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RESUMEN

Los requisitos actuales de cémputo y consumo energético requieren del uso de
aceleradores de proposito especifico en los que descargar trabajo de la CPU. Estos
sistemas heterogéneos, compuestos por diversos dispositivos de computo, son dificiles
de programar por las diferencias entre dispositivos. Existen modelos de programacién
como oneAPI para facilitar su programacion.

Este trabajo explora y evalia las diferentes opciones de optimizacion de kernels
que ofrece oneAPI para FPGAs en multiples benchmarks, centrandose en el patron
parallel_for. También evalia la posibilidad de realizar coejecucién CPU-FPGA con
distintos planificadores. El soporte de oneAPI no estd maduro, particularmente para la
FPGA y su coejecucion, por lo que se ha requerido un gran esfuerzo para entender y
probar el funcionamiento de las caracteristicas de oneAPI.

La implementacion de diferentes optimizaciones, generalmente relacionadas con
el acceso a memoria y el paralelismo en ejecucién de bucles, ha reportado speedups
desde 7.3 hasta 634.26 frente a versiones poco optimizadas. Se corrobora que pese a
haber portabilidad funcional no la hay en rendimiento. Ademas, esta portabilidad se ve
reducida con la implementacion de optimizaciones, al igual que lo hace su usabilidad
por requerir tamanos de problema concretos.

Las extensas pruebas de ejecucion heterogénea con ambos dispositivos ejecutando
oneAPI han funcionado para ejemplos sencillos pero no con kernels optimizados por lo
que no se considera soportada durante la realizacion de este trabajo.

La potencia de la FPGA al emplear kernels optimizados dificulta la coejecucién
CPU-FPGA por la disparidad de rendimiento entre dispositivos, por lo que ninguno de
los planificadores evaluados (estédtico, dindmico, hguided) ha resultado efectivo.

Se han podido probar las 1ltimas versiones tanto software como hardware haciendo

uso de la plataforma Devcloud proporcionada por Intel.
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Capitulo 1

Introduccion

1.1. Motivacion

Existe desde el nacimiento de la computacién un incesante incremento en la demanda
de potencia de cémputo, y, para satisfacer dicha demanda, los ingenieros han de conseguir
incrementos iguales o superiores en las prestaciones de los sistemas de computacion.

Dichos incrementos de rendimiento y las técnicas empleadas se muestran en la Figura 1.1.
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Figura 1.1: Evolucion del rendimiento de los procesadores desde los anos 80 a la
actualidad

Fuente: Computer Architecture: A Quantitative Aproach

En el periodo de 1985 a 2005, se comenz6 por aumentar el rendimiento de un
procesador, doblando el nimero de transistores cada dos anos [1] y reduciendo el
tamano de estos para conservar el mismo area de chip. También se aumentaba la
frecuencia del procesador, ya que los transistores consumian menos energia al reducir
su tamano y emplear menor voltaje [2]. Adicionalmente, se desarrollaron multitud de
mejoras en las micro-arquitecturas para aprovechar el paralelismo a nivel de instruccién.

Eventualmente se alcanzaron limitaciones fisicas en la reduccion del tamano de los



transistores, el aumento de la corriente de fuga impidio seguir reduciendo el voltaje
y aumentar la frecuencia, lo que conllevé un gran aumento del coste monetario y
problemas de disipacién de calor [3].

Cuando estos problemas frenan el incremento de rendimiento de un procesador, se
cambia de filosofia y se comienza a explotar el paralelismo al emplear miltiples unidades
de computo para trabajar cooperativamente. Esta solucion aumenta drasticamente el
rendimiento sobre la parte paralelizable del cémputo, pero no resulta efectiva cuando la
seccién secuencial es la limitante [4].

En el presente, la potencia de los procesadores es insuficiente en muchos casos [5], y
es por ello que hacen uso de dispositivos de computo a los que descargar trabajo. Estos
dispositivos de computo, a diferencia de los procesadores de propdsito general, son de
dominio especifico por lo que el conjunto de tareas que puede realizar es reducido pero
tienen grandes prestaciones energéticas y temporales ejecutando las tareas para las que
han sido disenados.

En la Figura 1.2 se comparan algunos de los dispositivos mas comunes en base a su

flexibilidad y rendimiento.

Q
alta
E procesador
= general
«Q
&
b
media
baja
>
moderado rapido muy rapido
RENDIMIENTO

Figura 1.2: Flexibilidad frente a rendimiento de las principales tecnologias

Fuente: Adaptada de Hardware Design of Embedded Systems for Security Applications

El uso de estos dispositivos da lugar a sistemas heterogéneos, que se podrian definir
como aquellos en los que conviven distintos dispositivos de computo, los cuales se
emplean en la actualidad en todos los ambitos de la computacion, desde sistemas HPC
hasta teléfonos méviles.

Si bien los sistemas heterogéneos estan ampliamente extendidos por su rendimiento,
su complejidad es mayor [6], siendo necesario tener en cuenta las diferencias entre las
caracteristicas de los distintos dispositivos que los componen: arquitectura, memoria,

frecuencia de reloj, lenguaje de programacién, bibliotecas, frameworks. . .



Idealmente, toda la complejidad anadida seria transparente al desarrollador y
manejada por un software intermedio que interaccione con los diferentes dispositivos,
lidiando con las caracteristicas de cada uno y repartiendo eficientemente el trabajo [7].

Es este software intermedio el que pretende proporcionar Intel a través de su nuevo
modelo de programacién oneAPT [8], un modelo abierto, gratuito y estandarizado que
simplifica el uso de sistemas heterogéneos.

Conseguir abstraer al programador de los dispositivos subyacentes no es sencillo,
pero todavia menos lo es maximizar las prestaciones. El rendimiento puede desplomarse
por diversas razones: mala comunicacién de datos entre dispositivos, mala localidad de
los accesos a memoria, mal uso de los recursos del dispositivo, ...

Si bien oneAPI intenta avanzar hacia la programabilidad de sistemas heterogéneos
a nivel de portabilidad, no esta tan claro si lo serd en en portabilidad de rendimiento.
Ademés carece de una capa de nivel superior que le permita valorar en qué dispositivo/s

ejecutar cada carga de trabajo y como hacerlos trabajar conjuntamente.

1.2. Objetivos

El objetivo principal es optimizar un conjunto de benchmarks con oneAPI para
su ejecucién en FPGA, evaluando las opciones de optimizacién de codigo existentes
y permitiendo ademas valorar la portabilidad de rendimiento de oneAPI a FPGA al
comparar el cédigo base con el optimizado.

Con los benchmarks optimizados se realizara ejecucion heterogénea entre CPU y
FPGA, evaluando multiples politicas de balanceo de carga.

Persiguiendo este objetivo principal se busca responder a las siguientes cuestiones:
— (Qué rendimiento tienen los kernels' oneAPI sin optizizar en FPGA?

— Cémo se pueden optimizar los kernels oneAPI para FPGA? ;Cémo de sencillo y

efectivo resulta?

— ;Podemos hacer cooperar a dos dispositivos para ejecutar los benchmarks? ;Es

mejor que ejecutar en uno unico?

1.3. Alcance

En este TFM se ha partido de un trabajo previo [9] en el que se desarrolla una

herramienta con multiples benchmarks y planificadores de ejecucion, funcional para la

'El Kernel es la seccién de cédigo que se ejecuta en los dispositivos aceleradores



ejecucion heterogénea C++-FPGA con oneAPI. Partiendo de este cdédigo base y los

objetivos del apartado anterior:
— Se ha extendido y migrado el proyecto a la plataforma devcloud de Intel.
— Se ha actualizado el codigo para operar con la ultima versién de oneAPI.

— Se han explorado y evaluado concienzudamente multiples técnicas para la
optimizacién de kernels en FPGAs. Asi es posible resumir aquellas con mayor

beneficio.

— Se han estudiado y probado exhaustivamente las herramientas ofrecidas por Intel
para ejecucién heterogénea, incluyendo el reporte de multiples errores de las

mismas.

— Se ha realizado ejecucion heterogénea con multiples politicas de balanceo de carga.

1.4. Estructura del documento

En el Capitulo 2 se describe el estado del arte de los sistemas heterogéneos al
comienzo de este trabajo. A continuacion, en el Capitulo 3, se describe la plataforma
empleada, se detalla la metodologia seguida al realizar los experimentos y los benchmarks
utilizados. Una vez definido el entorno del trabajo, en el Capitulo 4, se describen las
diferentes optimizaciones consideradas y donde se aplican. En el Capitulo 5, se describen
la herramienta de coejecucion heterogénea CPU-FPGA que se empleard. Antes de
finalizar, en el Capitulo 6 se exponen los diferentes experimentos realizados y sus
resultados, tanto de optimizacién como de coejecucién. Por tltimo, en el Capitulo 7 se

extraen las principales conclusiones del TFM y se proponen lineas de trabajo futuro.



Capitulo 2

Estado del arte

2.1. Sistemas Heterogéneos

Los sistemas heterogéneos estan ampliamente extendidos en la actualidad. Resulta
raro encontrarse con ordenadores personales o teléfonos moviles que no incluyan una

tarjeta grafica o diversidad de aceleradores para tareas concretas.

2.2. Hardware en sistemas heterogéneos

En este apartado se describe de manera simplificada la arquitectura de las CPUs
y FPGAs, los dos dispositivos principales en este trabajo, permitiendo comprender la

diferencia de rendimiento y flexibilidad entre ambos dispositivos.

