
Trabajo Fin de Grado

Diseño e implementación de un sistema centralizado
de gestión de Indicadores de Compromiso para su

exportación a detectores de intrusos de red

Design and implementation of a centralized
Management System for Indicators of Compromise
and their export to Network Intrusion Detectors

Autor

Alberto Inés Medina

Director

Álvaro Alesanco Iglesias

Ingenieŕıa de Tecnoloǵıas y Servicios de Telecomunicación

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2023

Abstract

En una era digital creciente en complejidad y en constante evolución, este trabajo

supone una contribución más al fortalecimiento de la ciberseguridad, aportando una

solución en materia de detección de ciberamenazas en entornos de red. En este contexto,

se desarrolla una infraestructura automatizada conformada por distintos sistemas

independientes que, en conjunto, resuelven la necesidad de detectar incidentes de

seguridad en entornos de red domiciliarios y pequeñas y medianas empresas.

El sistema implementado utiliza los Indicadores de Compromiso (IOCs), que son

la unidad básica de información que describe un incidente de seguridad. Con estos

IOCs, se crean reglas de detección para posteriormente crear ficheros con dichas reglas

y exportarlos hacia detectores de intrusos de red (NIDS). Los NIDS se encargan de leer

los ficheros de reglas para realizar la tarea de detección de conexiones maliciosas en

equipos y redes. Se seleccionan dos NIDS de código abierto ampliamente reconocidos:

Suricata y Zeek. Además se necesita de un plataforma de gestión y exportación de

IOCs hacia los detectores de intrusos. Se elige MISP, un software de código abierto

que permite la importación de IOCs desde diferentes fuentes Open Source, además de

su almacenamiento en una base de datos y exportación en el formato correcto hacia

los NIDS. Por último, se centralizan los logs (alertas) generados por los detectores

en una solución de código abierto, Elastic Stack, con el objetivo de visualizar dicha

información. El sistema se pondrá a prueba en un entorno de red doméstico real, con

el fin de analizar todo el tráfico de la red y detectar posibles ciberamenazas.

Abstract

In an increasingly complex and ever-evolving digital era, this work represents another

contribution to strengthening cybersecurity by providing a solution for detecting

cyber-threats on network enviroments. In this context, an automated infrastructure

composed of various independent systems is developed, which together address the need

to detect security incidents in home network environments and small to medium-sized

businesses.

The implemented system uses Indicators of Compromise (IOCs), which are the basic

unit of information that describes a security incident. With these IOCs, detection rules

are created to subsequently generate files containing these rules and export them to

Network Intrusion Detection Systems (NIDS). NIDS are responsible for reading the

rule files to perform the task of detecting malicious connections on computers and

networks. Two widely recognized open-source NIDS are selected: Suricata and Zeek.

Additionally, a platform for managing and exporting IOCs to the intrusion detectors

is required. MISP is chosen, an open-source software that allows the import of IOCs

from various Open Source sources, as well as their storage in a database and proper

format export to the NIDS. Finally, the logs (alerts) generated by the detectors are

centralized in an open-source solution, Elastic Stack, for the purpose of visualizing this

information. The system will be tested in a real home network environment to analyze

all network traffic and detect potential cyber threats.

