty of future steps. In this way, we
will use the next metrics to measure novelty.
Epistemic Uncertainty-. Since a model f ex is used in the exploration MDP to simulate the
dynamics of the environment, we could think about novelty as model’s ignorance. In our
Bayesian framework, model’s ignorance may be measured as model/epistemic uncertainty.
Particularly, it may be deduced from either the predictive samples or predictive distributions
returned by the models of the previous section. If the model returns a set of predictive sam-
ples

{
f ex
s′ (s,a;θθθ 1), . . . , f ex

s′ (s,a;θθθ n)
}

where n ∈
{

nens,n f p,nMC
}

, we could just compute the
variance among samples,

u(s,a) = Var[ f ex
s′ (s,a;θθθ)] = E

[
( f ex

s′ (s,a;θθθ)−E[ f ex
s′ (s,a;θθθ)])2

]
, (4.2)

or we could compute the entropy of this variance assuming that the samples follow a Gaussian
distribution f ex

s′ (s,a;θθθ)∼N
(
E[ f ex

s′ (s,a;θθθ)],Var[ f ex
s′ (s,a;θθθ)]

)
. In mathematical terms,

u(s,a) =H[ f ex
s′ (s,a;θθθ)] =

1
2

log(Var[ f ex
s′ (s,a;θθθ)])+

dim(S)

2
(1+ log(2π)). (4.3)

Otherwise, if the model - i.e. LaplaceSubnetLinearized- directly returns a Gaussian distribu-
tion (3.6), the simplest way is to compute its entropy as before.
Jensen-Rényi Divergence-. Other alternative is to measure novelty with Jensen-Rényi Diver-
gence (JRD) as in [30]. This metric captures the amount of disagreement present in a mixture
of multivariate Gaussians

{
Nθθθ 1, . . . ,Nθθθ n

}
, where Nθθθ i ∼N(µi,Σi) refers to the Gaussian distri-

bution predicted by the base_model (4.1) with weights θθθ i. Its value may be computed from,

u(s,a) = JRD
{

Nθθθ 1 , . . . ,Nθθθ n

}
=− log

[
1
n2

n

∑
i, j

D(Ni,N j)

]
− 1

n

n

∑
i=1

log |Σi|
2
− log(2)dim(S)

2
,

(4.4)
where

D(Ni,N j) =
1

|Ωi j|
1
2

exp
(
−1

2
∆

T
i jΩ
−1
i j ∆i j

)
,

and denoting Ωi j = Σi +Σ j, ∆i j = µ j−µi.
Particularly, the state-of-the-art method (MAX) that we compare with utilizes deep ensem-

bles as a Bayesian model and leverages the Jensen-Rényi Divergence as a utility function [30].
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(a) MountainCar. (b) HalfCheetah. (c) AntMaze.

Figure 4.4: Illustration of the tested RL environments.

Table 4.1: Basic information about the tested RL environments.

Environment dim(S) dim(A) Tasks nex
steps

MountainCar 2 1 CaptureFlag 2500
HalfCheetah 17 6 Running and Flipping 20000

AntMaze 27 8 MazeCoverage 12000

4.4 Experiments

4.4.1 Environments
In order to evaluate our approach to model-based active exploration, we conducted experiments
on several standard environments using the MuJoCo physics engine [32] and the OpenAI Gym
interface [31]. MuJoCo provides a fast and accurate simulation of rigid-body dynamics, which
allows for realistic and challenging tasks to be formulated as MDPs. OpenAI Gym is a widely
used platform for benchmarking RL algorithms, providing a standardized set of environments
with well-defined reward structures and observation spaces. The environments we focused on
in our experiments and their pertinent tasks were the following ones:
MountainCar-. In this environment a car is placed stochatically at the bottom of a valley and
the agent controls it to reach a flag on top of the right hill (Figure 4.4a). The state space consists
of the car’s position and velocity, while the action space is a float representing the directional
force applied on the car. The task is to reach the flag and, then, the reward is 100 if it reaches
the flag and, otherwise, 0.
HalfCheetah-. It is a 2-dimensional robot consisting of 9 links and 8 joints connecting them
(Figure 4.4b). The state space consists of the positional and velocity values of different body
parts, while the action space contains six continuous actions representing the torques applied
to the robot’s joints. In this problem we considered two different tasks: (1) Running: move
forward as faster as possible and (2) Flipping: perform flips.
AntMaze-. The Ant is a four-legged 3D robot that aims to move synchronously (Figure 4.4c).
The state space consists of positional and velocity values of different body parts, whereas the
action space contains the torques applied at the hinge joints (Figure 4.4c). The evaluation in this
environment consists of computing the percentage of the maze covered across the exploration.
As result, it will not be necessary the evaluation pipeline.