2.2.1. CPU

Las CPUs (Central Processing Unit) son componentes hardware esenciales en
casi todos los dispositivos electronicos. Esto se debe a su alta flexibilidad ya que,
empleando combinaciones de instrucciones sencillas, son capaces de implementar
cualquier comportamiento.

Su organizacién suele estar basada en una ruta de datos segmentada (simplificada
en la Figura 2.1) en la que se leen, decodifican y ejecutan instrucciones, guardando los
resultados convenientemente. Es comun el uso de mejoras microarquitectonicas como:
ejecucion fuera de orden, prediccién de saltos, o ejecucion superescalar. El objetivo
de estas optimizaciones, y muchas otras, es explotar al méaximo el paralelismo entre
instrucciones, aprovechar todo el hardware posible para lograr el maximo rendimiento
en las CPUs.

Cada CPU implementa una ISA (Instruction Set Architecture) en la que se
documentan las caracterisicas subyacentes necesarias para generar binarios ejecutables,

como son: los tipos de datos soportados, la gestién de memoria, los registros existentes. . .
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Figura 2.1: Ruta de datos segmentada

Fuente: Computer Architecture: A Quantitative Aproach

El uso de una ruta de datos comun para la ejecucion de diversos tipos de instrucciones
siguiendo cualquier combinaciéon conlleva a que, pese a ejecutar gran cantidad de
instrucciones por segundo, la CPU pueda resultar muy ineficiente para secuencias de
instrucciones con dependencias o que compiten por los mismos recursos. Por ejemplo,
para ejecutar la multiplicacion de la ecuacion 2.1, seria necesario realizar, entre otras,
dos instrucciones de multiplicacién, que deben atravesar la ruta de datos entera y
existiendo una dependencia que retrasa la ejecucion de la segunda hasta que la primera
proporciona su resultado. Si se disenase una ruta de datos con esta operacion en mente,
se anadirian dos unidades de multiplicacién encadenadas como en la Figura 2.2, para

poder realizar la operaciéon entera con un solo recorrido de la ruta de datos.

a=b*c*c (2.1)
b —
-
T

C

Figura 2.2: Circuito hardware para realizar la multiplicacién de la Eq. 2.1 con
multiplicadores de dos entradas



2.2.2. FPGA

El principal dispositivo acelarador usado en este trabajo es una FPGA
(Field-Programmable Gate Array). Las FPGAs son dispositivos hardware reconfigurables
cuya popularidad ha aumentado como consecuencia del incremento en el niimero de
componentes configurables de los que disponen y debido también a una reduccién en su
precio.

Como muestra la Figura 2.3, las FPGAs estan compuestas por multitud de
bloques légicos reprogramables para implementar desde puertas logicas a funciones
combinacionales complejas. Una jerarquia de interconexion permite configurar qué
elementos se enlazan entre si. Incluyen también bloques de entrada/salida y suelen tener
bloques fijos dedicados a memoria RAM o DSPs (Digital Signal Processor).

Estos dispositivos permiten implementar cualquier diseno hardware (si se dispone de
los recursos suficientes), siendo idéneos para hacer prototipado. De manera similar a los
ASIC, permiten disenar unidades logicas y rutas especificas para acelerar operaciones

concretas (como la ecuacién 2.1).
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Figura 2.3: Bloques funcionales principales de la FPGA

Fuente: Implementacién de una plataforma HW para la evaluacion de predictores e
saltos sobre arquitectura SPARC v8 [10].

Se encuentran en un punto intermedio entre una CPU y un ASIC (ver Figura
1.2), ofreciendo mejor rendimiento y menor consumo que la CPU y mas flexibilidad y
facilidad de diseno que un ASIC. Por contrapartida, las CPU son mas flexibles que las
FPGAs, y los ASIC ofrecen mejor rendimiento y consumo ya que no tienen el excesivo
interconexionado de las FPGAs.

Originalmente la programacién de las FPGAs se llevaba a cabo unicamente
empleando lenguajes de descripcién de hardware como VHDL. Hoy en dia existen

herramientas de High-Level Synthesis (HLS) que generan el disefio de la FPGA a partir
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de c6digo de alto nivel (como C++). Pese a que estas herramientas facilitan enormemente
la programacion para FPGAs, el proceso de generacién de una configuraciéon de FPGA
valida sigue siendo costoso en tiempo, generalmente en el rango de varias horas, ya que
se han de evaluar todos los recursos de la FPGA para encontrar una configuracién que
cumpla las especificaciones y guardarla en un binario (bitstream). oneAPI aprovecha

las capacidades de las herramientas de HLS para generar los binarios.

2.3. Software en sistemas heterogéneos

Una parte fundamental de cualquier sistema heterogéneo son las herramientas
software que permiten su programacion. En este apartado se presentan distintas

alternativas.

2.3.1. OpenCL y CUDA

Previamente a oneAPI ya existian otros modelos de programacion, como OpenCL y
CUDA [11, 12], en los que se especifica la existencia de un anfitrién (host) que gestione
la ejecucion y descargue las tareas de cémputo (kernels) a uno o més dispositivos
aceleradores (devices), similar al patréon master-worker. El host debe gestionar los

problemas derivados de la heterogeneidad: diferentes arquitecturas, memoria, frecuencia,

Aunque CUDA es especifico para GPUs de Nvidia, OpenCL es un estandar abierto
para ser utilizado por cualquier acelerador, incluido FPGAs. OpenCL se anuncié por
primera vez en la conferencia SIGGRAPH de 2008, y consigue definir un lenguaje

comun entre diferentes dispositivos, pero tiene multiples desventajas:

— Bajo nivel de abstraccion. Requiere que el programador haga explicito todo el

paralelismo de datos existente.

— Los kernels se escriben en C99 y deben separarse del cédigo del host (a otro
fichero).

— El rendimiento de los kernels depende mucho de optimizarlos para cada dispositivo.

— La coordinacion entre los distintos dispositivos del sistema heterogéneo debe ser

explicitamente programada.

2.3.2. Intel OneAPI

Intel oneAPI se define como un modelo de programacion que simplifica el uso de

CPUs y aceleradores en sistemas heterogéneos. Emplea directivas de C++ moderno



para expresar paralelismo, con un lenguaje de programacion llamado Data Parallel
C++ (DPC++) [13]. Este lenguaje permite reutilizar cédigo tanto del host como de
los aceleradores, que pueden estar mezclados en un tnico fichero. Incluye directivas
para expresar dependencias de ejecucion y memoria. Permite seleccionar facilmente el
dispositivo donde ejecutar cada tarea, pudiéndose también usar el host como dispositivo.

Es importante mencionar que oneAPI es un modelo de programacién reciente y no
maduro, especialmente para FPGAs, que fue anunciado por primera vez en la Intel
HPC Developer Conference en noviembre de 2019.

En la Figura 2.4 se muestra un ejemplo funcional de cédigo oneAPI. En tan solo
21 lineas se incluye la incorporacion de la biblioteca con las clases oneAPI (linea 1),
la declaracién de un buffer a partir de datos ya existentes (linea 9), la declaracién de
una cola (asociada al dispositivo por defecto) y adicién de una tarea (linea 11) a la
misma, la declaracién de un accessor al buffer para el dispositivo (linea 12), el cédigo a
ejecutar en el dispositivo (linea 14) que se ha de ejecutar para todos los ”idx” en el
rango especificado al llamar a parallel_for (linea 13) y por tltimo la declaracién de un
accessor para leer los resultados en el host. Se aprecia que la sintaxis es muy similar a

C-+-+ moderno.

#include <CL/sycl.hpp> queue{ }.submit([&](handler& h) {
#include <iostream> accessor out{a, h};
h.parallel for(r, [=](item<1> idx) {
constexpr int num=16; out[idx] = idx;
using namespace sycl; 1)s;
IO F

int main() {

auto r = range{num}; host_accessor result{a};

buffer<int> a{r}; for (int i=0@; i<num; ++1i)

std: :cout << result[i] << "\n";

I

Figura 2.4: Programa oneAPI

Fuente: oneAPI Programming Model Manual
, https://www.intel.com/content/www/us/en/develop/documentation/
oneapi-programming-guide/top.html

Compilaciéon

La compilacién para diferentes dispositivos es uno de los principales desafios a
resolver. En una compilacion tradicional se genera codigo para una tnica arquitectura
objetivo, en la cual puede ejecutarse directamente el binario resultante. Para poder
compilar cuando existen multiples arquitecturas objetivo, oneAPI define dos esquemas
de compilacién: Just In Time (JIT) y Ahead Of Time (AOT).

En la Figura 2.5a se observa que la compilacion JIT genera un fichero con una parte
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Figura 2.5: Opciones de compilacién oneAPI

Fuente: oneAPI Programming Model

directamente ejecutable en el host y otra en un lenguaje intermedio (SPIR-V) que es
compilado para cada dispositivo en concreto en tiempo de ejecucién.

Para las ocasiones donde no es admisible compilar en tiempo de ejecucién
(compilaciones largas de FPGA o requisitos temporales muy estrictos) existe el modelo
AQOT (Figura 2.5b), en el que se genera un binario que contiene una parte compilada
para el host y otra para el/los dispositivos.

Tanto si el fichero resultante de la compilacion tiene la parte de los dispositivos en
SPIR-V, en binario ejecutable o bitstream de la FPGA, Intel se refiere a ellos como
FatBinary. Las versiones testeadas de FatBinary han resultado imposibles de manejar

por la cantidad de errores que generaban.