Índice

Lista de Acrónimos V

1. Introducción 1

1.1. Contexto y motivación . 1

1.2. Objetivos . 2

1.3. Herramientas . 3

1.4. Estructura y organización de la memoria 5

2. Escenarios de trabajo y configuración 7

2.1. Escenario de red con MVs . 7

2.2. Escenario de red domiciliario . 8

3. Desarrollo y despliegue 11

3.1. MISP . 11

3.1.1. Introducción . 11

3.1.2. Arquitectura de la información 12

3.1.3. Ciclo de vida de un IOC . 14

3.1.4. Configuración y automatización 16

3.2. Almacenamiento de ficheros de reglas 23

3.3. Suricata como NIDS . 25

3.3.1. Introducción . 25

3.3.2. Configuración y automatización 26

3.4. Zeek como NIDS . 28

3.4.1. Introducción . 28

3.4.2. Configuración y automatización 30

3.5. Elastic Stack . 32

4. Pruebas y análisis de los resultados 35

4.1. Escenario de red con MVs . 35

4.1.1. Detección de intrusos de red . 35

I

4.1.2. Visualización de datos . 36

4.2. Escenario de red domiciliario . 38

4.2.1. Detección de intrusos de red . 39

4.2.2. Visualización de datos . 39

5. Conclusiones y ĺıneas futuras 41

5.1. Conclusiones . 41

5.2. Ĺıneas futuras . 43

6. Bibliograf́ıa 45

Lista de Figuras 49

Anexos 51

A. Estudio de fuentes Open Source 53

B. Formato de reglas 57

B.1. Suricata . 57

B.2. Zeek . 58

C. Libreŕıa Python Requests para su uso en REST APIs 61

C.1. Estructura de la petición . 61

C.2. Respuesta . 62

C.3. Caso de uso: MISP . 62

D. Uso de Crontab para la automatización de tareas 65

D.1. Sintaxis . 65

D.2. Casos de uso: automatización . 66

E. Instalación de MISP 67

F. Instalación de Suricata y Zeek 73

F.1. Suricata . 73

F.1.1. MV Debian 11 . 73

F.1.2. Raspberry Pi 4 . 73

F.2. Zeek . 74

F.2.1. MV Debian 11 . 74

F.2.2. Raspberry Pi 4 . 75

II

G. Instalación y configuración de Elastic Stack 77

G.1. Instalación . 77

G.1.1. Elasticsearch . 77

G.1.2. Kibana . 78

G.1.3. Filebeat . 78

G.2. Configuración y automatización . 78

H. Código, repositorio de Github 83

III

IV

Lista de acrónimos

IOC: Indicator of Compromise

IDS: Intrusion Detection System

NIDS: Network Intrusion Detection System

MISP: Malware Information Sharing Platform

MV: Máquina Virtual

VPN: Virtual Private Network

NAT: Network Address Translation

SSH: Secure Shell

API: Application Programming Interface

HTTP: Hypertext Transfer Protocol

SSL: Secure Socket Layer

TLS: Transport Layer Security

V

VI

Caṕıtulo 1

Introducción

1.1. Contexto y motivación

Según informa El Páıs [1], el Instituto Nacional de Ciberseguridad (INCIBE)

gestionó 118,820 incidentes relacionados con la seguridad en la red durante 2022, lo

que representó un aumento del 8.8% en comparación con 2021. Expertos en la materia

sostienen que esta cifra continuará en aumento en los años venideros.

En la actualidad, existen diversas instituciones, organismos y empresas, tanto

públicas (CERT, CCN-CERT, ENISA, NIST) como privadas (VirusTotal, Fortinet),

cuyo propósito es proporcionar una respuesta frente a incidentes en el ámbito de la

ciberseguridad. Estas entidades colaboran para establecer estándares, certificaciones

y marcos de referencia comunes, con el objetivo de asegurar una protección efectiva

contra ciberataques.

De acuerdo con el Instituto Nacional de Estándares y Tecnoloǵıa (NIST) [2], la

respuesta ante incidentes se divide en cuatro fases: preparación y prevención; detección

y análisis; contención, erradicación y recuperación; y actividad posterior al incidente.

El concepto central del proyecto surge como aplicación directa de la segunda fase,

concentrándose en la subfase de detección. En esta etapa surge la idea de utilizar

IDSs1 como herramientas esenciales para el rastreo de ciberamenazas. Se seleccionan

dos IDS de código abierto ampliamente reconocidos: Suricata [3] y Zeek [4]. Ambos

programas pertenecen a la categoŕıa de detectores de intrusos de red, conocidos como

NIDS (Network Intrusion Detection System). Estas herramientas tienen la capacidad

de detectar tráfico de red malicioso, pero requieren información precisa para llevar a

cabo su función. Para ello, se utilizan los Indicadores de Compromiso (IOCs) [5], que

son la unidad básica de información que describe un incidente de ciberseguridad. Los

Indicadores de Compromiso abarcan desde direcciones IP hasta patrones de ejecución

1IDS: Intrusion Detection System. Software de seguridad cuya función es detectar accesos no
autorizados en sistemas o redes de computadores y generar algún tipo de alerta hacia el administrador
del sistema o red.

1

de comandos, por lo que carecen de una estructura definida.

Los IOCs se utilizan como base para crear reglas, que a su vez alimentarán a los

IDSs. Por tanto, es necesario contar con una herramienta que centralice la gestión

de estos IOCs y exporte las reglas de detección en el formato adecuado para los IDS

seleccionados. La plataforma MISP [6] proporciona las capacidades necesarias para

gestionar eficientemente los IOCs y exportar las reglas a los IDS escogidos. Además,

con el objetivo de facilitar la administración del sistema, se propone almacenar toda la

información generada (alertas, registros, etc.) por los NIDS en una plataforma para su

posterior consulta y análisis. Para esta tarea, se ha optado por el uso de Elastic Stack

[7], una solución de código abierto.

1.2. Objetivos

El objetivo final del proyecto es el despliegue de un sistema de gestión de Indicadores

de Compromiso automatizado para alimentar sistemas de detección de intrusos en

entornos domiciliarios o en pequeñas y medianas empresas [8]. El sistema se actualizará

diariamente con IOCs provenientes de diversas fuentes públicas, centralizados en la

plataforma MISP. Desde MISP, se exportarán a su vez diariamente como reglas a los

detectores de intrusos Suricata y Zeek. La información generada por estos detectores

se centralizará en Elastic Stack.