These tasks represent a wide range of complexity levels in terms of tasks difficulty and di-
mension of action and state spaces (Table 4.1). By testing our approach on these environments,
we aimed to demonstrate its generality and effectiveness in a variety of settings.
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4.4.2 Experimental details
Pipeline-. The number of exploration steps depends on the environment (Table 4.1), from
which the first nex

warm = 256 steps correspond to warm-up (nex
warm = 100 for MountainCar). Be-

sides, we recompute the exploration policy each npol = 25 steps and evaluate each neval = 2000
steps. First, to compute the exploration policy we first train the model and, afterwards, we run
npol

eps = 50 episodes (the first npol
warm = 3 episodes as warm-up) along npol

steps = 50 steps where
the consequence of nact = 128 actions are computed simultaneously. Second, to evaluate the
specific task we run nk = 3 evaluation episodes in which we start computing the task policy
(npol

eps = 250, npol
warm = 3, npol

steps = 100, nact = 128) and, afterwards, we run nev
steps = 100 steps.

Transition Bayesian models-. The base_model consists of a MLP with 5 layers and 512 neu-
rons per hidden layer. The input and the output sizes of the base_model are dim(S)+dim(A)
and 2 ∗ dim(S) respectively, where dim(·) refers to the dimension of the state/action space
(Table 4.1). We take the swish activation function h(x) = xσ(x) as non-linear transformation.

To compare the exploration performance of the models discussed in section 4.3.1, we will
vary the models f ex used in the exploration pipeline, while keeping the evaluation pipeline
fixed to a single model f ev (deep ensembles model). All the models are trained along 50
epochs, with a learning rate of 1e−3 and a batch size of 256. We consider Adam Optimizer to
find θθθ MAP (2.4). The prior precision of the Bayesian weights is γ2 = 1. Eventually, with the aim
of making a fair comparison among the different models, we choose nens = n f p = nMC = 32.
Specifically, Dropout is introduced in the middle hidden layer with a probability of p = 0.25.
Furthermore, LaplaceSubnet is built with the 1k parameters with highest absolute values and,
in general, the hyperparameters σ2,γ2 of all Laplace models are fitted minimizing the marginal
log-likelihood along 50 epochs (section 3.1.1).

4.4.3 Results
MountainCar-. This environment is a simple problem in which, besides, the reward is not
continuous and only takes values of 0 or 100, depending on whether the car reaches the flag or
not. These two facts limit the analysis of the results. Therefore, although the results presented
in Table 4.2 provide insights into the performance of each model, we do not believe they are
significant enough to make robust conclusions. However, the simplicity of the problem allows
us to visualize the uncertainty over each state along the exploration process (Figure 4.5). At
plot sight, we may observe how the agent creates trajectories to cover the entire state space and
how the model uncertainty vanishes in regions crossed by these trajectories.

AntMaze-. We may observe in Table 4.3 the performance of the different models. It is
highlighted that some models only need 6000 exploration steps to cover the 80% of the maze,
reaching the 85% at the end of the exploration (12000 steps). Nevertheless, it should be pointed
out that with this metric we are evaluating the exploration accomplished in only 2 of the 27
state space dimensions. In other words, although it is a useful sign of the full exploration
accomplished, it could be tricky since, perhaps, it covers the full maze but without exploring the
range of velocities. In particular, we may visualize in Figure 4.6 an example of the exploration
performed by LaplaceSubnetMC model across 3 runs. At Figure sight, it seems that once the
ant reaches the end of the maze, it has some difficulties to come back to this region to keep on
exploring. Perhaps, the model uncertainty fades too fast once it has been sparely explored and,
thus, utility is not high enough to make the ant to come back.
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Figure 4.5: Illustration of MountainCar exploration by LaplaceLLMC model. The plots display the agent’s
state space discretized as a 2D grid with color indicating the average uncertainty of a state across all actions. The
agent’s trajectories are illustrated with dotted lines.

