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RESUMEN

Los requisitos actuales de cómputo y consumo energético requieren del uso de

aceleradores de propósito espećıfico en los que descargar trabajo de la CPU. Estos

sistemas heterogéneos, compuestos por diversos dispositivos de cómputo, son dif́ıciles

de programar por las diferencias entre dispositivos. Existen modelos de programación

como oneAPI para facilitar su programación.

Este trabajo explora y evalúa las diferentes opciones de optimización de kernels

que ofrece oneAPI para FPGAs en múltiples benchmarks, centrándose en el patrón

parallel for. También evalúa la posibilidad de realizar coejecución CPU-FPGA con

distintos planificadores. El soporte de oneAPI no está maduro, particularmente para la

FPGA y su coejecución, por lo que se ha requerido un gran esfuerzo para entender y

probar el funcionamiento de las caracteŕısticas de oneAPI.

La implementación de diferentes optimizaciones, generalmente relacionadas con

el acceso a memoria y el paralelismo en ejecución de bucles, ha reportado speedups

desde 7.3 hasta 634.26 frente a versiones poco optimizadas. Se corrobora que pese a

haber portabilidad funcional no la hay en rendimiento. Además, esta portabilidad se ve

reducida con la implementación de optimizaciones, al igual que lo hace su usabilidad

por requerir tamaños de problema concretos.

Las extensas pruebas de ejecución heterogénea con ambos dispositivos ejecutando

oneAPI han funcionado para ejemplos sencillos pero no con kernels optimizados por lo

que no se considera soportada durante la realizacion de este trabajo.

La potencia de la FPGA al emplear kernels optimizados dificulta la coejecución

CPU-FPGA por la disparidad de rendimiento entre dispositivos, por lo que ninguno de

los planificadores evaluados (estático, dinámico, hguided) ha resultado efectivo.

Se han podido probar las últimas versiones tanto software como hardware haciendo

uso de la plataforma Devcloud proporcionada por Intel.
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Caṕıtulo 1

Introducción

1.1. Motivación

Existe desde el nacimiento de la computación un incesante incremento en la demanda

de potencia de cómputo, y, para satisfacer dicha demanda, los ingenieros han de conseguir

incrementos iguales o superiores en las prestaciones de los sistemas de computación.

Dichos incrementos de rendimiento y las técnicas empleadas se muestran en la Figura 1.1.

Figura 1.1: Evolución del rendimiento de los procesadores desde los años 80 a la
actualidad

Fuente: Computer Architecture: A Quantitative Aproach

En el periodo de 1985 a 2005, se comenzó por aumentar el rendimiento de un

procesador, doblando el número de transistores cada dos años [1] y reduciendo el

tamaño de estos para conservar el mismo área de chip. También se aumentaba la

frecuencia del procesador, ya que los transistores consumı́an menos enerǵıa al reducir

su tamaño y emplear menor voltaje [2]. Adicionalmente, se desarrollaron multitud de

mejoras en las micro-arquitecturas para aprovechar el paralelismo a nivel de instrucción.

Eventualmente se alcanzaron limitaciones f́ısicas en la reducción del tamaño de los
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transistores, el aumento de la corriente de fuga impidió seguir reduciendo el voltaje

y aumentar la frecuencia, lo que conllevó un gran aumento del coste monetario y

problemas de disipación de calor [3].

Cuando estos problemas frenan el incremento de rendimiento de un procesador, se

cambia de filosof́ıa y se comienza a explotar el paralelismo al emplear múltiples unidades

de cómputo para trabajar cooperativamente. Esta solución aumenta drásticamente el

rendimiento sobre la parte paralelizable del cómputo, pero no resulta efectiva cuando la

sección secuencial es la limitante [4].

En el presente, la potencia de los procesadores es insuficiente en muchos casos [5], y

es por ello que hacen uso de dispositivos de cómputo a los que descargar trabajo. Estos

dispositivos de cómputo, a diferencia de los procesadores de propósito general, son de

dominio espećıfico por lo que el conjunto de tareas que puede realizar es reducido pero

tienen grandes prestaciones energéticas y temporales ejecutando las tareas para las que

han sido diseñados.

En la Figura 1.2 se comparan algunos de los dispositivos más comunes en base a su

flexibilidad y rendimiento.

Figura 1.2: Flexibilidad frente a rendimiento de las principales tecnoloǵıas

Fuente: Adaptada de Hardware Design of Embedded Systems for Security Applications

El uso de estos dispositivos da lugar a sistemas heterogéneos, que se podŕıan definir

como aquellos en los que conviven distintos dispositivos de cómputo, los cuales se

emplean en la actualidad en todos los ámbitos de la computación, desde sistemas HPC

hasta teléfonos móviles.

Si bien los sistemas heterogéneos están ampliamente extendidos por su rendimiento,

su complejidad es mayor [6], siendo necesario tener en cuenta las diferencias entre las

caracteŕısticas de los distintos dispositivos que los componen: arquitectura, memoria,

frecuencia de reloj, lenguaje de programación, bibliotecas, frameworks. . .
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Idealmente, toda la complejidad añadida seŕıa transparente al desarrollador y

manejada por un software intermedio que interaccione con los diferentes dispositivos,

lidiando con las caracteŕısticas de cada uno y repartiendo eficientemente el trabajo [7].

Es este software intermedio el que pretende proporcionar Intel a través de su nuevo

modelo de programación oneAPI [8], un modelo abierto, gratuito y estandarizado que

simplifica el uso de sistemas heterogéneos.

Conseguir abstraer al programador de los dispositivos subyacentes no es sencillo,

pero todav́ıa menos lo es maximizar las prestaciones. El rendimiento puede desplomarse

por diversas razones: mala comunicación de datos entre dispositivos, mala localidad de

los accesos a memoria, mal uso de los recursos del dispositivo, . . .

Si bien oneAPI intenta avanzar hacia la programabilidad de sistemas heterogéneos

a nivel de portabilidad, no está tan claro si lo será en en portabilidad de rendimiento.

Además carece de una capa de nivel superior que le permita valorar en qué dispositivo/s

ejecutar cada carga de trabajo y cómo hacerlos trabajar conjuntamente.

1.2. Objetivos

El objetivo principal es optimizar un conjunto de benchmarks con oneAPI para

su ejecución en FPGA, evaluando las opciones de optimización de código existentes

y permitiendo además valorar la portabilidad de rendimiento de oneAPI a FPGA al

comparar el código base con el optimizado.

Con los benchmarks optimizados se realizará ejecución heterogénea entre CPU y

FPGA, evaluando múltiples poĺıticas de balanceo de carga.

Persiguiendo este objetivo principal se busca responder a las siguientes cuestiones:

− ¿Qué rendimiento tienen los kernels1 oneAPI sin optizizar en FPGA?

− ¿Cómo se pueden optimizar los kernels oneAPI para FPGA? ¿Cómo de sencillo y

efectivo resulta?

− ¿Podemos hacer cooperar a dos dispositivos para ejecutar los benchmarks? ¿Es

mejor que ejecutar en uno único?

1.3. Alcance

En este TFM se ha partido de un trabajo previo [9] en el que se desarrolla una

herramienta con múltiples benchmarks y planificadores de ejecución, funcional para la

1El Kernel es la sección de código que se ejecuta en los dispositivos aceleradores
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ejecución heterogénea C++-FPGA con oneAPI. Partiendo de este código base y los

objetivos del apartado anterior:

− Se ha extendido y migrado el proyecto a la plataforma devcloud de Intel.

− Se ha actualizado el código para operar con la última versión de oneAPI.

− Se han explorado y evaluado concienzudamente múltiples técnicas para la

optimización de kernels en FPGAs. Aśı es posible resumir aquellas con mayor

beneficio.

− Se han estudiado y probado exhaustivamente las herramientas ofrecidas por Intel

para ejecución heterogénea, incluyendo el reporte de múltiples errores de las

mismas.

− Se ha realizado ejecución heterogénea con múltiples poĺıticas de balanceo de carga.

1.4. Estructura del documento

En el Caṕıtulo 2 se describe el estado del arte de los sistemas heterogéneos al

comienzo de este trabajo. A continuación, en el Caṕıtulo 3, se describe la plataforma

empleada, se detalla la metodoloǵıa seguida al realizar los experimentos y los benchmarks

utilizados. Una vez definido el entorno del trabajo, en el Caṕıtulo 4, se describen las

diferentes optimizaciones consideradas y donde se aplican. En el Caṕıtulo 5, se describen

la herramienta de coejecución heterogénea CPU-FPGA que se empleará. Antes de

finalizar, en el Caṕıtulo 6 se exponen los diferentes experimentos realizados y sus

resultados, tanto de optimización como de coejecución. Por último, en el Caṕıtulo 7 se

extraen las principales conclusiones del TFM y se proponen ĺıneas de trabajo futuro.
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Caṕıtulo 2

Estado del arte

2.1. Sistemas Heterogéneos

Los sistemas heterogéneos están ampliamente extendidos en la actualidad. Resulta

raro encontrarse con ordenadores personales o teléfonos móviles que no incluyan una

tarjeta gráfica o diversidad de aceleradores para tareas concretas.