En cuanto a objetivos espećıficos, se encuentran los siguientes:

− Administración de sistemas GNU/Linux en red basados en la distribución Debian

mediante el uso de máquinas virtuales (MVs).

− Estudio, configuración e implementación de la plataforma MISP en una máquina

virtual.

− Estudio y elección de fuentes de datos Open Source para alimentar la plataforma

MISP.

− Análisis y procesado de datos para su posterior exportación hacia detectores de

intrusos de red.

− Estudio, configuración y despliegue de los detectores de intrusos Suricata y Zeek

para el análisis de los datos procedentes de la plataforma MISP.

− Estudio, configuración e implementación del software Elastic Stack para recoger

las alertas generadas por los IDS y visualizarlas de forma eficiente.

− Despliegue y pruebas de la infraestructura en un entorno con máquinas virtuales.

2

− Estudio y configuración del hardware Raspberry Pi 4 como analizador de tráfico

en una red domiciliaria real.

− Despliegue y pruebas de la infraestructura en un entorno domiciliario real

mediante una Raspberry Pi 4.

Con este Trabajo Fin de Grado, se pretende contribuir al fortalecimiento de la

ciberseguridad mediante el desarrollo de una solución práctica y efectiva, mejorando

aśı la capacidad de detección y respuesta ante posibles incidentes de seguridad. Esto

ayuda a proteger la integridad y confidencialidad de la información en un entorno

digital en constante evolución y creciente complejidad.

1.3. Herramientas

Los recursos y herramientas utilizados durante el desarrollo del proyecto se dividen

en recursos hardware y recursos software.

− Recursos hardware:

• Ordenador personal: Ordenador utilizado para la gestión de cada uno

de los recursos software de forma sencilla mediante conexiones Secure Shell

(SSH).

• Servidor privado Unizar: Para acceder desde un ordenador personal, se

debe realizar una conexión por VPN2

• Raspberry Pi 4: Computador básico con sistema operativo de código

abierto (Raspbian) utilizado para la realización de pruebas de detección en

redes domésticas. El dispositivo cuenta con un puerto Ethernet de 1Gbps

de ancho de banda además de una tarjeta de red Wifi.

− Recursos software: Se hace uso de máquinas virtuales Debian (versión 11),

alojadas en un servidor privado de la Universidad de Zaragoza. Se accede a cada

una de ellas mediante conexiones SSH.

• Máquina virtual MISP: Máquina virtual donde se instala el software

de código abierto MISP para la gestión centralizada de Indicadores de

Compromiso. Esta máquina posee un almacenamiento superior a las demás

(140 GB), puesto que debe manejar grandes volúmenes de IOCs y datos

relacionados.
2VPN: Virtual Private Network. Tecnoloǵıa de red que permite establecer una conexión encriptada

y segura entre dos equipos a través de una red pública como Internet, garantizando la privacidad y la
integridad de los datos.

3

• Máquina virtual Zeek/Suricata: Máquina virtual donde se instalan los

NIDS Suricata y Zeek para realizar la tarea de detección de ciberamenazas

en la red y generación de alertas.

• Máquina virtual Elastic Stack: Máquina virtual donde se instala el

software de código abierto Elastic Stack para visualizar toda la información

proporcionada por los NIDS. Dado que Elastic Stack requiere de recursos

RAM, este máquina posee 8 GB, a diferencia de las demás que tienen la

mitad.

• Malware Information Sharing Platform (MISP): Plataforma software

de código abierto para almacenar y compartir información de ciberamenazas

(Threat Intelligence). Se usará para obtener la información desde fuentes

Open Source y se almacenará en la base de datos ya estructurada que

proporciona el propio MISP, para posterioremente exportar la información

relevante hacia los NIDS. Dispone de fácil acceso y gestión de los datos a

través de una API3.

• Suricata y Zeek: Detectores de intrusos de red de código abierto

ampliamente utilizado por organizaciones tanto públicas como privadas. En

ambos casos, la detección de tráfico malicioso se realiza a través de reglas

personalizadas. Estas reglas poseen un formato espećıfico en cada caso.

• Elastic Stack: Conjunto de herramientas de código abierto que permiten

el env́ıo (Filebeat), almacenamiento (Elasticsearch) y visualización (Kibana)

de los registros del un sistema. En este caso, se utiliza para visualizar los

eventos y alertas que generan los NIDS.

• Python: Lenguaje de programación utilizado para la administración y

automatización de la plataforma MISP mediante la creación de scripts y

peticiones a la API.