Paralelismo en oneAPI

En lugar de expresar la ejecucién como bucles unidimensionales ejecutados
secuencialmente en una unica unidad de céomputo, oneAPI implementa el patrén
parallel_for. Con el patrén parallel_for se expresa que las diferentes instancias
(work-items) del kernel (que corresponderian a cada iteracién en un bucle regular) son
independientes entre si y se pueden ejecutar en cualquier orden. De este modo se delega
en oneAPI la planificacion de la ejecucion y el reparto de iteraciones entre las unidades
de cémputo del dispositivo acelerador seleccionado. El patréon parallel_for se asocia a
un unico dispositivo por medio de una cola de tareas, por lo que no es posible repartir
instancias entre multiples dispositivos. En la Figura 2.6 se muestra una multiplicacion
de matrices donde cada work-item realiza el calculo de un valor de la matriz resultado.

Para tener mas control sobre el orden de ejecuciéon de los work-items existen los
kernels parallel_for ND-range que permiten expresar cierta localidad entre instancias.

Como muestra la Figura 2.7, en los kernels ND-range los work-items se agrupan en

10



work-item

n
F

Figura 2.6: Multiplicaciéon de matrices con parallel_for

Fuente: Data Parallel C++4 - Mastering DPC++ for Programming of Heterogeneous
Systems using C++ and SYCL

work-groups. Los work-items de un mismo work-group se ejecutan simultaneamente,
tienen acceso a memoria local compartida por el grupo, a funciones de sincronizacién de
grupo (como barriers) y a otras funciones de comunicacién de grupo. Cuando se emplean
directivas especificas de work-groups, el motor de ejecucién de oneAPI garantiza que la
ejecucion de sus work-items es simultanea y no se entrelaza con la de otros work-groups.
No obstante, el orden de ejecucién de los work-groups o de cada work-item dentro de

un mismo work-group sigue siendo indefinido.

work-item

\

I
b3

work=group

Figura 2.7: Multiplicacién de matrices con parallel_for ND-range
Fuente: Data Parallel C++ - Mastering DPC++ for Programming of Heterogeneous
Systems using C++ and SYCL

En caso de que el problema a implementar no sea altamente paralelizable o requiriera
de situaciones especiales que empeoren el uso de parallel_for, se puede emplear kernels

regulares de una unica instancia, llamados single-task, que no expresan paralelismo.
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Capitulo 3

Metodologia

En este capitulo se presentan los aspectos relativos al entorno de trabajo, benchmarks

utilizados y metodologia experimental.

3.1. Devcloud

Todos los experimentos presentados en este trabajo se han llevado a cabo en
Devcloud!, aunque también se ha empleado una méquina local Macizo? para realizar
pruebas. Devcloud es una plataforma proporcionada por Intel en la que se incluyen
maquinas equipadas con diversidad de dispositivos aceleradores y las tltimas versiones
de todas las herramientas software necesarias para desarrollar aplicaciones para cualquier
arquitectura evitando la costosa puesta en marcha y administracion de este tipo de
sistemas.

Si bien se requiere de la aprobacién del proyecto o motivo de uso para poder acceder
a Devcloud, su uso es gratuito siendo una excelente plataforma para probar a desarrollar
en dispositivos aceleradores sin necesidad de invertir la gran cantidad de dinero que
supondria comprarlos.

Como se muestra en la Figura 3.1, Devcloud cuenta con una serie de nodos login a
los que se conectan los usuarios por medio de la terminal o entorno de desarrollo y en
los que disenar y mantener cédigo. Para compilar y ejecutar experimentos se someten
los scripts correspondientes a la cola de trabajos de Devcloud, la cual comprobaré las
etiquetas descriptivas especificadas al someter el trabajo y buscard una maquina de
computo operativa que posea dichas etiquetas en la que ejecutar el script, devolviendo los
resultados a la maquina core. Entre estas etiquetas suele incluirse el tipo de dispositivo
acelerador que debe poseer el nodo computacional.

Si bien Devcloud ofrece muchas ventajas, también tiene inconvenientes ya que

https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
2Macizo es una maquina del Grupo de Arquitectura de Computadores de la Universidad de Zaragoza
equipada con una Stratix 10 GX a la que se tiene acceso
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Figura 3.1: Infraestructura del Devcloud

Fuente: Intel DevCloud for oneAPI, https://devcloud.intel.com/oneapi/

no puedes elegir el momento en el que se aplican cambios de versiones, comandos o
bibliotecas, lo cual ha resultado inconveniente en este trabajo. Ademas, las maquinas
de computo se comparten entre todos los usuarios, por lo que pueden estar ocupadas
y ralentizar el desarrollo del trabajo. Ademés, las maquinas se reinician o apagan
temporalmente de manera frecuente, lo cual es especialmente problematico cuando
se deben realizar compilaciones de varias horas. Es por estos inconvenientes y por la
disponibilidad inicial de macizo que el desarrollo del trabajo se comenz6 en local. No
obstante, algunas de las directivas de optimizacién requerian de versiones mas modernas
de oneAPI que la instalada en macizo y se decidié cambiar al cloud ya que, al ser macizo
una maquina compartida, no se podia modificar en ese momento la version instalada.

En este trabajo se ha empleado la FGPA Intel Stratix 10 GX, para la cual existen
3 maquinas operativas en Devcloud. Dichas maquinas poseen una CPU Intel Xeon
Platinum 8256 (8 nicleos, 2 hilos por niicleo, 3.80GHz, 16.5 MB cache y 1.45 TB RAM)
y una FPGA Intel Stratix 10 GX? con 32GB de memoria principal, representada en la
Figura 3.2 y con los recursos de la Tabla 3.1. Se emplea la version 2023.0.0 de oneAPI,
la 2022.3.1 de Intel FPGA SDK y la 19.2 de Quartus. Se aplica el maximo nivel de

optimizacién, -03, en todas las compilaciones.

3.2. Benchmarks utilizados

Se han evaluado cuatro benchmarks que se describen a continuacion, correspondientes
a algoritmos representativos de uso comun. El cédigo original proviene de Nozal y

Bosque [14] y estd disenado para ejecucién en CPU y GPU. Todos los benchmarks

3https://ark.intel.com/content/www/es/es/ark/products/210291/
intel-stratix-10-gx-2800-fpga.html
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Figura 3.2: BittWare 520C Intel Stratix 10 FPGA accelerator
https://www.zerif.co.uk/fpga-main-board-accelerators/intel-stratix-10/
bittware-520c-intel-stratix-10-gx-2800-10-tflops

Stratix 10 Gx
Elementos 16gicos (LE) 2753000
Médulos 16gicos adaptables (ALM) 933120
Registros del médulo légico adaptativo (FF) 3732480
Bloques de procesamiento de senal digital (DSP) 5760

Tabla 3.1: Recusros de la FPGA Stratix 10 GX 2800

incluyen una funcién de verificacién con la que se validan los resultados obtenidos
en todos los experimentos. Los tamanos de benchmark elegidos en los experimentos
corresponden a la mayor potencia de 2 cuyo tamano quepa en la memoria de la FPGA

y de modo que tenga un tiempo de ejecucion razonablemente alto pero no excesivo.

Suma de Matrices (Matadd) Suma de dos matrices de floats, cuadradas y de igual
tamano. Sin optimizaciones. Se permite elegir el tamano del problema seleccionando el

tamano de los lados de las matrices.

Multiplicaciéon de Matrices (Matmul) Multiplicacién de dos matrices de floats,
cuadradas y de igual tamafno. Sin optimizaciones. Se permite elegir el tamano del

problema seleccionando el tamano de los lados de las matrices.

Problema de los N Cuerpos (Nbody) Simulacién N-body que aproxima
numeéricamente la evolucién de un sistema de cuerpos donde cada cuerpo interacciona
constantemente con todos los deméds. Para cada cuerpo se calcula el efecto que tienen
todos los demads sobre él, y a partir de ahi su siguiente posicién y velocidad. Optimizado

originalmente con desenrollado de bucles que se retira para medir el rendimiento base.
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Tanto la posicién como la velocidad se representan en tres dimensiones con float.
Se permite elegir el tamano del problema seleccionando el ntimero de cuerpos de la

simulacién.

Filtro Gaussiano (Gaussian) Filtro que calcula el valor de cada pixel de salida
en base a una media ponderada del pixel de entrada y sus adyacentes en un radio
proporcional al tamano del filtro. Sin optimizar. Se permite elegir el tamano de la
imagen (del lado, dando siempre lugar a una imagen cuadrada) y del filtro (del lado de
la matriz, que sera una matriz cuadrada), que debe ser impar. Los pixeles de la imagen
de entrada y de salida son uchar/, y el filtro son floats. En los experimentos siempre se

usa un filtro de 5x5.

3.3. Medicion del tiempo de ejecuciéon

Para cada experimento se mide la diferencia de tiempo entre el momento en que se
llama al planificador y el momento en el que este termina. Las mediciones emplean la
biblioteca “chrono” de C++4. Con fin de evitar una alta variabilidad en los resultados,
cada experimento se repite multiples veces?, siendo el resultado valido la media de
todas, y se presta particular atencion a la desviacién estandar. En los experimentos
con FPGA se realiza una ejecucion previa (no contabilizada en la media) para que la
FPGA se reconfigure, y asi evitar penalizaciones temporales asociadas al primer uso
(warm-up). Para los experimentos heterogéneos, ademds del tiempo de ejecucién del
planificador se mide el tiempo de terminacion de cada dispositivo y el trabajo que ha
realizado. Esto nos permitiré tener una medida sobre el desbalanceo existente en la

ejecucion.