2.2. Hardware en sistemas heterogéneos

En este apartado se describe de manera simplificada la arquitectura de las CPUs

y FPGAs, los dos dispositivos principales en este trabajo, permitiendo comprender la

diferencia de rendimiento y flexibilidad entre ambos dispositivos.

2.2.1. CPU

Las CPUs (Central Processing Unit) son componentes hardware esenciales en

casi todos los dispositivos electrónicos. Esto se debe a su alta flexibilidad ya que,

empleando combinaciones de instrucciones sencillas, son capaces de implementar

cualquier comportamiento.

Su organización suele estar basada en una ruta de datos segmentada (simplificada

en la Figura 2.1) en la que se leen, decodifican y ejecutan instrucciones, guardando los

resultados convenientemente. Es común el uso de mejoras microarquitectónicas como:

ejecución fuera de orden, predicción de saltos, o ejecución superescalar. El objetivo

de estas optimizaciones, y muchas otras, es explotar al máximo el paralelismo entre

instrucciones, aprovechar todo el hardware posible para lograr el máximo rendimiento

en las CPUs.

Cada CPU implementa una ISA (Instruction Set Architecture) en la que se

documentan las caracteŕısicas subyacentes necesarias para generar binarios ejecutables,

como son: los tipos de datos soportados, la gestión de memoria, los registros existentes. . .
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Figura 2.1: Ruta de datos segmentada

Fuente: Computer Architecture: A Quantitative Aproach

El uso de una ruta de datos común para la ejecución de diversos tipos de instrucciones

siguiendo cualquier combinación conlleva a que, pese a ejecutar gran cantidad de

instrucciones por segundo, la CPU pueda resultar muy ineficiente para secuencias de

instrucciones con dependencias o que compiten por los mismos recursos. Por ejemplo,

para ejecutar la multiplicación de la ecuación 2.1, seŕıa necesario realizar, entre otras,

dos instrucciones de multiplicación, que deben atravesar la ruta de datos entera y

existiendo una dependencia que retrasa la ejecución de la segunda hasta que la primera

proporciona su resultado. Si se diseñase una ruta de datos con esta operación en mente,

se añadiŕıan dos unidades de multiplicación encadenadas como en la Figura 2.2, para

poder realizar la operación entera con un solo recorrido de la ruta de datos.

a = b * c * c (2.1)

Figura 2.2: Circuito hardware para realizar la multiplicación de la Eq. 2.1 con
multiplicadores de dos entradas
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2.2.2. FPGA

El principal dispositivo acelarador usado en este trabajo es una FPGA

(Field-Programmable Gate Array). Las FPGAs son dispositivos hardware reconfigurables

cuya popularidad ha aumentado como consecuencia del incremento en el número de

componentes configurables de los que disponen y debido también a una reducción en su

precio.

Como muestra la Figura 2.3, las FPGAs están compuestas por multitud de

bloques lógicos reprogramables para implementar desde puertas lógicas a funciones

combinacionales complejas. Una jerarqúıa de interconexión permite configurar qué

elementos se enlazan entre śı. Incluyen también bloques de entrada/salida y suelen tener

bloques fijos dedicados a memoria RAM o DSPs (Digital Signal Processor).

Estos dispositivos permiten implementar cualquier diseño hardware (si se dispone de

los recursos suficientes), siendo idóneos para hacer prototipado. De manera similar a los

ASIC, permiten diseñar unidades lógicas y rutas espećıficas para acelerar operaciones

concretas (como la ecuación 2.1).

Figura 2.3: Bloques funcionales principales de la FPGA

Fuente: Implementación de una plataforma HW para la evaluación de predictores e
saltos sobre arquitectura SPARC v8 [10].

Se encuentran en un punto intermedio entre una CPU y un ASIC (ver Figura

1.2), ofreciendo mejor rendimiento y menor consumo que la CPU y más flexibilidad y

facilidad de diseño que un ASIC. Por contrapartida, las CPU son más flexibles que las

FPGAs, y los ASIC ofrecen mejor rendimiento y consumo ya que no tienen el excesivo

interconexionado de las FPGAs.

Originalmente la programación de las FPGAs se llevaba a cabo únicamente

empleando lenguajes de descripción de hardware como VHDL. Hoy en d́ıa existen

herramientas de High-Level Synthesis (HLS) que generan el diseño de la FPGA a partir
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de código de alto nivel (como C++). Pese a que estas herramientas facilitan enormemente

la programación para FPGAs, el proceso de generación de una configuración de FPGA

válida sigue siendo costoso en tiempo, generalmente en el rango de varias horas, ya que

se han de evaluar todos los recursos de la FPGA para encontrar una configuración que

cumpla las especificaciones y guardarla en un binario (bitstream). oneAPI aprovecha

las capacidades de las herramientas de HLS para generar los binarios.

2.3. Software en sistemas heterogéneos

Una parte fundamental de cualquier sistema heterogéneo son las herramientas

software que permiten su programación. En este apartado se presentan distintas

alternativas.

2.3.1. OpenCL y CUDA

Previamente a oneAPI ya exist́ıan otros modelos de programación, como OpenCL y

CUDA [11, 12], en los que se especifica la existencia de un anfitrión (host) que gestione

la ejecución y descargue las tareas de cómputo (kernels) a uno o más dispositivos

aceleradores (devices), similar al patrón master-worker. El host debe gestionar los

problemas derivados de la heterogeneidad: diferentes arquitecturas, memoria, frecuencia,

. . .

Aunque CUDA es espećıfico para GPUs de Nvidia, OpenCL es un estándar abierto

para ser utilizado por cualquier acelerador, incluido FPGAs. OpenCL se anunció por

primera vez en la conferencia SIGGRAPH de 2008, y consigue definir un lenguaje

común entre diferentes dispositivos, pero tiene múltiples desventajas:

− Bajo nivel de abstracción. Requiere que el programador haga expĺıcito todo el

paralelismo de datos existente.

− Los kernels se escriben en C99 y deben separarse del código del host (a otro

fichero).

− El rendimiento de los kernels depende mucho de optimizarlos para cada dispositivo.

− La coordinación entre los distintos dispositivos del sistema heterogéneo debe ser

expĺıcitamente programada.

2.3.2. Intel OneAPI

Intel oneAPI se define como un modelo de programación que simplifica el uso de

CPUs y aceleradores en sistemas heterogéneos. Emplea directivas de C++ moderno
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para expresar paralelismo, con un lenguaje de programación llamado Data Parallel

C++ (DPC++) [13]. Este lenguaje permite reutilizar código tanto del host como de

los aceleradores, que pueden estar mezclados en un único fichero. Incluye directivas

para expresar dependencias de ejecución y memoria. Permite seleccionar fácilmente el

dispositivo dónde ejecutar cada tarea, pudiéndose también usar el host como dispositivo.

Es importante mencionar que oneAPI es un modelo de programación reciente y no

maduro, especialmente para FPGAs, que fue anunciado por primera vez en la Intel

HPC Developer Conference en noviembre de 2019.

En la Figura 2.4 se muestra un ejemplo funcional de código oneAPI. En tan solo

21 ĺıneas se incluye la incorporación de la biblioteca con las clases oneAPI (ĺınea 1),

la declaración de un buffer a partir de datos ya existentes (ĺınea 9), la declaración de

una cola (asociada al dispositivo por defecto) y adición de una tarea (ĺınea 11) a la

misma, la declaración de un accessor al buffer para el dispositivo (ĺınea 12), el código a

ejecutar en el dispositivo (ĺınea 14) que se ha de ejecutar para todos los ”idx” en el

rango especificado al llamar a parallel for (ĺınea 13) y por último la declaración de un

accessor para leer los resultados en el host. Se aprecia que la sintaxis es muy similar a

C++ moderno.

Figura 2.4: Programa oneAPI

Fuente: oneAPI Programming Model Manual
, https://www.intel.com/content/www/us/en/develop/documentation/

oneapi-programming-guide/top.html

Compilación

La compilación para diferentes dispositivos es uno de los principales desaf́ıos a

resolver. En una compilación tradicional se genera código para una única arquitectura

objetivo, en la cual puede ejecutarse directamente el binario resultante. Para poder

compilar cuando existen múltiples arquitecturas objetivo, oneAPI define dos esquemas

de compilación: Just In Time (JIT) y Ahead Of Time (AOT).

En la Figura 2.5a se observa que la compilación JIT genera un fichero con una parte
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(a) Compilación Just In Time (b) Compilación Ahead Of Time

Figura 2.5: Opciones de compilación oneAPI

Fuente: oneAPI Programming Model

directamente ejecutable en el host y otra en un lenguaje intermedio (SPIR-V) que es

compilado para cada dispositivo en concreto en tiempo de ejecución.

Para las ocasiones donde no es admisible compilar en tiempo de ejecución

(compilaciones largas de FPGA o requisitos temporales muy estrictos) existe el modelo

AOT (Figura 2.5b), en el que se genera un binario que contiene una parte compilada

para el host y otra para el/los dispositivos.

Tanto si el fichero resultante de la compilación tiene la parte de los dispositivos en

SPIR-V, en binario ejecutable o bitstream de la FPGA, Intel se refiere a ellos como

FatBinary. Las versiones testeadas de FatBinary han resultado imposibles de manejar

por la cantidad de errores que generaban.