◦ Requests : Libreŕıa de Python utilizada para la gestión de petciones a la

API de MISP.

• Bash: Intérprete de comandos en sistemas Unix y Linux que permite a los

usuarios interactuar con el sistema operativo mediante comandos de texto.

Se utiliza para la automatización de tareas mediante la creación de scripts.

Todos estos recursos conforman el escenario de trabajo, descrito en el siguiente

caṕıtulo.

3API: Application Programming Interface. Conjunto de reglas y protocolos que permite que
diferentes aplicaciones y sistemas se comuniquen entre śı y compartan datos o funcionalidades de
manera estructurada y segura.

4

1.4. Estructura y organización de la memoria

La memoria de este proyecto sigue en orden cronológico las tareas llevadas a cabo

durante el mismo. En esta sección se describe de manera visual cada una de los

apartados descritos en el trabajo:

− Caṕıtulo 1: Introducción. Se describe a grandes rasgos el contexto y la

motivación del proyecto, además de sus objetivos generales y los materiales y

herramientas utilizadas. Por último, se presenta la estructura de la memoria para

un fácil seguimiento de la misma.

− Caṕıtulo 2: Escenarios de trabajo y configuración. En este caṕıtulo se

describen los dos escenarios utilizados para llevar a cabo el desarrollo. Se presenta

un escenario con MVs un escenario domiciliario real.

− Caṕıtulo 3: Desarrollo y despliegue. Se introducen todas la herramientas

utilizadas en la infraestructura de la solución, aśı como las configuraciones

llevadas a cabo para su implementación. Es el caṕıtulo central de la memoria.

− Caṕıtulo 4: Pruebas y análisis de los resultados. Tras la implementación

de la solución completa, se realizan pruebas para verificar su funcionamiento

y se discuten los resultados obtenidos. Los tests se reparten entre los distintos

escenarios explicados en el Caṕıtulo 2.

− Caṕıtulo 5: Conclusiones y ĺıneas futuras. Último caṕıtulo de la memoria

en el que se detallan las conclusiones finales tras la realización del trabajo. A

continuación, se explican las futuras ĺıneas de trabajo que se podŕıan seguir para

seguir mejorando el sistema.

5

6

Caṕıtulo 2

Escenarios de trabajo y
configuración

Durante el desarrollo del proyecto, se han utilizado dos escenarios diferentes. En

primer lugar, se emplea únicamente el entorno de red conformado por MVs. Una vez

configurado el sistema y verificado su funcionamiento a través de pruebas, en la etapa

final del proyecto se configura y se pone en funcionamiento el sistema en un entorno

domiciliario real.

2.1. Escenario de red con MVs

Dadas las herramientas explicadas en el Caṕıtulo 1, se establece el escenario de red

conformado por MVs.

Figura 2.1: Escenario de red con MVs

7

Como se ilustra en la Figura 2.1, este entorno se compone de dos elementos

claramente diferenciados: la red doméstica y el servidor privado de la Universidad

de Zaragoza, los cuales se conectan mediante una VPN.

La red doméstica se compone únicamente de un ordenador personal y el router de

acceso a Internet. Esta porción del entorno, aunque no relevante por śı misma, resulta

esencial para el acceso al servidor a través de la VPN y a las MVs mediante conexiones

SSH.

El servidor privado tiene en su primera capa un Firewall Mikrotik que lo protege

de accesos indeseados. Este firewall cuenta con la terminación de túneles L2TP-IPsec

para el establecimiento de túneles desde el exterior. Una vez creado el túnel entre el

servidor y el ordenador personal del usuario, este último se encuentra virtualmente

conectado a la interfaz interior del firewall. Desde esa posición en la red interna, se

inician conexiones SSH a través del firewall personal. Dependiendo del puerto indicado

en el protocolo TCP, el firewall hace una traducción de direcciones NAT para establecer

la conexión con la máquina correspondiente.

En consecuencia, a nivel de redes en el servidor, se establecen dos redes distintas.

Por un lado, existe una red principal en la que están conectados el firewall del servidor

y virtualmente el ordenador personal. Por otro lado, se localiza una red conformada por

la interfaz interior del firewall personal y las máquinas virtuales en las que se llevarán

a cabo las operaciones.

2.2. Escenario de red domiciliario

Con el fin de abordar con precisión el análisis del sistema en un contexto real, se

implementa una configuración que difiere del entorno de desarrollo original. En esta

configuración, se continúa haciendo uso de un servidor privado, aunque se introduce

una capa adicional de abstracción. Esta capa de abstracción hace ’invisible’ al servidor

privado en este escenario y únicamente es necesario analizar la red doméstica, tal y

como se muestra en la Figura 2.2.

