«2s  Universidad

A8l Zaragoza

1542

Trabajo Fin de Grado

Diseno e implementacion de un sistema centralizado
de gestion de Indicadores de Compromiso para su
exportacion a detectores de intrusos de red

Design and implementation of a centralized
Management System for Indicators of Compromise
and their export to Network Intrusion Detectors

Autor

Alberto Inés Medina

Director

Alvaro Alesanco [glesias

Ingenieria de Tecnologias y Servicios de Telecomunicacion

ESCUELA DE INGENIERIA Y ARQUITECTURA
2023






Abstract

En una era digital creciente en complejidad y en constante evolucién, este trabajo
supone una contribucion més al fortalecimiento de la ciberseguridad, aportando una
solucién en materia de deteccion de ciberamenazas en entornos de red. En este contexto,
se desarrolla una infraestructura automatizada conformada por distintos sistemas
independientes que, en conjunto, resuelven la necesidad de detectar incidentes de
seguridad en entornos de red domiciliarios y pequenas y medianas empresas.

El sistema implementado utiliza los Indicadores de Compromiso (IOCs), que son
la unidad bésica de informaciéon que describe un incidente de seguridad. Con estos
I0Cs, se crean reglas de deteccién para posteriormente crear ficheros con dichas reglas
y exportarlos hacia detectores de intrusos de red (NIDS). Los NIDS se encargan de leer
los ficheros de reglas para realizar la tarea de deteccién de conexiones maliciosas en
equipos y redes. Se seleccionan dos NIDS de codigo abierto ampliamente reconocidos:
Suricata y Zeek. Ademads se necesita de un plataforma de gestién y exportacion de
IOCs hacia los detectores de intrusos. Se elige MISP, un software de cédigo abierto
que permite la importacion de IOCs desde diferentes fuentes Open Source, ademas de
su almacenamiento en una base de datos y exportacién en el formato correcto hacia
los NIDS. Por tltimo, se centralizan los logs (alertas) generados por los detectores
en una soluciéon de codigo abierto, FElastic Stack, con el objetivo de visualizar dicha
informacion. El sistema se pondra a prueba en un entorno de red doméstico real, con

el fin de analizar todo el trafico de la red y detectar posibles ciberamenazas.



Abstract

In an increasingly complex and ever-evolving digital era, this work represents another
contribution to strengthening cybersecurity by providing a solution for detecting
cyber-threats on network enviroments. In this context, an automated infrastructure
composed of various independent systems is developed, which together address the need
to detect security incidents in home network environments and small to medium-sized
businesses.

The implemented system uses Indicators of Compromise (IOCs), which are the basic
unit of information that describes a security incident. With these IOCs, detection rules
are created to subsequently generate files containing these rules and export them to
Network Intrusion Detection Systems (NIDS). NIDS are responsible for reading the
rule files to perform the task of detecting malicious connections on computers and
networks. Two widely recognized open-source NIDS are selected: Suricata and Zeek.
Additionally, a platform for managing and exporting IOCs to the intrusion detectors
is required. MISP is chosen, an open-source software that allows the import of IOCs
from various Open Source sources, as well as their storage in a database and proper
format export to the NIDS. Finally, the logs (alerts) generated by the detectors are
centralized in an open-source solution, Elastic Stack, for the purpose of visualizing this
information. The system will be tested in a real home network environment to analyze

all network traffic and detect potential cyber threats.






Indice

Lista de Acronimos

1. Introducciéon
1.1. Contexto y motivacion . . . . . . . . . . ...
1.2. Objetivos . . . . . . . .
1.3. Herramientas . . . . . . . . . . ...

1.4. Estructura y organizaciéon de la memoria . . . . . .. .. ...

2. Escenarios de trabajo y configuracién
2.1. Escenariodered con MVs . . . . . . . ...

2.2. Escenario de red domiciliario . . . . . . . . .. L

3. Desarrollo y despliegue

3.1, MISP . . .
3.1.1. Introduccién . . . . . . . ...
3.1.2. Arquitectura de la informaciéon . . . . ... ... L.
3.1.3. Ciclode vidadeun IOC . . . . .. ... ... ... ... ....
3.1.4. Configuracién y automatizacion . . . . . . . . ... ... L.

3.2. Almacenamiento de ficheros de reglas . . . . . . . .. ... .. ... ..

3.3. Suricata como NIDS . . . . .. .. ...
3.3.1. Imtroduccion . . . . . ...
3.3.2. Configuraciéon y automatizacion . . . . . . . ... ... ... ..

3.4. Zeek como NIDS . . . . . . . . ...
3.4.1. Introduccion . . . . . ...
3.4.2. Configuracién y automatizacion . . . . . . . .. ... ... L.

3.5. Elastic Stack . . . . . ..o

4. Pruebas y analisis de los resultados
4.1. Escenario dered con MVs . . . . . . .. ... ... ..

4.1.1. Deteccion de intrusos dered . . . . . . . ...

ot W N = -

J



5.

6.

4.1.2. Visualizacién de datos . . . . . . . . . ...
4.2. FEscenario de red domiciliario . . . . . . . . . ... L.
4.2.1. Deteccién de intrusos dered . . . . . ...

4.2.2. Visualizacién de datos . . . . . . . . ...

Conclusiones y lineas futuras
5.1. Conclusiones . . . . . . . . . .

5.2. Lineas futuras . . . . . . . . .

Bibliografia

Lista de Figuras

Anexos

A.

B.

Estudio de fuentes Open Source

Formato de reglas

B.1. Suricata . . . . . .

. Libreria Python Requests para su uso en REST APIs

C.1. Estructura de la peticién . . . . . . .. ...
C.2. Respuesta . . . . . . . . . .
C.3. Casodeuso: MISP . . . . . . . . . ... . ... . ...

. Uso de Crontab para la automatizacion de tareas

D.1. Sintaxis . . . . . .

D.2. Casos de uso: automatizacidn . . . . . . . . . ...

. Instalacién de MISP

. Instalaciéon de Suricata y Zeek

F.1. Suricata . . . . . . . . .
F.1.1. MV Debian 11 . . . . . ... ... oL
F.1.2. Raspberry Pi4 . . . . . .. . .

F.2. Zeek . . . . o
F.2.1. MV Debian 11 . . . .. .. .. . o
F.2.2. Raspberry Pi4 . . . . . .. ..

41
41
43

45

49

51

53

57
57
58

61
61
62
62

65
65
66

67



G. Instalacion y configuraciéon de Elastic Stack 77

G.1. Instalacion . . . . . . . ... 7
G.1.1. Elasticsearch . . . . . . . ... .. ... ... .. .. 7

G.1.2. Kibana . . . . . . . ... 78

G.1.3. Filebeat . . . . . . . ... 78

G.2. Configuracién y automatizacion . . . . . . . . . ... 78

H. Cédigo, repositorio de Github 83

II1



IV



Lista de acronimos

IOC: Indicator of Compromise

IDS: Intrusion Detection System

NIDS: Network Intrusion Detection System
MISP: Malware Information Sharing Platform
MV: Maquina Virtual

VPN: Virtual Private Network

NAT: Network Address Translation

SSH: Secure Shell

API: Application Programming Interface
HTTP: Hypertext Transfer Protocol

SSL: Secure Socket Layer

TLS: Transport Layer Security



VI



Capitulo 1

Introduccion

1.1. Contexto y motivacién

Segun informa FEl Pais [1], el Instituto Nacional de Ciberseguridad (INCIBE)
gestiond 118,820 incidentes relacionados con la seguridad en la red durante 2022, lo
que representé un aumento del 8.8 % en comparacion con 2021. Expertos en la materia
sostienen que esta cifra continuara en aumento en los anos venideros.

En la actualidad, existen diversas instituciones, organismos y empresas, tanto
publicas (CERT, CCN-CERT, ENISA, NIST) como privadas (VirusTotal, Fortinet),
cuyo propésito es proporcionar una respuesta frente a incidentes en el ambito de la
ciberseguridad. Estas entidades colaboran para establecer estandares, certificaciones
y marcos de referencia comunes, con el objetivo de asegurar una proteccion efectiva
contra ciberataques.

De acuerdo con el Instituto Nacional de Estdndares y Tecnologia (NIST) [2], la
respuesta ante incidentes se divide en cuatro fases: preparacion y prevencion; deteccion
y andlisis; contencion, erradicacion y recuperacién; y actividad posterior al incidente.
El concepto central del proyecto surge como aplicacion directa de la segunda fase,
concentrandose en la subfase de deteccién. En esta etapa surge la idea de utilizar
IDSs! como herramientas esenciales para el rastreo de ciberamenazas. Se seleccionan
dos IDS de cédigo abierto ampliamente reconocidos: Suricata [3] y Zeek [4]. Ambos
programas pertenecen a la categoria de detectores de intrusos de red, conocidos como
NIDS (Network Intrusion Detection System). Estas herramientas tienen la capacidad
de detectar trafico de red malicioso, pero requieren informacién precisa para llevar a
cabo su funcién. Para ello, se utilizan los Indicadores de Compromiso (IOCs) [5], que
son la unidad basica de informaciéon que describe un incidente de ciberseguridad. Los

Indicadores de Compromiso abarcan desde direcciones IP hasta patrones de ejecucién

IDS: Intrusion Detection System. Software de seguridad cuya funcién es detectar accesos no
autorizados en sistemas o redes de computadores y generar algun tipo de alerta hacia el administrador
del sistema o red.



de comandos, por lo que carecen de una estructura definida.

Los IOCs se utilizan como base para crear reglas, que a su vez alimentaran a los
IDSs. Por tanto, es necesario contar con una herramienta que centralice la gestién
de estos IOCs y exporte las reglas de deteccion en el formato adecuado para los IDS
seleccionados. La plataforma MISP [6] proporciona las capacidades necesarias para
gestionar eficientemente los IOCs y exportar las reglas a los IDS escogidos. Ademas,
con el objetivo de facilitar la administracién del sistema, se propone almacenar toda la
informacién generada (alertas, registros, etc.) por los NIDS en una plataforma para su
posterior consulta y analisis. Para esta tarea, se ha optado por el uso de FElastic Stack

[7], una solucién de cédigo abierto.

1.2. Objetivos

El objetivo final del proyecto es el despliegue de un sistema de gestion de Indicadores
de Compromiso automatizado para alimentar sistemas de deteccién de intrusos en
entornos domiciliarios o en pequenas y medianas empresas [8]. El sistema se actualizard
diariamente con IOCs provenientes de diversas fuentes publicas, centralizados en la
plataforma MISP. Desde MISP, se exportaran a su vez diariamente como reglas a los
detectores de intrusos Suricata y Zeek. La informacién generada por estos detectores
se centralizard en Elastic Stack.

En cuanto a objetivos especificos, se encuentran los siguientes:

— Administracién de sistemas GNU /Linux en red basados en la distribucién Debian

mediante el uso de maquinas virtuales (MVs).

— Estudio, configuracion e implementacién de la plataforma MISP en una maquina

virtual.

— Estudio y eleccion de fuentes de datos Open Source para alimentar la plataforma
MISP.

— Analisis y procesado de datos para su posterior exportacion hacia detectores de

intrusos de red.

— Estudio, configuracién y despliegue de los detectores de intrusos Suricata y Zeek

para el andlisis de los datos procedentes de la plataforma MISP.

— Estudio, configuracién e implementacion del software Elastic Stack para recoger

las alertas generadas por los IDS y visualizarlas de forma eficiente.

— Despliegue y pruebas de la infraestructura en un entorno con maquinas virtuales.



— Estudio y configuracién del hardware Raspberry Pi 4 como analizador de trafico

en una red domiciliaria real.

— Despliegue y pruebas de la infraestructura en un entorno domiciliario real

mediante una Raspberry Pi 4.

Con este Trabajo Fin de Grado, se pretende contribuir al fortalecimiento de la
ciberseguridad mediante el desarrollo de una solucién practica y efectiva, mejorando
asi la capacidad de deteccién y respuesta ante posibles incidentes de seguridad. Esto
ayuda a proteger la integridad y confidencialidad de la informacién en un entorno

digital en constante evolucién y creciente complejidad.

1.3. Herramientas

Los recursos y herramientas utilizados durante el desarrollo del proyecto se dividen

en recursos hardware y recursos software.
— Recursos hardware:

e Ordenador personal: Ordenador utilizado para la gestion de cada uno
de los recursos software de forma sencilla mediante conexiones Secure Shell
(SSH).

e Servidor privado Unizar: Para acceder desde un ordenador personal, se

debe realizar una conexién por VPN?

e Raspberry Pi 4: Computador béasico con sistema operativo de codigo
abierto (Raspbian) utilizado para la realizacién de pruebas de deteccién en
redes domésticas. El dispositivo cuenta con un puerto Ethernet de 1Gbps

de ancho de banda ademaés de una tarjeta de red Wifi.

— Recursos software: Se hace uso de méquinas virtuales Debian (versién 11),
alojadas en un servidor privado de la Universidad de Zaragoza. Se accede a cada

una de ellas mediante conexiones SSH.

e Maquina virtual MISP: Maquina virtual donde se instala el software
de cédigo abierto MISP para la gestion centralizada de Indicadores de
Compromiso. Esta maquina posee un almacenamiento superior a las demas
(140 GB), puesto que debe manejar grandes volimenes de IOCs y datos

relacionados.

2VPN: Virtual Private Network. Tecnologia de red que permite establecer una conexién encriptada
y segura entre dos equipos a través de una red publica como Internet, garantizando la privacidad y la
integridad de los datos.



Todos

capitulo.

Maquina virtual Zeek/Suricata: Maquina virtual donde se instalan los
NIDS Suricata y Zeek para realizar la tarea de deteccién de ciberamenazas

en la red y generacion de alertas.

Maquina virtual Elastic Stack: Maquina virtual donde se instala el
software de codigo abierto Elastic Stack para visualizar toda la informacion
proporcionada por los NIDS. Dado que Elastic Stack requiere de recursos
RAM, este maquina posee 8 GB, a diferencia de las demdas que tienen la

mitad.

Malware Information Sharing Platform (MISP): Plataforma software
de cédigo abierto para almacenar y compartir informacién de ciberamenazas
(Threat Intelligence). Se usard para obtener la informacién desde fuentes
Open Source y se almacenara en la base de datos ya estructurada que
proporciona el propio MISP, para posterioremente exportar la informacion
relevante hacia los NIDS. Dispone de facil acceso y gestion de los datos a

través de una API3.

Suricata y Zeek: Detectores de intrusos de red de codigo abierto
ampliamente utilizado por organizaciones tanto piblicas como privadas. En
ambos casos, la deteccién de trafico malicioso se realiza a través de reglas

personalizadas. Estas reglas poseen un formato especifico en cada caso.

Elastic Stack: Conjunto de herramientas de cédigo abierto que permiten
el envio (Filebeat), almacenamiento ( Elasticsearch) y visualizacion (Kibana)
de los registros del un sistema. En este caso, se utiliza para visualizar los

eventos y alertas que generan los NIDS.

Python: Lenguaje de programaciéon utilizado para la administracion y
automatizacién de la plataforma MISP mediante la creacion de scripts y

peticiones a la API.

o Requests: Libreria de Python utilizada para la gestion de petciones a la
API de MISP.

Bash: Intérprete de comandos en sistemas Unix y Linux que permite a los
usuarios interactuar con el sistema operativo mediante comandos de texto.

Se utiliza para la automatizacién de tareas mediante la creacion de scripts.

estos recursos conforman el escenario de trabajo, descrito en el siguiente

3API: Application Programming Interface. Conjunto de reglas y protocolos que permite que
diferentes aplicaciones y sistemas se comuniquen entre si y compartan datos o funcionalidades de
manera estructurada y segura.



1.4. Estructura y organizacién de la memoria

La memoria de este proyecto sigue en orden cronolégico las tareas llevadas a cabo
durante el mismo. En esta seccion se describe de manera visual cada una de los

apartados descritos en el trabajo:

— Capitulo 1: Introduccién. Se describe a grandes rasgos el contexto y la
motivacién del proyecto, ademas de sus objetivos generales y los materiales y
herramientas utilizadas. Por tltimo, se presenta la estructura de la memoria para

un facil seguimiento de la misma.

— Capitulo 2: Escenarios de trabajo y configuracién. En este capitulo se
describen los dos escenarios utilizados para llevar a cabo el desarrollo. Se presenta

un escenario con MVs un escenario domiciliario real.

— Capitulo 3: Desarrollo y despliegue. Se introducen todas la herramientas
utilizadas en la infraestructura de la solucién, asi como las configuraciones

llevadas a cabo para su implementacién. Es el capitulo central de la memoria.

— Capitulo 4: Pruebas y analisis de los resultados. Tras la implementacién
de la solucién completa, se realizan pruebas para verificar su funcionamiento
y se discuten los resultados obtenidos. Los tests se reparten entre los distintos

escenarios explicados en el Capitulo 2.

— Capitulo 5: Conclusiones y lineas futuras. Ultimo capitulo de la memoria
en el que se detallan las conclusiones finales tras la realizacién del trabajo. A
continuacion, se explican las futuras lineas de trabajo que se podrian seguir para

seguir mejorando el sistema.






Capitulo 2

Escenarios de trabajo y

configuraciéon

Durante el desarrollo del proyecto, se han utilizado dos escenarios diferentes. En

primer lugar, se emplea tinicamente el entorno de red conformado por MVs. Una vez

configurado el sistema y verificado su funcionamiento a través de pruebas, en la etapa

final del proyecto se configura y se pone en funcionamiento el sistema en un entorno

domiciliario real.