(a) 256 steps. (b) 2000 steps. (c) 6000 steps. (d) 12000 steps.

Figure 4.6: AntMaze exploration by LaplaceSubnetMC Rényi model across 3 runs. Chronological order of
steps within an episode is encoded with the color spectrum, going from yellow (earlier) to purple (later).

HalfCheetah-. First, we may find in Table 4.4 a brief quantitative comparison among the
different models and utilities tested by us. Some of them reach a reward higher than 330 and
600 for running and flipping task, respectively. Specifically, the best average between both
tasks is achieved by LapSubnetMC model. This is the best example to motivate the signif-
icance of exploration in any RL problem. As it is observed, after performing an accurate
exploration of its state and action spaces, the agent is able to rapidly build a specific
policy for each task whose performances are brilliant. Comparing with respect to other
exploration methods (Figure 4.8), note that some of our models outperform MAX (EnsRényi),
which is the method in which this work is based. Even so, it is highlighted that its performance
and ours are significantly better than other methods. However, these results alone do not cap-
ture real performance. To achieve this goal, we render the evaluation steps (watch videos in
https://github.com/cplou99/BayesianDL/tree/main/Applications). These videos
demonstrate exceptional task performance (Figure 4.7 shows a sequence solving Flipping task).
Complementary, we compare in Appendix B.2 the models in terms of calibration.

Figure 4.7: Sequence of a HalfCheetah flip after 20000 exploration steps performed by LapSubnetMC model.
Videos may be found in https://github.com/cplou99/BayesianDL/tree/main/Applications.

https://github.com/cplou99/BayesianDL/tree/main/Applications
https://github.com/cplou99/BayesianDL/tree/main/Applications
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Table 4.2: Experimental results in MountainCar environment. The metric is the percentage of evaluation
sequences in which the car reaches the flag. Evaluation is performed each 500 exploration steps. Each result
corresponds to the average over 3 runs.

Steps

Bayesian Model Utility 500 1000 1500 2000 Max

Deep ensembles Rényi Div. 0.00 0.00 66.67 22.22 66.67
MCDropout Rényi Div. 11.11 0.00 0.00 0.00 11.11

LaplaceLLMC Rényi Div. 22.22 66.66 55.55 33.33 66.66
LaplaceSubnetMC Rényi Div. 77.78 77.77 88.89 55.55 88.89
Deep ensembles Entropy 33.33 66.67 66.67 55.55 66.67

MCDropout Entropy 77.77 77.78 77.77 55.55 77.77
LaplaceLLMC Entropy 55.55 66.66 22.22 55.55 66.66

LaplaceSubnetMC Entropy 55.55 66.66 22.22 55.55 66.66
LaplaceSubnetLinear Entropy 44.44 33.33 55.55 66.66 66.66

Table 4.3: Experimental results in AntMaze environment. The metric is the percentage of the maze covered
with the exploration steps. Each result corresponds to the average over 3 runs. Best result in bold, second best
result underlined.

Steps

Bayesian Model Utility 256 2000 4000 6000 8000 10000 12000

Deep ensembles Rényi 10.42 40.18 64.29 78.57 81.85 83.93 85.42
MCDropout Rényi 9.52 58.33 73.81 78.27 82.74 83.93 85.12

LaplaceLLMC Rényi 10.12 28.27 49.11 60.72 74.70 80.06 81.55
LaplaceSubnetMC Rényi 10.51 35.32 47.62 55.26 65.48 70.34 74.11
Deep ensembles Entropy 9.23 33.48 41.52 46.88 48.66 50.00 52.24

MCDropout Entropy 9.82 33.33 41.97 45.84 47.32 52.09 52.98
LaplaceLLMC Entropy 9.22 29.17 42.26 53.57 61.90 70.24 73.51

LaplaceSubnetMC Entropy 10.12 44.64 50.00 55.95 64.29 67.26 73.51

Table 4.4: Experimental results in HalfCheetah environment with Running and Flipping tasks. We compute
the maximum reward of the evaluations performed each 2000 exploration steps. In other words, in this table we
show the maximum of each line that appear in Figure 4.8. Specifically, these results are the average across 3 runs.
Best result in bold, second best result underlined.