Una red domiciliaria convencional consta de un router de acceso a Internet y los

dispositivos domésticos que se conectan a dicho router, como pueden ser smartphones,

smart TVs, tablets, videoconsolas o electrodomésticos con acceso a Internet. Algunos

de los dispositvos se conectan mediante puertos Ethernet al router, aunque la gran

mayoŕıa utiliza la interfaz WiFi para llevar a cabo la conexión.

Para poder aplicar nuestro sistema a un entorno doméstico real, se debe monitorizar

todo el tráfico que pasa por él. De este modo, se estudia cuál es la manera adecuada

para monitorizar todo el tráfico que llega a la interfaz interna del router. En este

8

Figura 2.2: Escenario de red domiciliario

contexto, la primera idea que surge es activar el port mirroring en uno de los puertos

del router. De esta forma, todo el tráfico procesado por el router seŕıa reenviado al

puerto habilitado con esta funcionalidad y solo se necesitaŕıa un dispositivo conectado

a dicho puerto que fuera capaz de visualizar ese flujo de información. Sin embargo,

esta opción se descarta debido a que los routers instalados en las redes domésticas no

cuentan con esta capacidad.

Aśı, aparece la idea de emplear una Raspberry Pi 4. Con este dispositivo y a través

de un script denominado spoof.py ejecutado en conjunto con los detectores de intrusos

de red, será posible supervisar y detectar tráfico malicioso en la red doméstica. Desde

la Raspberry Pi 4, se lanza el script que actuará en la red doméstica realizando un

ataque de Man in the Middle (MiTM). De acuerdo con esto, todos los dispositivos

de la red mandarán su tráfico a la Raspberry Pi 4 (’creyendo’ que este dispositivo es

el enrutador) y esta a su vez lo reenviará al router. De la misma manera, el router

reenviará el tráfico procedente del exterior hacia la Raspberry Pi 4, ’creyendo’ que es

el dispositivo destinatario, y esta lo enviará a su destino real dentro de la red.

Una vez puesta en marcha esta funcionalidad, únicamente será necesario activar

los NIDS: Suricata y Zeek. Estos detectores monitorizarán todo el tráfico de la red

doméstica en tiempo real y generarán alertas a través de logs si algún parámetro de las

conexiones de los dispositivos de la red coincide con alguna de las reglas personalizadas

que tendrá cada NIDS.

Un concepto a tener en cuenta en el análisis de los resultados es la tolerancia a

9

pérdidas que tiene la arquitectura desarrollada. La Raspberry Pi 4 tiene una capacidad

de cómputo suficiente en su procesador (4 núcleos a 1.8GHz) para ejecutar los dos

NIDS simultáneamente. Además, Zeek se configura en modo cluster, una arquitectura

compleja que permite una monitorización exhaustiva del tráfico, aunque esto suponga

un aumento en el consumo de recursos. En esta arquitectura existen nodos: manager,

proxy y workers. El número de nodos se puede configurar y en ejecución realizan

balanceo de carga. Teniendo en cuenta todo lo anterior, podemos aproximar las

pérdidas diarias de tráfico que presenta la arquitectura a un 0.15%. Estas pérdidas

son significativamente pequeñas, por lo que el sistema es válido para llevar a cabo las

pruebas.

10

Caṕıtulo 3

Desarrollo y despliegue

En este caṕıtulo se detallan cada una de las herramientas usadas durante el

desarrollo del proyecto. Se sigue un orden cronológico en cuanto a la instalación,

configuración e implementación de cada una de las partes.

3.1. MISP

3.1.1. Introducción

Malware Information Sharing Platform o MISP es una plataforma de código

abierto diseñada para facilitar el intercambio de información sobre incidentes de

ciberseguridad entre organizaciones y comunidades en todo el mundo. Su objetivo

principal es mejorar la detección y mitigación de ciberamenazas, al permitir que los

profesionales de seguridad compartan datos de manera eficiente y colaborativa.

Figura 3.1: Arquitectura general de MISP

Las caracteŕısticas clave de MISP incluyen la capacidad de recopilar y normalizar

11

datos de amenazas de diversas fuentes, como feeds de inteligencia, análisis de malware

y eventos de seguridad. MISP proporciona una estructura para categorizar y etiquetar

la información de manera estandarizada, lo que facilita la comprensión y el análisis

de las amenazas. Además, MISP permite a cada usuario tener su propia plataforma

con su base de datos de información, lo que se denomina instancia de MISP. Una vez

instalado en el equipo, la instancia crea un servidor web en el propio equipo, desde el

que se puede gestionar toda la información. Por otro lado, desde una instancia creada

por un usuario se puede intercambiar información hacia otras instancias.