2.1.

Escenario de red con M Vs

Dadas las herramientas explicadas en el Capitulo 1, se establece el escenario de red

conformado por MVs.

Servidor privado Universidad de Zaragoza

VPN

Red del servidor

Firewall servidor

Firewall personal (((r))

=

[
S
o

MISP

Red de trabajo

5

=
_= elastic stack _j o= Zeek
) Threat Sharing 'I,_.
MV Elastic MV MISP SURICATA
MV Zeek/
Suricata
Figura 2.1: Escenario de red con MVs

Red domiciliaria

Router N

Ordenador personal




Como se ilustra en la Figura 2.1, este entorno se compone de dos elementos
claramente diferenciados: la red doméstica y el servidor privado de la Universidad
de Zaragoza, los cuales se conectan mediante una VPN.

La red doméstica se compone tnicamente de un ordenador personal y el router de
acceso a Internet. Esta porcién del entorno, aunque no relevante por si misma, resulta
esencial para el acceso al servidor a través de la VPN y a las MVs mediante conexiones
SSH.

El servidor privado tiene en su primera capa un Firewall Mikrotik que lo protege
de accesos indeseados. Este firewall cuenta con la terminacion de tineles L2TP-IPsec
para el establecimiento de tuneles desde el exterior. Una vez creado el tunel entre el
servidor y el ordenador personal del usuario, este ultimo se encuentra virtualmente
conectado a la interfaz interior del firewall. Desde esa posicién en la red interna, se
inician conexiones SSH a través del firewall personal. Dependiendo del puerto indicado
en el protocolo TCP, el firewall hace una traduccion de direcciones NAT para establecer
la conexién con la maquina correspondiente.

En consecuencia, a nivel de redes en el servidor, se establecen dos redes distintas.
Por un lado, existe una red principal en la que estan conectados el firewall del servidor
y virtualmente el ordenador personal. Por otro lado, se localiza una red conformada por
la interfaz interior del firewall personal y las maquinas virtuales en las que se llevaran

a cabo las operaciones.

2.2. Escenario de red domiciliario

Con el fin de abordar con precisién el analisis del sistema en un contexto real, se
implementa una configuracion que difiere del entorno de desarrollo original. En esta
configuracion, se continiia haciendo uso de un servidor privado, aunque se introduce
una capa adicional de abstraccion. Esta capa de abstraccion hace 'invisible” al servidor
privado en este escenario y unicamente es necesario analizar la red doméstica, tal y
como se muestra en la Figura 2.2.

Una red domiciliaria convencional consta de un router de acceso a Internet y los
dispositivos domésticos que se conectan a dicho router, como pueden ser smartphones,
smart TVs, tablets, videoconsolas o electrodomésticos con acceso a Internet. Algunos
de los dispositvos se conectan mediante puertos Ethernet al router, aunque la gran
mayoria utiliza la interfaz WiFi para llevar a cabo la conexién.

Para poder aplicar nuestro sistema a un entorno doméstico real, se debe monitorizar
todo el trafico que pasa por él. De este modo, se estudia cudl es la manera adecuada

para monitorizar todo el trafico que llega a la interfaz interna del router. En este



Red domiciliaria

II \\ ...._........_ - n n I
t II \\ ....._.......L .
II \\ ..._..........._........_ f
I \ ._.........
I | ..._._........
E-rv I d O I II ' ] \\

Universidad AN Dispositivo 1
de Zaragoza \

(=
zeek ()
oLy |

Dispositivo 2
Raspberry Pi 4

Figura 2.2: Escenario de red domiciliario

contexto, la primera idea que surge es activar el port mirroring en uno de los puertos
del router. De esta forma, todo el trafico procesado por el router seria reenviado al
puerto habilitado con esta funcionalidad y solo se necesitaria un dispositivo conectado
a dicho puerto que fuera capaz de visualizar ese flujo de informacién. Sin embargo,
esta opcién se descarta debido a que los routers instalados en las redes domésticas no
cuentan con esta capacidad.

Asi, aparece la idea de emplear una Raspberry Pi 4. Con este dispositivo y a través
de un script denominado spoof.py ejecutado en conjunto con los detectores de intrusos
de red, sera posible supervisar y detectar trafico malicioso en la red doméstica. Desde
la Raspberry Pi 4, se lanza el script que actuara en la red doméstica realizando un
ataque de Man in the Middle (MiTM). De acuerdo con esto, todos los dispositivos
de la red mandaran su trafico a la Raspberry Pi 4 (’creyendo’ que este dispositivo es
el enrutador) y esta a su vez lo reenviard al router. De la misma manera, el router
reenviara el trafico procedente del exterior hacia la Raspberry Pi 4, 'creyendo’ que es
el dispositivo destinatario, y esta lo enviara a su destino real dentro de la red.

Una vez puesta en marcha esta funcionalidad, tinicamente sera necesario activar
los NIDS: Suricata y Zeek. Estos detectores monitorizaran todo el tréfico de la red
doméstica en tiempo real y generaran alertas a través de logs si algin pardmetro de las
conexiones de los dispositivos de la red coincide con alguna de las reglas personalizadas

que tendra cada NIDS.

Un concepto a tener en cuenta en el andlisis de los resultados es la tolerancia a

9



pérdidas que tiene la arquitectura desarrollada. La Raspberry Pi 4 tiene una capacidad
de cémputo suficiente en su procesador (4 nucleos a 1.8GHz) para ejecutar los dos
NIDS simultaneamente. Ademas, Zeek se configura en modo cluster, una arquitectura
compleja que permite una monitorizacién exhaustiva del trafico, aunque esto suponga
un aumento en el consumo de recursos. En esta arquitectura existen nodos: manager,
proxy v workers. El nimero de nodos se puede configurar y en ejecucion realizan
balanceo de carga. Teniendo en cuenta todo lo anterior, podemos aproximar las
pérdidas diarias de trafico que presenta la arquitectura a un 0.15%. Estas pérdidas
son significativamente pequenas, por lo que el sistema es valido para llevar a cabo las

pruebas.

10



Capitulo 3

Desarrollo y despliegue

En este capitulo se detallan cada una de las herramientas usadas durante el
desarrollo del proyecto. Se sigue un orden cronolégico en cuanto a la instalacion,

configuracion e implementacién de cada una de las partes.

3.1. MISP

3.1.1. Introduccion

Malware Information Sharing Platform o MISP es una plataforma de codigo
abierto disenada para facilitar el intercambio de informacién sobre incidentes de
ciberseguridad entre organizaciones y comunidades en todo el mundo. Su objetivo
principal es mejorar la deteccién y mitigacién de ciberamenazas, al permitir que los

profesionales de seguridad compartan datos de manera eficiente y colaborativa.

MISP XML and JSON

APl USERS

Figura 3.1: Arquitectura general de MISP

Las caracteristicas clave de MISP incluyen la capacidad de recopilar y normalizar

11



datos de amenazas de diversas fuentes, como feeds de inteligencia, anélisis de malware
y eventos de seguridad. MISP proporciona una estructura para categorizar y etiquetar
la informacién de manera estandarizada, lo que facilita la comprensién y el analisis
de las amenazas. Ademas, MISP permite a cada usuario tener su propia plataforma
con su base de datos de informacién, lo que se denomina instancia de MISP. Una vez
instalado en el equipo, la instancia crea un servidor web en el propio equipo, desde el
que se puede gestionar toda la informacién. Por otro lado, desde una instancia creada
por un usuario se puede intercambiar informacién hacia otras instancias.

Los Indicadores de Compromiso (IOCs) son la unidad bésica de informacién que
describe un incidente de ciberseguridad. Estos IOCs desempenan un papel crucial al
permitirnos caracterizar de manera simple un ataque cibernético. Por ejemplo, conocer
una direccién IP maliciosa que esta relacionada con un trafico que recibimos puede
alertarnos sobre un posible ataque. De manera similar, disponer del valor hash sha256
de un archivo nos advierte sobre la peligrosidad de dicho archivo. Los IOCs establecen
la base de la arquitectura de informacion de la plataforma MISP, como veremos en la

siguiente seccién.

3.1.2. Arquitectura de la informacion

Con el objetivo de organizar la informaciéon de manera intuitiva y estructurada,
MISP plantea una estructura de informacién basada en atributos, eventos y feeds.
Cada una de estas estructuras estda a su vez dividida en campos que nos muestran
diferente informacién. Mediante esta ordenacion sencilla se gestiona el intercambio de

informacion dentro de la plataforma:

— Atributos (attributes): Unidad bésica de informacién en la plataforma, es decir,
un IOC. A partir de ahora, se utilizaran de manera intercambiable los términos:
dato, atributo e IOC. Entre los campos més importantes estan:

e Date: Fecha en la que se publicé el atributo en la instancia de la plataforma.

e (Category: Modo de agrupacion que detalla el contexto del atributo. Por

ejemplo: Actividad de red, deteccién de antivirus, fraude financiero, etc.

e Type: Modo de agrupacion especifico que detalla el tipo de atributo. Por
ejemplo: ip-src/ip-dst, md5, sha256, domain o url.

e Value: Indica el valor del atributo en si mismo. Para el tipo ¢p-dst el valor
puede ser: 192.168.1.1.

e Tug: Etiqueta que clasifica atributos relacionados con un tipo de ataque en

concreto o simplemente por contexto.

12



e Flag IDS: Valor booleano que nos indica si el atributo es exportable hacia

IDS o no. Es una condicién imprescindible para filtrar los IOCs vélidos para

nuestro andlisis.

+ = ~  Woheleted 2 Decayscore @ Confext %° Related Tags Y Fillering tool I m
O Date?  Catgory  Type  Value Tags Galaxies  Comment Correlate Related  Feed  IDS Distribution Sightings  Activity Actions
Events it
) 20230823 Netvork actuity Ipastiport 45.61.147.162:3301 Q innert o0 s w
@10y
O 20230823 Netvork actuity Ipasiport 109,107 1734834517 24530 @ nert o0 s zw
w©n0i0)
O 20230823 Helwork activity ip-dsilport 139 99.118.5.38003 Q it oo s =w
w©n0i0)
O 20230823 Network activity ip-dsilport 165.100.10.226.343 [ es-watermark-100000 Q it oo s w
w010
) 20230825 netvork acty un itps 1165, 100.10 228 Mutink (C es-watermark1uooos ) Q innert o0 s w
o0
() 20230823 Notvork activity ip-ctiport 45,8278 1052053 [ cLOUDIC-A5-AP Cioudie Limited gl a @ et a0 s W
@ ca-watermark 391144338 %* x ©n10)
100%)
() 2020523 Notwork activty domain  paylaada.cns (o CEIm e e ) 5 <] © |Cobaitsinkel %* <] Gebalt Stk botnct 02 Q @ hert Py s W
domain (confidence fevet (m010)

100%)

Figura 3.2: Visualizacion de atributos en la instancia MISP

— Eventos (events): Conjunto de atributos agrupados por una caracteristica
comun. Esta caracteristica puede ser la procedencia, la fecha o pertenencia al
mismo incidente, entre otras. Los campos mas relevantes son:

e /D: Identificador tinico de cada evento.

e Published at: Fecha en la que se publica el evento. Esta relacionado en la

busqueda de eventos con el parametro publish_timestamp.

e Last modified at: Fecha en la que se modificé el evento por tdltima vez. Esta

relacionado en la bisqueda de eventos con el parametro timestamp.

e [nfo: Breve descripcion del evento.

MyEvents  Org Events m Eventinfo v

)

O &  creatororg ID #Attr. Date Lastmodifiedat T Published at Info Distribution  Actions

O v  TFGUnzar 22875 8385 2023-07-06 2023-08-2400:20:08 2023-07-06 19:25:25 Tor ALL nodes feed Organisation <~ # WO
O v  TFGUnzar 22876 3789 2023-07-06 2023-08-24 00:20:07 2023-08-24 00:20:08 ip-block-list - snort org feed Organisation <~ # WO
O v  TFGUnizar 2874 2269 2023-07-06 2023-08-240020:06 2023-07-06 19:24:49 Tor exit nodes feed Organisation <~ [ W@
O v  abusech —3384 8576 2023-08-22 2023-08-2302:03:10 2023-08-24 00:20:3¢ URLhaus I0Cs for 2023-06-22 Organisation <~ # WO
O v  abusech —3383 126 2023-08-22 2023-08-230203:07 2023-08-24 00:20.07 ThreatFox IOCs for 2023-08-22 Organisation <~ # WO

Figura 3.3: Visualizaciéon de eventos en la instancia MISP

— Feeds: Fuentes Open Source de las que se descargan los eventos y se publican en
la instancia de MISP. La fuente puede ser local (la informacién se obtiene desde
el propio equipo) o network (la informacién se obtiene a través de Internet).
Por otro lado, la informacién obtenida puede estar estructurada en 3 formatos

distintos:

1. Misp: Formato especifico de MISP y mas utilizado por la comunidad por
ser el mas completo. Permite caracterizar los atributos y los eventos con los

campos descritos anteriormente.

13



2. Csv: Formato que separa la informacién mediante comas (,). Es més sencillo
pero no permite personalizar algunos campos, MISP los autocompleta por
defecto.

3. Freetext: Formato que separa la informacion por saltos de linea en un fichero.

Al igual que el formato csv, no se pueden agregar campos especificos.

Los feeds se pueden administrar desde la instancia creandolos de forma
personalizada o importando algunos ya creados por la comunidad. Para comenzar
a recibir eventos desde estas fuentes, existen dos operaciones bésicas: enable y
fetch. La operacién enable permite activar este feed para recibir sus eventos,
mientras que la operacién fetch descarga instantaneamente los nuevos eventos
desde esa fuente activa hacia la instancia de MISP. El estudio de las fuentes

Open Source se incluye en el Anexo A.

3.1.3. Ciclo de vida de un I10C

Cuando se manejan grandes volimenes de datos, surge la cuestion fundamental de
determinar cuanto tiempo es necesario retener esos datos en el sistema. El ciclo de
vida de un IOC se define como el tiempo que transcurre desde que el indicador es
detectado hasta que este resulta obsoleto. Este tiempo se puede aproximar mediante
una funcién y existe una funcion tnica para cada Indicador de Compromiso. Determinar
el valor exacto para cada dato resulta imposible. Ademas, nuestro sistema dispone de
diferentes tipos de datos: una direccién IP maliciosa es mucho mas volatil que el hash
de un fichero, por lo tanto, el ciclo de vida de la direccién IP deberia ser mas corto.

La soluciéon propuesta viene dada por el propio MISP, basdndose en un articulo
publicado por el CIRCL (Computer Incident Response Center Lurembourg) llamado
Decaying Indicators of Compromise [9]. Este articulo estudia los Indicadores de
Compromiso y realiza una aproximacion certera de la funcion que describe el
decaimiento del valor de los IOCs a lo largo de su vida t1til. Esta funcién proporciona
un valor denominado score, que va evolucionando con el transcurso del tiempo. Cuando
este valor llega a un cierto umbral, se dice que el dato es invalido. MISP toma los IOCs
que se exportan normalmente hacia los NIDS y crea su propio modelo partiendo de
la funcion, ajustando los parametros para esos IOCs. Para el cdlculo de la funcién, se

tienen en cuenta ciertos parametros, que caracterizan cada dato:

— Base score, base_score: Toma valores de 0 a 100. Mide la confianza que se tiene
sobre la fuente que proporciona el dato y los tags asociados al mismo. En la

funcién de aproximacion se toma el valor 80.

14



— Lifetime: Representa el tiempo de vida que tiene un dato, variando segun el tipo

de dato que sea. Se establece una media de un tiempo de vida de 120.

— Seen time: Tiempo que ha pasado entre que el dato fue visto o corroborado por
primera y ultima vez. Esto dependera de cada dato en concreto. Por aproximacion

en los cédlculos se toma el tiempo en el que el IOC fue visto por iltima vez.
— End time, 7,: Representa el tiempo en el cual el score llega a cero.

— Decay rate, 0,: Caracteriza el grado de decaimiento de la funcién a lo largo del

tiempo. MISP toma para su aproximacion el valor 2.

— Threshold: Este pardmetro no esta incluido en la funcién, pero MISP lo utiliza
para determinar el valor limite que puede tomar la funcién para que el dato sea

todavia valido. En este caso se toma como limite el valor 30.

La ecuacién resultante al combinar todas las variables es la siguiente:

1
t\ %a
score, = base_score - | 1 — (—)
Ta
En cuanto a los tipos de datos que usa MISP para su aproximacion, se utilizan: domain,
ip, hostname y url, en todas sus variantes (ip-src, ip-dst, domain-port, etc.). Estos son
justamente los IOCs que nos serviran para exportar hacia los NIDS.
100 =

S0

80

70+

50

40

Lifetime 120 -9 days Expire after (lifetime) 58 days and 19 hours
Decay speed 2 ——— Score halved after (Half-life) 14 days and 16 hours
Cutoff threshold | 30 =0

Figura 3.4: Herramienta de MISP para visualizar la funcién de decaimiento

En la Figura 3.4, se aprecia la funcién de decaimiento utilizada, con todos los

parametros definidos anteriormente. Se observa una funcién exponencial negativa que

15



comienza tomando el valor 120 (lifetime) en el tiempo 0. La funcién decae hasta llegar
al valor 30, donde se considera que el dato ya no es valido. Se llega a la conclusion de
que el tiempo que tarda un IOC en ser invalido desde que se ve por primera vez, es
aproximadamente de 58 dias y 19 horas. Esto también se puede calcular despejando el
la férmula el valor buscado. Este tiempo sera el que utilicemos en la siguiente seccién

para establecer las politicas de rotacién para nuestros datos.