Maximum Reward

Model Utility Running Flipping Average

Deep ensembles Rényi 278.9 590.9 431.5
MCDropout Rényi 270.6 608.3 427.2
LapLLMC Rényi 168.1 563.5 365.8

LapSubnetMC Rényi 214.6 561.8 388.2
Deep ensembles Entropy 241.3 546.3 354.3

MCDropout Entropy 326.1 505.9 409.0
LapLLMC Entropy 312.7 548.7 430.7

LapSubnetMC Entropy 337.4 578.4 457.9
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(a) Ours: Running task performance. (b) SOTA: Running task performance.

(c) Ours: Flipping task performance. (d) SOTA: Flipping task performance.

(e) Ours: Average performance. (f) SOTA: Average performance.

Figure 4.8: Performance comparison among the different methods. On the left side, the figures corre-
spond to our approaches, while on the right side, the results of the state-of-the-art (SOTA) methods are
showcased. The results of SOTA methods are taken from [30].



Chapter 5

Conclusions, challenges and future work

5.1 Conclusions
We have shown that Laplace Approximation provides a more reliable way to measure uncer-
tainty in deep learning models and outperforms current baselines in out-distribution predictions
in simple problems. However, in more complex problems, further approximations are required
to deal with memory and time constraints which limit its power. Nevertheless, our experi-
ments indicate that Laplace Approximation clearly reaches state-of-the-art performance levels,
or even surpasses them.

Regarding the Reinforcement Learning problem studied, we have conducted experiments
comparing different Bayesian models and other exploration techniques of different nature, such
as SAC or Random. Our results demonstrate that the highest performance in the environments
tested are achieved by the models suggested by us (Laplace and MC-Dropout).

Overall, the findings of this work demonstrate the potential of Laplace Approximation as a
tool to take into account to measure uncertainty in current Deep Learning problems.

5.2 Challenges and limitations
The challenges and limitations encountered during this work were the following ones. Firstly,
this was the first time that I tackled such a complex problem, which involved learning about
various libraries, including Laplace, PyTorch or Gym, and then integrating them into a cohesive
environment. However, a significant difficulty that arose was the compatibility issues with
different library versions, particularly with Python. Additionally, understanding the pipeline
code taken as reference of the RL problem was puzzling.

Furthermore, the Laplace library code was another challenge. The linearization predic-
tion technique was carefully analysed to be optimized. In particular, Jacobians computation
was identified as the main bottleneck, and potential optimization techniques for this could be
explored further, specially when only a Subnetwork is considered as Bayesian.

The primary challenge in RL problems is the time it takes to run the experiments, which
complicates the hyperparameter selection process and restricts the ability to perform more tests.

5.3 Future work
Based on the limitations and challenges encountered in this work, there are several future di-
rections that can be pursued. One possible direction is to explore different ways to optimize the

35
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Jacobians computation in the Laplace library. This computation is likely to be parallelizable.
Thus, it could potentially improve the performance of the Laplace Approximation method in
more complex problems, since we could use the linearization technique which arose the best
results.

Regarding the studied reinforcement learning problem, next steps include to change the
transition model f ev in the evaluation pipeline and to obtain more metrics (calibration and
time) to compare them.

Finally, it may be worthwhile to investigate the use of Laplace Approximation in other
problems such as active learning or mapping.



Bibliography

[1] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Moham-
mad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya,
et al. A review of uncertainty quantification in deep learning: Techniques, applications
and challenges. Information Fusion, 76:243–297, 2021.

[2] Jiwoong Choi, Dayoung Chun, Hyun Kim, and Hyuk-Jae Lee. Gaussian yolov3: An
accurate and fast object detector using localization uncertainty for autonomous driving.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
502–511, 2019.

[3] Sebastian Brechtel, Tobias Gindele, and Rüdiger Dillmann. Probabilistic decision-
making under uncertainty for autonomous driving using continuous pomdps. In 17th
international IEEE conference on intelligent transportation systems (ITSC), pages 392–
399. IEEE, 2014.

[4] Hao Wang and Dit-Yan Yeung. Towards bayesian deep learning: A framework and
some existing methods. IEEE Transactions on Knowledge and Data Engineering,
28(12):3395–3408, 2016.

[5] Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed
Bennamoun. Hands-on bayesian neural networks—a tutorial for deep learning users.
IEEE Computational Intelligence Magazine, 17(2):29–48, 2022.