Paralelismo en oneAPI

En lugar de expresar la ejecución como bucles unidimensionales ejecutados

secuencialmente en una única unidad de cómputo, oneAPI implementa el patrón

parallel for. Con el patrón parallel for se expresa que las diferentes instancias

(work-items) del kernel (que correspondeŕıan a cada iteración en un bucle regular) son

independientes entre śı y se pueden ejecutar en cualquier orden. De este modo se delega

en oneAPI la planificación de la ejecución y el reparto de iteraciones entre las unidades

de cómputo del dispositivo acelerador seleccionado. El patrón parallel for se asocia a

un único dispositivo por medio de una cola de tareas, por lo que no es posible repartir

instancias entre múltiples dispositivos. En la Figura 2.6 se muestra una multiplicación

de matrices dónde cada work-item realiza el cálculo de un valor de la matriz resultado.

Para tener más control sobre el orden de ejecución de los work-items existen los

kernels parallel for ND-range que permiten expresar cierta localidad entre instancias.

Como muestra la Figura 2.7, en los kernels ND-range los work-items se agrupan en
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Figura 2.6: Multiplicación de matrices con parallel for

Fuente: Data Parallel C++ - Mastering DPC++ for Programming of Heterogeneous
Systems using C++ and SYCL

work-groups. Los work-items de un mismo work-group se ejecutan simultáneamente,

tienen acceso a memoria local compartida por el grupo, a funciones de sincronización de

grupo (como barriers) y a otras funciones de comunicación de grupo. Cuando se emplean

directivas espećıficas de work-groups, el motor de ejecución de oneAPI garantiza que la

ejecución de sus work-items es simultánea y no se entrelaza con la de otros work-groups.

No obstante, el orden de ejecución de los work-groups o de cada work-item dentro de

un mismo work-group sigue siendo indefinido.

Figura 2.7: Multiplicación de matrices con parallel for ND-range

Fuente: Data Parallel C++ - Mastering DPC++ for Programming of Heterogeneous
Systems using C++ and SYCL

En caso de que el problema a implementar no sea altamente paralelizable o requiriera

de situaciones especiales que empeoren el uso de parallel for, se puede emplear kernels

regulares de una única instancia, llamados single-task, que no expresan paralelismo.
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Caṕıtulo 3

Metodoloǵıa

En este caṕıtulo se presentan los aspectos relativos al entorno de trabajo, benchmarks

utilizados y metodoloǵıa experimental.

3.1. Devcloud

Todos los experimentos presentados en este trabajo se han llevado a cabo en

Devcloud1, aunque también se ha empleado una máquina local Macizo2 para realizar

pruebas. Devcloud es una plataforma proporcionada por Intel en la que se incluyen

máquinas equipadas con diversidad de dispositivos aceleradores y las últimas versiones

de todas las herramientas software necesarias para desarrollar aplicaciones para cualquier

arquitectura evitando la costosa puesta en marcha y administración de este tipo de

sistemas.

Si bien se requiere de la aprobación del proyecto o motivo de uso para poder acceder

a Devcloud, su uso es gratuito siendo una excelente plataforma para probar a desarrollar

en dispositivos aceleradores sin necesidad de invertir la gran cantidad de dinero que

supondŕıa comprarlos.

Como se muestra en la Figura 3.1, Devcloud cuenta con una serie de nodos login a

los que se conectan los usuarios por medio de la terminal o entorno de desarrollo y en

los que diseñar y mantener código. Para compilar y ejecutar experimentos se someten

los scripts correspondientes a la cola de trabajos de Devcloud, la cual comprobará las

etiquetas descriptivas especificadas al someter el trabajo y buscará una máquina de

cómputo operativa que posea dichas etiquetas en la que ejecutar el script, devolviendo los

resultados a la máquina core. Entre estas etiquetas suele incluirse el tipo de dispositivo

acelerador que debe poseer el nodo computacional.

Si bien Devcloud ofrece muchas ventajas, también tiene inconvenientes ya que

1https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
2Macizo es una máquina del Grupo de Arquitectura de Computadores de la Universidad de Zaragoza

equipada con una Stratix 10 GX a la que se tiene acceso
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Figura 3.1: Infraestructura del Devcloud

Fuente: Intel DevCloud for oneAPI, https://devcloud.intel.com/oneapi/

no puedes elegir el momento en el que se aplican cambios de versiones, comandos o

bibliotecas, lo cual ha resultado inconveniente en este trabajo. Además, las máquinas

de cómputo se comparten entre todos los usuarios, por lo que pueden estar ocupadas

y ralentizar el desarrollo del trabajo. Además, las máquinas se reinician o apagan

temporalmente de manera frecuente, lo cual es especialmente problemático cuando

se deben realizar compilaciones de varias horas. Es por estos inconvenientes y por la

disponibilidad inicial de macizo que el desarrollo del trabajo se comenzó en local. No

obstante, algunas de las directivas de optimización requeŕıan de versiones más modernas

de oneAPI que la instalada en macizo y se decidió cambiar al cloud ya que, al ser macizo

una máquina compartida, no se pod́ıa modificar en ese momento la versión instalada.

En este trabajo se ha empleado la FGPA Intel Stratix 10 GX, para la cual existen

3 máquinas operativas en Devcloud. Dichas máquinas poseen una CPU Intel Xeon

Platinum 8256 (8 núcleos, 2 hilos por núcleo, 3.80GHz, 16.5 MB cache y 1.45 TB RAM)

y una FPGA Intel Stratix 10 GX3 con 32GB de memoria principal, representada en la

Figura 3.2 y con los recursos de la Tabla 3.1. Se emplea la versión 2023.0.0 de oneAPI,

la 2022.3.1 de Intel FPGA SDK y la 19.2 de Quartus. Se aplica el máximo nivel de

optimización, -O3, en todas las compilaciones.

3.2. Benchmarks utilizados

Se han evaluado cuatro benchmarks que se describen a continuación, correspondientes

a algoritmos representativos de uso común. El código original proviene de Nozal y

Bosque [14] y está diseñado para ejecución en CPU y GPU. Todos los benchmarks

3https://ark.intel.com/content/www/es/es/ark/products/210291/

intel-stratix-10-gx-2800-fpga.html
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Figura 3.2: BittWare 520C Intel Stratix 10 FPGA accelerator
https://www.zerif.co.uk/fpga-main-board-accelerators/intel-stratix-10/

bittware-520c-intel-stratix-10-gx-2800-10-tflops

Stratix 10 Gx
Elementos lógicos (LE) 2753000
Módulos lógicos adaptables (ALM) 933120
Registros del módulo lógico adaptativo (FF) 3732480
Bloques de procesamiento de señal digital (DSP) 5760

Tabla 3.1: Recusros de la FPGA Stratix 10 GX 2800

incluyen una función de verificación con la que se validan los resultados obtenidos

en todos los experimentos. Los tamaños de benchmark elegidos en los experimentos

corresponden a la mayor potencia de 2 cuyo tamaño quepa en la memoria de la FPGA

y de modo que tenga un tiempo de ejecución razonablemente alto pero no excesivo.

Suma de Matrices (Matadd) Suma de dos matrices de floats, cuadradas y de igual

tamaño. Sin optimizaciones. Se permite elegir el tamaño del problema seleccionando el

tamaño de los lados de las matrices.

Multiplicación de Matrices (Matmul) Multiplicación de dos matrices de floats,

cuadradas y de igual tamaño. Sin optimizaciones. Se permite elegir el tamaño del

problema seleccionando el tamaño de los lados de las matrices.

Problema de los N Cuerpos (Nbody) Simulación N-body que aproxima

numéricamente la evolución de un sistema de cuerpos donde cada cuerpo interacciona

constantemente con todos los demás. Para cada cuerpo se calcula el efecto que tienen

todos los demás sobre él, y a partir de ah́ı su siguiente posición y velocidad. Optimizado

originalmente con desenrollado de bucles que se retira para medir el rendimiento base.
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Tanto la posición como la velocidad se representan en tres dimensiones con float4.

Se permite elegir el tamaño del problema seleccionando el número de cuerpos de la

simulación.

Filtro Gaussiano (Gaussian) Filtro que calcula el valor de cada ṕıxel de salida

en base a una media ponderada del ṕıxel de entrada y sus adyacentes en un radio

proporcional al tamaño del filtro. Sin optimizar. Se permite elegir el tamaño de la

imagen (del lado, dando siempre lugar a una imagen cuadrada) y del filtro (del lado de

la matriz, que será una matriz cuadrada), que debe ser impar. Los ṕıxeles de la imagen

de entrada y de salida son uchar4, y el filtro son floats. En los experimentos siempre se

usa un filtro de 5x5.

3.3. Medición del tiempo de ejecución

Para cada experimento se mide la diferencia de tiempo entre el momento en que se

llama al planificador y el momento en el que este termina. Las mediciones emplean la

biblioteca “chrono” de C++. Con fin de evitar una alta variabilidad en los resultados,

cada experimento se repite múltiples veces4, siendo el resultado válido la media de

todas, y se presta particular atención a la desviación estándar. En los experimentos

con FPGA se realiza una ejecución previa (no contabilizada en la media) para que la

FPGA se reconfigure, y aśı evitar penalizaciones temporales asociadas al primer uso

(warm-up). Para los experimentos heterogéneos, además del tiempo de ejecución del

planificador se mide el tiempo de terminación de cada dispositivo y el trabajo que ha

realizado. Esto nos permitirá tener una medida sobre el desbalanceo existente en la

ejecución.