3.1.4. Configuraciéon y automatizacion

El objetivo principal por el que hemos utilizado la plataforma MISP es configurarla
de forma automatica para que diariamente exporte ficheros de reglas en la estructura
adecuada hacia los detectores de intrusos de red. Con este fin, se usan las herramientas
que MISP proporciona y se configura la plataforma de acuerdo con el objetivo.

La plataforma ofrece una gran cantidad de funcionalidades interesantes, pero en este
proyecto se abordan inicamente las necesarias e imprescindibles para su desarrollo. Las
siguientes secciones explican los procedimientos de configuracion llevados a cabo para

configurar y automatizar la plataforma.

Adquisicion de datos

Como se explica en el Anexo A referente al estudio de fuentes Open Source, se
utilizan los feeds para descargar los nuevos eventos procedentes de las fuentes [10] [11]
[12]. Durante el desarrollo del proyecto, se han integrado 7 fuentes de datos distintas.
Con ello, se pretende formar un conjunto de datos heterogéneo para comprobar la

versatilidad de nuestro sistema, sin llegar a sobrecargarlo de informacién.

[) D Enabled Caching Name Format Provider Org Source URL

01 v x CIRCL misp CIRCL network  hitps://www.circl lu/doc/misprfeed-osint
OSINT
Feed

12z v X The misp Botvrij eu network  hitps:/fwww botvrij eu/data/feed-osint
Botvrij eu
Data

4 v x Tor exit csv TOR Node List from dan.me.uk - careful, this feed applies a lock-out after each pull. This is shared with the "Tor ALL nodes” feed network  hitps:/fwww.dan.me.uk/torlist/7exit
nodes

15 v X TorALL  csv TOR Node List from dan.me. uk - careful, this feed applies a lock-out after each pull. This is shared with the "Tor exit nodes" feed network  hitps:/fwww dan me.ukitorlist/
nodes

08 v x ipblock- freetext hitps://snort org network ~hiips://snert.org/downloads/ip-block-ist
list -
snort.org

[ 65 v x Threatfox misp abuse.ch network  hitps://threatfox. abuse.ch/downloads/misp/

087 v x URLhaus misp  abuse.ch network ~hiips://urinaus.abuse ch/downioads/misp/

Figura 3.5: Feeds activos en la instancia de MISP

La configuracion realizada para llevar esta integracion comienza con la activacion de
las fuentes. Esta configuracion se ha realizado a través del servidor web de la instancia,
dada la facilidad que supone esta tarea. Se activa un feed de forma manual indicando

la URL donde se encuentra la informacién para posteriormente ejecutar la activacién.

16



Sobre los seis restantes sélo se ejecuta la operacion enable, puesto que estas fuentes
estaban incluidas por defecto en MISP. En la figura 3.5 se observa todas las fuentes
integradas en el sistema.

Por otro lado, se adquieren de forma manual datos procedentes de la cuenta
C2intelfeedsbot de la plataforma Tuntter. Cada uno de los tweets publicados por esta
cuenta son datos que se pueden integrar en MISP.

Ya activadas las fuentes, el siguiente paso es ejecutar la operacion fetch sobre cada
fuente para descargar los nuevos eventos en la base de datos de la instancia. MISP

proporciona varias formas de gestionar las tareas en la plataforma:

— Linea de comandos de la MV: MISP permite automatizar ciertas tareas
mediante la ejecucién de comandos Linux en la MV donde se aloja la platafoma.
Podria ser una buena solucién, pero las tareas que se pueden automatizar son

limitadas [13].

— PyMISP: Libreria de Python creada por la comunidad de MISP. Utiliza la API
de MISP para crear funciones en este lenguaje y poder ejecutar tareas desde
scripts personalizados. Sin embargo, la libreria esta mal implementada en algunos

casos e induce a errores, por lo que se descarta su uso [14].

— MISP API: A través de peticiones a la API de MISP de forma directa, podemos
gestionar cualquier tarea relacionada con la instancia [13]. En este trabajo, las
peticiones se realizan mediante la libreria requests de Python por la facilidad para
el posterior procesado de los datos. Con esta libreria se piden o envian datos hacia
la API mediante mensaje del protocolo HTTP!. Los dos tipos de mensajes que
se utilizan son el HTTP GET y HTTP POST. En el Anexo C se detalla el uso

de este tipo de peticiones.

Asi, para la gestion de la tareas dentro de la instancia se opta por la creacién
de scripts en Python para realizar peticiones a la API de MISP. Se requiere para su
utilizacion tanto la URL de la instancia como una key de autenticacion. Los scripts
desarrollados se incluyen anexos al final de la memoria.

Para realizar la operacién fetch de todas las fuentes, se crea un script llamado
fetch_feeds_2.py (versién 2) que realiza una solicitud POST a la siguiente URL:
https://misp.local/feeds/fetchFromAllFeeds, donde misp.local coincide con la direccion
donde se localiza la instancia (direccion IP de una red privada). Asi, la instancia recibe
la peticion y procede a ejecutar la tarea de descargar los nuevos eventos desde todas

las fuentes que estén activas.

YHTTP: Hypertext Transfer Protocol. Protocolo de comunicacién que permite las transferencias de
informacién a través de archivos (XML, HTML, etc.) en la World Wide Web.

17



Por otro lado, para la integracion de los tweets desde la cuenta, se obtiene la
informacion contenida en ellos a través de la API de Twitter y el lenguaje Python.
En la Figura 3.6 se detalla el formato y contenido de un tweet de ejemplo para su
integracién en MISP. La primera linea es una descripcion del atributo. Las siguientes
dos lineas son los valores de los atributos que vamos a integrar. El resto de lineas son

mas datos, pero sin relevancia en su procesado.

. C2IntelFeedsBot
Cobalt Strike Server Found
C2: HTTP @ 89[.]44[.]19[.]1133:80
C2 Server: 89[.]144[.]19[.1133, /design/query/9X5M3SOEQF

Country: France (AS9009)
ASN: M247

Figura 3.6: Tweet de ejemplo para su integracién en MISP

A continuacion, se procesan los datos del tweet para quedarnos con la informacién
que vamos a integrar en MISP (fundamentalmente, el dato en si mismo). Por
ultimo, se realizan dos peticiones POST a la API de MISP, de la misma forma que
para la operacion fetch. En la primera peticion creamos un evento en la instancia
mediante la URL: https://misp.local/events/add, con sus pardametros de creacién
(nombre, fecha, etc.). En la segunda peticion POST, creamos un atributo en ese
nuevo evento con la informacion extraida del tweet. Se hace a través de la URL:
https://misp.local /attributes/add/eventld, donde en eventld se debe especificar el 1D
del evento donde se va a anadir el atributo. Ademads se deben incluir los parametros
propios del mismo, asi como el valor, la fecha, etc. Todo esto se recoge en un script

denominado tweet_MISP.py.

Procesado de datos

El procesado de los datos incluye todas las tareas automatizadas para la gestion
de los datos una vez se encuentren en la plataforma. Dada la naturaleza del proyecto,
existen ciertos criterios para determinar que datos son ttiles y cuales no lo son. A

continuacion, se exponen las reglas de procesado, en el orden de filtrado real.

— Flag to IDS: Todos los atributos que contengan este flag activado, son datos
exportables hacia los IDS. Por lo tanto, el resto de IOCs que no tengan el flag son
datos inservibles. Los datos que no disponen de este flag activado no se eliminan

como tal de la instancia, sino que son excluidos durante la exportacion.

18



— Rotacion de IOCs: Tarea basica de procesado que consiste en eliminar todos
aquellos datos que, segin el criterio temporal que se elija, son invéalidos. Se
establecen las politicas descritas en la secciéon 3.1.3 y se consideran dos tipos

de rotacion:

1. Rotacién estricta: Consiste en consultar el valor de score calculado por
MISP en su modelo de Decaying I0Cs, en cada uno de los datos, y eliminar
aquellos que no se consideren validos (en el modelo de MISP se considera
invalido si el valor de la funcién cae por debajo del threshold: 30). Esta
rotacién requiere consultar y calcular todos los valores de la funcién de cada
indicador, lo que supone una gran complejidad de implementacion ademas
de un gran consumo de recursos. Por otro lado, el modelo es solo aplicable

a unos tipos de datos concretos. Se opta por no utilizar este criterio.

2. Rotacidon suave: Segun el criterio obtenido en la seccién 3.1.3, un atributo
en media se vuelve invalido tras aproximadamente 60 dias. Una opcion
comoda y sencilla en implementacién es consultar la fecha de tltima
modificaciéon de cada dato. Si esa fecha es mayor de 60 dias, el atributo

se borra de la base de datos. Se implementa esta rotacién en el proyecto.

— Tipo de atributo: Se puede establecer un filtrado extra que aisle inicamente los
I0OCs que puedan ser detectados por los NIDS. Esto posee una ligera diferencia
con el primer criterio de filtrado. Que un dato sea exportable hacia los IDS no
quiere decir que un NIDS sea capaz de detectarlo. En esta fase no se utiliza este
filtrado como tal, pero en secciones posteriores se ignoraran ciertos tipo de datos

para su exportacién por no ser de utilidad para el sistema.

La tnica politica establecida en esta fase es la de rotacién, el resto de procesado se
hara en la fase de exportacion. Como se ha explicado antes, se establece el criterio de
rotacion suave. Para implementarlo, recurrimos de nuevo a la API de MISP, a través

de peticiones HT'TP. La rotacion suave se puede realizar de dos formas:

— A nivel de evento: Se buscan los eventos cuya fecha de tltima modificacion sea
mayor de 60 dias. Se obtienen los eventld de cada uno de ellos para posteriormente
eliminarlos. Es facil de implementar y no consume muchos recursos, pero es
posible que existan atributos dentro de un evento no eliminado que estén
obsoletos. Al editar los eventos, se modifica su fecha de iltima modificacién, pero
no la de los atributos que estan dentro. Asi, se puede tener un evento modificado

recientemente con atributos envejecidos.

19



— A nivel de atributo: Se hace lo mismo que a nivel de evento, pero con los
atributos. Tanto su implementaciéon como su consumo de recursos es costosa,

pero la rotacion a cambio es més limpia y eficiente.

En este caso, dadas las capacidades de computo de la MV MISP, se utiliza la rotacién
a nivel de evento. Se realiza una busqueda de eventos con una solicitud POST a la
URL: https://misp.local/events/restSearch, indicando en los pardmetros de la peticién
el valor de timestamp. Este valor indica la fecha de ultima modificacién de los eventos.
Se especifica un rango de tiempo en el formato adecuado: [7120d”, ”60d”]. Con este
parametro, se indica que se requieren los eventos cuya ultima fecha de modificacién se
encuentre entre los 60 y 120 dias.

Una vez hecho esto, la API proporciona como respuesta una lista de eventos en
formato json? ( asf especificado en la cabecera de la solicitud). Mediante procesado de
la lista con Python, obtenemos los eventld de cada evento y lo almacenamos en una
variable. Para cada ID almacenado, realizamos una solicitud a la API para borrar cada
evento, especificando el propio ID en la URL: https://misp.local/events/delete/eventId.

Todo este proceso se recoge en un script de Python: 10C_rotation.py.

Filtrado y exportacién de datos

Como ultima fase de automatizacion de la plataforma MISP, se van a exportar los
datos adquiridos y procesados para poder alimentar los detectores de intrusos de red.
Como se ha expuesto anteriormente, la exportacion se hace a través de ficheros de
reglas. La disposicién de dos NIDS complica la exportacion, puesto que cada uno de
ellos posee un formato distinto a interpretar en los ficheros de reglas. En consecuencia,
para cada uno de los detectores se deben exportar ficheros de reglas diferentes.

La estructura de la informacién en ficheros de reglas es una parte crucial a la hora
de comenzar con la exportacién. La primera idea que surge es utilizar un fichero para
almacenar todas las reglas simultdneamente. Es una soluciéon aceptable, sin embargo
de esta forma no se tiene ninguna clasificacion y la depuracién de errores se vuelve
mas compleja. Por este motivo, se opta por dividir los ficheros de reglas por tipo de
atributo, obteniendo asi varios ficheros de reglas para cada NIDS.

A la hora de implementar la exportacién, se utiliza un procedimiento diferente para
cada uno de los NIDS, debido a las diferencias de formato. Sin embargo, en ambos
casos la exportacion se realiza a través de una solicitud HTTP POST hacia la URL:
https://misp.local /attributes /restSearch. Con esta peticidn, se filtra la bisqueda de los

atributos a exportar, introduciendo ciertos parametros:

2JSON: JavaScript Object Notation. Formato ligero de intercambio de datos de fécil lectura y
escritura para los usuarios. Ademads, es facil de analizar y generar por parte de las maquinas.

20



— returnFormat: Formato de los datos que se solicitan. Aqui reside la principal

diferencia de implementacion entre Suricata y Zeek.

e Suricata: Se especifica de forma nativa el formato de salida ’suricata’. Las

reglas se crean sin ningiin procesado de datos posterior.

e eek: Se usa el formato de salida json. A continuacion se realiza procesado
de esos datos para crear las reglas en el formato que Zeek interpreta. La

exportacién no es nativa desde MISP.

— to_ids: De todos los datos que existen en la plataforma, solo se exportan aquellos
a partir de los cuales se puedan crear reglas. Es decir, los que tengan el flag

activado.

— timestamp: Como la exportaciéon a ficheros de reglas es diaria, se filtran los
atributos cuya ultima fecha de modificacién haya sido durante el dia. En el
formato de la API: "1d’.

— type: Se separa por tipo de IOC en los ficheros de reglas. Por lo tanto,

especificamos el tipo de dato que vamos a filtrar.

Se realiza una peticion a la API por cada tipo de dato y por cada returnFormat, dado
que el resto de parametros es constante.

Los tipos de datos a partir de los que vamos a crear ficheros de reglas son diferentes
entre Suricata y Zeek, puesto que la exportaciéon en un caso es nativa, pero en el otro
requiere de procesado posterior. Se escogen los tipos de IOCs que cumplen la condicion
de ser exportables hacia los IDS y que ademas sean detectables por los mismos.

Asi, se tienen los distintos tipos de datos usados para la exportacion:

— Suricata: domain, domain-ip, hostname, hostname-port, ip-dst, ip-dst-port,

ip-sre, ip-src-port, url, md5, shal, sha256, sha512.

— Zeek: domain, hostname, wurl, ip-src, ip-dst, mdd, shal, sha256, shab12,
ja3-fingerprint-mds

Tras realizar esta solicitud POST a la API y el posterior procesado de los datos
en el caso de Zeek, se crea un fichero para cada tipo de atributo y se vuelcan las
reglas en el formato adecuado. Se introduce una etiqueta temporal para diferenciar los
dias en los que se exportan las reglas, puesto que el dia siguiente se exportan nuevas
reglas hacia el mismo fichero. De esta forma, se controla tanto el tipo de dato como las

fechas de exportacion. Todo lo anterior se efectiia mediante el script export_ IOCs.py.

21



# ip-dst MISP Suricata Rul > 8-14
alert ip $HOME NET any — 01.1 3 any (msg: "MISP e2875 [] Outgoing To IP: 01.160.180.3"; classtype:trojan-activity; sid:147545811; rev:1; priority:4; reference:url,http://192.168.15
4/events/view/2876;)

$HOME_NET any — 7 any (msg: "MISP e2876 [] Outgoing To IP: classtype: trojan-activity; sid: 1475458 ; priority:4; reference:url,http://192.168.
153.4/events/view/2876;)
ip $HOME NET any — ) any (msq: "MISP 2876 [] Outgoing To TP: ;  classtype:trojan-activity; sid:147545831; rev:1; priority:4; reference:url,http://192.168.
/events/view/2876; )
$HOME_NET any — 68 any (msg: "MISP e2876 [] Outgoing To IP classtype:trojan-activity; sid:147545841; rev:1; priority:4; reference:url,http://192.16
8.153.4/events/view/287
N 10 any (msg: "MISP 2875 [] Outgoing To Ii classtype:trojan-activity; sid:147545851; rev:1; priority:4; reference:url,http:

94 any (msg: "MISP e2876 [] Outgoing To IP classtype:trojan-activity; sid:147545861; rev:1; prierity:4; reference:url,http://192.16

60 any (msg: "MISP e2876 [] Outgoing To IP: 9 0";  classtype:trojan-activity; sid:147545871; rev:1; priority:4; reference:url,http://192.16

é. Jevents/v 1ew/2876;

Figura 3.7: Fichero de reglas de ip-dst para Suricata

Los ficheros de reglas se almacenan en una carpeta en la maquina virtual donde esta
instalado MISP.

En las Figuras 3.7 y 3.8 se aprecia el formato y contenido que tiene un fichero de
reglas para un tipo de dato en concreto tanto para Suricata como para Zeek. Se observa

como existe una regla por cada una de las lineas del fichero.

#filelds indicator indicator_type meta.source
# domain MISP Zeek Rules
1105181.com ThreatFox I0Cs for 2 (event
.com DOMAIN  ThreatFox I0Cs for 2823-6 2 (event
5.com 21::DOMAIN  ThreatFox I0Cs for 2823-6 2 (event
.com DOMAIN  ThreatFox IOCs for 2023-0 2 (event

.com DOMAIN  ThreatFox IOCs for 2823-0 2 (event
.com DOMAIN  ThreatFox IOCs for 2823-0 2 (event
1239988.com DOMAIN  ThreatFox IOCs for 2623-6 2 (event
1319551.cc DOMAIN  ThreatFox IOCs for 2623-0 2 (event
1319553.com ::DOMAIN  ThreatFox IOCs for 2023-6 2 (event
1319554 . com ::DOMAIN  ThreatFox I0Cs for 2 (event

Figura 3.8: Fichero de reglas de domain para Zeek

Puede ocurrir que, por conflicto en alguna fecha, se exporte erréneamente dos veces
la misma regla en un fichero. Esto podria derivar en un error en los IDS. Para solventar
este tipo de problemas, se crea un script denominado duplicate_lines.py, que revisa los
ficheros en busca de lineas duplicadas, después de haber exportado nuevas reglas. Si

encuentra alguna, la elimina, dejando asi el fichero sin lineas repetidas.