3.4. Flujo de trabajo con la FPGA

Como se ha mencionado previamente, la compilacién para FPGA es un proceso que
lleva multiples horas. Por tanto es el ultimo paso a realizar, cuando se esta convencido de
que el diseno del kernel es el adecuado. Para ello, oneAPI ofrece un dispositivo emulador
de FPGA que permite validar los resultados del kernel. Una vez es funcionalmente
correcto, se realiza una compilaciéon intermedia que genera un reporte sobre cémo se va
a implementar funcionalmente el kernel. En este reporte se pueden detectar cuellos de

botella analizando los accesos a memoria, la implementacién de los bucles (intervalo de

4Se calculé sobre los experimentos base (Seccién 6) que con cinco repeticiones se obtiene un
coeficiente de variacién bajo. No obstante, se calcula siempre la desviacién estandar de las repeticiones
y se ejecutan experimentos adicionales si esta no se considera aceptable.
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iniciacion, desenrollado,...) o la frecuencia de reloj maxima estimada. La Figura 3.3a
representa el grafo del sistema generado en el reporte para Matmul con desenrollado
de grado 8. La seccion roja indica que no ha sido capaz de segmentar ese bucle, pero
si se hiciera clic sobre el load se veria que realiza un acceso a memoria de 256 bits
correspondiente a 8 floats. Tras valorar con el reporte que las optimizaciones se estan
aplicando como se desea, se realiza la compilacion completa para generar el bitstream.
El flujo de compilacion entero se representa en la Figura 3.3b. Este flujo resulta de gran
utilidad ya que evita realizar el lento proceso de compilacién hasta que no se considera

que el hardware a generar pueda ser suficientemente rapido.

kernel KernelMatmul
KernelMatmul.BO
Disefio del Kernel
Kernell‘atmul.BZ
Loop Input
) s
Emulacion
Loo;i End (validacion)
KernelMa:tmuLB‘\ ¢
fegh Optimizacion
® (con reportes)
\..Global Memory
End I Compilacion

(a) Grafo del kernel completo en un reporte de (b) Flujo de compilacién de FPGA
optimizacién

Figura 3.3: Compilacién en FPGA
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Capitulo 4
Optimizacion

En este capitulo se describen las diferentes cuestiones a tener en cuenta para la
optimizacién de los diferentes kernels para su ejecucién en la FPGA. Asi mismo, se
analiza el impacto de estas técnicas sobre los benchmarks. A lo largo de este TFM se
han explorado multitud de técnicas para mejorar el rendimiento de cédigo oneAPI en
FPGA generalmente descritas en la guia de Intel!, pero por limitaciones de espacio,

solo se van a mostrar aquellas que han mostrado més potencial de mejora.

4.1. Rendimiento en FPGA

El rendimiento de un kernel en FPGA se va a ver condicionado por cuatro factores

principales, que seran objetivo principal de las optimizaciones:

Numero de operaciones que se realizan en paralelo.

— Ancho de banda a memoria de la implementacion.

— Numero de operaciones por ciclo de reloj que realiza el hardware.
— Frecuencia del reloj.

La sintesis de un kernel en una FPGA adopta la forma de una FIFO de procesamiento.
El trabajo a realizar se divice en elementos, items, que son procesados en esta FIFO
por etapas o fases. El tiempo de ejecucién de esta organizacién puede ser modelado
analiticamente con la siguiente ecuacién[15]:
(items — 1) x I x +

vector_factor x unroll_factor

(4.1)

Tejecuci(m =

Donde items representa el nimero de elementos a procesar por el kernel, 17 la tasa
de iniciacién y F' la frecuencia del kernel. La tasa de iniciacion es el nimero de ciclos

que transcurren entre que 2 items consecutivos pueden empezar su ejecucion.

Thttps://www.intel.com/content /www /us/en/develop/documentation/oneapi-fpga-optimization-guide /top.html
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4.2. Guias de diseno

Se presentan a continuacion una serie de guias de diseno de kernels que se han
tenido en cuenta en todo momento para facilitar que el compilador sea capaz de analizar
eficientemente el cédigo y generar el mejor diseno de la FIFO de procesamiento posible.

Ademas, se comentara cuando sea pertinente a que término de la ecuacion 4.1 afectan.

Evitar solapamiento de punteros Si los kernels reciben varios punteros a memoria
como argumentos, el compilador no puede descartar a priori que distintos punteros
accedan a la misma posicion de memoria. Aunque este comportamiento es raramente
deseado por el programador, acaba limitando el andlisis de dependencias necesario para
generar codigo optimizado.

Suponiendo un codigo de ejemplo como el de la Figura 4.1, es posible que los punteros
no compartan direcciones de memoria como se ejemplifica en la Figura 4.2a y por tanto
sea completamente paralelizable. Si no se ayuda al compilador este no puede asumir
que no se esté dando el caso representado en la Figura 4.2b, donde se comparten la
mayoria de direcciones de memoria y se requiere una ejecucién secuencial para obtener
un resultado correcto.

Para facilitar el analisis del compilador, como se hace en la Figura 4.1, podemos
especificar al compilador que ninguno de los argumentos se solapan mediante la
directiva kernel_args_restrict. Esto afectard reduciendo el I y permitiendo aumentar el

vector_factor y/o el unroll_factor

device queue.submit ([&] (handler& cgh) {
// create accessors from global memory
accessor in accessor(in buf, cgh, read only);
accessor out_accessor (out_buf, cgh, write only);

// run the task (note the use of the attribute here)
cgh.single task<KernelArgsRestrict>([=] () [[intel::kernel args restrict]] {
for (int i = 0; 1 < N; i++) {
out_accessor[i] = in_accessor[i];

Figura 4.1: Uso del atributo kernel args restrict

Fuente: oneAPI DPC++ FPGA optimization guide

Se puede especificar, con grano méas fino que kernel_args_restrict, que la memoria
accedida por un accessor en concreto no va a ser modificada por otros, sino que siempre
se hara indexando por medio de ese mismo accessor. Para ello se emplea la directiva
no_alias, como se muestra en la Figura 4.3.

El uso de kernel_args_restrict equivale al uso de no_alias para todos los argumentos.
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in_accessor|[0]

v
in_accessor[0] out_accessor[0] ¢
* * t _accesor[0]
HEEEENIEEEEEE out_
(a) Punteros no solapados (b) Punteros solapados

Figura 4.2: Solapamiento de punteros

ext::oneapi::accessor property list PL{ext::oneapi::no alias};
accessor acc (buffer, cgh, PL);

Figura 4.3: Uso del atributo no_alias

Fuente: oneAPI DPC++ FPGA optimization guide

Construir bucles “bien formados” FEmplear bucles con incrementos y condiciones
de salida sencillos ayuda al compilador a analizarlos eficientemente, generando mejor
disenio que permitira que sucesivas iteraciones del bucle se lancen con menor latencia de
iniciacién (reduccién de II). Si nos fijamos en la implementacién original del bucle de
gaussian de la Figura 4.4a podemos observar que se trata de un bucle “mal formado” ya
que el valor de la variable middle no se conoce en tiempo de compilacién (corresponde
con la mitad truncada del tamano del filtro) y existen condicionales para terminar
la iteraciéon prematuramente con continue. La Figura 4.4a se asemeja al kernel final

empleado, con un bucle ”bien formado”.

for (int i = -middle; i <= middle; ++i){ // rows
for (int j = -middle; j <= middle; ++j){ // columns #define FILTERWIDTH 5
inth=r+i; intw=c+j

13 // *fusionados y desenrollados*
if (h » height || h < @ || w > width || w < @)

for (int i = @; i < FILTERWIDTH; ++i){ // rous

con?inue; i i for (int § = @; j < FILTERWIDTH; ++j){ // columns
float pixelX = input[w + cols * h].x() // current pixel float pixelX = input local[local x + il[local y + 1.x());
(a) Bucles "mal formados”de gaussian (b) Bucles "bien formados”de gaussian

Figura 4.4: Cambio en el cédigo de gaussian

Minimizar las dependencias entre iteraciones La existencia de instrucciones que
dependen de otras instrucciones ejecutadas en iteraciones previas reduce las prestaciones
del kernel puesto que la instruccion dependiente no podra ejecutarse hasta que la
dependencia se resuelva, y por tanto se limita el paralelismo alcanzable. Resolver estas

dependencias suele aumentar mucho la tasa de iniciacién del modelo.

Fusionar bucles anidados Convertir bucles perfectamente anidados en un tnico

bucle equivalente reduce el uso de hardware y la sobrecarga para iniciar iteraciones.
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Declarar las variables en el Ambito mas cercano posible El compilador tiene
que asegurarse de mantener el valor de las variables a lo largo de todo el &mbito en
el que estan declaradas, por lo que gastara mayor cantidad de recursos hardware para

aquellas que estén declaradas en un ambito mas amplio del necesario.

4.3. Técnicas de optimizacion evaluadas

Si bien se han realizado optimizaciones menores siguiendo las guias de disefio e
implementado alguna otra técnica puntualmente, se describen a continuacion las técnicas
implementadas con mayor impacto en el cédigo y rendimiento. Dichas técnicas se aplican

incrementalmente en los experimentos finales.

4.3.1. Usar memoria local para accesos repetidos

Existen multiples tipos de memoria en oneAPI:

— Memoria global: la memoria correspondiente a buffers asignados en el host.
Tiene un gran tamano, pero una mala latencia y ancho de banda ya que la FPGA

ha de acceder a ella a través del hardware de interconexion.

— Memoria local privada: se encuentra implementada dentro del kernel
posiblemente como registros o en bloques RAM. Es la empleada al declarar

variables dentro del kernel.

— Memoria local de grupo: similar a la memoria local privada, pero en este caso
es visible y compartida por todos los work-items del work-group. Se declara con

la directiva group_local_memory_for_overwrite.