Los Indicadores de Compromiso (IOCs) son la unidad básica de información que

describe un incidente de ciberseguridad. Estos IOCs desempeñan un papel crucial al

permitirnos caracterizar de manera simple un ataque cibernético. Por ejemplo, conocer

una dirección IP maliciosa que está relacionada con un tráfico que recibimos puede

alertarnos sobre un posible ataque. De manera similar, disponer del valor hash sha256

de un archivo nos advierte sobre la peligrosidad de dicho archivo. Los IOCs establecen

la base de la arquitectura de información de la plataforma MISP, como veremos en la

siguiente sección.

3.1.2. Arquitectura de la información

Con el objetivo de organizar la información de manera intuitiva y estructurada,

MISP plantea una estructura de información basada en atributos, eventos y feeds .

Cada una de estas estructuras está a su vez dividida en campos que nos muestran

diferente información. Mediante esta ordenación sencilla se gestiona el intercambio de

información dentro de la plataforma:

− Atributos (attributes): Unidad básica de información en la plataforma, es decir,

un IOC. A partir de ahora, se utilizarán de manera intercambiable los términos:

dato, atributo e IOC. Entre los campos más importantes están:

• Date: Fecha en la que se publicó el atributo en la instancia de la plataforma.

• Category : Modo de agrupación que detalla el contexto del atributo. Por

ejemplo: Actividad de red, detección de antivirus, fraude financiero, etc.

• Type: Modo de agrupación espećıfico que detalla el tipo de atributo. Por

ejemplo: ip-src/ip-dst, md5, sha256, domain o url.

• Value: Indica el valor del atributo en śı mismo. Para el tipo ip-dst el valor

puede ser: 192.168.1.1.

• Tag : Etiqueta que clasifica atributos relacionados con un tipo de ataque en

concreto o simplemente por contexto.

12

• Flag IDS : Valor booleano que nos indica si el atributo es exportable hacia

IDS o no. Es una condición imprescindible para filtrar los IOCs válidos para

nuestro análisis.

Figura 3.2: Visualización de atributos en la instancia MISP

− Eventos (events): Conjunto de atributos agrupados por una caracteŕıstica

común. Esta caracteŕıstica puede ser la procedencia, la fecha o pertenencia al

mismo incidente, entre otras. Los campos más relevantes son:

• ID : Identificador único de cada evento.

• Published at : Fecha en la que se publica el evento. Está relacionado en la

búsqueda de eventos con el parámetro publish timestamp.

• Last modified at : Fecha en la que se modificó el evento por última vez. Está

relacionado en la búsqueda de eventos con el parámetro timestamp.

• Info: Breve descripción del evento.

Figura 3.3: Visualización de eventos en la instancia MISP

− Feeds : Fuentes Open Source de las que se descargan los eventos y se publican en

la instancia de MISP. La fuente puede ser local (la información se obtiene desde

el propio equipo) o network (la información se obtiene a través de Internet).

Por otro lado, la información obtenida puede estar estructurada en 3 formatos

distintos:

1. Misp: Formato espećıfico de MISP y más utilizado por la comunidad por

ser el más completo. Permite caracterizar los atributos y los eventos con los

campos descritos anteriormente.

13

2. Csv : Formato que separa la información mediante comas (,). Es más sencillo

pero no permite personalizar algunos campos, MISP los autocompleta por

defecto.

3. Freetext : Formato que separa la información por saltos de ĺınea en un fichero.

Al igual que el formato csv, no se pueden agregar campos espećıficos.

Los feeds se pueden administrar desde la instancia creándolos de forma

personalizada o importando algunos ya creados por la comunidad. Para comenzar

a recibir eventos desde estas fuentes, existen dos operaciones básicas: enable y

fetch. La operación enable permite activar este feed para recibir sus eventos,

mientras que la operación fetch descarga instantáneamente los nuevos eventos

desde esa fuente activa hacia la instancia de MISP. El estudio de las fuentes

Open Source se incluye en el Anexo A.

3.1.3. Ciclo de vida de un IOC

Cuando se manejan grandes volúmenes de datos, surge la cuestión fundamental de

determinar cuánto tiempo es necesario retener esos datos en el sistema. El ciclo de

vida de un IOC se define como el tiempo que transcurre desde que el indicador es

detectado hasta que este resulta obsoleto. Este tiempo se puede aproximar mediante

una función y existe una función única para cada Indicador de Compromiso. Determinar

el valor exacto para cada dato resulta imposible. Además, nuestro sistema dispone de

diferentes tipos de datos: una dirección IP maliciosa es mucho más volátil que el hash

de un fichero, por lo tanto, el ciclo de vida de la dirección IP debeŕıa ser más corto.