3.4. Flujo de trabajo con la FPGA

Como se ha mencionado previamente, la compilación para FPGA es un proceso que

lleva múltiples horas. Por tanto es el último paso a realizar, cuando se está convencido de

que el diseño del kernel es el adecuado. Para ello, oneAPI ofrece un dispositivo emulador

de FPGA que permite validar los resultados del kernel. Una vez es funcionalmente

correcto, se realiza una compilación intermedia que genera un reporte sobre cómo se va

a implementar funcionalmente el kernel. En este reporte se pueden detectar cuellos de

botella analizando los accesos a memoria, la implementación de los bucles (intervalo de

4Se calculó sobre los experimentos base (Sección 6) que con cinco repeticiones se obtiene un
coeficiente de variación bajo. No obstante, se calcula siempre la desviación estándar de las repeticiones
y se ejecutan experimentos adicionales si esta no se considera aceptable.
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iniciación, desenrollado,...) o la frecuencia de reloj máxima estimada. La Figura 3.3a

representa el grafo del sistema generado en el reporte para Matmul con desenrollado

de grado 8. La sección roja indica que no ha sido capaz de segmentar ese bucle, pero

si se hiciera clic sobre el load se veŕıa que realiza un acceso a memoria de 256 bits

correspondiente a 8 floats. Tras valorar con el reporte que las optimizaciones se están

aplicando como se desea, se realiza la compilación completa para generar el bitstream.

El flujo de compilación entero se representa en la Figura 3.3b. Este flujo resulta de gran

utilidad ya que evita realizar el lento proceso de compilación hasta que no se considera

que el hardware a generar pueda ser suficientemente rápido.

(a) Grafo del kernel completo en un reporte de
optimización

Diseño del Kernel

Emulación

(validación)

Optimización

(con reportes)

Compilación

(b) Flujo de compilación de FPGA

Figura 3.3: Compilación en FPGA
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Caṕıtulo 4

Optimización

En este caṕıtulo se describen las diferentes cuestiones a tener en cuenta para la

optimización de los diferentes kernels para su ejecución en la FPGA. Aśı mismo, se

analiza el impacto de estas técnicas sobre los benchmarks. A lo largo de este TFM se

han explorado multitud de técnicas para mejorar el rendimiento de código oneAPI en

FPGA generalmente descritas en la gúıa de Intel1, pero por limitaciones de espacio,

solo se van a mostrar aquellas que han mostrado más potencial de mejora.

4.1. Rendimiento en FPGA

El rendimiento de un kernel en FPGA se va a ver condicionado por cuatro factores

principales, que serán objetivo principal de las optimizaciones:

− Número de operaciones que se realizan en paralelo.

− Ancho de banda a memoria de la implementación.

− Número de operaciones por ciclo de reloj que realiza el hardware.

− Frecuencia del reloj.

La śıntesis de un kernel en una FPGA adopta la forma de una FIFO de procesamiento.

El trabajo a realizar se divice en elementos, items, que son procesados en esta FIFO

por etapas o fases. El tiempo de ejecución de esta organización puede ser modelado

anaĺıticamente con la siguiente ecuación[15]:

Tejecucion =
(items− 1)× II × 1

F

vector factor × unroll factor
(4.1)

Donde items representa el número de elementos a procesar por el kernel, II la tasa

de iniciación y F la frecuencia del kernel. La tasa de iniciación es el número de ciclos

que transcurren entre que 2 items consecutivos pueden empezar su ejecución.

1https://www.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top.html
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4.2. Gúıas de diseño

Se presentan a continuación una serie de gúıas de diseño de kernels que se han

tenido en cuenta en todo momento para facilitar que el compilador sea capaz de analizar

eficientemente el código y generar el mejor diseño de la FIFO de procesamiento posible.

Además, se comentará cuando sea pertinente a que término de la ecuación 4.1 afectan.

Evitar solapamiento de punteros Si los kernels reciben varios punteros a memoria

como argumentos, el compilador no puede descartar a priori que distintos punteros

accedan a la misma posición de memoria. Aunque este comportamiento es raramente

deseado por el programador, acaba limitando el análisis de dependencias necesario para

generar código optimizado.

Suponiendo un código de ejemplo como el de la Figura 4.1, es posible que los punteros

no compartan direcciones de memoria como se ejemplifica en la Figura 4.2a y por tanto

sea completamente paralelizable. Si no se ayuda al compilador este no puede asumir

que no se esté dando el caso representado en la Figura 4.2b, donde se comparten la

mayoŕıa de direcciones de memoria y se requiere una ejecución secuencial para obtener

un resultado correcto.

Para facilitar el análisis del compilador, como se hace en la Figura 4.1, podemos

especificar al compilador que ninguno de los argumentos se solapan mediante la

directiva kernel args restrict. Esto afectará reduciendo el II y permitiendo aumentar el

vector factor y/o el unroll factor

Figura 4.1: Uso del atributo kernel args restrict

Fuente: oneAPI DPC++ FPGA optimization guide

Se puede especificar, con grano más fino que kernel args restrict, que la memoria

accedida por un accessor en concreto no va a ser modificada por otros, sino que siempre

se hará indexando por medio de ese mismo accessor. Para ello se emplea la directiva

no alias, como se muestra en la Figura 4.3.

El uso de kernel args restrict equivale al uso de no alias para todos los argumentos.
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in_accessor[0] out_accessor[0]

(a) Punteros no solapados

in_accessor[0]

out_accesor[0]

(b) Punteros solapados

Figura 4.2: Solapamiento de punteros

Figura 4.3: Uso del atributo no alias

Fuente: oneAPI DPC++ FPGA optimization guide

Construir bucles “bien formados” Emplear bucles con incrementos y condiciones

de salida sencillos ayuda al compilador a analizarlos eficientemente, generando mejor

diseño que permitirá que sucesivas iteraciones del bucle se lancen con menor latencia de

iniciación (reducción de II). Si nos fijamos en la implementación original del bucle de

gaussian de la Figura 4.4a podemos observar que se trata de un bucle “mal formado” ya

que el valor de la variable middle no se conoce en tiempo de compilación (corresponde

con la mitad truncada del tamaño del filtro) y existen condicionales para terminar

la iteración prematuramente con continue. La Figura 4.4a se asemeja al kernel final

empleado, con un bucle ”bien formado”.

(a) Bucles ”mal formados”de gaussian (b) Bucles ”bien formados”de gaussian

Figura 4.4: Cambio en el código de gaussian

Minimizar las dependencias entre iteraciones La existencia de instrucciones que

dependen de otras instrucciones ejecutadas en iteraciones previas reduce las prestaciones

del kernel puesto que la instrucción dependiente no podrá ejecutarse hasta que la

dependencia se resuelva, y por tanto se limita el paralelismo alcanzable. Resolver estas

dependencias suele aumentar mucho la tasa de iniciación del modelo.

Fusionar bucles anidados Convertir bucles perfectamente anidados en un único

bucle equivalente reduce el uso de hardware y la sobrecarga para iniciar iteraciones.
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Declarar las variables en el ámbito más cercano posible El compilador tiene

que asegurarse de mantener el valor de las variables a lo largo de todo el ámbito en

el que están declaradas, por lo que gastará mayor cantidad de recursos hardware para

aquellas que estén declaradas en un ámbito más amplio del necesario.

4.3. Técnicas de optimización evaluadas

Si bien se han realizado optimizaciones menores siguiendo las gúıas de diseño e

implementado alguna otra técnica puntualmente, se describen a continuación las técnicas

implementadas con mayor impacto en el código y rendimiento. Dichas técnicas se aplican

incrementalmente en los experimentos finales.

4.3.1. Usar memoria local para accesos repetidos

Existen múltiples tipos de memoria en oneAPI:

− Memoria global: la memoria correspondiente a buffers asignados en el host.

Tiene un gran tamaño, pero una mala latencia y ancho de banda ya que la FPGA

ha de acceder a ella a través del hardware de interconexión.

− Memoria local privada: se encuentra implementada dentro del kernel

posiblemente como registros o en bloques RAM. Es la empleada al declarar

variables dentro del kernel.

− Memoria local de grupo: similar a la memoria local privada, pero en este caso

es visible y compartida por todos los work-items del work-group. Se declara con

la directiva group local memory for overwrite.

El mal uso de la memoria es uno de los mayores problemas de rendimiento al trabajar

con una FPGA ya que existe una gran penalización por acceder a memoria global,

que es la memoria accedida por defecto en un kernel genérico. Cualquier dato que se

deba emplear múltiples (localidad) veces es generalmente preferible que sea cargado

en primera instancia en memoria local, con bajo consumo y latencia, y posteriormente

utilizado desde esta memoria en lugar de utilizar la lejana memoria global.

Ejemplificando sobre el algoritmo gaussian en la Figura 4.5, empleando un filtro

de 3x3 para la convolución de un pixel, se requiere la lectura de 9 ṕıxeles adyacentes

para su cálculo, pero muchos de ellos se comparten con la convolución del pixel vecino

(intersección entre el marco azul y amarillo en la imagen). Con el uso de memoria local,

en lugar de cargar desde memoria principal cada ṕıxel inicial 9 veces, es mejor cargarlo

una única vez y reutilizarlo en memoria local.