Automatizacion

Se han definido tres etapas para la configuraciéon de la plataforma MISP y se han
desarrollado las herramientas necesarias para mantener y automatizar la instancia. Por
ultimo, se deben establecer los procedimientos para lograr que todas estas herramientas
se ejecuten cuando sea necesario. Las funcionalidades que se han implementado a lo
largo de este apartado son en su totalidad scripts en el lenguaje de programaciéon
Python. Por lo tanto, necesitamos una herramienta extra que sea capaz de ejecutar el
c6digo necesario en el tiempo adecuado. Nuestra instancia de MISP estd alojada en una
MV con una distribuciéon Debian 11 de Linux. Sabiendo esto, la opcion méas comoda
para la gestién de los tiempos de ejecucién de scripts es la herramienta Crontab.

Con Crontab, se pueden programar ordenes para ejecutar cualquier tarea como si

se hiciera desde la consola de comandos a una hora y una fecha determinada. De esta

22



forma, se automatiza la ejecucién de scripts que configuran y controlan la instancia de
MISP. Se trata de anadir lineas en un fichero, indicando en un formato especifico la
fecha y la frecuencia de ejecucion de los comandos que se deben lanzar. En el Anexo D
se explica el funcionamiento de esta herramienta. En la Figura 3.9, se define el fichero

de Crontab utilizado para la automatizacién de la instancia.

# Rotacion IOCs
1011,3,5,7,9,11 * sudo python3 /root/scripts/I0C rotation.py

# Importacion de nuevos I0Cs a la plataforma MISP
20 @ * * * sudo python3 /root/scripts/fetch feeds 2.py

# Exportacion de los I0Cs como archivos de reglas
30 @ * * * sudo python3 /root/scripts/export I0Cs.py

# Deteccion e eluninacion de lineas de reglas duplica
35 0 * * * sudo python3 /root/scripts/duplicate lines.py

# Subida de archivos a repositorio privado de Github
40 0 * * * sudo bash /root/IDS exportation/git.sh

Figura 3.9: Fichero de Crontab de la MV de MISP.

La primera linea corresponde a la automatizacion de la rotacién de los IOCs. Para
ello, se ejecuta el codigo IOC rotation.py el dia 1 a las 00:01 de los meses impares del
ano. De esta forma, se ejecuta la rotacion cada 2 meses.

Los tres comandos siguientes corresponden a las fases de adquisicién, procesado y
exportacién de los datos. Se ejecutan cada dia a las 00:20, 00:30 y 00:35. Las horas de
ejecucion coinciden con la hora de actualizacion de los feeds introducidos en MISP.

El tiempo entre comandos se ha determinado realizando pruebas sobre el tiempo
de ejecucion de cada una de las tareas. En ningin caso, el tiempo de ejecucién supera
el minuto, la eleccion de los tiempos es orientativa.

Por tltimo, se encuentra un comando que ejecuta un script de subida de los ficheros
de reglas a un repositorio privado de Github. Este codigo se ejecuta diariamente a las
00:40, una vez terminado el tratamiento de los datos en la instancia. En la siguiente

seccién se entrard en mas detalles sobre este procedimiento.

3.2. Almacenamiento de ficheros de reglas

Ya exportados los datos como ficheros de reglas, el siguiente paso es transmitir esos
ficheros hacia los detectores de intrusos de red para que empiecen a funcionar. Un punto

importante a tener en cuenta, es que los destinatarios de esta informacién son una MV

23



situada en la misma red que la MV de MISP, que contiene los datos, y otra maquina,
la Raspberry Pi 4, localizada en una red privada remota. Existen una gran variedad
de procedimientos para enviar estos archivos a través de la red. Las caracteristicas que
se buscan en el envio de estos ficheros son integridad y confidencialidad. A raiz de

estas cualidades, surgen diferentes formas de realizar este transporte de datos:

— SFTP: Secure File Transfer Protocol. Protocolo de red que permite la
transferencia segura de archivos entre un cliente y un servidor sobre SSH. A
diferencia de FTP, SFTP cifra la informacién durante la transferencia. Tiene
el inconveniente de que ocupa un gran ancho de banda en la red durante la
transferencia. Ademds, posee una gran complejidad para alcanzar la red privada

remota donde se encuentra la Raspberry Pi 4.

— SCP: Secure Copy Protocol. Similar a SF'TP. Transferencia segura de archivos
entre dos equipos remotos. SCP es més eficiente en la transmisiéon pero pierde en

interactividad con los archivos a enviar. Dispone de los mismos problemas que

SETP.

— Repositorio de Github: Github es una plataforma de alojamiento de proyectos
con un control de versiones Git. Dispone de una funcionalidad de alojamiento
de proyectos privados en Internet, con acceso seguro a través de tokens. La
transferencia se puede realizar clonando el repositorio creado en el equipo destino.

Se elige utilizar este sistema de almacenamiento y transferencia.

Se crea un repositorio privado de Github, al que solo se puede acceder desde una
cuenta privada o a través de un token de autenticacién expedido desde esa cuenta,
el cual s6lo el propietario conoce. De esta forma, se suben al repositorio en la nube
diariamente los ficheros de reglas actualizados. Se usa un script desarrollado en bash,
git.sh, que utiliza el token privado para poder ejecutar la operacion push de Git y subir

los archivos actualizados.

albertoines albertoines Rules update: 27/08/2023

suricata
zeek

README.md

git.sh

Figura 3.10: Repositorio privado de Github para el almacenamiento de ficheros de
reglas.

24



Tras la subida de archivos al repositorio, se pueden descargar los archivos desde
cualquier equipo que disponga del token de autenticacién simplemente ejecutando la

operacién clone de Git.

3.3. Suricata como NIDS

3.3.1. Introduccion

Suricata es un detector de intrusos de red (NIDS) de alto rendimiento, aunque
también se utiliza como sistema de prevencién de intrusos (IPS) o como un monitor
de seguridad en la red. Es una herramienta de codigo abierto desarrollada por el OISF
(Open Information Security Foundation).

En este proyecto se utiliza Suricata como NIDS, alimentado por reglas
personalizadas y actualizadas diariamente con datos provenientes de la plataforma

MISP. Las reglas (también denominadas signatures en el contexto de este IDS) son el

((L)) Internet
ORI

@\/f;

‘ m fast.log

e
misp.rules Zeek/Suricata MV

eve.json

eje entorno el que gira Suricata.

Figura 3.11: Funcionamiento bésico de Suricata.

La herramienta interpreta los ficheros en los que se contienen signatures en el
formato correcto y analiza el trafico por las interfaces de red que se le indiquen en
su configuracién, tal y como se describe en la Figura 3.11. Si detecta la presencia

de una regla, Suricata genera una alerta creando ficheros de logs donde se guarda la

25



informacion sobre la deteccion. Estos ficheros son: fast.log v eve.json. El primero recoge
las alertas en texto plano para su consulta rapida. El segundo guarda en formato json
las alertas generadas y se utiliza para exportar esa informaciéon de alertas hacia otros
sistemas como FElastic Stack.

En el Anexo B, se incluye la definicién del formato de las reglas de Suricata.

3.3.2. Configuraciéon y automatizacion

Desde MISP se exportan ficheros de reglas clasificados por tipo de dato y dentro de
cada fichero por fecha. El objetivo de este apartado es la puesta en marcha de Suricata
para, con los ficheros de reglas exportados, analizar la interfaz de red de un equipo y

detectar conexiones maliciosas.

Descarga de ficheros de reglas

La primera parte del proceso de configuracién pasa por obtener los archivos de reglas
procedentes de MISP. Como se ha detallado anteriormente, los ficheros se encuentran
en un repositorio privado de Github, accesible Unicamente a través de un token de
autenticacion. Desde un script en bash, gitids.sh, se introduce el token para acceder
al repositorio privado y ejecutar la operacion git clone, junto con la operacién git pull

para descargar los ficheros en el equipo donde se encuentra Suricata.

suricata.yaml

La configuracion de la herramienta se hace a partir de este fichero escrito en el
lenguaje YAML?. La primera configuracién a implementar es la definicién de la variable
$HOME_NET. En esta variable se debe definir, segin la documentacién de Suricata
[15], la direccién IP de la interfaz monitorizada, ademas de las redes locales que estan
en uso. En el caso del escenario con MVs, la red privada donde se monitoriza el trafico
coincide con la red: 192.168.153.0/24. Sin embargo, se utiliza un rango mas grande,
debido a la topologia del escenario. Asi, se usa la direccién: 192.168.0.0/16, como
se ve en la Figura 3.12 . En el entorno doméstico, la red local por convenio suele
ser la 192.168.1.0/24, pero puede haber variaciones como 192.168.0.0/24. Por otro
lado, la variable SEXTERNAL_NET se considera como todas las redes que no son
$HOME_NET.

El nombre de la interfaz donde se analiza el trafico debe indicarse también en ese

fichero, en el apartado af-packet. Por ejemplo, en el caso de la MV se utiliza la interfaz

3YAML: Formato de serializacién de datos legible por humanos inspirado en lenguajes como XML,
C, Python, Perl, asi como en el formato de los correos electrénicos. Se utiliza para implementar
archivos de configuracién de cualquier programa.

26



eth0.

vars:

address-groups:
HOME_NET: "[192
#HOME _NET: "[1C

#HOME_NET: "[10.0.
#HOME _NET:
#HOME _NET:

EXTERNAL NET: "!$HOME NET"
#EXTERNAL NET: "any"

Figura 3.12: Ejemplo de parte de fichero de suricata.yaml.

default-rule-path: /etc/suricata/rules

rule-files:

- misp_url.rules
misp_sha512.rules
misp_sha256.rules
misp_shal.rules
misp_md5.rules
misp_1p-src.rules
misp_1p-src-port.rules
misp_1p-dstport.rules
misp_1p-dst.rules
misp_hostname-port.rules
misp_hostname.rules
misp_domatin.rules
misp_domain-1p.rules

Figura 3.13: Ejemplo de parte de fichero de suricata.yaml. Ruta de los ficheros de reglas
utilizados.

Suricata comprende un sistema de actualizacién de reglas mediante fuentes
proporcionadas por la propia herramienta, llamadas ET Open ruleset. Sin embargo,
esta funcionalidad no se utiliza puesto que las reglas provienen de la instancia de
MISP configurada con anterioridad.

Con ese fin, debemos anadir el directorio donde se van a encontrar las reglas,
para que el programa sea capaz de leerlas y detectarlas. Para ello, en el apartado
default-rule-path se deja la ruta por defecto: /etc/suricata/rules. En las siguientes
lineas, se especifican todos los nombres de los ficheros de reglas a utilizar, tal y como se
muestra en la Figura 3.13. Una vez hecho esto, se deben incluir en la ruta por defecto
los archivos descargados desde el repositorio de Github. Para ello, se realiza una simple
copia de los archivos hacia esa ruta. El resto de configuraciones del fichero se dejan por

defecto.

27



Llegados a este punto, solo debemos reiniciar Suricata para que la herramienta

cargue los nuevos ficheros de reglas. Con ese objetivo, se ejecuta el comando:
systemctl restart suricata

Se obtiene en el archivo suricata.log los ficheros y reglas cargados, lo que se ilustra en
la Figura 3.14.

0> - fast output device (regular) initialized: fast.log
eve-log output device (regular) initialized: eve.json

stats output device (regular) initialized: stats.log
13 rule files processed. 11225 rules s sfully loaded, O rules f
<Info> - Threshold config parsed: @ rule(s) found

Figura 3.14: Fichero de log suricata.log tras reiniciar el servicio.

Automatizacién

Como se ha hecho en la instancia de MISP, la automatizacién se realiza a través
de Crontab. El fichero de Crontab de la maquina virtual comparte la configuracién de

Suricata y Zeek. El detalle se ilustra en la Figura 3.15.

nado del repositorio de Github con ficheros de reglas
® 1 * * * sudo bash /root/gitids.sh

zeek
 sudo cp -r /rc:c:t/ID‘-. expcntattc:n/qur 1cata/+ /etc/wr 1cata/rule€/

« sudo cp -r /root/IDS exportation/zeek/* /opt/zeek/share/zeek/site/misp_zeek/

# Arrangue de suricata con las nuevas reglas
15 1 *# * * sudo systemctl restart suricata
16 1 * * * sudo zeekctl deploy

Figura 3.15: Fichero de Crontab de la MV de Suricata/Zeek.

La primera linea detalla la ejecucién del script para descargar las reglas desde
el repositorio, que continua en el tiempo inmediatamente después de terminar la
exportacién desde MISP. Esta tarea se ejecuta diariamente. Lo siguiente es el copiado,
también diario, de los ficheros de reglas hacia la ruta donde los NIDS interpretan las
reglas. Se hace para ambos IDS. Por tltimo, se reinicia diariamente el servicio de ambos

detectores para que carguen las nuevas reglas en sus sistemas.

3.4. Zeek como NIDS

3.4.1. Introduccion

Al igual que Suricata, Zeek es algo més que un detector de intrusos de red. Esta

herramienta dispone de una inmensa variedad de funcionalidades relacionadas con la

28



monitorizacion y seguridad en red, asi como frameworks especificos para ejecutar tareas
determinadas. Entre ellas se incluyen medidas de rendimiento y solucién de problemas.

La caracteristica definitoria de Zeek es la diversidad de logs que podemos consultar.
Cada uno de estos logs se encarga de informar acerca de una cualidad del sistema
analizado. Por ejemplo: conn.log, que informa de todas las conexiones de red que se
realizan en la interfaz; hitp.log, usado para describir inicamente las conexiones HTTP
o intel.log, fichero donde se almacenan todas las alertas generadas por el framework de

inteligencia de Zeek, el cual usaremos para cargar reglas.

Zeek
Intelligence Insert
Data .
Intel match _
Framework " intel.log
R — seen =
Traffic —4 Analysis =| conn.log

Figura 3.16: Funcionamiento bésico de Zeek.

Por otro lado, Zeek dispone de dos modos de funcionamiento:

— Modo standalone: Modo béasico de funcionamiento. Utiliza un tinico proceso
para monitorizar el trafico de red. Consume pocos recursos del sistema, pero
dependiendo de la configuracion de Zeek existen casos donde este modo no

funciona correctamente.

— Modo cluster: Despliega un conjunto de nodos para la monitorizacién de la red.
La arquitectura estandar estd formada por: manager, prozy, worker 1 'y worker 2.
Zeek permite cambiar esta configuraciéon a través de un archivo de configuracién.
Consume més recursos del sistema a cambio de un mayor rendimiento. Usaremos

esta configuracién en ambos entornos de red.

Para integrar Zeek en nuestro sistema, haremos uso de Intelligence Framewortk,
que permite la deteccion de trafico malicioso a partir de reglas especificas. El
funcionamiento es similar a Suricata: introducimos los ficheros de reglas en el lenguaje
de Zeek (Intelligence Data), se analiza la red en busca de matches de las reglas y se

generan alertas en intel.log, como se puede ver en la Figura 3.16.

29



En el Anexo B, se incluye la definicién del formato de las reglas de Zeek.

3.4.2. Configuraciéon y automatizacion

En este punto se deben configurar dos elementos por separado: Zeek y el Intelligence

Framework. Se configuran en ese orden [16].

Configuracién de Zeek

Lo primero que se debe hacer, es configurar el modo cluster para la arquitectura de
deteccién. Para ello, se edita el fichero de configuracién node.cfg. En la Figura 3.17 se
detalla la configuracién, estableciendo cada uno de los nodos. Los workers monitorizan

la red en la interfaz ethO.

Figura 3.17: Ejemplo de node.cfg en modo cluster.

El siguiente paso, al igual que en Suricata, es configurar las redes donde se produce
la monitorizacién. Esto se configura en el archivo networks.cfg y se detalla la red

192.168.0.0/16 en este caso.

De manera opcional, se puede establecer el periodo de rotacion de los logs, pero no
es relevante para este proyecto.

Una vez configurado, ya se puede lanzar Zeek usando el comando zeekctl deploy,
comando que tendremos que usar a la hora de introducir nuevas reglas para que estas

se carguen en el sistema.

30



Intelligence Framework

La configuracion de este apartado requiere la creacion de una carpeta extra en los
archivos de Zeek, donde almacenaremos los ficheros de reglas y los scripts necesarios
para inicializar este servicio.

El primer archivo que se escribe en esta carpeta es __load__.zeek, donde indicamos
que debe ejecutar un script llamado main, incluido en el mismo directorio. En ese
archivo, incluiremos toda la informacion necesaria para activar y poner en marcha el
Intelligence Framework. Para ello, debemos indicar a Zeek en este fichero que cargue
algunos scripts relacionados con este framework, ademés de indicar la ruta hacia los
ficheros de reglas. Esto se observa en la Figura 3.18. Los archivos de reglas se colocan

en la ruta especificada.