La solución propuesta viene dada por el propio MISP, basándose en un art́ıculo

publicado por el CIRCL (Computer Incident Response Center Luxembourg) llamado

Decaying Indicators of Compromise [9]. Este art́ıculo estudia los Indicadores de

Compromiso y realiza una aproximación certera de la función que describe el

decaimiento del valor de los IOCs a lo largo de su vida útil. Esta función proporciona

un valor denominado score, que va evolucionando con el transcurso del tiempo. Cuando

este valor llega a un cierto umbral, se dice que el dato es inválido. MISP toma los IOCs

que se exportan normalmente hacia los NIDS y crea su propio modelo partiendo de

la función, ajustando los parámetros para esos IOCs. Para el cálculo de la función, se

tienen en cuenta ciertos parámetros, que caracterizan cada dato:

− Base score, base score: Toma valores de 0 a 100. Mide la confianza que se tiene

sobre la fuente que proporciona el dato y los tags asociados al mismo. En la

función de aproximación se toma el valor 80.

14

− Lifetime: Representa el tiempo de vida que tiene un dato, variando según el tipo

de dato que sea. Se establece una media de un tiempo de vida de 120.

− Seen time: Tiempo que ha pasado entre que el dato fue visto o corroborado por

primera y última vez. Esto dependerá de cada dato en concreto. Por aproximación

en los cálculos se toma el tiempo en el que el IOC fue visto por última vez.

− End time, τa: Representa el tiempo en el cual el score llega a cero.

− Decay rate, δa: Caracteriza el grado de decaimiento de la función a lo largo del

tiempo. MISP toma para su aproximación el valor 2.

− Threshold : Este parámetro no esta incluido en la función, pero MISP lo utiliza

para determinar el valor ĺımite que puede tomar la función para que el dato sea

todav́ıa válido. En este caso se toma como ĺımite el valor 30.

La ecuación resultante al combinar todas las variables es la siguiente:

scorea = base score ·

(
1−

(
t

τa

) 1
δa

)

En cuanto a los tipos de datos que usa MISP para su aproximación, se utilizan: domain,

ip, hostname y url, en todas sus variantes (ip-src, ip-dst, domain-port, etc.). Estos son

justamente los IOCs que nos servirán para exportar hacia los NIDS.

Figura 3.4: Herramienta de MISP para visualizar la función de decaimiento

En la Figura 3.4, se aprecia la función de decaimiento utilizada, con todos los

parámetros definidos anteriormente. Se observa una función exponencial negativa que

15

comienza tomando el valor 120 (lifetime) en el tiempo 0. La función decae hasta llegar

al valor 30, donde se considera que el dato ya no es válido. Se llega a la conclusión de

que el tiempo que tarda un IOC en ser inválido desde que se ve por primera vez, es

aproximadamente de 58 d́ıas y 19 horas. Esto también se puede calcular despejando el

la fórmula el valor buscado. Este tiempo será el que utilicemos en la siguiente sección

para establecer las poĺıticas de rotación para nuestros datos.

3.1.4. Configuración y automatización

El objetivo principal por el que hemos utilizado la plataforma MISP es configurarla

de forma automática para que diariamente exporte ficheros de reglas en la estructura

adecuada hacia los detectores de intrusos de red. Con este fin, se usan las herramientas

que MISP proporciona y se configura la plataforma de acuerdo con el objetivo.

La plataforma ofrece una gran cantidad de funcionalidades interesantes, pero en este

proyecto se abordan únicamente las necesarias e imprescindibles para su desarrollo. Las

siguientes secciones explican los procedimientos de configuración llevados a cabo para

configurar y automatizar la plataforma.

Adquisición de datos

Como se explica en el Anexo A referente al estudio de fuentes Open Source, se

utilizan los feeds para descargar los nuevos eventos procedentes de las fuentes [10] [11]

[12]. Durante el desarrollo del proyecto, se han integrado 7 fuentes de datos distintas.

Con ello, se pretende formar un conjunto de datos heterogéneo para comprobar la

versatilidad de nuestro sistema, sin llegar a sobrecargarlo de información.

Figura 3.5: Feeds activos en la instancia de MISP

La configuración realizada para llevar esta integración comienza con la activación de

las fuentes. Esta configuración se ha realizado a través del servidor web de la instancia,

dada la facilidad que supone esta tarea. Se activa un feed de forma manual indicando

la URL donde se encuentra la información para posteriormente ejecutar la activación.

16

Sobre los seis restantes sólo se ejecuta la operación enable, puesto que estas fuentes

estaban incluidas por defecto en MISP. En la figura 3.5 se observa todas las fuentes

integradas en el sistema.