20



Figura 4.5: Reutilización de memoria en gaussian. Con el uso de memoria local cada
ṕıxel se lee una vez desde memoria global y hasta 9 desde memoria local. Sin el usar
memoria local, el ṕıxel se leeŕıa hasta 9 veces desde memoria global.

Siguiendo esta idea, se han modificado los kernels para que empleen memoria

local. En primer lugar, al ser kernels parallel for, se han incluido los atributos

reqd work group size ymax work group size para especificar el tamaño de los work-groups

en los que agrupar el espacio de ejecución. Seguidamente se ha declarado la memoria

local de grupo correspondiente al tamaño del work-group. Finalmente, se ha modificado

el código para que cada work-item cargue el valor de memoria correspondiente a su

rango en el espacio de ejecución y se sincronice con su work-group mediante barriers

para delimitar los periodos de carga y de cómputo. Este cambio permite reducir la tasa

de iniciación y el ancho de banda a memoria requerido. La directiva de memoria local

de grupo no se encontraba disponible la versión 2021.1.1 de oneAPI que es la que se

encontraba instalada en la máquina ”macizo”de la Universidad de Zaragoza que se

hab́ıa empleado previamente y fue uno de los motivos que forzó al cambio a Devcloud.

4.3.2. Vectorización

Al existir alto grado de independencia y secuencialidad en las operaciones realizadas,

tanto matemáticas como de cargado y guardado de datos, resulta ineficiente que cada

work-item trabaje de manera individual sobre un solo dato. Esto es especialmente

importante en las operaciones de acceso a memoria ya que, pese a estar fomentando

el reuso de datos en memoria local, sigue existiendo una gran cantidad de accesos

de poco tamaño a memoria global. Mediante el atributo num simd work items(N)

especificamos que se puede realizar la vectorización de N work-items contiguos en uno

único. Por ejemplo, num simd work items(16) sobre un work-group de 32x32 causaŕıa

un work-group resultante de 32x2. Al emplear la vectorización, aumentamos el valor de

vector factor en la ecuación 4.1 y se pueden conseguir grandes mejoras.
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4.3.3. Desenrollado de bucles

El desenrollado de bucles permite especificar al compilador que agrupe la ejecución

de múltiple iteraciones en una única. De este modo, el número de iteraciones totales a

ejecutar disminuye por el factor de agrupamiento, las cuales emplearán más hardware

para realizar el mismo trabajo en menos tiempo. Si se compila un código de ejemplo

como el de la Figura 4.6 se observa que existen dos unidades de suma y una de

multiplicación para ejecutar cada iteración, que esperar al resultado de la anterior

acumulación para empezar la siguiente. Al añadir la directiva unroll el compilador es

capaz de agregar unidades funcionales para realizar todas las operaciones con el mayor

grado de paralelismo y atravesando una única vez la ruta de datos.

Figura 4.6: Uso del atributo unroll

Fuente: oneAPI DPC++ FPGA optimization guide

4.4. Otras técnicas de optimización implementadas

4.4.1. Patrón de acceso a memoria

Aunque los circuitos de memoria modernos, por ejemplo RAM DDR, permite acceder

consecutivamente a posiciones aleatorias, este patrón tiene severas penalizaciones en

el rendimiento frente acceder consecutivamente a valores almacenados en direcciones

adyacentes2. Para mejorar el patrón de acceso a memoria y que se realicen peticiones

del máximo tamaño a datos contiguos, en algoritmos como la multiplicación de matrices

en los que se accede a datos por columnas (en este caso a la matriz B), resulta más

eficiente acceder a bloques por filas, en la memoria global. Si además se invierte cada

2El motivo es que las memorias se organizan en bloques, que contienen varios datos consecutivos.
Un acceso secuencial aprovecha todos los datos de un bloque, mientras que un acceso aleatorio debe
acceder a un nuevo bloque para cada dato accedido.
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fila y se guarda como una columna en la memoria local, al querer acceder a lo que seŕıa

originalmente una columna en la matriz B se realiza un acceso secuencial ya que está

invertida. Esta secuencia de accesos a memoria se representa en la Figura 4.7

Matriz A

Matriz B

Patrón de acceso

en el algoritmo


Patrón de acceso

a memoria global


Patrón de guardado

en memoria local


Patrón de acceso

a memoria local


Figura 4.7: Cambio en el patrón de acceso a memoria

4.4.2. Buffers de uso espećıfico

Los buffers empleados para mandar y recibir datos a los kernels pueden ser marcados

con atributos que especifican el uso que se va a hacer de los mismos. Entre los atributos

posibles se encuentra los 3 empleados en este trabajo: access::mode::read junto con

access::target::constant buffer y access::mode::discard write. Los dos primeros permiten

al compilador ubicar dicho buffer en una sección de solo lectura, ya que no será

modificado. El segundo atributo le permite emplear cualquier zona de memoria ya que

los contenidos serán descartados.

4.4.3. Alineamiento de memoria

La declaración y transferencia de buffers resulta más eficiente si estos se declaran a

partir de datos alineados en memoria, por lo que se declaran las estructuras de datos

de entrada o salida con la función aligned alloc a direcciones múltiplo de 1024 bytes.

4.4.4. Operaciones con números decimales

Para facilitar la generación de hardware para ejecutar operaciones con tipos de

datos decimales se permite el uso de FMAs, la reasociación de operaciones y saltarse

conversiones y redondeos intermedios. Actualmente estas opciones se emplean por

defecto, por lo que ya no es necesario incluir las correspondientes opciones de compilación.
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4.5. Resumen

En la experiencia de este trabajo, las optimizaciones más efectivas han resultado

ser el desenrollado de bucles y la vectorización, seguidos del uso de memoria local.

Para el aprovechamiento de estas optimizaciones, las iteraciones de los bucles no deben

presentar interdependencias, se debe acceder a posiciones contiguas de memoria y los

datos accedidos deben presentar localidad para que la memoria local pueda explotar

el reúso. El alineamiento de memoria también ha resultado efectivo para permitir al

compilador inferir un mejor acceso a memoria principal, pero poco efectivo si ya se

estaba empleando vectorización.

El resto de optimizaciones o bien se han mantenido a lo largo de todo el proceso de

optimización siguiendo las recomendaciones de la gúıa o bien han resultado de poca o

ninguna mejora pese a proporcionar información extra al compilador.

En la Tabla 4.1 se muestran las diferentes optimizaciones y su aplicación a cada

kernel. Los recuadros verdes implican que la optimización se ha aplicado activamente

al kernel, los azules que el código ya cumpĺıa con esa optimización y se ha hecho un

esfuerzo por mantenerla y gris que la optimización no era aplicable al kernel.

matadd matmul nbody gaussian
Evitar solapamiento de punteros
Construir bucles “bien formados”
Minimizar las iteraciones dependientes
Fusionar bucles anidados
Variables de ámbito cercano
Memoria local para accesos repetidos
Vectorización
Desenrollado de bucles
Patrón de acceso a memoria
Buffers de uso espećıfico
Alineamiento de memoria
Operaciones con números decimales

Tabla 4.1: Resumen de optimizaciones aplicadas por kernel
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Caṕıtulo 5

Coejecución con Intel oneAPI

En este caṕıtulo se describe la herramienta de coejecución heterogénea CPU-FPGA

empleada y el trabajo realizado para intentar migrar la sección de CPU de C++ nativo

a oneAPI. Entendemos por herramienta de coejecución heterogénea aquella que es capaz

de dividir el problema a resolver en múltiples fragmentos y repartir dichos fragmentos

entre los distintos dispositivos, de modo que resuelvan el problema inicial de manera

cooperativa.

5.1. Coejecutor

En este trabajo fin de máster se parte de una herramienta de coejecución desarrollada

originalmente por Raúl Nozal [16] y adaptada por mı́[9]. Dicha herramienta era capaz

de realizar ejecución heterogénea entre CPU y FPGA usando C++ nativo para CPU y

oneAPI para FPGA. La herramienta incluye un conjunto de benchmarks del ámbito

cient́ıfico (multiplicación de matrices, filtro gaussiano, . . . ) descritos en el caṕıtulo 3.2,

e implementa tres planificadores de ejecución (estático, dinámico y hguided) descritos a

continuación.

5.1.1. Planificadores

Planificador estático (Figura 5.1a) Divide el problema en dos fragmentos, uno

para CPU y otro para FPGA. El tamaño de los fragmentos es ajustable por el usuario

según la potencia de cálculo que le estime a cada dispositivo. El fragmento de CPU se

subdivide entre el número de hilos elegido.