##! Load Intel Framework

@load policy/integration/collective-intel

@load policy/frameworks/intel/seen

@load policy/frameworks/intel/do_notice

redef Intel::read files += {
"/opt/zeek/share/zeek/site/misp_zeek/misp_hostname. intel”,

"fopt/zeek/share/zeek/site/misp_zeek/misp_domain.intel",

"/opt/zeek/share/zeek/site/misp zeek/misp url.intel",

"/opt/zeek/share/zeek/site/misp_zee is -src.intel”,

"fopt/zeek/share/zeek/site/misp_zeek/misp_1ip-dst.intel",

"/opt/zeek/share/zeek/site/misp_zeek/misp_md5. intel",

"/opt/zeek/share/zeek/site/m1

"/opt/zeek/share/zeek/site/misp_:

"/opt/zeek/share/zeek/s1te/m1 1 a512.intel”,

"/opt/zeek/share/zeek/site/misp zeek/misp ja3-fingerprint-md5. intel"

3

Figura 3.18: Fichero main para la carga de Intelligence Framework.

El dltimo punto a considerar es la modificacién del archivo de configuraciéon
local. zeek, en el que se debe indicar que lea la carpeta donde hemos incluido los scripts
y ficheros de reglas. También se debe detallar que el formato de los logs sea json, util

para su exportacion hacia Flastic Stack. Para ello, se usan los comandos:

@load misp_zeek

@load policy/tuning/json-logs.zeek

Una vez hecho esto, reiniciamos el sistema con zeekctl deploy para cargar las nuevas

configuraciones y el sistema estara listo para funcionar.

Automatizacién

La automatizacion se consigue de la misma forma que en Suricata, a través de
Crontab en la misma maquina. En la Figura 3.9 se encuentran los comandos a utilizar
para automatizar Zeek. Es el mismo proceso que con el otro IDS, solo cambiando la

ruta, los archivos de reglas y el comando para reiniciar el programa.

31



3.5. Elastic Stack

FElastic Stack comprende un conjunto de herramientas de cédigo abierto,
disenadas para adquirir datos desde cualquier plataforma, en cualquier formato para
posteriormente buscar, analizar y visualizar estos datos en tiempo real. Aunque se
trata de una solucién gratuita, existen licencias de pago que introducen funcionalidades
adicionales como X-Pack.

En este proyecto, se pretende usar la infraestructura de FElastic para centralizar los
logs generados por los detectores de intrusos de red. En consecuencia, obtendremos un
sistema que recoge todas las alertas en un entorno de red al completo.

Elastic Stack consta de una gran coleccion de herramientas que funcionan de forma
independiente. En nuestro caso, se utilizan 3 de ellas para gestionar la centralizacién

y visualizacion de los logs generados: Filebeat, ElasticSearch y Kibana.

— Filebeat: Herramienta instalada en la maquina donde se ejecutan los detectores
de intrusos para recoger los logs generados por los mismos y enviarlos hacia
FElasticsearch. Incluye modulos especificos para centralizar logs desde Suricata y
Zeek, 1o que facilita su configuracién. También posee funciones de procesamiento,

pero no se van a utilizar.

— FlasticSearch: Motor de busqueda y analitica de datos integrado en Elastic Stack.
Incluye soporte para cualquier tipo de dato, lo que lo hace muy versatil en
cualquier entorno. Lo usaremos para recibir y procesar los logs en formato json

procedentes de los NIDS en una méquina virtual diferente.

— Kibana: Plataforma de andlisis y visualizacion de datos. Se conecta con
FElasticsearch para obtener la informacién y representarla en diferentes formatos

y figuras. Posee un portal web para la consulta de la informacion.

A
2 o
SURICATA

Szeek .
a9 - eve.json ‘ A
SURICATA
A

& elasticsearch
= il
—— Beats

&
Zzeek .
Elastic Stack MV

Zeek/Suricata MV

intel.log

Figura 3.19: Infraestructura bésica de Flastic Stack conectada con los NIDS.

En la Figura 3.19 se ilustra el funcionamiento basico de la infraestructura, conectada
con los NIDS.

32



En conjunto las 3 herramientas conforman un sistema de centralizacion y
visualizacién de logs, lo que podria denominarse un Centro de Operaciones de Red
(NOC).

Por otra parte, al ser un sistema intercomunicado, es preciso tener en cuenta la
seguridad de las transferencias de informacion. Por ello, en el apartado de configuracién
deberemos establecer las opciones necesarias para implementar la seguridad en las
comunicaciones. Se utilizaran conexiones con el protocolo TLS.

La parte de instalacion, configuracién y automatizacion se incluye en el Anexo G

al final de la memoria.

33



34



Capitulo 4

Pruebas y analisis de los resultados

Tras configurar y automatizar la infraestructura, se realizan una serie de pruebas
con el objetivo de verificar el correcto funcionamiento del sistema al completo. La
verificacién mediante tests cobra sentido una vez los datos hayan sido exportados.
Esto supone que la parte del sistema que involucra MISP no se ha puesto a prueba,
sino que se ha ido depurando hasta que los datos han sido procesados y exportados
correctamente. Las pruebas se realizan en los dos escenarios especificados en el Capitulo
2 e incluyen la deteccién de alertas por parte de ambos NIDS y su posterior visualizacion

en Kibana.

4.1. Escenario de red con MVs

Se realizan las pruebas pertinentes en el escenario de red con maquinas virtuales.
Este escenario es experimental y supone un primer acercamiento a un entorno de
red real. Las pruebas se dividen en pruebas de deteccién en los NIDS y pruebas de

visualizacién de las alertas generadas.

4.1.1. Deteccidon de intrusos de red

Este escenario tiene la peculiaridad de que los NIDS estan instalados en una tnica
MYV, por lo que el trafico que monitorizan tinicamente pertenece a esa maquina en
cuestiéon. Esto facilita la ejecucion de pruebas y su analisis posterior.

Para poner a prueba los NIDS, se consultan los ficheros de reglas cargados en
los detectores. Se realizan acciones en dicha maquina con el objetivo de que los
NIDS detecten alguna de las reglas definidas en los archivos. Por ejemplo, en el caso
de direcciones IP, se realizan conexiones hacia esas IP, al igual que con dominios,
hostnames o URLs. Para los hash, se realizan solicitudes HT'TP POST, incluyendo en

los datos de la peticién alguno de los hashes maliciosos.

35



Tras realizar las pruebas con estos métodos, se incluyen resultados de las detecciones
realizadas tanto por Suricata como por Zeek.

En el caso de Suricata, los logs que se generan a partir de las reglas se recogen en
dos ficheros distintos, tal y como se explico en el capitulo anterior. Estos ficheros son:
fast.log y eve.json. Tras "forzar” manualmente alguna de las reglas, el resultado en

estos ficheros se observa en las Figuras 4.1 y 4.2.

/var/log/suricata/fast.log
424819 [#+] MISP e2876 [] Outgoing To TP: 117.213.40.201 [+x] [Classification: A Network Trojan was detected] [Priority: 4] {TCP} 192

3-28721:51:41.301316+0200", "ﬂow |_1d":1225740629437857, " in_iface": "eth@", e\/ent typ- t"alert”, _ip": 15 "src_port":47612,"dest_ip":
alert":{"action":"all "gid":1,"signature_id":2742 ™ signature":"NIS 8 ] Outq(mq "HTTP Hostnane toyy. 7uhp(hat con"
1}," http { hostname Lip .com" ri/7. n xt/html", "http_method": hET woto(ol
ps: //t pchat. con: 3 pp_p : : bytes_toserver":354, "bytes toclient":544,"start"

Figura 4.2: Archivo eve.json tras la deteccion de un dominio malicioso.

El archivo eve.json es el inico que se envia hacia el sistema de FElastic Stack. La
deteccién de reglas personalizadas con Suricata funciona correctamente en este entorno.

En el caso de Zeek, se utiliza un tnico fichero llamado intel.log. De la misma manera
que en Suricata, realizamos pruebas de deteccién para comprobar si se generan alertas.
En las Figuras 4.3 y 4.4, se ilustran dos ejemplos de detecciéon de reglas, una de deteccion
de dominio malicioso y otro de una URL maliciosa.

$ cat /opt/zeek/l current/intel. 1
51968.906411, "u CxPh7EKzY0oykPgx’ 153.2","id.or1g 3 A " e .indica :"1105181.com", "seen. indicator_typ
DOMAIN","seen.where": "DNS:: IN REQUES

:"CRQdCG1aEonoAhvzY ", "id.orig . res 67.205.116"," "seen. "gstatick.com/tfvg/m","seen. ind
en.yhere":"HTTP:: IN URL" . "see r c g )

Figura 4.4: Archivo intel.log tras la deteccion de una URL maliciosa.

Este archivo se envia a la infraestructura de FElastic Stack para visualizar la
informacion de forma mas explicativa.

Se aprecia que los NIDS funcionan correctamente en la detecciéon de reglas
personalizadas procedentes de MISP, mostrando en los logs informacion relevante
acerca de su procedencia, caracterizaciéon y descripciéon. En la siguiente seccion, se

muestran las visualizaciones que generan las alertas en Kibana.

4.1.2. Visualizacion de datos

Kibana posee unos dashboards predefinidos para visualizar la informacion sacada
desde cada uno de los NIDS. Usaremos estas vistas para analizar la informacion

recolectada por la plataforma.

36



Suricata

El dashboard de Suricata se divide en dos partes: eventos y alertas. Esto se debe
a que el fichero eve.json no solo recoge las alertas de deteccién, sino también las
conexiones que se realizan por esa interfaz, lo que se denominan eventos. Asi, obtenemos
una representacion de todas las conexiones realizadas por la MV, ademas de un display
dedicado exclusivamente a alertas. En las Figuras 4.5, 4.6 y 4.7; se observan diferentes
representaciones de datos recogidos desde Suricata. Por un lado, se encuentran las
alertas recogidas en una lista, mientras que los eventos se muestran en graficos mas

complejos y tablas de datos.

Top Alert Signatures [Filebeat Suricata] LLL]
M Export
Alert Signature ~ Alert Category v Count ~
MISP e3384 [dropped-by-Smokeload... A Network Trojan was detected 4
MISP 3370 [SocGholish] Outgoing UR... A Network Trojan was detected 3
MISP 3386 [1212,password-protecte... A Network Trojan was detected 3
MISP e3362 [dcrat] OQutgoing URL http... A Network Trojan was detected 2
MISP e3380 [dropped-by-SmokelLoad... A Network Trojan was detected 2
MISP e2876 [] Outgoing To IP: 91.109.... A Network Trojan was detected 1
MISP e3358 [dropped-by-Smokeload... A Network Trojan was detected 1
MISP e3361 [dropped-by-Smokeload... A Network Trojan was detected 1
MISP e3361 [dropped-by-Smokeload... A Network Trojan was detected 1
MISP e3361 [dropped-by-SmokelLoad... A Network Trojan was detected 1

Figura 4.5: Recopilatorio de alertas recogidas en Kibana.

Top Alerting Hosts [Filebeat Suricata] ooo

4 o
® zFeek-s5.. g

3

2

0 I I

14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th
August 2023

Count

@timestamp per 12 hours

Figura 4.6: Recopilatorio de alertas clasificadas por dia recogidas en Kibana.

37



Alerts [Filebeat Suricata]
21 documents:

i Columns ¢ 1field sorted =
Vv @timestamp ® ' host.name v suricata.eveflow_id v source.ip v source.port ~ destination.i ~ destinati t v try.. v destinati v
7 () Aug 28, 2023 @ 01:00:01.168 zeek-s5-ip 279790635552441 192.168.153.2 47670 146.82.121.3 443 - DE
7 () Aug 28, 2023 € 01:00:01.168 zeek-s5-ip 279790635552441 192.168.153.2 47670 140.82.121.3 443 - DE
2 () Aug 28, 2023 € 01:00:01.168 zeek-s5-ip 279790635552441 192.168.153.2 47070 140.82.121.3 443 - 0E
7 () Aug 27, 2023 @ 01:00:01.213 zeek-s5-ip 706124901858533 192.168.153.2 39808 140.82.121.3 443 - 0E
7 () Aug 27, 2023 ¢ 01:00:01.213  zeek-s5-ip 706124901858533 192.168.153.2 39808 140.82.121.3 443 - 0E
7 (O Aug 27, 2023 € 01:00:01.213  zeek-s5-ip 706124901858533 192.168.153.2 39808 146.82.121.3 443 - DE
2 () Aug 26, 2023 @ 01:00:03.333  zeek-s5-ip 162165797055251 192.168.153.2 40120 140.82.121.3 443 - DE

Figura 4.7: Recopilatorio de eventos de Suricata recogidos en Kibana.

Zeek

Zeek envia las alertas recogidas en el fichero intel.log hacia la plataforma de Kibana.
Como en Suricata, existe un dashboard predefinido para mostrar la informaciéon que
Zeek envia. En la Figura 4.8 se detalla una de las representaciones que se muestran
tras la recepcion de alertas. El resto de visualizaciones se mostraran en el siguiente

escenario.

Network Transport [Filebeat Zeek]

® udp

® icmp

pon oo moa

® ipvB-icmp

Figura 4.8: Grafico de conexiones detectadas por Zeek.

4.2. Escenario de red domiciliario

A raiz de que la configuracién ha sido la misma en ambos escenarios, los resultados
obtenidos son similares. La tnica diferencia notable reside en el hecho de que, a través
de la Raspberry Pi 4, se puede capturar el trafico de toda la red y analizar el trafico de
cada dispositivo conectado. En el escenario virtual sélo se capturaba el trafico de una
unica maquina. La capacidad de analisis es mayor, asi como la cantidad de datos que

se generan.

38



4.2.1. Deteccidon de intrusos de red

El procedimiento utilizado es el mismo, asi como los resultados obtenidos. Se analiza
el fichero intel.log tras detectar una regla en la Raspberry procedente de una conexion
realizada desde un ordenador conectado a la red doméstica, ilustrado en la Figura 4.9.

La direccion origen 192.168.0.13 corresponde con la direccién del ordenador conectado

a la red doméstica.

Figura 4.9: Detecciéon de un dominio malicioso desde la Raspberry Pi 4 en un ordenador
conectado a la red doméstica.

Los logs de Suricata en la Raspberry son similares a los observados en el apartado

anterior por lo que no se volveran a mostrar.

4.2.2. Visualizacion de datos

Del mismo modo que en el otro escenario, se envian los datos con Filebeat desde
la Raspberry en la red doméstica hasta la MV de FElastic Stack. Para ello, la conexién
debe pasar por el firewall privado del servidor de la Universidad de Zaragoza, realizando
traducciones NAT para llegar a su destino. Tras realizar esto, se reciben las siguientes
visualizaciones basadas en los dashboards de Zeek. De nuevo, los logs de Suricata, al

haberse mostrado en el apartado anterior, no se mostraran en este.

Top URL Domains [Filebeat Zeek] oon
security.debian.org
ftp.debian.org
download.opensuse.org
192.168.153.3

107172.0180

B860618cm.nyashkoon.top
42.51.45187
91.1098.180.3

DD COS QoS Dod 0Og 00O oo oead

Figura 4.10: Gréafico de dominios méas detectados por Zeek.

39



Metwork Traffic Direction [Filebeat Zeek]

Number of Sessions Overtime [Filebeat Zeek]

5000

4000

3000

2000

1000

internal

outbound

external

inbound

Figura 4.11: Grafico de direcién de las conexiones detectadas por Zeek.

14t 15th
August 2023

16th

17ith 18th 18th 20th 2st 2nd 23rd 24th 25h 26th

Figura 4.12: Grafico de sesiones detectadas por Zeek.

40

th

28th

® Co.. 1735



Capitulo 5

Conclusiones y lineas futuras

5.1. Conclusiones

A lo largo del proyecto, se han desarrollado un conjunto de herramientas, con
el objetivo de entender su funcionamiento y sincronizar sus caracteristicas. En
consecuencia, se ha logrado conformar un sistema completo que se ejecuta de manera
automatica, cumpliendo los objetivos impuestos en el Capitulo 1.

La idea clave en este proyecto es la capacidad de orquestar cada uno de los
componentes de la infraestructura, de tal forma que se ejecuten individualmente
para aportar su rendimiento al sistema final. Por otro lado, las dificultades que se
han enfrentado a lo largo del trabajo han sido provocadas por la heterogeneidad del
conjunto global. En cada paso, se ha tenido que atender a los protocolos, formatos y
configuraciones necesarias para que la herramienta estudiada se ejecute segiin nuestras
necesidades, compatibilizando su funcionamiento con el resto de elementos de la
infraestructura. Ademas, se ha llevado cada herramienta del trabajo hacia un equilibrio
entre sus limitaciones y los requisitos necesarios.

La plataforma MISP se eligié dada su versatilidad a la hora de gestionar una base
de datos ya estructurada y centralizada de Indicadores de Compromiso. Aunque MISP
posee una gran variedad de funcionalidades interesantes, se han utilizado tnicamente
las necesarias para llevar a cabo las tareas que se requerian en el trabajo. La ventaja
que supone MISP frente a la gestion ”"cruda” de datos obtenidos desde fuentes Open
Source resulta abismal en términos de automatizacion, eficiencia, gestion, exportacion y
comunidad. En una primera aproximacion, MISP suponia un lugar de almacenamiento
y gestién de IOCs. Sin embargo, al final del trabajo se ha convertido en la plataforma
central, desde la que se administra la informacién utilizada, manejandola a través de
su API. Dicha API, entre las demas formas de manejo de datos, ha supuesto junto con
el lenguaje Python la solucion idénea dada su flexiblidad y sencillez. La exportacién

hacia los NIDS ha sido la fase mas compleja de implementar en esta plataforma, dado

41



que se disponen de dos formatos distintos, uno nativo desde MISP. Ademas, se requiere
estructurar la informacién exportada, para su facil gestion en las siguientes fases. Esto
supone la capacidad de adaptaciéon que se ha tenido a lo largo del proyecto. Se ha
encontrado una solucién no nativa a través de Python para exportar los IOCs hacia los
NIDS. También se ha logrado estructurar la informacion de las reglas de forma intuitiva
y clara. Por ultimo, la administracion de los sistemas Linux es clave para llevar a cabo
la administracion en todas sus fases.