El mal uso de la memoria es uno de los mayores problemas de rendimiento al trabajar
con una FPGA ya que existe una gran penalizacion por acceder a memoria global,
que es la memoria accedida por defecto en un kernel genérico. Cualquier dato que se
deba emplear multiples (localidad) veces es generalmente preferible que sea cargado
en primera instancia en memoria local, con bajo consumo y latencia, y posteriormente
utilizado desde esta memoria en lugar de utilizar la lejana memoria global.
Ejemplificando sobre el algoritmo gaussian en la Figura 4.5, empleando un filtro
de 3x3 para la convolucion de un pixel, se requiere la lectura de 9 pixeles adyacentes
para su calculo, pero muchos de ellos se comparten con la convolucion del pixel vecino
(interseccién entre el marco azul y amarillo en la imagen). Con el uso de memoria local,
en lugar de cargar desde memoria principal cada pixel inicial 9 veces, es mejor cargarlo

una tUnica vez y reutilizarlo en memoria local.
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Figura 4.5: Reutilizaciéon de memoria en gaussian. Con el uso de memoria local cada
pixel se lee una vez desde memoria global y hasta 9 desde memoria local. Sin el usar
memoria local, el pixel se leeria hasta 9 veces desde memoria global.

Siguiendo esta idea, se han modificado los kernels para que empleen memoria
local. En primer lugar, al ser kernels parallel_for, se han incluido los atributos
reqd_work_group_size y maz_work_group_size para especificar el tamano de los work-groups
en los que agrupar el espacio de ejecucién. Seguidamente se ha declarado la memoria
local de grupo correspondiente al tamano del work-group. Finalmente, se ha modificado
el codigo para que cada work-item cargue el valor de memoria correspondiente a su
rango en el espacio de ejecucién y se sincronice con su work-group mediante barriers
para delimitar los periodos de carga y de computo. Este cambio permite reducir la tasa
de iniciacién y el ancho de banda a memoria requerido. La directiva de memoria local
de grupo no se encontraba disponible la version 2021.1.1 de oneAPI que es la que se
encontraba instalada en la maquina "macizo”de la Universidad de Zaragoza que se

habia empleado previamente y fue uno de los motivos que forzé al cambio a Devcloud.

4.3.2. Vectorizacion

Al existir alto grado de independencia y secuencialidad en las operaciones realizadas,
tanto matemaéticas como de cargado y guardado de datos, resulta ineficiente que cada
work-item trabaje de manera individual sobre un solo dato. Esto es especialmente
importante en las operaciones de acceso a memoria ya que, pese a estar fomentando
el reuso de datos en memoria local, sigue existiendo una gran cantidad de accesos
de poco tamafio a memoria global. Mediante el atributo num_simd_work_items(N)
especificamos que se puede realizar la vectorizaciéon de N work-items contiguos en uno
unico. Por ejemplo, num_simd_work_items(16) sobre un work-group de 32x32 causaria
un work-group resultante de 32x2. Al emplear la vectorizacién, aumentamos el valor de

vector_factor en la ecuacién 4.1 y se pueden conseguir grandes mejoras.
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4.3.3. Desenrollado de bucles

El desenrollado de bucles permite especificar al compilador que agrupe la ejecucion
de miiltiple iteraciones en una unica. De este modo, el niimero de iteraciones totales a
ejecutar disminuye por el factor de agrupamiento, las cuales emplearan mas hardware
para realizar el mismo trabajo en menos tiempo. Si se compila un cédigo de ejemplo
como el de la Figura 4.6 se observa que existen dos unidades de suma y una de
multiplicacion para ejecutar cada iteracion, que esperar al resultado de la anterior
acumulacién para empezar la siguiente. Al anadir la directiva unroll el compilador es
capaz de agregar unidades funcionales para realizar todas las operaciones con el mayor

grado de paralelismo y atravesando una unica vez la ruta de datos.

queue.submit ([&] (handler &cgh) {
accessor x(x buf, cgh, read only);
accessor sum(sum buf, cgh, write only);
cgh.single task<class unoptimzed>([=] () {
int accum = 0;

#pragma unroll
for (size_t i = 0; 1 < 4; i++) |

accum += x[1 + get global id(0) * 4];
}
sum[get global id(0)] = accum;
P
b);

Figura 4.6: Uso del atributo unroll

Fuente: oneAPI DPC++ FPGA optimization guide

4.4. Otras técnicas de optimizacion implementadas

4.4.1. Patron de acceso a memoria

Aunque los circuitos de memoria modernos, por ejemplo RAM DDR, permite acceder
consecutivamente a posiciones aleatorias, este patrén tiene severas penalizaciones en
el rendimiento frente acceder consecutivamente a valores almacenados en direcciones
adyacentes?. Para mejorar el patrén de acceso a memoria y que se realicen peticiones
del maximo tamano a datos contiguos, en algoritmos como la multiplicacién de matrices
en los que se accede a datos por columnas (en este caso a la matriz B), resulta més

eficiente acceder a bloques por filas, en la memoria global. Si ademas se invierte cada

2El motivo es que las memorias se organizan en bloques, que contienen varios datos consecutivos.
Un acceso secuencial aprovecha todos los datos de un bloque, mientras que un acceso aleatorio debe
acceder a un nuevo bloque para cada dato accedido.
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fila y se guarda como una columna en la memoria local, al querer acceder a lo que seria
originalmente una columna en la matriz B se realiza un acceso secuencial ya que esta

invertida. Esta secuencia de accesos a memoria se representa en la Figura 4.7

Patrén de acceso Patron de acceso Patron de guardado Patron de acceso
en el algoritmo ~ a memoria global en memoria local a memoria local

> D >

>

)

ﬂ )
Vv

Figura 4.7: Cambio en el patrén de acceso a memoria

Matriz A

Matriz B

T

4.4.2. Buffers de uso especifico

Los buffers empleados para mandar y recibir datos a los kernels pueden ser marcados
con atributos que especifican el uso que se va a hacer de los mismos. Entre los atributos
posibles se encuentra los 3 empleados en este trabajo: access::mode::read junto con
access::target::constant_buffer y access::mode::discard_write. Los dos primeros permiten
al compilador ubicar dicho buffer en una seccién de solo lectura, ya que no sera
modificado. El segundo atributo le permite emplear cualquier zona de memoria ya que

los contenidos seran descartados.

4.4.3. Alineamiento de memoria

La declaracién y transferencia de buffers resulta mas eficiente si estos se declaran a
partir de datos alineados en memoria, por lo que se declaran las estructuras de datos

de entrada o salida con la funcién aligned_alloc a direcciones multiplo de 1024 bytes.

4.4.4. Operaciones con nimeros decimales

Para facilitar la generacion de hardware para ejecutar operaciones con tipos de
datos decimales se permite el uso de FMAs, la reasociacién de operaciones y saltarse
conversiones y redondeos intermedios. Actualmente estas opciones se emplean por

defecto, por lo que ya no es necesario incluir las correspondientes opciones de compilacién.
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4.5. Resumen

En la experiencia de este trabajo, las optimizaciones mas efectivas han resultado
ser el desenrollado de bucles y la vectorizacion, seguidos del uso de memoria local.
Para el aprovechamiento de estas optimizaciones, las iteraciones de los bucles no deben
presentar interdependencias, se debe acceder a posiciones contiguas de memoria y los
datos accedidos deben presentar localidad para que la memoria local pueda explotar
el retiso. El alineamiento de memoria también ha resultado efectivo para permitir al
compilador inferir un mejor acceso a memoria principal, pero poco efectivo si ya se
estaba empleando vectorizacion.

El resto de optimizaciones o bien se han mantenido a lo largo de todo el proceso de
optimizacién siguiendo las recomendaciones de la guia o bien han resultado de poca o
ninguna mejora pese a proporcionar informacién extra al compilador.

En la Tabla 4.1 se muestran las diferentes optimizaciones y su aplicacién a cada
kernel. Los recuadros verdes implican que la optimizacién se ha aplicado activamente
al kernel, los azules que el codigo ya cumplia con esa optimizacién y se ha hecho un

esfuerzo por mantenerla y gris que la optimizacion no era aplicable al kernel.

matadd matmul nbody gaussian

Evitar solapamiento de punteros
Construir bucles “bien formados”
Minimizar las iteraciones dependientes
Fusionar bucles anidados

Variables de ambito cercano
Memoria local para accesos repetidos
Vectorizacién

Desenrollado de bucles

Patron de acceso a memoria

Buffers de uso especifico
Alineamiento de memoria
Operaciones con nimeros decimales

Tabla 4.1: Resumen de optimizaciones aplicadas por kernel
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Capitulo 5

Coejecucion con Intel oneAPI

En este capitulo se describe la herramienta de coejecuciéon heterogénea CPU-FPGA
empleada y el trabajo realizado para intentar migrar la seccion de CPU de C++ nativo
a oneAPI. Entendemos por herramienta de coejecucion heterogénea aquella que es capaz
de dividir el problema a resolver en multiples fragmentos y repartir dichos fragmentos
entre los distintos dispositivos, de modo que resuelvan el problema inicial de manera

cooperativa.

5.1. Coejecutor

En este trabajo fin de master se parte de una herramienta de coejecucion desarrollada
originalmente por Raul Nozal [16] y adaptada por mi[9]. Dicha herramienta era capaz
de realizar ejecucién heterogénea entre CPU y FPGA usando C++ nativo para CPU y
oneAPI para FPGA. La herramienta incluye un conjunto de benchmarks del ambito
cientifico (multiplicacién de matrices, filtro gaussiano, ...) descritos en el capitulo 3.2,
e implementa tres planificadores de ejecucion (estatico, dindmico y hguided) descritos a

continuacion.