Planificador dinámico (Figura 5.1b) Divide el problema en N fragmentos de

igual tamaño que se reparten de uno en uno a los distintos dispositivos conforme van

quedando ociosos.
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Planificador hguided (Figura 5.1c) Combinando ideas de los planificadores

anteriores se reparten fragmentos de manera dinámica, pero en este caso no se elige

partir el problema en N fragmentos iguales, sino que se elige la potencia de cálculo

estimada de cada dispositivo y éstos van ejecutando fragmentos de tamaño proporcional

a esa potencia. Además, los fragmentos son más pequeños cuanto menos problema queda

por resolver. Para permitir ajustar el número de paquetes se incluye un parámetro, K,

por el que se divide el tamaño de los paquetes cuando se planifican. Existe también

un tamaño mı́nimo de fragmento ajustable para cada benchmark (especificado en la

sección 3.2). Más concretamente, el tamaño de cada paquete viene determinado por la

ecuación (5.1).
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Figura 5.1: Planificadores nuevos

Fragmento = max(MinFrag,
Restante · PotenciaComputo

NumeroHilos

K
) (5.1)

5.1.2. Paralelismo en la coejecución

En la Figura 5.2 se representa una iteración secuencial de un bucle regular C++

(5.2a) junto con su traducción a un kernel parallel for con oneAPI. Idealmente se

podŕıan repartir los diferentes work-items entre múltiples dispositivos (5.2b), pero,

como se ha mencionado previamente (Sección 2.3.2), esto no está soportado por oneAPI.

Para lograr este reparto entre dispositivos el coejecutor divide el espacio de ejecución

manualmente para los dos dispositivos, asignando bucles a cada core de la CPU y

parallel for a la FPGA 5.2c.

5.2. Coejecución oneAPI con la FPGA

Al emplear la FPGA como dispositivo resulta obligatorio emplear el modelo de

compilación AOT, descrito en la sección 2.3.2. Este modelo consigue combinar el código

del host con el bitstream de la FPGA en un mismo fichero y permite ejecutar kernels

en la FPGA. Se ha conseguido añadir la CPU como segundo dispositivo incluido en el
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Figura 5.2: Paralelización con Parallel for

fatbinary para códigos con dos kernels muy simples. Por desgracia, al emplear kernels

optimizados más complejos se encuentra un error en ejecución ya que, pese a que el

kernel de CPU termina correctamente, el kernel de FPGA ejecuta indefinidamente y

se obtienen mensajes informativos de que el kernel puede estar colgado. Se intentó

extensamente solucionar este problema modificando los parámetros de compilación y

empleando diferentes niveles de complejidad en el kernel, pero al ser necesaria una

compilación de varias horas para cada prueba (ya que la versión de emulador no se

queda atascada) no se llegó a encontrar una solución al problema. Por este motivo

y dado que la intención es trabajar con los kernels optimizados para FPGA, se ha

mantenido la ejecución de la CPU en C++ nativo.

A finales de diciembre hubo una actualización en Devcloud que cambió del comando

de compilación de dpcpp a icpx -fsycl. Este cambio causó, ya en enero, que los kernels

ya compilados no pudieran ejecutarse por no encontrar bibliotecas de sistema, siendo

necesario recompilarlos usando el nuevo comando. Al ejecutar nuevamente el proyecto

de prueba de coejecución con los kernels más complejos si que se consiguió ejecutar,
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quedando pendiente como trabajo futuro explorar de nuevo si la coejecución 100%

oneAPI es ahora posible y adaptar el coejecutor al uso de CPU en oneAPI.
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Caṕıtulo 6

Resultados experimentales

En este caṕıtulo se muestra primero los resultados experimentales de la optimización

de los benchmarks y posteriormente se analizan los distintos planificadores.

6.1. Optimización

En esta sección se listan las optimizaciones (explicadas en la Sección 4) aplicadas a

cada uno de los benchmarks y los resultados obtenidos.

6.1.1. Matadd

Matadd base Suma de matrices estándar sin ninguna optimización. Matadd es el

kernel más sencillo y por tanto el que menos margen de mejora tiene, ya que ni siquiera

existe reuso de datos para implementar memoria local.

Matadd simd Como optimización principal se ha implementado un tamaño de

work-group de 16x16 para permitir emplear un tamaño SIMD de 16. De este modo

los accesos a memoria cargan 16 valores por petición, con una anchura de 512 bytes,

que es el tamaño del burst máximo desde memoria [6].También se garantiza que los

parámetros de entrada no se superponen con kernel args restrict.

La diferencia en el tiempo de ejecución del benchmark al aplicar dicha optimización

se muestran en la Tabla 6.1. También se muestra la diferencia en los recursos empleados

por la FPGA en la Tabla 6.2. Se observa que sobrecarga en el uso de hardware para

implementar vectorización es mı́nima y la mejora en el rendimiento muy significativa,

alcanzando un speedup1 de 7.3.

1Se entiende por speedup la diferencia entre el tiempo de ejecución original y el nuevo
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Benchmark Tiempo (ms) Speedup
matadd base 19559 1
matadd simd 2680 7.3

Tabla 6.1: Optimización de Matadd

matadd base matadd simd
ALUTs 0% 0%
FFs 25% 26%
RAMs 26% 27%
MLABs 1% 1%
DSPs 22% 23%
Frecuencia (MHz) 377 408

Tabla 6.2: Recursos hardware y frecuencia de Matadd. Porcentajes con respecto a la
Tabla 3.1

6.1.2. Matmul

Matmul base El algoritmo inicial de Matmul corresponde con una multiplicación de

matrices ingenua, siguiendo el algoritmo descrito en la Figura 6.1.

Figura 6.1: Multiplicación de matrices ingenua en C++

Matmul lm El primer paso de optimización fue modificar el algoritmo por una

multiplicación de matrices por bloques, empleando work-groups de 32x32 items para

cargar cada bloque (de equivalente tamaño) en memoria local y operar con los datos

locales. Al acceder a ambas matrices de entrada se emplea una lectura por filas, pero al

guardarlas en memoria local se transpone la matriz B, de manera que al leer la memoria

local posteriormente el acceso vuelve a ser por filas, maximizando la localidad.

Matmul lm simd Seguidamente se emplea SIMD 16 para mejorar la anchura de

los accesos a memoria global, tanto de lectura como escritura, aśı como vectorizar los

cálculos del bucle principal.

Matmul lm simd lu Por último se desenrollan las 32 iteraciones del bucle principal,

paralelizando los cálculos.

Los resultados en rendimiento de la aplicación aditiva de estas optimizaciones se

muestran en la Tabla 6.3. También se muestra la variación en el uso de recursos hardware

30



y otros factores en la Tabla 6.4. Se observa que existe suficiente reuso de datos y densidad

de operaciones como para que el uso de memoria local (de 32x32 que es el máximo para

el que se consigue generar una imagen FPGA) ya suponga un 3.48 de speedup incluso si

el acceso a memoria global no es eficiente. Si bien las optimizaciones son progresivamente

más efectivas, cada una de ellas se respalda en la anterior ya que SIMD optimiza las

operaciones de carga de datos a memoria local y env́ıo de resultados a memoria global,

y el desenrollado de bucles se aprovecha del rápido acceso a memoria local para poder

suministrar los operandos rápidamente a todas las iteraciones desenrolladas. Se observa

que, en este caso, el uso de FFs y RAMs aumenta significativamente al emplear SIMD,

y que los DSPs aumentan principalmente al hacer desenrollado de bucles, como cabŕıa

esperar. Pese a que no se supere el 40% de utilización de ninguno de los recursos, es

imposible aumentar el grado de desenrollado sin aumentar el tamaño de los work-groups,

y aumentando dicho tamaño a la siguiente potencia de 2 no se consigue generar la

imagen FPGA por violaciones de timing2. Al trabajar con kernels parallel for, el reporte

indica para cada bucle la latencia y la cantidad de hilos de ejecución en lugar del

intervalo de iniciación. Además, al añadir memoria local se incluye un bucle externo de

carga de datos, quedando entonces en el bucle interno un acceso a memoria local. Se

observa que la latencia siempre es menor que la capacidad de hilos, y que disminuye

drásticamente al cambiar el acceso a memoria a una local. Se observa el efecto de

SIMD sobre el bucle interno, reduciendo la cantidad de hilos por el valor de SIMD y

aumentando la latencia como consecuencia del uso de operaciones vectoriales. También

se observa la diferencia en latencia del acceso a memoria del bucle externo al aplicar

SIMD.

Benchmark Tiempo (ms) Speedup parcial Speedup total
matmul base 800015.33 1.00 1.00
matmul lm 229910.00 3.48 3.48
matmul lm simd 28454.67 8.08 28.12
matmul lm simd lu 1261.33 22.56 634.26

Tabla 6.3: Optimización de Matmul

6.1.3. Nbody

Nbody base Simulación Nbody sin ninguna optimización

Nbody lm Se emplean work-groups de 1x128 work-items que cargan los datos en

memoria local, alternando etapas de carga y de cómputo mediante barriers

2No se supera el ĺımite de recursos pero el uso es suficientemente grande para que no se consiga
encontrar una configuración que cumpla las especificaciones y las restricciones de tiempo
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matmul
base

matmul
lm

matmul
lm simd

matmul
lm simd lu

ALUTs 0% 0% 0% 0%
FFs 25% 25% 38% 39%
RAMs 27% 29% 36% 34%
MLABs 1% 1% 1% 2%
DSPs 22% 23% 23% 32%
Frecuencia (MHz) 351 329 216 259
Bucle interno: Latencia 846 15 28 -
Bucle interno: Hilos 847 1024 64 -
Bucle externo: Latencia - 1871 923 1010
Bucle externo: hilos - 4096 1088 1024

Tabla 6.4: Recursos hardware, frecuencia y bucles de Matmul. Porcentajes con respecto
a la Tabla 3.1

Nbody lm simd Se emplea SIMD 16 para mejorar la anchura de los accesos a

memoria global, tanto de lectura como escritura, aśı como los cálculos matemáticos.