[6] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon
Wilson. A simple baseline for bayesian uncertainty in deep learning. Advances in Neural
Information Processing Systems, 32, 2019.

[7] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

[8] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural network. In International conference on machine learning, pages
1613–1622. PMLR, 2015.

[9] Javier Rodríguez-Puigvert, Rubén Martínez-Cantín, and Javier Civera. Bayesian deep
neural networks for supervised learning of single-view depth. IEEE Robotics and Au-
tomation Letters, 7(2):2565–2572, 2022.

[10] John Asmuth, Lihong Li, Michael L Littman, Ali Nouri, and David Wingate. A
bayesian sampling approach to exploration in reinforcement learning. arXiv preprint
arXiv:1205.2664, 2012.

37



38 Chapter 5. Bibliography

[11] Xuran Pan, Zihang Lai, Shiji Song, and Gao Huang. Activenerf: Learning where to see
with uncertainty estimation. In European Conference on Computer Vision, pages 230–
246. Springer, 2022.

[12] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit,
fixes overconfidence in relu networks. In International conference on machine learning,
pages 5436–5446. PMLR, 2020.

[13] David JC MacKay. Bayesian interpolation. Neural computation, 4(3):415–447, 1992.

[14] Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation
for neural networks. In International Conference on Learning Representations, 2018.

[15] Javier Antorán, David Janz, James U Allingham, Erik Daxberger, Riccardo Rb Barbano,
Eric Nalisnick, and José Miguel Hernández-Lobato. Adapting the linearised laplace
model evidence for modern deep learning. In International Conference on Machine
Learning, pages 796–821. PMLR, 2022.

[16] Javier Antorán, Shreyas Padhy, Riccardo Barbano, Eric Nalisnick, David Janz, and
José Miguel Hernández-Lobato. Sampling-based inference for large linear models, with
application to linearised laplace. arXiv preprint arXiv:2210.04994, 2022.

[17] Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias
Bauer, and Philipp Hennig. Laplace redux-effortless bayesian deep learning. Advances
in Neural Information Processing Systems, 34:20089–20103, 2021. https://github.
com/AlexImmer/Laplace.

[18] Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner.
’in-between’uncertainty in bayesian neural networks. arXiv preprint arXiv:1906.11537,
2019.

[19] Mohammad Emtiyaz E Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Ap-
proximate inference turns deep networks into gaussian processes. Advances in neural
information processing systems, 32, 2019.

[20] Mijung Park, Greg Horwitz, and Jonathan Pillow. Active learning of neural response
functions with gaussian processes. Advances in neural information processing systems,
24, 2011.

[21] MA Wiering and Jürgen Schmidhuber. Efficient model-based exploration. 1998.

[22] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient ap-
proach to policy search. In Proceedings of the 28th International Conference on machine
learning (ICML-11), pages 465–472, 2011.

[23] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep explo-
ration via bootstrapped dqn. Advances in neural information processing systems, 29,
2016.

[24] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
Vime: Variational information maximizing exploration. Advances in neural information
processing systems, 29, 2016.

https://github.com/AlexImmer/Laplace
https://github.com/AlexImmer/Laplace


Master’s thesis - Carlos Plou 39

[25] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and
Remi Munos. Unifying count-based exploration and intrinsic motivation. Advances in
neural information processing systems, 29, 2016.

[26] Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer. Exploration in
model-based reinforcement learning by empirically estimating learning progress. Ad-
vances in neural information processing systems, 25, 2012.

[27] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven ex-
ploration by self-supervised prediction. In International conference on machine learning,
pages 2778–2787. PMLR, 2017.

[28] Jürgen Schmidhuber. Curious model-building control systems. In Proc. international
joint conference on neural networks, pages 1458–1463, 1991.

[29] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via dis-
agreement. In International conference on machine learning, pages 5062–5071. PMLR,
2019.
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Appendix A

Complementary theory

A.1 Supervised learning: Regression and Classification
There are two main problems within supervised learning: regression and classification.

Regression

The core of regression models is to estimate a continuous target variable y ∈RN (e.g. the price
of a stock tomorrow) by a function f (X;θθθ), where θθθ ∈ RD is a set of parameters that must be
estimated to fit data. In mathematical terms,

y = f (X;θθθ)+εεε, εεε ∼N(0,σ2ID), (A.1)

where εεε is the Gaussian noise error and σ2 > 0 its variance. As it is noticed, we are considering
an homoscedastic model, that is, the variance or aleatoric uncertainty is identical for all data.
Moreover, samples are independent and identically distributed (i.i.d).