5.1.1. Planificadores

Planificador estatico (Figura 5.1a) Divide el problema en dos fragmentos, uno
para CPU y otro para FPGA. El tamano de los fragmentos es ajustable por el usuario
segun la potencia de calculo que le estime a cada dispositivo. El fragmento de CPU se

subdivide entre el nimero de hilos elegido.

Planificador dindmico (Figura 5.1b) Divide el problema en N fragmentos de
igual tamano que se reparten de uno en uno a los distintos dispositivos conforme van

quedando ociosos.
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Planificador hguided (Figura 5.1c) Combinando ideas de los planificadores
anteriores se reparten fragmentos de manera dinamica, pero en este caso no se elige
partir el problema en N fragmentos iguales, sino que se elige la potencia de calculo
estimada de cada dispositivo y éstos van ejecutando fragmentos de tamano proporcional
a esa potencia. Ademas, los fragmentos son mas pequenos cuanto menos problema queda
por resolver. Para permitir ajustar el nimero de paquetes se incluye un parametro, K,
por el que se divide el tamano de los paquetes cuando se planifican. Existe también
un tamano minimo de fragmento ajustable para cada benchmark (especificado en la
seccion 3.2). Méas concretamente, el tamano de cada paquete viene determinado por la

ecuacién (5.1).

b ()
mmmm e

~ coo
w cuoo

(a) Estético (b) Dindmico (c) Hguided

Figura 5.1: Planificadores nuevos

PotenciaComputo
NumeroHilos ) (5 1)

K

Restante -

Fragmento = max(MinFrag,

5.1.2. Paralelismo en la coejecucion

En la Figura 5.2 se representa una iteraciéon secuencial de un bucle regular C++
(5.2a) junto con su traduccién a un kernel parallel_for con oneAPI. Idealmente se
podrian repartir los diferentes work-items entre miltiples dispositivos (5.2b), pero,
como se ha mencionado previamente (Seccién 2.3.2), esto no esta soportado por oneAPI.
Para lograr este reparto entre dispositivos el coejecutor divide el espacio de ejecucién
manualmente para los dos dispositivos, asignando bucles a cada core de la CPU y
parallel_for a la FPGA 5.2c.

5.2. Coejecucion oneAPI con la FPGA

Al emplear la FPGA como dispositivo resulta obligatorio emplear el modelo de
compilacion AOT, descrito en la seccion 2.3.2. Este modelo consigue combinar el cédigo
del host con el bitstream de la FPGA en un mismo fichero y permite ejecutar kernels

en la FPGA. Se ha conseguido anadir la CPU como segundo dispositivo incluido en el
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// C++ loop // SYCL kernel

for (int 1i=0;i<n;i++) { myg.parallel for(range{n}, [=] (1d<l> 1) |
z[i] = alpha * x[i] + yI[i]; z[i] = alpha * x[i] + yI[i];
) }) .wait () ;
- | |
I=+O_n i=0->m i=m->n
v

(a) Bucle estandar (b) Parallel_for ideal

Coejecutor (estatico)

Bucle | |Bucle | [Bucle

m/3 || m/3 m/3 Parallel_for(m -> n)

(¢c) Parallel_for Unizar

Figura 5.2: Paralelizacion con Parallel_for

fatbinary para codigos con dos kernels muy simples. Por desgracia, al emplear kernels
optimizados mas complejos se encuentra un error en ejecucién ya que, pese a que el
kernel de CPU termina correctamente, el kernel de FPGA ejecuta indefinidamente y
se obtienen mensajes informativos de que el kernel puede estar colgado. Se intento
extensamente solucionar este problema modificando los parametros de compilacion y
empleando diferentes niveles de complejidad en el kernel, pero al ser necesaria una
compilacion de varias horas para cada prueba (ya que la versién de emulador no se
queda atascada) no se llegd a encontrar una solucién al problema. Por este motivo
y dado que la intencién es trabajar con los kernels optimizados para FPGA, se ha
mantenido la ejecucién de la CPU en C++ nativo.

A finales de diciembre hubo una actualizacién en Devcloud que cambié del comando
de compilacion de dpcpp a icpx -fsycl. Este cambio causd, ya en enero, que los kernels
ya compilados no pudieran ejecutarse por no encontrar bibliotecas de sistema, siendo
necesario recompilarlos usando el nuevo comando. Al ejecutar nuevamente el proyecto

de prueba de coejecucién con los kernels mas complejos si que se consiguié ejecutar,
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quedando pendiente como trabajo futuro explorar de nuevo si la coejecucion 100 %

oneAPI es ahora posible y adaptar el coejecutor al uso de CPU en oneAPI.

28



Capitulo 6

Resultados experimentales

En este capitulo se muestra primero los resultados experimentales de la optimizacién

de los benchmarks y posteriormente se analizan los distintos planificadores.

6.1. Optimizacién

En esta seccién se listan las optimizaciones (explicadas en la Seccién 4) aplicadas a

cada uno de los benchmarks y los resultados obtenidos.

6.1.1. Matadd

Matadd_base Suma de matrices estandar sin ninguna optimizaciéon. Matadd es el
kernel mas sencillo y por tanto el que menos margen de mejora tiene, ya que ni siquiera

existe reuso de datos para implementar memoria local.

Matadd simd Como optimizaciéon principal se ha implementado un tamano de
work-group de 16x16 para permitir emplear un tamano SIMD de 16. De este modo
los accesos a memoria cargan 16 valores por peticién, con una anchura de 512 bytes,
que es el tamano del burst maximo desde memoria [6]. También se garantiza que los
pardmetros de entrada no se superponen con kernel _args_restrict.

La diferencia en el tiempo de ejecucion del benchmark al aplicar dicha optimizacion
se muestran en la Tabla 6.1. También se muestra la diferencia en los recursos empleados
por la FPGA en la Tabla 6.2. Se observa que sobrecarga en el uso de hardware para
implementar vectorizacién es minima y la mejora en el rendimiento muy significativa,

alcanzando un speedup® de 7.3.

1Se entiende por speedup la diferencia entre el tiempo de ejecucién original y el nuevo
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Benchmark ‘ Tiempo (ms) Speedup
matadd_base 19559 1
matadd_simd 2680 7.3

Tabla 6.1: Optimizacién de Matadd

matadd_base matadd_simd
ALUTSs 0% 0%
FFs 25% 26 %
RAMs 26 % 27 %
MLABs 1% 1%
DSPs 22 % 23 %
Frecuencia (MHz) 377 408

Tabla 6.2: Recursos hardware y frecuencia de Matadd. Porcentajes con respecto a la
Tabla 3.1

6.1.2. Matmul

Matmul base El algoritmo inicial de Matmul corresponde con una multiplicacién de
matrices ingenua, siguiendo el algoritmo descrito en la Figura 6.1.
for (int row = B; row < N; row+t)
for (int col = B; col < N; col++)

for (int k = @; inner < N; dinner++)
Clrow][col] += Alrow][k] * B[k][col];

Figura 6.1: Multiplicacién de matrices ingenua en C++

Matmul Im El primer paso de optimizaciéon fue modificar el algoritmo por una
multiplicacion de matrices por bloques, empleando work-groups de 32x32 items para
cargar cada bloque (de equivalente tamano) en memoria local y operar con los datos
locales. Al acceder a ambas matrices de entrada se emplea una lectura por filas, pero al
guardarlas en memoria local se transpone la matriz B, de manera que al leer la memoria

local posteriormente el acceso vuelve a ser por filas, maximizando la localidad.

Matmul Im _simd Seguidamente se emplea SIMD 16 para mejorar la anchura de
los accesos a memoria global, tanto de lectura como escritura, asi como vectorizar los

calculos del bucle principal.

Matmul_Im_simd_lu Por tultimo se desenrollan las 32 iteraciones del bucle principal,
paralelizando los calculos.
Los resultados en rendimiento de la aplicacién aditiva de estas optimizaciones se

muestran en la Tabla 6.3. También se muestra la variacién en el uso de recursos hardware
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y otros factores en la Tabla 6.4. Se observa que existe suficiente reuso de datos y densidad
de operaciones como para que el uso de memoria local (de 32x32 que es el maximo para
el que se consigue generar una imagen FPGA) ya suponga un 3.48 de speedup incluso si
el acceso a memoria global no es eficiente. Si bien las optimizaciones son progresivamente
mas efectivas, cada una de ellas se respalda en la anterior ya que SIMD optimiza las
operaciones de carga de datos a memoria local y envio de resultados a memoria global,
y el desenrollado de bucles se aprovecha del rapido acceso a memoria local para poder
suministrar los operandos rapidamente a todas las iteraciones desenrolladas. Se observa
que, en este caso, el uso de FFs y RAMs aumenta significativamente al emplear SIMD,
y que los DSPs aumentan principalmente al hacer desenrollado de bucles, como cabria
esperar. Pese a que no se supere el 40 % de utilizaciéon de ninguno de los recursos, es
imposible aumentar el grado de desenrollado sin aumentar el tamano de los work-groups,
y aumentando dicho tamano a la siguiente potencia de 2 no se consigue generar la
imagen FPGA por violaciones de timing®. Al trabajar con kernels parallel_for, el reporte
indica para cada bucle la latencia y la cantidad de hilos de ejecucion en lugar del
intervalo de iniciacion. Ademads, al anadir memoria local se incluye un bucle externo de
carga de datos, quedando entonces en el bucle interno un acceso a memoria local. Se
observa que la latencia siempre es menor que la capacidad de hilos, y que disminuye
drasticamente al cambiar el acceso a memoria a una local. Se observa el efecto de
SIMD sobre el bucle interno, reduciendo la cantidad de hilos por el valor de SIMD y
aumentando la latencia como consecuencia del uso de operaciones vectoriales. También

se observa la diferencia en latencia del acceso a memoria del bucle externo al aplicar
SIMD.