Suricata 'y Zeek suponen un reto aniadido en el trabajo. Se han escogido ambos NIDS
para afirmar que ambos pueden funcionar en un entorno como este, ademas de poder
aprender el funcionamiento de cada uno, con sus configuraciones y puesta en marcha.
Al fin y al cabo, estos detectores se han utilizado con el mismo propésito: deteccion de
ciberamenazas a través de ficheros de reglas. Esto supone que, aun con sus diferencias,
la configuracién realizada ha sido similar. Suricata es un sistema sencillo, por lo que
su configuracién ha sido menos costosa. Sin embargo, la integracién de Zeek es mas
compleja, dada su gran variedad de funcionalidades. Se debe configurar su modo de
funcionamiento, ademas de estudiar el framework de inteligencia especifico, entre los
muchos otros que dispone. Ademsds, al ser el formato de reglas mas flexible, durante
el desarrollo de la herramienta se detectaron algunos problemas de implementacién,
solventados con el tiempo. Los resultados obtenidos tras la exportacién y deteccién
de ciberamenazas son correctos. Se generan las alertas pertinentes cuando se provocan
conexiones maliciosas, lo que significa el cumplimiento de uno de los objetivos del
proyecto.

El producto Flastic Stack pasa a un segundo plano en este trabajo, siendo el
resultado final obtenido tras realizar el resto de fases del proyecto. Este conjunto de
programas supone una solucién sencilla de implementar y visual, para la administracién
de los logs generados por los NIDS. De todas las herramientas implementadas, esta es la
mas sencilla y menos costosa de implementar. En cuanto a resultados de la plataforma,
se han podido visualizar todas las alertas y eventos generados por ambos detectores de
intrusos, lo que evidencia el correcto funcionamiento da cada una de las partes de la
infraestructura.

En cuanto a la aplicacién del sistema a un entorno doméstico real, los resultados
evidencian la capacidad de adaptacion que el proyecto posee, obteniendo resultados
favorables en un entrono complejo y real. La configuracién de la Raspberry Pi 4, permite
el analisis completo de todo un entorno de red real, extrapolando las capacidades de
los NIDS desde una maquina completa hasta un entorno de red real y complejo.

En conclusion, el desarrollo de este sistema heterogéneo global y automatizado

supone un argumento firme de que cualquier sistema es configurable y automatizable,

42



haciendo uso de las herramientas precisas. Ademads, este trabajo significa una
contribucion mas en el campo de la ciberseguridad, en un entorno digital en constante
evolucion y creciente complejidad. En términos personales, este trabajo ha significado
un gran avance de mis conocimientos en este campo. Ha sido un experiencia muy
enriquecedora ademas de interesante y satisfactoria, por la cantidad de horas dedicada,

y por el resultado final obtenido.

5.2. Lineas futuras

Los desarrollos posteriores a este trabajo pueden ir enfocados hacia cada una de las
partes que lo conforman. Asi, existen varias lineas en las que se podria explorar para
conseguir una ampliacion de las capacidades del sistema.

En cuanto a la gestion y centralizacién de IOCs en MISP, existen varias lineas de
trabajo que quedan abiertas. En la parte de adquisicion de datos, dependiendo de las
capacidades de almacenamiento de la plataforma, se podria importar méas fuentes de
datos, con el objetivo de enriquecer la base de datos del sistema. Esto se podria realizar
de forma manual, a través de la publicacién de eventos desde la API o importando mas
feeds incluidos por defecto en MISP. En el apartado de procesado de datos se nombraron
varias formas de filtrar los datos, que no se acabaron implementando en el sistema
final. Una de las lineas a seguir puede ser la limpieza profunda de la base de datos para
obtener una plataforma pura de datos vélidos para la exportacién. Para ello, se podria
limpiar la instancia quitando los atributos que no tengan el flag to_ids activado, entre
otros cambios. La rotacion se podria hacer de forma estricta, consiguiendo una base
de datos mas eficiente.

En el almacenamiento y envio de ficheros de reglas, se podrian explorar otras
opciones de transferencia y almacenamiento de informacién, utilizando maquinas extra
y otros protocolos de transporte, como los descritos en la seccion 2 del Capitulo 3. Se
busca mejorar la seguridad en el traspaso de informacién a través de protocolos mas
Seguros.

Los NIDS no podrian cambiar su modo de funcionamiento, pero dependiendo de la
maquina en la que esté instalado, sus capacidades de deteccion cambian. Si tratamos
de aplicar el sistema a un entorno de red real analizando todo el trafico de la red,
el numero de nucleos del procesador influye en el rendimiento de los detectores de
intrusos. De esta forma, a mayor capacidad de procesamiento, mayores pueden ser las
redes a analizar en cuanto a dispositivos o volumen de trafico. Esta linea de trabajo
tiene que ver con la escalabilidad del sistema.

La solucion FElastic Stack tiene poco margen de mejora, puesto que solo se encarga

43



de visualizar los datos. La tnica forma de incrementar su rendimiento seria creando
dashboards personalizados para la visién aiin mas eficiente de la informacién dispuesta.

Por 1ltimo, en cuanto al sistema como conjunto global, se podria integrar junto con
otros sistemas para contribuir en las siguientes fases de actuaciéon frente a incidentes de
seguridad. En esta linea, el sistema funcionaria junto con IPSs (Intrusion Prevention
Systems) para neutralizar y prevenir las conexiones maliciosas que se realizan en los

entornos de red reales.

44



Capitulo 6

Bibliografia

[1]

[10]

[11]

Diez F. El instituto nacional de ciberseguridad gestion6 119.000 incidentes en

2022. El Pais, 2023.

NIST. https://www.cynet.com/incident-response. Accedido por tultima vez

en agosto de 2023.
Suricata. https://suricata.io/. Accedido por ultima vez en agosto de 2023.
Zeek. https://zeek.org/. Accedido por iltima vez en agosto de 2023.

Indicador de Compromiso. https://es.wikipedia.org/wiki/Indicador_de_

compromiso/. Accedido por ultima vez en agosto de 2023.

MISP. https://www.misp-project.org/. Accedido por ultima vez en agosto de
2023.

Elastic Stack. https://www.elastic.co/es/elastic-stack. Accedido por

ultima vez en agosto de 2023.

Security Operations Centers Working Group documentation. https://
wlcg-soc-wg-doc.web.cern.ch/index.html. Accedido por ultima vez en agosto
de 2023.

Alexandre Dulaunoy Andras Iklody, Gerard Wagener and Sami Mokaddem.
Decaying indicators of compromise. CIRCL- Computer Incident Response Center

Luzembourg, 2018.

awesome iocs. https://github.com/sroberts/awesome-iocs. Accedido por

ultima vez en agosto de 2023.

A List of the Best Open Source Threat Intelligence Feeds. https://logz.io/
blog/open-source-threat-intelligence-feeds/. Accedido por ultima vez en
agosto de 2023.

45


https://www.cynet.com/incident-response
https://suricata.io/
https://zeek.org/
https://es.wikipedia.org/wiki/Indicador_de_compromiso/
https://es.wikipedia.org/wiki/Indicador_de_compromiso/
https://www.misp-project.org/
https://www.elastic.co/es/elastic-stack
https://wlcg-soc-wg-doc.web.cern.ch/index.html
https://wlcg-soc-wg-doc.web.cern.ch/index.html
https://github.com/sroberts/awesome-iocs
https://logz.io/blog/open-source-threat-intelligence-feeds/
https://logz.io/blog/open-source-threat-intelligence-feeds/

[12] The Ultimate List of Free and Open source
Threat Intelligence Feedss. https://socradar.io/
the-ultimate-list-of-free-and-open-source-threat-intelligence-feeds/.

Accedido por ultima vez en agosto de 2023.

[13] MISP administration.  https://www.circl.lu/doc/misp/administration/.

Accedido por ultima vez en agosto de 2023.

[14] PyMISP. https://github.com/MISP/PyMISP. Accedido por tltima vez en agosto
de 2023.

[15] Suricata User Guide. https://docs.suricata.io/en/suricata-6.0.10/.

Accedido por tltima vez en agosto de 2023.

[16] Zeek Documentation. https://docs.zeek.org/en/master/. Accedido por

ultima vez en agosto de 2023.

[17] abuse.ch. https://abuse.ch/#platforms. Accedido por ultima vez en agosto de
2023.

[18] AlienVaultOTX. https://otx.alienvault.com/browse/global/. Accedido por

ultima vez en agosto de 2023.

[19] How to Use the Python Requests Module With REST APIs. https://www.nylas.
com/blog/use-python-requests-module-rest-apis/. Accedido por tltima vez

en agosto de 2023.

[20] How to Automate Tasks with cron Jobs in Linux. https://www.freecodecamp.

org/news/cron-jobs-in-1linux/. Accedido por ultima vez en agosto de 2023.

[21] Install MISP on Ubuntu 22.04/Ubuntu 20.04. https://kifarunix.com/

install-misp-on-ubuntu/. Accedido por tltima vez en agosto de 2023.

[22] Spot suspicious activity on your local network with Suricata Intrusion Detection
System (IDS) on Raspberry Pi. https://jufajardini.wordpress.com/2021/
02/15/suricata-on-your-raspberry-pi/#architecture. Accedido por iltima

vez en agosto de 2023.

[23] Installing the Elastic Stack. https://www.elastic.co/guide/en/
elastic-stack/8.9/installing-elastic-stack.html. Accedido por ultima
vez en agosto de 2023.

46


https://socradar.io/the-ultimate-list-of-free-and-open-source-threat-intelligence-feeds/
https://socradar.io/the-ultimate-list-of-free-and-open-source-threat-intelligence-feeds/
https://www.circl.lu/doc/misp/administration/
https://github.com/MISP/PyMISP
https://docs.suricata.io/en/suricata-6.0.10/
https://docs.zeek.org/en/master/
https://abuse.ch/#platforms
https://otx.alienvault.com/browse/global/
https://www.nylas.com/blog/use-python-requests-module-rest-apis/
https://www.nylas.com/blog/use-python-requests-module-rest-apis/
https://www.freecodecamp.org/news/cron-jobs-in-linux/
https://www.freecodecamp.org/news/cron-jobs-in-linux/
https://kifarunix.com/install-misp-on-ubuntu/
https://kifarunix.com/install-misp-on-ubuntu/
https://jufajardini.wordpress.com/2021/02/15/suricata-on-your-raspberry-pi/#architecture
https://jufajardini.wordpress.com/2021/02/15/suricata-on-your-raspberry-pi/#architecture
https://www.elastic.co/guide/en/elastic-stack/8.9/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/8.9/installing-elastic-stack.html

[24] IDS_exportation. https://github.com/albertoines/IDS_exportation.

Accedido por tltima vez en agosto de 2023.

47


https://github.com/albertoines/IDS_exportation

48



Lista de Figuras

2.1.
2.2.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.

3.11.
3.12.
3.13.

3.14.
3.15.
3.16.
3.17.
3.18.
3.19.

4.1.
4.2.
4.3.
4.4.
4.5.

Escenario de red con MVs . . . . . ..

Escenario de red domiciliario . . . . . . . ...

Arquitectura general de MISP . . . . . . . ... ... ...
Visualizacién de atributos en la instancia MISP . . . . . . .. ... ..
Visualizacién de eventos en la instancia MISP . . . . . . .. .. .. ..
Herramienta de MISP para visualizar la funcién de decaimiento

Feeds activos en la instancia de MISP . . . . . .. .. .. ... ... ..
Tweet de ejemplo para su integracién en MISP . . . . . .. .. .. ..
Fichero de reglas de ip-dst para Suricata . . . . . . . .. .. ... ...
Fichero de reglas de domain para Zeek . . . . . . .. .. ... ... ..
Fichero de Crontab de la MV de MISP. . . . . . .. ... .. ... ...
Repositorio privado de Github para el almacenamiento de ficheros de
reglas. ... oL L
Funcionamiento basico de Suricata. . . . . . . . . ... ...
Ejemplo de parte de fichero de suricata.yaml. . . . . . . . . ... .. ..
Ejemplo de parte de fichero de suricata.yaml. Ruta de los ficheros de
reglas utilizados. . . . . . ...
Fichero de log suricata.log tras reiniciar el servicio. . . . . . .. .. ..
Fichero de Crontab de la MV de Suricata/Zeek. . . . . . . .. ... ..
Funcionamiento basico de Zeek. . . . . . . . . . ... ..
Ejemplo de node.cfg en modo cluster. . . . . . . .. ... .. ... ...
Fichero main para la carga de Intelligence Framework. . . . . . . . ..

Infraestructura bdsica de FElastic Stack conectada con los NIDS.

Archivo fast.log tras la deteccion de una IP maliciosa. . . . . . . . . ..
Archivo eve.json tras la deteccién de un dominio malicioso. . . . . . . .
Archivo intel.log tras la deteccién de un dominio malicioso. . . . . . . .
Archivo intel.log tras la detecciéon de una URL maliciosa. . . . . . . . .

Recopilatorio de alertas recogidas en Kibana. . . . . . . . . . . . .. ..

49

30



4.6.
4.7.
4.8.
4.9.

4.10.
4.11.
4.12.

Al

B.1.
B.2.

C.1.

E.1.

G.1.

G.2.

Recopilatorio de alertas clasificadas por dia recogidas en Kibana. . . . . 37

Recopilatorio de eventos de Suricata recogidos en Kibana. . . . . . . . . 38
Grafico de conexiones detectadas por Zeek. . . . . . . .. ... ... .. 38
Deteccién de un dominio malicioso desde la Raspberry Pi 4 en un

ordenador conectado a la red doméstica. . . . . ... ... ... ... 39
Grafico de dominios més detectados por Zeek. . . . . . . ... ... .. 39
Graéfico de direcion de las conexiones detectadas por Zeek. . . . . . .. 40
Grafico de sesiones detectadas por Zeek. . . . . . . ... ... ... .. 40
Visualizacion de feeds usados en la instancia MISP . . . . . . . . . .. 54
Ejemplo de regla en el formato de Suricata. . . . . . . . . .. ... 57
Ejemplo de regla en el formato de Zeek. . . . . . . . .. ... ... .. 58

Funcién restSearch de Python para realizar una peticién a la API de
MISP. . . 62

Interfaz web de la instancia de MISP . . . . . . . . .. ... ... ... 71

Apartado del fichero kibana.yml donde se detalla la configuracién
automatica. . . . . ... L L L 80

Archivo suricata.yml. . . . . . . ..o 81

50



Anexos

51






Anexos A

Estudio de fuentes Open Source

MISP proporciona por defecto una amplia gama de feeds Open Source. Estos
feeds proceden de organizaciones, empresas e instituciones que ofrecen sus datos
de inteligencia de ciberamenazas de forma gratuita. Los colectivos son de diversas
procedencias y su informacién esta disenada para que adopte el formato correcto con
el objetivo ser importada nativamente hacia la instancia de MISP, en cualquiera de las
tres formas posibles (misp, csv o freetext). Esto facilita mucho la adquisicién de datos
por parte de la plataforma [17] [18].

Por otro lado, MISP permite la creacién personalizada de feeds por parte de
los usuarios. Esta funcionalidad permite indicar fuentes de datos personalizadas. Sin
embargo, se debe tener en cuenta que si el formato de los datos no es el correcto MISP
es incapaz de adquirir esa informacién en su base de datos. De manera andloga, a
través de la API de la plataforma podemos publicar nuestros propios eventos o incluso
atributos, de nuevo estructurando los datos de forma adecuada.

En base a las formas que MISP nos ofrece para adquirir los datos hacia su
plataforma, en este trabajo se realiza un estudio de todas las posibilidades de la ingesta
de datos y su repercusion en la plataforma.

Inicialmente, en la fase de desarrollo se activaron 7 fuentes de datos proporcionadas
por defecto por MISP, incluyendo los 3 formatos. Estos feeds ejecutan la operacién
fetch diariamente, descargando eventos nuevos hacia la instancia. Ademas, se incluy6
una fuente configurada de forma manual y una publicacién diaria de eventos en la
plataforma mediante un script y la API de MISP.

Las fuentes por defecto incluidas en el desarrollo se dividen en dos grupos, segiin la

naturaleza de los eventos que publican:

— Feeds diarios o normales: Esta clase de fuente se corresponde con el tipo
de formato misp. Se caracterizan por seguir un criterio a la hora de publicar sus
eventos. Por un lado, algunos siguen la regla de componer un evento con todos los

atributos que han encontrado durante un dia (periodicidad diaria) o simplemente

53



cuando descubren un incidente, agrupan todos los atributos relacionados con él
y confeccionan un evento. Es el caso de los feeds: CIRCL OSINT Feed, The
Botvrij.eu Data, Threatfox y URLhaus.

— Feeds con sélo un evento: Esta clase de fuente se corresponde con los formatos
csv y freetext. Se trata de feeds que al activarlas crean un unico evento que
se sobreescribe cada vez que se ejecuta la operacion de fecth. Esto se debe a
la simplicidad del formato. Suelen ser listas de valores de atributos, como, por
ejemplo, direcciones IP. Entre las usadas se encuentran: ip-block-list - snort.org,

Tor ALL nodes y Tor exit nodes.