E[y] = f (X;θθθ), Var[y] = σ
2ID. (A.2)

Therefore, we may assume that observed data follow a Gaussian distribution whose mean
and variance is determined by (A.2). Consequently, the likelihood of data L(D|θθθ) is given by,

L(D|θθθ) = p(D|θθθ) =
N

∏
n=1

p(yn| f (xn;θθθ)) =
N

∏
n=1

1
σ
√

2π
exp

{
−1

2

(
yn− f (xn;θθθ)

σ

)2
}
. (A.3)

However, we usually work with the negative log-likelihood ℓ(D|θθθ) = − logL(D|θθθ) as
loss function since it facilitates the computation of the Maximum Likelihood Estimation
(MLE) of the parameters θθθ MLE,

∂

∂θθθ
ℓ(D|θθθ)

∣∣∣∣
θθθ MLE

= 0. (A.4)

Depending on the complexity of the model, either we will be able to solve analytically (A.4)
or we will require a numerical method. We may observe this difference in Examples 2 and 3.
Afterwards, we could make predictions ŷ= f (X;θθθ MLE) and test its performance through some
known metrics as Mean Squared Error (MSE) or Negative Log-Likelihood (NLL).

Example 2. Linear Regression-. The model is determined by f (X;θθθ) = Xw+ b, where w
and b receive the name of weights and bias, respectively. Hence, the negative log-likelihood is
a convex function over θθθ and (A.4) has an analytical closed form θθθ MLE = (XT X)−1XT y.
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Example 3. Neural network-. Let us consider a multilayer perceptron (MLP) with L layers
defined as the composition of L functions f (X;θθθ) = fL ( fL−1 (· · ·( f1(X)))) (forward pass),
where f j(X) = φ(X)wj + b j, 1 ≤ j ≤ L. Besides, φ(·) denotes a non-linear transformation
(activation function). In this scenario, the loss is not longer a convex function and we require
an optimizer as Stochastic Gradient Descent (SGD) to find the global minimum of ℓ(D|θθθ).
The basic idea of SGD is to update the weights and biases of the network in the direction that
minimizes the loss function. This is done by computing the gradient of the loss function with
respect to the weights and biases (backpropagation), and then taking a step in the opposite
direction.

Classification

Classification is used to predict a categorical label y∈ {−1,1}N (e.g. "spam" or "not spam" for
an email). The algorithm is trained to assign a new input to one of a set of predefined categories.
In classification, the likelihood function takes one of the following known expressions in order
to facilitate the subsequent computations:

• In binary classification, sigmoid function σ(x) can be used to model the probability of
the instance belong to the positive class. In this way, likelihood is often deduced from
Bernoulli distribution,

L(D|θθθ) =
N

∏
n=1

Ber (yn|σ ( f (xn;θθθ))) , σ ( f (xn;θθθ)) =
1

1+ exp(− f (xn;θθθ))
. (A.5)

• In multi-class classification, there are as many outputs as classes (m). Softmax function
measures the probability of the instance belong to each class. In this case, likelihood is
computed assuming a Categorical distribution,

L(D|θθθ)=
N

∏
n=1

Cat (yn|So f tmax( f (xn;θθθ))) , So f tmax( f (xn;θθθ))=
exp( f (xn;θθθ))

∑
m
k=1 exp( f (xn;θθθ))

.

(A.6)

Usually, both log-likelihoods receive the name of cross-entropy loss which present the
same challenges as in regression to find θθθ MLE. With the aim of testing the performance, we
could measure accuracy or NLL. In addition to performance, we could evaluate the calibration
of the model, that is, the reliability of a model’s probability estimates. Calibration metrics
measure the correspondence between the predicted probabilities and the true outcomes.
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A.2 Algorithms
In this section, we provide the pseudocodes of the exploration, evaluation and policy pipelines
explained in Section 4.2.2.