Benchmark Tiempo (ms) Speedup parcial Speedup total
matmul_base 800015.33 1.00 1.00
matmul_lm 229910.00 3.48 3.48
matmul_lm_simd 28454.67 8.08 28.12
matmul_lm_simd_lu 1261.33 22.56 634.26

Tabla 6.3: Optimizacién de Matmul

6.1.3. Nbody

Nbody_base Simulacién Nbody sin ninguna optimizacién

Nbody_lm Se emplean work-groups de 1x128 work-items que cargan los datos en

memoria local, alternando etapas de carga y de computo mediante barriers

2No se supera el limite de recursos pero el uso es suficientemente grande para que no se consiga
encontrar una configuraciéon que cumpla las especificaciones y las restricciones de tiempo
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matmul matmul matmul matmul

base Im Im_simd Ilm_simd_lu
ALUTSs 0% 0% 0% 0%
FFs 25 % 25 % 38 % 39 %
RAMs 27 % 29 % 36 % 34 %
MLABs 1% 1% 1% 2%
DSPs 22 % 23 % 23 % 32%
Frecuencia (MHz) 351 329 216 259
Bucle interno: Latencia 846 15 28 -
Bucle interno: Hilos 847 1024 64 -
Bucle externo: Latencia - 1871 923 1010
Bucle externo: hilos - 4096 1088 1024

Tabla 6.4: Recursos hardware, frecuencia y bucles de Matmul. Porcentajes con respecto
a la Tabla 3.1

Nbody_ lm simd Se emplea SIMD 16 para mejorar la anchura de los accesos a

memoria global, tanto de lectura como escritura, asi como los célculos matematicos.

Nbody _Im_simd_lu Se desenrollan 4 iteraciones del bucle principal, que es el maximo
para el cual los recursos requeridos permitian generar una imagen de FPGA.

Los resultados de la aplicacion aditiva de estas optimizaciones de muestran en la
Tabla 6.5, junto con los recursos empleados, frecuencia y latencia y cantidad de hilos
por bucle en la Tabla 6.6. Se observa que en este caso el uso de memoria local por si sola
supone una perdida en el rendimiento, esto podria intentar solucionarse aumentando el
tamano de los work-groups para explotar mayor retso, pero teniendo en cuenta que
habilita SIMD y que con SIMD se consigue un speedup total de 10.04, se prefiere no
gastar méas recursos y reservarlos para el desenrollado de bucle, que ya de por si solo
puede desenrollar 4 iteraciones antes de encontrar violaciones de timing o superar el

maximo de recursos.

Benchmark Time (ms) Speedup parcial Speedup total
nbody _base 198930.67 1.00 1.00
nbody_lm 205759.50 0.97 0.98
nbody_lm_simd 19810.67 10.39 10.04
nbody_Im_simd _lu 5264.25 3.76 37.79

Tabla 6.5: Optimizacién de Nbody

6.1.4. Gaussian

Gaussian_base Ciélculo del difuminado gaussiano. En este dltimo benchmark se

altero el orden de aplicacién de las optimizaciones, ajustando en primera instancia el
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nbody mnbody nbody nbody

base Im Im_simd Im_simd_lu
ALUTSs 0% 0% 0% 0%
FFs 26 % 26 % 54 % 56 %
RAMs 30 % 29 % 26 % 50 %
MLABs 1% 1% 2% 3%
DSPs 22 % 22 % 29 % 42 %
Frecuencia (MHz) 348 338 221 223
B. interno: Latencia 879 86 86 91
Bucle interno: Hilos 880 128 88 96
Bucle externo: Latencia - 937 941 941
Bucle externo: Hilos - 1280 1040 1048

Tabla 6.6: Recursos hardware, frecuencia y bucles de Nbody. Porcentajes con respecto a
la Tabla 3.1

alineamiento de memoria a 1024 bytes de los buffers de entrada. Se comprueba que, si
bien esta optimizacion no afectaba a los otros benchmarks al anadirse en los ultimos
pasos de optimizacion, al aplicarla desde el principio tiene un efecto similar a SIMD

permitiendo al compilador inferir accesos a memoria de mayor anchura.

Gaussian_Im Se modifica el algoritmo para que emplee memoria local. En este caso,
por las caracteristicas del kernel es necesario traer a memoria local mas valores que
el tamano del workgroup por lo que, pese a no estar recomendado, es necesario que
un work-item en concreto se encargue de cargar los bordes. Ademads, para no requerir
comprobar que la indexacion de la memoria se salga de rango, se incluye un anillo

exterior con valor 0 que no altera el resultado y evita condicionales extra en el bucle.
Gaussian_Ilm_lu Se desenrolla por completo el bucle interno, 5x5 iteraciones.

Gaussian_st Dado que para cargar datos a memoria local se requiere considerar el
caso especial del anillo exterior e incluir cédigo especifico para algunos work-items
se ha probado a cambiar el cédigo de parallel_for a single-task (con memoria local y
desenrollado de bucles).

Los resultados de la aplicacion aditiva de las primeras optimizaciones y del cambio
a single-task se muestran en la Tabla 6.7 y se complementan con los recursos hardware
empleados de la Tabla 6.8. Se observa que la adicién de memoria local ya existiendo
accesos a memoria eficientes supone un speedup relativamente bajo de 1.54, si bien
se podria aumentar incrementando el tamano de work-group y por consiguiente de
bloque de memoria local. El speedup mayor se obtiene en este caso de la aplicacion de

desenrollado en el bucle principal. En el caso de single-task si que existe II en lugar de
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latencia e hilos. Se omite este valor en la tabla ya que existen mas de 5 bucles, pero

todos tienen II de 1 o 2 ciclos.

Benchmark | Tiempo (ms) Speedup parcial Speedup total
gaussian_base 77628.33 1.00 1.00
gaussian_lm 50380.67 1.54 1.54
gaussian_lm_lu 8741.67 5.76 8.88
gaussian_st 10121.67 0.86 7.67

Tabla 6.7: Optimizacién de Gaussian

gaussian gaussian gaussian gaussian

base Im Im_lu st
ALUTs 0% 0% 0% 0%
FFs 25% 26 % 42 % 29 %
RAMs 27% 29 % 39% 33 %
MLABs 0% 0% 0% 0%
DSPs 22 % 22 % 24 % 24 %
Frecuencia (MHz) 371 320 212 258
B. interno: Latencia 856 885 - -
Bucle interno: Hilos 857 886 - -

Tabla 6.8: Recursos hardware, frecuencia y bucles de Gaussian. Porcentajes con respecto
a la Tabla 3.1

6.1.5. Resumen

Como resume la Tabla 6.9, aplicando las técnicas de optimizacion descritas se han
conseguido speedups significativos en todos los benchmarks, que varian entre 7.3 en
kernels en los que no se incrementa casi el uso de recursos y 654.26 en aquellos que si

permiten explotar mejor la potencia de la FPGA.

Tiempo base (ms) Tiempo optimizado (ms) Speedup
matadd 19559 2680 7.3
matmul 800015 1261 634.26
nbody 198931 5264 37.79
gaussian 77628 8742 8.88

Tabla 6.9: Resumen de optimizacién

6.2. Resultados de la Coejecuciéon CPU y FPGA

En esta secciéon se describen los resultados de la coejecucién de los diversos kernels

para su ejecucién en CPU y FPGA. Se recuerda que la ejecucion en CPU se realiza en
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C++ nativo mientras que la de FPGA se hace con oneAPI y utilizando la version mas
optimizada del kernel vista en la secciéon anterior.

Se incluye en la Tabla 6.10 un resumen de los mejores tiempos de ejecucion en
FPGA obtenidos en la fase de optimizacién, asi como el tiempo de ejecucién base en

CPU empleando los 16 ntcleos.

Benchmark | Tiempo CPU (ms) Tiempo FPGA (ms)
matadd 379 2680
matmul 191803 1261
nbody 64090 5264
gaussian 5001 8742

Tabla 6.10: Mejores tiempos en CPU y FPGA

Se emplean los kernels matadd, matmul y nbody, descartando gaussian ya que
las optimizaciones implementadas dificultan su fragmentacién y reparto y requeririan
un cambio dréstico en el planificador. Se observa que los 3 kernels restantes tienen
tiempos de ejecucion muy dispares entre dispares entre dispositivos, lo que dificulta

enormemente su coejecucion.

6.2.1. Planificador estatico

En la Figura 6.2 se representa en el eje Y el tiempo de terminacién de cada dispositivo
(los 16 hilos CPU++ en azul y oneFPGA en naranja), siendo el tiempo de terminacién
del planificador equivalente o ligeramente superior al méas alto de los dos (en gris).
En otras palabras, la altura de la barra gris representa el desbalanceo del sistema e
idealmente no deberia aparecer.

El eje X representa la porcién del problema que ha de ser computada por la FPGA
(0.2 corresponde a un 20 % ejecutado en FPGA), siendo el resto ejecutado por la CPU++.
La exploraciéon del porcentaje del problema a asignar a cada dispositivo comienza en
un reparto inicial de 50 % /50 % y en ejecuciones subsiguientes se aumenta el porcentaje
asignado al dispositivo que antes termina. Los porcentajes elegidos garantizan que se
cumpla el requisito de que el fragmento asignado a la FPGA sea miltiplo del tamano
de work-group.