=]
El

Enabled Caching Name Format Provider Org Source URL

01 v x CIRCL  misp  CIRCL network  https:/fwww circl lu/doc/misp/feed-osint
OSINT

Feed

]2 « X The misp Botvrij.eu network
Botvri].eu
Data

v botvrij eu/data/feed-osint

04 « x Torexit  csv TOR Node List from dan.me.uk - careful, this feed applies a lock-out after each pull. This is shared with the "Tor ALL nodes" feed. network  hitps:/www.dan.me. ukforlist/?exit

nodes

<
x

TorALL  csv TOR Node List from dan.me.uk - careful, this feed applies a lock-out after each pull. This is shared with the "Tor exit nodes" feed network v.dan.me.uk/torlist/

nodes

08 v X ip-block-  freetext https:i/snort.org network - https://snort.orgidownloads/ip-block-list
list -
snort.org

)& x Threatfox misp  abuse.ch network _https:/ithreatfox abuse chidownloads/misp/

[ 67 v x URLhaus misp  abusech network  https/urihaus. abuse.ch/downloads/misp/

Figura A.1: Visualizacién de feeds usados en la instancia MISP

Las fuentes introducidas manualmente se comportan de igual manera que alguno
de los dos grupos descritos anteriormente.

La publicacion de eventos mediante un script y la API de MISP se trata en la
secciéon 3.1.3: Configuracién y automatizacion.

Ya caracterizado y comprobado el funcionamiento de los feeds, una pregunta
interesante seria saber cual es el nimero idéneo de fuentes que deberiamos activar
en nuestro sistema. La respuesta varia dependiendo de las condiciones de la propia
infraestructura, su almacenamiento disponible y las politicas de rotacién de los datos.
Se debe tener en cuenta que conforme se activan mas fuentes, los datos crecen de manera
mas rapida en la base de datos. Consecuentemente, esto supone que la plataforma esté
mas enriquecida con datos, a pesar de que los IDS tendran que consumir més recursos
segun la informaciéon que les demos para detectar los IOCs. En conclusién, se trata de
buscar un compromiso entre la cantidad de informacién y la carga que supone para
nuestro sistema.

El dltimo punto a tener en cuenta en este aspecto es el almacenamiento que supone
la adquisicién de todos estos datos por parte de la maquina virtual en la que esta

alojada el servidor de MISP. La idea inicial del proyecto incluye la actualizacion diaria

o4



de la base de datos con eventos nuevos. Esto supone que si la base de datos crece de
forma diaria llegara a un punto en el que la base de datos esté llena. La MV dispone
de 140 GB de almacenamiento, lo que supone la limitacion mas importante en este

punto.

95



56



Anexos B

Formato de reglas

B.1. Suricata

Una parte interesante del desarrollo del proyecto es estudiar el formato que se
requiere para crear reglas personalizadas. Aunque la exportacion de reglas es directa
desde MISP, es necesario entender el formato de las reglas en Suricata, con el objetivo
de solventar errores que puedan surgir [15].

Se analiza el formato con un ejemplo concreto de una regla:

alert ip SHOME_NET any -> 117.213.40.35 any (msg: "MISP e2876 []
Outgoing To IP: 117.213.40.35"; classtype:trojan-activity; sid:275161231;
rev:1; priority:4; reference:url,http://192.168.153.4/events/view/2876;)

Figura B.1: Ejemplo de regla en el formato de Suricata.

En la Figura B.1 se describe el formato que tiene una regla en el NIDS Suricata.

La regla se puede fraccionar en 3 partes diferentes:

— Action: Define la accién a realizar cuando se detecta la regla (alert, drop, pass,

reject).
— Header: Parte principal de la regla. Se divide en:
e Protocol: Especifica el protocolo a nivel de red (ip), nivel de transporte (tcp,
udp, icmp) o nivel de aplicacién (http, ftp, tls, smb, dns).

e Source and Destination: Detalla las direcciones IP origen y destino. Existen

variedad de formas de indicar diercciones IP. Algunos ejemplos:

o 192.168.1.1: Direccién IP 192.168.1.1.
o 1[192.168.1.1]: Todas las direcciones menos 192.168.1.1.

57



o SHOME_NET: Utiliza la variable definida en el fichero de configuracién

suricata.yaml para definir la direccién IP.

o any: Cualquier direccién IP.

e Source and Destination ports: Detalla los puertos origen y destino. Existen

variedad de formas de indicar los puertos. Algunos ejemplos:

o 1[80, 83]: Todos los puertos menos 80 y 83.
o 1[80:83]: Todos los puertos menos del 80 hasta el 83.
o any: Cualquier puerto.
e Direction: Simplemente indica el sentido de deteccion de la regla. Puede ser

direccional o bidireccional.

— Rule options: Se especifican las configuraciones concretas para la implementacién
de la regla. Sigue el formato name:setting. Existe una gran variedad de opciones.
Algunos ejemplos de meta-keywords son:

e msg: Mensaje que se muestra en los logs al saltar la regla.

e classtype: Clasifica el tipo de amenaza que supone la regla. Existen unos

tipos definidos en la documentacion de la herramienta.
e sid: Identificador tnico asignado a la regla.
e rev: Version de la regla.
e priority: Prioridad asignada a la regla. Puede ser desde 1 hasta 255.

o reference:url: Indica la fuente de informacion desde la que se ha obtenido la

regla.

B.2. Zeek

Siguiendo en la linea de Suricata, Zeek posee un formato de reglas especifico de
para alimentar su Intelligence Framework [16]. El formato es mas sencillo, y se detalla

a continuacion mediante un ejemplo:

#fields indicator indicator_tvpe MmMEtaSOUrCE

1105181.com Intel::DOMAIN FarEatEax

Figura B.2: Ejemplo de regla en el formato de Zeek.

En la Figura B.2 se describe el formato que tiene una regla en el NIDS Zeek. La

regla se divide en 3 partes diferentes:

58



— Indicator: Valor del dato a detectar.

— Indicator_type: Describe el tipo de indicador que se utiliza, en este caso se trata
de un dominio. Otros ejemplos de indicadores son: Intel::URL, Intel::ADDR o
Intel::FILE_HASH.

— Meta.source: Breve descripcion del dato detectado y la fuente del que proviene.

Todas las separaciones entre campos deben estar tabuladas una vez. Ademds, al inicio
de cada fichero de datos se debe incluir la linea de cabecera.
Se permite ampliar el formato con mas campos, pero, a pesar de su simpleza, este

formato de reglas es efectivo.

59



60



Anexos C

Libreria Python Requests para su
uso en REST APIs

Las REST APIs son interfaces de comunicacién entre sistemas de informacion
(normalmente servicios web) que usan el protocolo HTTP para el transporte de los
datos. Los datos intercambiados suelen estar en formato json, aunque también pueden
estar en formato XML. Python es el lenguaje idéneo para interactuar con esta clase
de APIs. Existe una libreria disenada especificamente para realizar intercambios de
datos entre las REST APIs y Python. Esta libreria se denomina Requests y es de gran
utilidad en este proyecto para gestionar la instancia de MISP a través de su REST API
[19].

C.1. Estructura de la peticién

Cuando se quiere interactuar con la REST API, se necesita enviar una peticién.

La peticién tiene diferentes campos:

— Endpoint: Es la URL que indica los datos a los que se estd accediendo dentro de
la API.

— Method: Se indica en este campo como se va a interactuar con los datos. Los
métodos mas usados son:
e GET: Obtener datos de la API.
e POST: Crear datos en la APL.
e PUT: Reeemplazar datos en la API.
e DELETE: Borrar datos en la API.

— Data: Se involucra en los métodos que requieren cambiar datos en la API. Junto
con la peticién, se indican los datos que se quieren crear o con los que se quiere
reemplazar otros datos (POST, PUT).

61



— Headers: Cabecera que incluye los metadatos en la peticién. Se adjuntan en
este campo tokens de autenticacién, tipo de contenido que queremos recibir

(Content-type) u otros datos relevantes.

C.2. Respuesta

Cuando se realiza una peticiéon a la API, se obtiene una respuesta con el mismo
formato. Por lo tanto, la respuesta tendra una cabecera y contenido. El contenido
tendra los datos solicitados en el formato pedido. Normalmente, se utiliza el formato

json para esta clase de peticiones.

C.3. Caso de uso: MISP

Lo primero que se debe hacer para poder usar esta libreria es instalarla en el entorno
de Python e importarla en el cédigo. Una vez hecho esto, se accede a la API de MISP
para realizar una busqueda parametrizada de atributos. Para ello, se utiliza una funcién
llamada restSearch, contenida en el script functions.py. Esta funcion, realizara una
peticién a la API y recibira los datos solicitados para su consulta y procesado. En la

restsearch(r
endpoint = 1

data = {"re ormat™: n™ "1", "timestamp”: timestamp ,"type": type
json_data =

response = requests.post(endpoint, headers=headers, data=json data)

if response.status code == 200:
data = response.json()

data = response.content
print(data.decode())

else:

print('Error:', response.text)

Figura C.1: Funcion restSearch de Python para realizar una peticiéon a la API de MISP.

Figura C.1, se observa la funcion descrita. Los parametros de la funcién son: la URL de
la instancia privada de MISP (misp_url), la cabecera de la peticién(headers) y los dos
pardmetros de busqueda (type, timestamp). En este caso, se buscan atributos presentes
en la base de datos sean de un tipo de dato especifico y creados en un rango de tiempo

determinado.

62



Como se indica en la seccion de estructura de la peticion, creamos el endpoint con
la URL de nuestra instancia y anadiendo la URL especifica de la API para realizar
busquedas. Puesto que va a ser una solicitud POST, introducimos los datos para la
buisqueda y formato de los datos. Indicamos que el formato es json, buscando atributos
con el flag to_ids, de un tipo y en un rango de tiempo determinados. A continuaciéon se
realiza la peticion POST. Si la respuesta es correcta, se reciben los datos solicitados y
se decodifican para su uso. Si ocurre lo contrario, significa que ha habido un error.

Un ejemplo de datos recibidos se detalla a continuacion:

"Event":{"org_id":"1","distribution":"0","id":"2875","info":"Tor ALL
nodes feed","orgc_id":"1","uuid":"66692329-£565-49d9-a79b-
e2c3512f3a99"}},
{"id":"27143022","event_id":"2875","object_id":"0","object_relation":
null,"category":"Network activity","type":"ip-
dst","to_ids":true,"uuid":"ca77b1£3-ebb7-4bb1-alc2-

25ee29e2e927" ,"timestamp":"1693347607","distribution":"5","sharing_gr
oup_id":"0","comment":"","deleted":false,"disable_correlation":false,
"first_seen":null,"last_seen":null,"value":"116.80.79.95","Event":
{"org_id":"1","distribution":"0","id":"2875","info":"Tor ALL nodes
feed","orgc_id":"1","uuid":"66692329-f565-49d9-a79b-e2c3512f3a99"}},
{"id":"27143023","event_id":"2875","object_id":"0","object_relation":
null,"category":"Network activity","type":"ip-
dst","to_ids":true,"uuid":"b6a87d7f-df4b-48cc-98ac-
2f2ca3ee9d7a","timestamp":"1693347607","distribution":"5","sharing_gr
oup_id":"0","comment":"","deleted":false,"disable_correlation":false,
"first_seen":null,"last_seen":null,"value":"117.252.193.166","Event":
{"org_id":"1","distribution":"0","id":"2875","info":"Tor ALL nodes
feed","orgc_id":"1","uuid": "66692329-f565-49d9-a79b-e2c3512f3a99"}},
{"id":"27143025" ,"event_id":"2875","object_id":"0","object_relation":
null,"category":"Network activity","type":"ip-

dst","to_ids":true, "uuid":"fabb52250-6e09-4c10-9f14-
2ab6378£f7173","timestamp":"1693347607","distribution":"5","sharing_gr
oup_id":"0","comment":"","deleted":false,"disable_correlation":false,

"first_seen":null,"last_seen":null,"value":"129.80.239.117"

63



64



Anexos D

Uso de Crontab para la
automatizacion de tareas

El uso de Crontab es imprescindible para las tareas de automatizacién en el
proyecto. En este anexo, se detalla el funcionamiento de la herramienta, con sus
posibilidades de configuracién y ejemplos de uso [20].

Cron es una herramienta de gestién de tareas para sistemas Unix o similiar. El
daemon crond activa cron, que se ejecuta en segundo plano. Este proceso lee un fichero
llamado Crontab. En este archivo, utilizando la sintaxis adecuada, se pueden escribir
tareas para que cron las ejecute en una fecha y hora determinada, con posiblidad de
establecer periodicidad. De este modo, en cada uno de los procesos de automatizacion de
las plataformas, se utiliza esta herramienta para establecer periodicidad en la ejecucién
de tareas.

Para acceder al fichero Crontab, se utiliza el siguiente comando:
crontab -e

Una vez dentro, podemos editar el fichero para automatizar nuestras tareas.

D.1. Sintaxis

Se detalla un ejemplo de tarea cron:

* % * x x gsh /path/to/script/script.sh
| | | | | |

(I R Comando or Script a ejecutar

| | | | Dia de la semana (0-6)

65



| | | |

| | | Mes del afio (1-12)
| | |

| | Dia del mes(1-31)

| |

| Hora(0-23)

|

Minuto(0-59)

En el margen izquierdo se tienen 5 asteriscos. Estos se corresponden con los minutos,
horas, dias, meses y dias de la semana de la tarea respectivamente. Los asteriscos
indican para cada campo que la periodicidad para dicha variable es total. Por ejemplo,
un asterisco en el campo "hora” indica que la tarea se ejecuta cada hora. Si ponemos
un valor concreto, se indica que la tarea se ejecutard a esa hora precisa, de acuerdo con
los demas campos del cron.

En el margen derecho se describe la tarea a ejecutar, en este caso es la ejecucion de

un script en bash en la ruta especificada.

D.2. Casos de uso: automatizacion

En la instancia de MISP, se requiere exportar los archivos de reglas actualizados
diariamente. Para realizar la actualizacion de los ficheros de reglas se utiliza el script

export_I0Cs.py. Para que este codigo se ejecute diariamente, se utiliza una tarea cron:

# Exportacion de los IOCs como archivos de reglas

30 0 * * * sudo python3 /root/scripts/export_IOCs.py

Esta tarea cron indica que el codigo se ejecutara diariamente a las 00:30. Otro ejemplo
serfa la rotacién de IOCs mediante el script IOC_rotation.py. La tarea cron es la

siguiente:

# Rotacidén IOCs
1011,3,5,7,9,11 * sudo python3 /root/scripts/I0C_rotation.py

Esta tarea, seguin la sintaxis, se ejecutara a las 00:01 del dia 1 de los meses impares del

ano. Es decir, cada dos meses, el periodo de rotacion de IOCs establecido.

66



Anexos E

Instalacion de MISP

La instalacion de la plataforma MISP en un sistema operativo como Debian 11
supone un problema por temas de compatiblidad. Para instalar MISP se han seguido
los pasos de instalacién para una distribucién parecida como es Ubuntu [21]. Siguiendo
estos pasos, la instalacién ha sido limpia y el programa funciona correctamente.