Algorithm 1: Exploration. Pseudocode of the exploration pipeline (Section 4.2.2).
Data: env, f ex, f ev,Utility
Hyperparams: nex

steps,n
ex
warm,neval,npol

Result: rewards
Φ = /0,rewards = /0,s0 = env.init_state;
for i← 0 to nex

steps do
if i < nex

warm then
ai← SampleAction(A,1);

else
if i % neval = 0 then

reward← Evaluation(env, f ev,Φ);
rewards← rewards∪{i,reward};

end
if i = nex

warm || i % npol = 0 then
πex← Policy(Φ,si, f ex,Utility);

end
ai← πex(si);

end
s′i← env.Step(si,ai);
Φ←Φ∪{si,ai,s′i};
si+1← s′i;

end



46 Chapter A. Complementary theory

Algorithm 2: Evaluation. Pseudocode of the evaluation pipeline (Section 4.2.2).
Data: env, f ev,Φ
Hyperparams: nk,nev

steps
Result: reward
reward← /0,s0← env.init_state;
for task in env.tasks do

Rtask← task.Reward;
rtask← /0;
for k← 0 to nk do

rk← 0;
πev← Policy(Φ,s0, f ev,Rtask);
for i← 0 to nev

steps do
ai← πev(si);
s′i← env.Step(si,ai);
rk← rk +Rtask(si,s′i,ai);
si+1← s′i;

end
rtask← rtask∪ rk

end
reward← reward∪ rtask

end

Algorithm 3: Policy. Pseudocode of the Policy creation pipeline (Section 4.2.2).
Data: Φ,sinit , f ,R
Hyperparams: npol

eps,n
pol
steps,n

pol
warm,nact

Result: π

f ← FitModel( f ,Φ);
π ← Policy.Init();
for ep← 0 to npol

eps do
s0← Repeat(sinit ,nact);
for i← 0 to npol

steps do
if ep < npol

warm then
ai← SampleAction(A,nact);

else
ai← π(si);

end
mi,vi← f (si,ai);
s′i←N(mi,vi).Sample();
ri← R(si,s′i,mi,vi,ai);
π ← SAC.Update(π,si,s′i,ai,ri);
si+1← s′i;

end
end



Appendix B

Additional Results

B.1 AUSE benchmark datasets

In this section, you will find the AUSE plots of the benchmarks described in Section 3.2.

(a) MAP. (b) Ensembles.

(c) MC-Dropout. (d) Laplace full.

(e) Laplace Last Layer. (f) Laplace Subnet.

Figure B.1: AUSE (Area Under Sparsification Error) curves of the different models in the Simulated
Regression Dataset.
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(a) MAP. (b) Ensembles.

(c) MC-Dropout. (d) Laplace Full.

(e) Laplace Last Layer. (f) Laplace Subnetwork.

Figure B.2: AUSE (Area Under Sparsification Error) curves of the different models in Boston Dataset.
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Table B.1: Calibration results in HalfCheetah environment. It corresponds to the AUSE values of the models
trained with the final exploration buffer and performing 100 episodes (100 steps per episode) with the corre-
sponding policy of the task. Ground truth is obtained from the simulator. Best result in bold, second best result
underlined.

Calibration (AUSE)

Model Utility Running Flipping Average

Deep ensembles Rényi 495.1 488.0 491.0
MCDropout Rényi 751.4 723.7 737.55
LapLLMC Rényi 830.4 389.6 610.0

LapSubnetMC Rényi 624.9 540.4 582.6
Deep ensembles Entropy 339.3 443.5 391.4

MCDropout Entropy 727.3 651.1 689.2
LapLLMC Entropy 930.4 632.3 781.3

LapSubnetMC Entropy 377.5 632.3 504.9

B.2 Calibration Half Cheetah

With the aim of providing another metric to compare the bayesian transition models employed
in HalfCheetah environment (Section 4.4), we study their calibration. To achieve this goal,
once the exploration has finished (20k steps) we train each model with its corresponding ex-
ploration buffer. Afterwards, we leverage this trained model to build a policy (Policy pipeline)
oriented to solve a task (running or flipping). Once we get this policy, we run 100 episodes,
each episode starting from a random initial state, along 100 steps. In each step, we compute
the model’s predictions (next state and uncertainty) and, the ground truth provided by Gym.
Therefore, we may measure the uncertainty calibration with the errors by way of AUSE metric
(Table B.1). Complementary, some AUSE plots may be found in Figure B.3.



50 Chapter B. Additional Results

Figure B.3: AUSE curves of the different bayesian models in HalfCheetah environment.
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