Se observa que el tiempo de ejecucién de la FPGA siempre es el limitante en matadd
ya que por muy pequeno que sea el fragmento que mandemos al acelerador, hay que
esperar la latencia de transferencia. En matmul y nbody la FPGA es dominante, siendo
la CPU siempre el dispositivo mas lento. Este resultado era de esperar ya que el tiempo

de ejecucion en FPGA es mucho menor tras las optimizaciones.
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Figura 6.2: Planificador estatico

6.2.2. Planificador dinamico

De manera similar al planificador estatico, en la Figura 6.3 se muestra el tiempo de
terminacion de cada dispositivo en ejecucion heterogénea y del planificador dindmico.
En este caso el eje X representa el nimero de fragmentos (de igual tamano) en los
que se ha dividido el problema. Dado que el reparto de trabajo se realiza de forma
dinamica, en el eje X de la parte superior de la grafica se representa el porcentaje que
se ha entregado de manera efectiva a la version CPU-++.

Se observa que, de manera general, conforme se aumenta el nimero de paquetes el
desbalanceo disminuye. También se observa que el tiempo de ejecucion de los dispositivos
(CPU en matadd y FPGA en nbody) es mayor que el tiempo de ejecucién en ejecucion
individual. Esto se corresponde con el retardo anadido entre la finalizacién de cada

fragmento y el comienzo de la ejecucion del siguiente fragmento asignado.

6.2.3. Planificador hguided

Para emplear el planificador hguided, que reparte la ejecucién en fragmentos de
tamano decreciente, se debe asegurar que los fragmentos repartidos a los kernels
optimizados para FPGA son de tamano multiplo del tamano de work-group empleado.

Por tanto se establece como tamano multiplo, y también minimo, 16, 32 y 128 para
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Figura 6.3: Planificador dinamico

matadd, matmul y nbody respectivamente.

En la Figura 6.4 se representan los diferentes tiempos de terminacién del mismo
modo que para el planificador dinamico, aunque en este caso el eje X corresponde al
pardmetro de ajuste K (explicado en la seccién 5.1.1), el cual se aumenta en intervalos
de 0.5 desde 1 hasta 4.5. Se emplea el mejor porcentaje de reparto de problema obtenido
con el planificador estatico para asignar las potencias esperadas de los dispositivos.

Se observa que matadd presenta un comportamiento similar al planificador dindmico
para todos los valores de K. En el caso de matmul, por las limitaciones que presenta la
relacién entre el tamano del problema y el tamano minimo de fragmento, el planificador
siempre reparte el problema en un nimero demasiado pequeno de fragmentos por
lo que se asignan demasiados a la CPU. nbody ejemplifica muy bien el potencial de
este planificador, alcanzando tan buen balanceo (en este caso incluso mejor) como
el planificador dinamico pero empleando menor niimero de paquetes por lo que la
sobrecarga es significativamente menor, obteniendo mejor tiempo que el planificador

dindmico pero no mejor que exclusivamente en FPGA.

6.2.4. Resumen

La Tabla 6.11 incluye un resumen del mejor tiempo de ejecucion de cada una de las

opciones, con la mejor version para cada benchmark recuadrada de verde.
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Figura 6.4: Planificador hguided

CPU FPGA Estatico Dinamico Hguided
matadd 379 2680 686 4121 4118
matmul | 191803 = 1261 278000 21840 99390
nbody 64090 5264 827000 12510 8960
gaussian | 5001 8742 - - -

Tabla 6.11: Mejor tiempo de terminacién en milisegundos para cada version de ejecucion
de cada benchmark
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Capitulo 7

Conclusiones y Trabajo Futuro

oneAPI ofrece un gran repertorio de optimizaciones para mejorar el desempeno
de kernels en FPGA. Se han probado multitud de las opciones y recomendaciones
mencionadas en la guia de Intel, dando lugar a incrementos sustanciales de rendimiento
en todos los kernels optimizados que varian entre 7.3 veces y 634.26 veces mas
rendimiento que la versién poco o nada optimizada. Estos resultados corroboran que,
pese a existir portabilidad funcional, se sigue estando lejos de obtener portabilidad de
rendimiento.

Entre las optimizaciones probadas se distinguen diferentes niveles de impacto
obtenido, siendo mas efectivas aquellas que mejoran el acceso a memoria (mayor ancho
de banda o menor necesidad de acceso) o permiten paralelizar los cdlculos matemadticos
de los bucles internos. Otras directivas que otorgan informacion extra al compilador
tienen un impacto menor, que puede depender del resto de optimizaciones ya incluidas, o
son ignoradas. Se han considerado un total de 12 optimizaciones diferentes, aplicindose
la mayoria de ellas a todos los kernels, siempre y cuando el algoritmo lo permitiese.
Entre estas optimizaciones se encuentran 5 guias generales de disenio de bucles en kernels
y 7 optimizaciones de diverso tipo.

La aplicaciéon de optimizaciones tiene un impacto negativo en la portabilidad y
usabilidad de los kernels, resultando en un fallo de ejecucion al ser lanzado en otros
dispositivos y requiriendo de restricciones adicionales para su correcto funcionamiento
en FPGA como tamanos de entrada multiplos del work-group o uso de valores conocidos
en compilacion.

La reduccion de usabilidad junto con la disparidad en el rendimiento de ambos
dispositivos como consecuencia de la optimizacién dificulta obtener un balanceo adecuado
con independencia de la politica de planificacion empleada. En aquellos casos en los que
si que se logra balancear la terminacién se observa que la fragmentacién del problema
en paquetes disminuye el rendimiento de los dispositivos, particularmente de la FPGA

que ha de pagar la latencia de transferencia de datos por el bus PCle. Como resultado,
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ningtin kernel obtiene en este caso beneficio de la coejecucion.

Devcloud resulta una muy buena plataforma para acceder y probar las ultimas
versiones de las herramientas y hardware de Intel, no obstante puede ser bastante
tediosa para trabajar con FPGAs debido a la contencién por las maquinas resultado
de los largos tiempos de compilacién y de los constantes reinicios o apagados de las
maquinas. Las multiples actualizaciones tanto de la herramienta en Devcloud como
de la documentacion dificultan el trabajo, habiendo coincidido una gran actualizacion
con las semanas anteriores a la finalizaciéon de este trabajo. La documentacién para
FPGA es algo pobre, particularmente en el uso de kernels parallel_for y ain més en
cémo realizar co-ejecucion con fatbinary, no existiendo ejemplos de ello.

Queda como trabajo futuro probar si la iltima actualizacién verdaderamente facilita
el uso estricto de oneAPI para coejecucién. Podria también evaluarse la efectividad de
algunas de las optimizaciones por separado, ya que la aplicacién aditiva podria estar
mitigando sus efectos como es el caso del alineamiento de memoria. Existen también
otros kernels y optimizaciones que se podrian probar, particularmente para el modelo

single-task.
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Anexos A

Cronologia

Se comenzd probando las opciones de optimizacién y coejecucién en macizo, asi
como algunos kernels single-task con los que no se habia trabajado.

Tras comprobar que algunas optimizaciones bésicas (como memoria local) asi como
los comandos de coejecucion no funcionaban en macizo, se comenzé a probar todo en el
Devcloud.

Al comprobar que era necesario emplear la versién de Devcloud y no poder actualizar
la de macizo, se procedié a migrar el proyecto.

Paralelamente se realizan pruebas de funcionamiento de coejecuciéon en Devcloud
junto a optimizaciones (las primeras semanas también en macizo)

Tras muchas optimizaciones y muchas pruebas de coejecucion fallidas, se comienza
a adaptar el coejecutor y los kernels para poder realizar planificacién C++-oneAPI.

Tras la actualizacién de version a finales de Diciembre en Devcloud se deben
recompilar todos los binarios y se realizan los experimentos con las optimizaciones mas
relevantes y la coejecucién

Finalmente se redacta la memoria.

47



e |6t [st|tfor o | er]ar|mmfor]e s | 2]oflalv]e]e]n

oxuy Lg - aiqurydeg g1

RLIOWDA ©[ 9P UQIORPIY
UOINILR[00)) (UOISIOA RASTIN]
uorezIitijd() [UOISIOA RASNN
uomNNfe0)

ugnezIdQ

flapurging seqonig

pnoAsp e 10jn0sle0o rejdepy
PNO[OAS(] U SeqoNI]

OZIDRW U SR(ONLIJ

UOIORIUDWINOOP A UOI}SOK)

48



La Figura A.1 representa una estimacién del tiempo dedicado a cada tarea, las

cuales se pueden agrupar en 5 grupos:

— (30h, 8.6 %) Gestién del TFM: tiempo dedicado a discutir y documentar el progreso

y los resultados.

— (34h, 9,7 %) Exploracién de plataformas: Pruebas iniciales de las diferencias entre

versiones y plataformas y migracion

e Pruebas macizo e Pruebas Devcloud e Migraciéon

— (80h, 23%) Fatbinary: pruebas de coejecucién 100 % oneAPT con diferentes

proyectos, comandos, ...

— (130h, 37.2 %) Optimizacién: proceso de prueba de las diferentes optimizaciones

de manera aditiva y toma de resultados finales tras el cambio de versiéon

e Optimizacién e Optimizacion con la nueva versién

— (50h, 14.3 %) Coejecucién: proceso de prueba de la funcionalidad de la coejecucién

al ir optimizando y toma de resultados finales tras el cambio de versién

e Coejecucion e Coejecucién con la nueva versién

— (25h, 7.2 %) Memoria: redaccién de la memoria.
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Figura A.1: Tiempo dedicado a cada tarea
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