Nbody lm simd lu Se desenrollan 4 iteraciones del bucle principal, que es el máximo

para el cual los recursos requeridos permit́ıan generar una imagen de FPGA.

Los resultados de la aplicación aditiva de estas optimizaciones de muestran en la

Tabla 6.5, junto con los recursos empleados, frecuencia y latencia y cantidad de hilos

por bucle en la Tabla 6.6. Se observa que en este caso el uso de memoria local por si sola

supone una perdida en el rendimiento, esto podŕıa intentar solucionarse aumentando el

tamaño de los work-groups para explotar mayor reúso, pero teniendo en cuenta que

habilita SIMD y que con SIMD se consigue un speedup total de 10.04, se prefiere no

gastar más recursos y reservarlos para el desenrollado de bucle, que ya de por si solo

puede desenrollar 4 iteraciones antes de encontrar violaciones de timing o superar el

máximo de recursos.

Benchmark Time (ms) Speedup parcial Speedup total
nbody base 198930.67 1.00 1.00
nbody lm 205759.50 0.97 0.98
nbody lm simd 19810.67 10.39 10.04
nbody lm simd lu 5264.25 3.76 37.79

Tabla 6.5: Optimización de Nbody

6.1.4. Gaussian

Gaussian base Cálculo del difuminado gaussiano. En este último benchmark se

alteró el orden de aplicación de las optimizaciones, ajustando en primera instancia el
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nbody
base

nbody
lm

nbody
lm simd

nbody
lm simd lu

ALUTs 0% 0% 0% 0%
FFs 26% 26% 54% 56%
RAMs 30% 29% 26% 50%
MLABs 1% 1% 2% 3%
DSPs 22% 22% 29% 42%
Frecuencia (MHz) 348 338 221 223
B. interno: Latencia 879 86 86 91
Bucle interno: Hilos 880 128 88 96
Bucle externo: Latencia - 937 941 941
Bucle externo: Hilos - 1280 1040 1048

Tabla 6.6: Recursos hardware, frecuencia y bucles de Nbody. Porcentajes con respecto a
la Tabla 3.1

alineamiento de memoria a 1024 bytes de los buffers de entrada. Se comprueba que, si

bien esta optimización no afectaba a los otros benchmarks al añadirse en los últimos

pasos de optimización, al aplicarla desde el principio tiene un efecto similar a SIMD

permitiendo al compilador inferir accesos a memoria de mayor anchura.

Gaussian lm Se modifica el algoritmo para que emplee memoria local. En este caso,

por las caracteŕısticas del kernel es necesario traer a memoria local más valores que

el tamaño del workgroup por lo que, pese a no estar recomendado, es necesario que

un work-item en concreto se encargue de cargar los bordes. Además, para no requerir

comprobar que la indexación de la memoria se salga de rango, se incluye un anillo

exterior con valor 0 que no altera el resultado y evita condicionales extra en el bucle.

Gaussian lm lu Se desenrolla por completo el bucle interno, 5x5 iteraciones.

Gaussian st Dado que para cargar datos a memoria local se requiere considerar el

caso especial del anillo exterior e incluir código espećıfico para algunos work-items

se ha probado a cambiar el código de parallel for a single-task (con memoria local y

desenrollado de bucles).

Los resultados de la aplicación aditiva de las primeras optimizaciones y del cambio

a single-task se muestran en la Tabla 6.7 y se complementan con los recursos hardware

empleados de la Tabla 6.8. Se observa que la adición de memoria local ya existiendo

accesos a memoria eficientes supone un speedup relativamente bajo de 1.54, si bien

se podŕıa aumentar incrementando el tamaño de work-group y por consiguiente de

bloque de memoria local. El speedup mayor se obtiene en este caso de la aplicación de

desenrollado en el bucle principal. En el caso de single-task si que existe II en lugar de
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latencia e hilos. Se omite este valor en la tabla ya que existen más de 5 bucles, pero

todos tienen II de 1 o 2 ciclos.

Benchmark Tiempo (ms) Speedup parcial Speedup total
gaussian base 77628.33 1.00 1.00
gaussian lm 50380.67 1.54 1.54
gaussian lm lu 8741.67 5.76 8.88
gaussian st 10121.67 0.86 7.67

Tabla 6.7: Optimización de Gaussian

gaussian
base

gaussian
lm

gaussian
lm lu

gaussian
st

ALUTs 0% 0% 0% 0%
FFs 25% 26% 42% 29%
RAMs 27% 29% 39% 33%
MLABs 0% 0% 0% 0%
DSPs 22% 22% 24% 24%
Frecuencia (MHz) 371 320 212 258
B. interno: Latencia 856 885 - -
Bucle interno: Hilos 857 886 - -

Tabla 6.8: Recursos hardware, frecuencia y bucles de Gaussian. Porcentajes con respecto
a la Tabla 3.1

6.1.5. Resumen

Como resume la Tabla 6.9, aplicando las técnicas de optimización descritas se han

conseguido speedups significativos en todos los benchmarks, que vaŕıan entre 7.3 en

kernels en los que no se incrementa casi el uso de recursos y 654.26 en aquellos que si

permiten explotar mejor la potencia de la FPGA.

Tiempo base (ms) Tiempo optimizado (ms) Speedup
matadd 19559 2680 7.3
matmul 800015 1261 634.26
nbody 198931 5264 37.79
gaussian 77628 8742 8.88

Tabla 6.9: Resumen de optimización

6.2. Resultados de la Coejecución CPU y FPGA

En esta sección se describen los resultados de la coejecución de los diversos kernels

para su ejecución en CPU y FPGA. Se recuerda que la ejecución en CPU se realiza en
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C++ nativo mientras que la de FPGA se hace con oneAPI y utilizando la versión más

optimizada del kernel vista en la sección anterior.

Se incluye en la Tabla 6.10 un resumen de los mejores tiempos de ejecución en

FPGA obtenidos en la fase de optimización, aśı como el tiempo de ejecución base en

CPU empleando los 16 núcleos.

Benchmark Tiempo CPU (ms) Tiempo FPGA (ms)
matadd 379 2680
matmul 191803 1261
nbody 64090 5264
gaussian 5001 8742

Tabla 6.10: Mejores tiempos en CPU y FPGA

Se emplean los kernels matadd, matmul y nbody, descartando gaussian ya que

las optimizaciones implementadas dificultan su fragmentación y reparto y requeriŕıan

un cambio drástico en el planificador. Se observa que los 3 kernels restantes tienen

tiempos de ejecución muy dispares entre dispares entre dispositivos, lo que dificulta

enormemente su coejecución.

6.2.1. Planificador estático

En la Figura 6.2 se representa en el eje Y el tiempo de terminación de cada dispositivo

(los 16 hilos CPU++ en azul y oneFPGA en naranja), siendo el tiempo de terminación

del planificador equivalente o ligeramente superior al más alto de los dos (en gris).

En otras palabras, la altura de la barra gris representa el desbalanceo del sistema e

idealmente no debeŕıa aparecer.

El eje X representa la porción del problema que ha de ser computada por la FPGA

(0.2 corresponde a un 20% ejecutado en FPGA), siendo el resto ejecutado por la CPU++.

La exploración del porcentaje del problema a asignar a cada dispositivo comienza en

un reparto inicial de 50%/50% y en ejecuciones subsiguientes se aumenta el porcentaje

asignado al dispositivo que antes termina. Los porcentajes elegidos garantizan que se

cumpla el requisito de que el fragmento asignado a la FPGA sea múltiplo del tamaño

de work-group.

Se observa que el tiempo de ejecución de la FPGA siempre es el limitante en matadd

ya que por muy pequeño que sea el fragmento que mandemos al acelerador, hay que

esperar la latencia de transferencia. En matmul y nbody la FPGA es dominante, siendo

la CPU siempre el dispositivo más lento. Este resultado era de esperar ya que el tiempo

de ejecución en FPGA es mucho menor tras las optimizaciones.
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Figura 6.2: Planificador estático

6.2.2. Planificador dinámico

De manera similar al planificador estático, en la Figura 6.3 se muestra el tiempo de

terminación de cada dispositivo en ejecución heterogénea y del planificador dinámico.

En este caso el eje X representa el número de fragmentos (de igual tamaño) en los

que se ha dividido el problema. Dado que el reparto de trabajo se realiza de forma

dinámica, en el eje X de la parte superior de la gráfica se representa el porcentaje que

se ha entregado de manera efectiva a la versión CPU++.

Se observa que, de manera general, conforme se aumenta el número de paquetes el

desbalanceo disminuye. También se observa que el tiempo de ejecución de los dispositivos

(CPU en matadd y FPGA en nbody) es mayor que el tiempo de ejecución en ejecución

individual. Esto se corresponde con el retardo añadido entre la finalización de cada

fragmento y el comienzo de la ejecución del siguiente fragmento asignado.

6.2.3. Planificador hguided

Para emplear el planificador hguided, que reparte la ejecución en fragmentos de

tamaño decreciente, se debe asegurar que los fragmentos repartidos a los kernels

optimizados para FPGA son de tamaño múltiplo del tamaño de work-group empleado.