El primer paso es instalar las dependencias mediante los siguientes comandos:

sudo apt update

sudo apt install postfix mailutils curl gcc git
gpg-agent make libcaca-dev libluab.3-dev \

python python3 openssl redis-server vim zip unzip
virtualenv libfuzzy-dev sqlite3 \

moreutils python3-dev python3-pip libxml2-dev
libxsltl-dev zliblg-dev \

python-setuptools openssl cmake

A continuacién, se crea un usuario para usar MISP y se instalan mas dependencias

necesarias como MariaDB o PHP:

sudo useradd -s /bin/bash -m -G adm,cdrom,sudo,dip,

plugdev,www-data,staff misp

sudo passwd misp
curl -LsS https://downloads.mariadb.com/MariaDB/mariadb_repo_setup

| sudo bash -s -- -—-mariadb-server-version=10.9

sudo apt install mariadb-client mariadb-server -y

apt install libapache2-mod-php php php-cli php-dev
php-json php-xml php-mysql php-opcache \
php-readline php-mbstring php-zip php-redis php-gnupg

67



php-intl php-bcmath php-gd php-curl

Se procede con la configuracién de la base de datos de MISP. Se crea un usuario y se

le otorgan permisos sobre la base de datos creada:

sudo systemctl start mariadb

sudo mysql_secure_installation

sudo mysql —u root -p —-e '"create database misp;"
sudo mysql —u root -p -e "grant all on misp.*

to mispadmin@localhost identified by ’MISP-DB-Password’;"

sudo mysql -u root -p -e "flush privileges;"
sudo -Hu www-data cat /var/www/MISP/INSTALL/MYSQL.sql

| mysql -u mispadmin -p misp

Seguimos con la instalacion de MISP. Se realiza mediante un clonado del repositorio

oficial de Github. Ademas, se configura Python para funcionar en el sistema:

sudo mkdir /var/www/MISP
sudo git clone https://github.com/MISP/MISP.git
/var/www/MISP/

sudo git -C /var/www/MISP/ submodule update

--progress --init --recursive

sudo chown -R www-data: /var/www/MISP
sudo -u www-data git -C /var/www/MISP submodule foreach --recursive

git config core.filemode false

sudo -u www-data git -C /var/www/MISP config core.filemode false
sudo -u www-data virtualenv -p python3 /var/www/MISP/venv

sudo mkdir /var/www/.cache/

sudo chown -R www-data: /var/www/.cache/

sudo -u www-data /var/www/MISP/venv/bin/pip

install ordered-set python-dateutil six weakrefmethod

sudo -u www-data /var/www/MISP/venv/bin/pip install
/var/www/MISP/app/files/scripts/misp-stix

68



sudo -u www-data /var/www/MISP/venv/bin/pip install
/var/www/MISP/PyMISP

Se instala CakePHP y se configura PHP para establecer el servidor web:

sudo mkdir -p /var/www/.composer

sudo chown -R www-data: /var/www/.composer

cd /var/www/MISP/app

sudo —-u www-data php composer.phar install --no-dev

sudo phpenmod redis

sudo phpenmod gnupg

sudo -u www-data cp -fa /var/www/MISP/INSTALL/setup/config.php
/var/www/MISP/app/Plugin/CakeResque/Config/config.php

Establecemos los permisos necesarios para los directorios de MISP:

sudo chown -R www-data: /var/www/MISP
sudo chmod -R 750 /var/www/MISP
sudo chmod -R gtws /var/www/MISP/app/tmp /var/www/MISP/app/files

Pasamos a configurar la instancia de MISP con sus ficheros de configuracion:

sudo -u www-data cp -a /var/www/MISP/app/Config/bootstrapi{.default,}.php
sudo -u www-data cp -a /var/www/MISP/app/Config/database{.default,}.php
sudo -u www-data cp -a /var/www/MISP/app/Config/core{.default,}.php

sudo -u www-data cp -a /var/www/MISP/app/Config/config{.default,}.php

Configuramos el archivo database.php con el siguiente comando:

sudo nano /var/www/MISP/app/Config/database.php

El archivo debe quedar de la siguiente forma:

class DATABASE_CONFIG {

public $default = array(

’datasource’ => ’Database/Mysql’,
//’datasource’ => ’Database/Postgres’,
’persistent’ => false,
’host’ => ’localhost’,

’login’ => ’mispadmin’,

’port’ => 3306, // MySQL & MariaDB

69



//’port’ => 5432, // PostgreSQL
’password’ => ’MISP-DB-Password’,
’database’ => ’misp’,

’prefix’ => 77,

’encoding’ => ’utf8’,

A continuacién, generamos la MISP GnuPG key:

sudo -u www—data gpg --homedir
/var/www/MISP/.gnupg --batch --gen-key
~/misp-gpg-batch-file

sudo -u www-data gpg --homedir /var/www/MISP/.gnupg --
export --—armor admin@kifarunix-demo.com \

| sudo -u www-data tee /var/www/MISP/app/webroot/gpg.asc
Configuramos los workers de la instancia:

sudo systemctl daemon-reload
sudo systemctl enable --now misp-workers

systemctl status misp-workers.service
Inicializamos la configuracion de MISP:

sudo -Hu www-data /var/www/MISP/app/Console/cake userInit -q
sudo -Hu www-data /var/www/MISP/app/Console/cake Admin runUpdates
sudo -Hu www-data /var/www/MISP/app/Console/cake Live 1

Configuramos el servidor web Apache para MISP:

sudo cp /var/www/MISP/INSTALL/apache.24.misp.ssl

/etc/apache2/sites-available/misp.conf

sudo nano /etc/apache2/sites-available/misp.conf

Actualizamos las lineas necesarias de este fichero para configurar correctamente la
instancia. En vez de un nombre, se puede definir una direccién IP en el ServerName.

Instalamos los certificados TLS:

70



sudo openssl req -newkey rsa:4096 -days 365 -nodes -x509 -
subj "/CN=x.kifarunix-demo.com" \

-keyout /etc/ssl/private/misp.local.key -out
/etc/ssl/private/misp.local.crt

Por 1ultimo, se reinicia el servidor:
sudo systemctl restart apache2

Llegados a este punto, ya somos capaces de acceder via web a la instancia de MISP

instalada, con una interfaz como la que se muestra en la Figura A.1.

MISP

Threat Sharing

Login

Email Password
|

Figura E.1: Interfaz web de la instancia de MISP

Lo siguiente que se debe hacer es configurar los usuarios que acceden a la instancia.

El resto de configuraciones se detallan en los capitulos de la memoria.

71



72



Anexos F

Instalaciéon de Suricata y Zeek

Para la instalacién de ambas herramientas, se recurre a las documentaciones oficiales
de cada uno de ellos [15],[16]. En estas pédginas, se detallan los pasos a seguir para
realizar una instalacién limpia de los NIDS. En este anexo tinicamente se incluyen las

instrucciones de instalacion, descrita la configuracién en el Capitulo 2 de la memoria.

F.1. Suricata

F.1.1. MYV Debian 11

La instalacion en la documentacion hace referencia al sistema operativo Ubuntu,
pero dada su similitud con Debian 11, la instalacién es compatible con el sistema. Se

comienza instalando los paquetes necesarios:

sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt update

sudo apt install suricata jq
Para comprobar la version, se utilizan los comandos:

sudo suricata --build-info

sudo systemctl status suricata

F.1.2. Raspberry Pi 4

Para el caso de la Raspberry Pi 4, la instalacion es ligeramente diferente[22]. Se

comienza instalando las dependencias necesarias en el dispositivo:

sudo apt install libpcre3d libpcre3-dbg libpcre3-dev build-essential libpcap-
dev libyaml-0-2 libyaml-dev pkg-config zliblg zliblg-dev make libmagic-dev
libjansson-dev rustc cargo python-yaml python3-yaml libluab.l-dev

73



Se obtiene el codigo de Suricata y lo descomprimimos:

wget https://www.openinfosecfoundation.org/download/suricata-6.0.1.tar.gz

tar -xvf suricata-6.0.1.tar.gz
Desde la carpeta se configura la instalacion:

cd $HOME/suricata-6.0.1/
./configure --prefix=/usr --sysconfdir=/etc --localstatedir=/var --enable-

nfqueue --enable-lua
Una vez hecho esto, se procede finalmente con la instalacion:

make
sudo make install
cd $HOME/suricata-6.0.1/

sudo make install-full

F.2. Zeek

F.2.1. MYV Debian 11

Se sigue la documentacion para la instalacién en el caso del sistema operativo

utilizado. Se realiza el proceso mediante el paquete binario:

echo ’deb http://download.opensuse.org/repositories/security:/zeek/Debian_11/

/’ | sudo tee /etc/apt/sources.list.d/security:zeek.list

curl -fsSL
https://download.opensuse.org/repositories/security:zeek/Debian_11/Release.key
| gpg --dearmor | sudo tee /etc/apt/trusted.gpg.d/security_zeek.gpg >
/dev/null

sudo apt update

sudo apt install zeek
Una vez instalado, se debe ajustar la ruta del entorno:

export PATH=/opt/zeek/bin:$PATH

74



F.2.2. Raspberry Pi 4

Para la instalacion de Zeek en el dispositivo, se instala el paquete directamente:
dpkg -1 zeek_5.1.1_armhf.deb

Se instalan las dependencias necesarias para instalar af-packet y se termina con la

instalacién:

apt install python3-venv python3-pip

pip3 install GitPython semantic-version --user
export PATH=/usr/local/zeek/bin:$PATH

zeekctl stop

zkg autoconfig

apt-get install raspberrypi-kernel-headers

zkg install zeek/zeek/zeek-af_packet-plugin

75



76



Anexos G

Instalaciéon y configuraciéon de
Elastic Stack

G.1. Instalacion

Se detalla la instalacion de las herramientas utilizadas en el proyecto, pertenecientes
al producto Flastic Stack. En este caso, se trata de las instalaciones de Elasticsearch,
Kibana y Filebeat [23]. Tanto en el sistema operativo Debian 11 como en la Raspberry

Pi 4, la instalaciéon de estos paquetes es idéntica.

G.1.1. Elasticsearch

Utilizamos el paquete Debian para la instalacion en ambos casos. En primer lugar,

se importa la clave PGP del paquete:

wget -q0 - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo gpg --

dearmor -o /usr/share/keyrings/elasticsearch-keyring.gpg
A continuacién se instala a través del repositotio de APT:

sudo apt-get install apt-transport-https

echo "deb [signed-by=/usr/share/keyrings/elasticsearch-keyring.gpgl
https://artifacts.elastic.co/packages/8.x/apt stable main" | sudo tee
/etc/apt/sources.list.d/elastic-8.x.list

Por 1ultimo, se procede a la instalacién de paquete Debian:
sudo apt-get update && sudo apt-get install elasticsearch

Para hacerlo de forma manual, se ejecutan los siguientes comandos (utilizados en la

Raspberry Pi 4:

7



wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-
8.9.1-amd64.deb
wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-

8.9.1-amd64.deb.shab12

shasum -a 512 -c elasticsearch-8.9.1-amd64.deb.shab12
sudo dpkg -1 elasticsearch-8.9.1-amd64.deb

G.1.2. Kibana

De la misma forma que en la seccién anterior, se instala Kibana. Los comandos

anteriores, al haber sido ejecutados anteriormente, no hace falta su reejecucion:
sudo apt-get update && sudo apt-get install kibana
De forma manual(Raspberry Pi 4):

wget https://artifacts.elastic.co/downloads/kibana/kibana-8.9.1-amd64.deb
shasum -a 512 kibana-8.9.1-amd64.deb
sudo dpkg -i kibana-8.9.1-amd64.deb

G.1.3. Filebeat

Esta instalacion se realiza en una maquina distinta en el escenario de MVs. En la

Raspberry se hace de la misma forma. La instalacion se realiza con el paquete Debian:

curl -L -0 https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-
8.9.1-amd64.deb

sudo dpkg -i filebeat-8.9.1-amd64.deb

G.2. Configuracién y automatizacién

Con el fin de configurar la infraestructura correctamente, se sigue un orden concreto
en la puesta a punto de cada herramienta. Se empieza con FElasticsearch, después Kibana

y por ultimo se configura Filebeat.

Elasticsearch

Esta herramienta se instala y configura en la MV de Elastic Stack, dado que se
encargara de la recepcion de los datos, ademas del posterior andlisis y busqueda de los

mismos. Como cada elemento en el sistema, Elasticsearch contiene sus configuraciones

78



en un fichero YAML: elasticsearch.yml. Para vincular la direccién IP a la herramienta,

se utiliza la linea en el fichero:

network.bind_host: ["127.0.0.1", "yourprivateip"]

Donde "yourprivateip” se sustituye por la IP privada del equipo. La otra direccién es
de loopback.

Al final del fichero de configuracién, se anaden un par de lineas extra:

discovery.type: single-node

xpack.security.enabled: true

En el discovery.type indicamos que el modo de funcionamiento incluye un nodo tnico
(no usamos un clister). En la siguiente linea, activamos zpack, un paquete que
proporciona una capa de seguridad extra al programa.

Con este par de configuraciones sencillas, Elasticsearch estd listo para funcionar.

Para iniciarlo se utiliza:
systemctl start elasticsearch.service

Por defecto, esta herramienta intercambia su trafico a través del puerto 9200.

Kibana

El siguiente paso, es la configuracion de Kibana. Este software se ejecutara en la
MYV de Elastic Stack, en paralelo con FElasticsearch. El objetivo de la configuracién sera
conectar ambas herramientas a través de protocolos seguros. Durante la instalacién
de Elasticsearch, se genera una Kibana enrollment-token, utilizado por Kibana para
conectarse al nodo donde se ejecuta FElasticsearch. De este modo, con FElasticsearch

iniciado, arrancamos Kibana e introducimos el siguiente comando:
bin/kibana-setup --enrollment-token <enrollment-token>

Donde enrollment-token se sustituye por el token en cuestion. Asi, conseguimos
que, automaticamente, se produzcan las configuraciones de seguridad entre ambos
programas.

De nuevo, existe un fichero denominado kibana.yml donde se recogen las
configuraciones a implementar. Tras ejecutar el comando detallado anteriormente, se
anaden unas lineas a este fichero de forma automatica, como se muestra en la Figura
G.1.

Por 1ltimo, a este fichero se anade la siguiente linea:

79



# This section was automatically generated during setup.
elasticsearch.hosts: ['https://192.168.153.3:9200" ]

elasticsearch.serviceAccountToken: )
elasticsearch.ssl.certificateAuthorities: [/var/lib/kibana/ca 1691838662111.crt]
xpack.fleet.outputs: [{1d: fleet-default-output, name: default, is default: true

Figura G.1: Apartado del fichero kibana.yml donde se detalla la configuracion
automatica.

server.host: "yourprivateip"

Donde "yourprivateip” se sustituye por la IP privada de la MV donde se ejecuta el
software.

En estas condiciones ya se puede iniciar Kibana, que creara un servidor web al que
se puede acceder desde el navegador, indicando la direccion IP y el puerto 5601. Para

inicializar el servicio:

systemctl start kibana.service

Filebeat

Filebeat se instala en las maquinas donde se generan los logs a analizar. En este
proyecto, seran la MV de Zeek/Suricata en el entorno de MVs y la Raspberry Pi 4 en el
entorno doméstico. Esta herramienta se conecta a FElasticsearch para enviarle los logs
generados por los NIDS, que a su vez son exportados a Kibana para su visualizacién.

Tras la instalacion, se genera el archivo de configuracion filebeat.yml. Lo editamos
para configurar la conexién con el servidor de Elasticsearch y Kibana.

La primera configuracion del fichero es la conexion con el servidor de Kibana. Para

ello, anadimos la siguiente linea en el fichero:
host: "yourprivateip:5601"

Donde ”yourprivateip” indica la direccién [P donde se encuentra instalado la
herramienta Kibana.
A continuacién, se configura la conexion con FElasticsearch. Para ello, en la parte

del archivo que corresponde, se deben anadir las siguientes lineas:

hosts: ["https://yourprivateip:9200"]
username: "elastic"

IIXXXH

password:
ssl:
enabled: true

ca_trusted_fingerprint: "xxx"

80



Donde "yourprivateip” es la IP donde se encuentra la herramienta, password es la
contrasena creada durante la instalacion y ca_trusted_fingerprint es el certificado SSL!
para la autenticidad y cifrado de los datos.

Por tltimo, se anaden los moédulos correspondientes a los NIDS para que Filebeat
extriaga sus logs y los exporte hacia Flasticsearch. Para activar los modulos se ejecutan

los comandos:

filebeat modules enable suricata

filebeat modules enable zeek

Una vez hecho esto, se crean unos ficheros de configuracion, a los cuales podemos
acceder para indicarle al programa cuales son los logs que se quieren exportar. Estos
archivos son suricata.yml y zeek.yml. En estos archivos, se indican las rutas de los
ficheros de logs que queremos exportar. En este trabajo, se busca exportar en formato
gson (por simplicidad en el procesado en FElasticsearch) los ficheros eve.json e intel.log.

En la figura G.2 se ilustra la estructura del fichero suricata.ymdl.

elastic.co/guide/en/beats/filebeat/main/filebeat-module-suricata.html

- module: suricata
# ALl logs

aths for the log files. If left empty,
choose the paths depending on your 0S.

Figura G.2: Archivo suricata.yml.

El fichero zeek.yml tiene una estructura similar, pero con posiblidad de activar todos
los logs de los que dispone el programa. En este caso solo se activa intel.log.

De esta forma, se da por terminada la configuracion de la infraestructura Flastic
Stack. Filebeat recoge los logs y se los envia a Elasticsearch. Este los procesa y Kibana

utiliza esa informacién para visualizarlo en formato de sus dashboards.

1SSL: Secure Socket Layer. Protocolo de seguridad que ofrece privacidad, autenticacién e integridad
a las comunicaciones en Internet

81



82



Anexos H

Cdédigo, repositorio de Github

En el repositorio de Github [24], sigue en funcionamiento la automatizacién de
MISP, pudiendo acceder a los ficheros de reglas actualizados diariamente. Por otro
lado, en el repositorio se encuentran todos los scripts utilizados durante el desarrollo,

disponible para aquellos interesados en el proyecto.

83



	Lista de Acrónimos
	Introducción
	Contexto y motivación
	Objetivos
	Herramientas
	Estructura y organización de la memoria

	Escenarios de trabajo y configuración
	Escenario de red con MVs
	Escenario de red domiciliario

	Desarrollo y despliegue
	MISP
	Introducción
	Arquitectura de la información
	Ciclo de vida de un IOC
	Configuración y automatización

	Almacenamiento de ficheros de reglas
	Suricata como NIDS
	Introducción
	Configuración y automatización

	Zeek como NIDS
	Introducción
	Configuración y automatización

	Elastic Stack

	Pruebas y análisis de los resultados
	Escenario de red con MVs
	Detección de intrusos de red
	Visualización de datos

	Escenario de red domiciliario
	Detección de intrusos de red
	Visualización de datos


	Conclusiones y líneas futuras
	Conclusiones
	Líneas futuras

	Bibliografía
	Lista de Figuras
	Anexos
	Estudio de fuentes Open Source
	Formato de reglas
	Suricata
	Zeek

	Librería Python Requests para su uso en REST APIs
	Estructura de la petición
	Respuesta
	Caso de uso: MISP

	Uso de Crontab para la automatización de tareas
	Sintaxis
	Casos de uso: automatización

	Instalación de MISP
	Instalación de Suricata y Zeek
	Suricata
	MV Debian 11
	Raspberry Pi 4

	Zeek
	MV Debian 11
	Raspberry Pi 4


	Instalación y configuración de Elastic Stack
	Instalación
	Elasticsearch
	Kibana
	Filebeat

	Configuración y automatización

	Código, repositorio de Github