Por tanto se establece como tamaño múltiplo, y también mı́nimo, 16, 32 y 128 para
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Figura 6.3: Planificador dinámico

matadd, matmul y nbody respectivamente.

En la Figura 6.4 se representan los diferentes tiempos de terminación del mismo

modo que para el planificador dinámico, aunque en este caso el eje X corresponde al

parámetro de ajuste K (explicado en la sección 5.1.1), el cual se aumenta en intervalos

de 0.5 desde 1 hasta 4.5. Se emplea el mejor porcentaje de reparto de problema obtenido

con el planificador estático para asignar las potencias esperadas de los dispositivos.

Se observa que matadd presenta un comportamiento similar al planificador dinámico

para todos los valores de K. En el caso de matmul, por las limitaciones que presenta la

relación entre el tamaño del problema y el tamaño mı́nimo de fragmento, el planificador

siempre reparte el problema en un número demasiado pequeño de fragmentos por

lo que se asignan demasiados a la CPU. nbody ejemplifica muy bien el potencial de

este planificador, alcanzando tan buen balanceo (en este caso incluso mejor) como

el planificador dinámico pero empleando menor número de paquetes por lo que la

sobrecarga es significativamente menor, obteniendo mejor tiempo que el planificador

dinámico pero no mejor que exclusivamente en FPGA.

6.2.4. Resumen

La Tabla 6.11 incluye un resumen del mejor tiempo de ejecución de cada una de las

opciones, con la mejor versión para cada benchmark recuadrada de verde.

37



1 1.5 2 2.5 3 3.5 4 4.5
k

1000

2000

3000

4000

5000

6000

tim
e(

m
s)

67.0% 78.0% 94.0% 93.0% 91.0% 94.0% 94.0% 97.0%

4124 4126.334125.334130.67 4132 4128.5 4118.5 4162.33

matadd

C++
FPGA

1 1.5 2 2.5 3 3.5 4 4.5
k

50

100

150

200

250

300

350

400

tim
e(

s)

67.0% 78.0% 94.0% 93.0% 91.0% 94.0% 94.0% 97.0%

99.39 115.81
133.21

166.28
129.93

172.34 156.62 173.1

matmul

C++
FPGA

1 1.5 2 2.5 3 3.5 4 4.5
k

5

10

15

20

25

30

tim
e(

s)

23.0% 18.0% 19.0% 19.0% 19.0% 19.0% 19.0% 19.0%

10.89
8.98 8.96 8.97 9.04 9 9 9.06

nbody

C++
FPGA

Figura 6.4: Planificador hguided

CPU FPGA Estático Dinámico Hguided
matadd 379 2680 686 4121 4118
matmul 191803 1261 278000 21840 99390
nbody 64090 5264 827000 12510 8960
gaussian 5001 8742 - - -

Tabla 6.11: Mejor tiempo de terminación en milisegundos para cada versión de ejecución
de cada benchmark
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Caṕıtulo 7

Conclusiones y Trabajo Futuro

oneAPI ofrece un gran repertorio de optimizaciones para mejorar el desempeño

de kernels en FPGA. Se han probado multitud de las opciones y recomendaciones

mencionadas en la guia de Intel, dando lugar a incrementos sustanciales de rendimiento

en todos los kernels optimizados que vaŕıan entre 7.3 veces y 634.26 veces más

rendimiento que la versión poco o nada optimizada. Estos resultados corroboran que,

pese a existir portabilidad funcional, se sigue estando lejos de obtener portabilidad de

rendimiento.

Entre las optimizaciones probadas se distinguen diferentes niveles de impacto

obtenido, siendo más efectivas aquellas que mejoran el acceso a memoria (mayor ancho

de banda o menor necesidad de acceso) o permiten paralelizar los cálculos matemáticos

de los bucles internos. Otras directivas que otorgan información extra al compilador

tienen un impacto menor, que puede depender del resto de optimizaciones ya incluidas, o

son ignoradas. Se han considerado un total de 12 optimizaciones diferentes, aplicándose

la mayoŕıa de ellas a todos los kernels, siempre y cuando el algoritmo lo permitiese.

Entre estas optimizaciones se encuentran 5 gúıas generales de diseño de bucles en kernels

y 7 optimizaciones de diverso tipo.

La aplicación de optimizaciones tiene un impacto negativo en la portabilidad y

usabilidad de los kernels, resultando en un fallo de ejecución al ser lanzado en otros

dispositivos y requiriendo de restricciones adicionales para su correcto funcionamiento

en FPGA como tamaños de entrada múltiplos del work-group o uso de valores conocidos

en compilación.

La reducción de usabilidad junto con la disparidad en el rendimiento de ambos

dispositivos como consecuencia de la optimización dificulta obtener un balanceo adecuado

con independencia de la poĺıtica de planificación empleada. En aquellos casos en los que

śı que se logra balancear la terminación se observa que la fragmentación del problema

en paquetes disminuye el rendimiento de los dispositivos, particularmente de la FPGA

que ha de pagar la latencia de transferencia de datos por el bus PCIe. Como resultado,
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ningún kernel obtiene en este caso beneficio de la coejecución.

Devcloud resulta una muy buena plataforma para acceder y probar las ultimas

versiones de las herramientas y hardware de Intel, no obstante puede ser bastante

tediosa para trabajar con FPGAs debido a la contención por las máquinas resultado

de los largos tiempos de compilación y de los constantes reinicios o apagados de las

máquinas. Las múltiples actualizaciones tanto de la herramienta en Devcloud como

de la documentación dificultan el trabajo, habiendo coincidido una gran actualización

con las semanas anteriores a la finalización de este trabajo. La documentación para

FPGA es algo pobre, particularmente en el uso de kernels parallel for y aún más en

cómo realizar co-ejecución con fatbinary, no existiendo ejemplos de ello.

Queda como trabajo futuro probar si la última actualización verdaderamente facilita

el uso estricto de oneAPI para coejecución. Podŕıa también evaluarse la efectividad de

algunas de las optimizaciones por separado, ya que la aplicación aditiva podŕıa estar

mitigando sus efectos como es el caso del alineamiento de memoria. Existen también

otros kernels y optimizaciones que se podŕıan probar, particularmente para el modelo

single-task.

40
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heterogénea con cpu y fpga. Trabajo Fin de Grado. Universidad de Zaragoza, 2021.

41



[10] Francisco Irigoyen, Alfredo Villalba, and Enrique Sedano Algarabel.

Implementación de una plataforma hw para la evaluación de predictores e

saltos sobre arquitectura sparc v8. 01 2008.

[11] Benedict R. Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, and Dana Schaa.

Chapter 2 - introduction to opencl. In Benedict R. Gaster, Lee Howes, David R.

Kaeli, Perhaad Mistry, and Dana Schaa, editors, Heterogeneous Computing with

OpenCL (Second Edition), pages 15–38. Morgan Kaufmann, Boston, second edition

edition, 2013.

[12] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel

programming with cuda: Is cuda the parallel programming model that application

developers have been waiting for? Queue, 6(2):40–53, mar 2008.

[13] James Reinders, Ben Ashbaugh, James Brodman, Michael Kinsner, John Pennycook,

and Xinmin Tian. In Data Parallel C++. Apress, first edition, 2021.
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Anexos A

Cronoloǵıa

Se comenzó probando las opciones de optimización y coejecución en macizo, aśı

como algunos kernels single-task con los que no se hab́ıa trabajado.

Tras comprobar que algunas optimizaciones básicas (como memoria local) aśı como

los comandos de coejecución no funcionaban en macizo, se comenzó a probar todo en el

Devcloud.

Al comprobar que era necesario emplear la versión de Devcloud y no poder actualizar

la de macizo, se procedió a migrar el proyecto.

Paralelamente se realizan pruebas de funcionamiento de coejecución en Devcloud

junto a optimizaciones (las primeras semanas también en macizo)

Tras muchas optimizaciones y muchas pruebas de coejecución fallidas, se comienza

a adaptar el coejecutor y los kernels para poder realizar planificación C++-oneAPI.

Tras la actualización de versión a finales de Diciembre en Devcloud se deben

recompilar todos los binarios y se realizan los experimentos con las optimizaciones más

relevantes y la coejecución

Finalmente se redacta la memoria.
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La Figura A.1 representa una estimación del tiempo dedicado a cada tarea, las

cuales se pueden agrupar en 5 grupos:

− (30h, 8.6%) Gestión del TFM: tiempo dedicado a discutir y documentar el progreso

y los resultados.

− (34h, 9,7%) Exploración de plataformas: Pruebas iniciales de las diferencias entre

versiones y plataformas y migración

• Pruebas macizo • Pruebas Devcloud • Migración

− (80h, 23%) Fatbinary : pruebas de coejecución 100% oneAPI con diferentes

proyectos, comandos, . . .

− (130h, 37.2%) Optimización: proceso de prueba de las diferentes optimizaciones

de manera aditiva y toma de resultados finales tras el cambio de versión

• Optimización • Optimización con la nueva versión

− (50h, 14.3%) Coejecución: proceso de prueba de la funcionalidad de la coejecución

al ir optimizando y toma de resultados finales tras el cambio de versión

• Coejecución • Coejecución con la nueva versión

− (25h, 7.2%) Memoria: redacción de la memoria.
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Figura A.1: Tiempo dedicado a cada tarea
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