Por otro lado, se adquieren de forma manual datos procedentes de la cuenta

C2intelfeedsbot de la plataforma Twitter. Cada uno de los tweets publicados por esta

cuenta son datos que se pueden integrar en MISP.

Ya activadas las fuentes, el siguiente paso es ejecutar la operación fetch sobre cada

fuente para descargar los nuevos eventos en la base de datos de la instancia. MISP

proporciona varias formas de gestionar las tareas en la plataforma:

− Ĺınea de comandos de la MV: MISP permite automatizar ciertas tareas

mediante la ejecución de comandos Linux en la MV donde se aloja la platafoma.

Podŕıa ser una buena solución, pero las tareas que se pueden automatizar son

limitadas [13].

− PyMISP: Libreŕıa de Python creada por la comunidad de MISP. Utiliza la API

de MISP para crear funciones en este lenguaje y poder ejecutar tareas desde

scripts personalizados. Sin embargo, la libreŕıa está mal implementada en algunos

casos e induce a errores, por lo que se descarta su uso [14].

− MISP API: A través de peticiones a la API de MISP de forma directa, podemos

gestionar cualquier tarea relacionada con la instancia [13]. En este trabajo, las

peticiones se realizan mediante la libreŕıa requests de Python por la facilidad para

el posterior procesado de los datos. Con esta libreŕıa se piden o env́ıan datos hacia

la API mediante mensaje del protocolo HTTP1. Los dos tipos de mensajes que

se utilizan son el HTTP GET y HTTP POST. En el Anexo C se detalla el uso

de este tipo de peticiones.

Aśı, para la gestión de la tareas dentro de la instancia se opta por la creación

de scripts en Python para realizar peticiones a la API de MISP. Se requiere para su

utilización tanto la URL de la instancia como una key de autenticación. Los scripts

desarrollados se incluyen anexos al final de la memoria.

Para realizar la operación fetch de todas las fuentes, se crea un script llamado

fetch feeds 2.py (versión 2) que realiza una solicitud POST a la siguiente URL:

https://misp.local/feeds/fetchFromAllFeeds, donde misp.local coincide con la dirección

donde se localiza la instancia (dirección IP de una red privada). Aśı, la instancia recibe

la petición y procede a ejecutar la tarea de descargar los nuevos eventos desde todas

las fuentes que estén activas.

1HTTP: Hypertext Transfer Protocol. Protocolo de comunicación que permite las transferencias de
información a través de archivos (XML, HTML, etc.) en la World Wide Web.

17

Por otro lado, para la integración de los tweets desde la cuenta, se obtiene la

información contenida en ellos a través de la API de Twitter y el lenguaje Python.

En la Figura 3.6 se detalla el formato y contenido de un tweet de ejemplo para su

integración en MISP. La primera ĺınea es una descripción del atributo. Las siguientes

dos ĺıneas son los valores de los atributos que vamos a integrar. El resto de ĺıneas son

más datos, pero sin relevancia en su procesado.

Figura 3.6: Tweet de ejemplo para su integración en MISP

A continuación, se procesan los datos del tweet para quedarnos con la información

que vamos a integrar en MISP (fundamentalmente, el dato en śı mismo). Por

último, se realizan dos peticiones POST a la API de MISP, de la misma forma que

para la operación fetch. En la primera petición creamos un evento en la instancia

mediante la URL: https://misp.local/events/add, con sus parámetros de creación

(nombre, fecha, etc.). En la segunda petición POST, creamos un atributo en ese

nuevo evento con la información extráıda del tweet. Se hace a través de la URL:

https://misp.local/attributes/add/eventId, donde en eventId se debe espećıficar el ID

del evento donde se va a añadir el atributo. Además se deben incluir los parámetros

propios del mismo, aśı como el valor, la fecha, etc. Todo esto se recoge en un script

denominado tweet MISP.py.

Procesado de datos

El procesado de los datos incluye todas las tareas automatizadas para la gestión

de los datos una vez se encuentren en la plataforma. Dada la naturaleza del proyecto,

existen ciertos criterios para determinar que datos son útiles y cuales no lo son. A

continuación, se exponen las reglas de procesado, en el orden de filtrado real.

− Flag to IDS : Todos los atributos que contengan este flag activado, son datos

exportables hacia los IDS. Por lo tanto, el resto de IOCs que no tengan el flag son

datos inservibles. Los datos que no disponen de este flag activado no se eliminan

como tal de la instancia, sino que son excluidos durante la exportación.

18

− Rotación de IOCs: Tarea básica de procesado que consiste en eliminar todos

aquellos datos que, según el criterio temporal que se elija, son inválidos. Se

establecen las poĺıticas descritas en la sección 3.1.3 y se consideran dos tipos

de rotación:

1. Rotación estricta: Consiste en consultar el valor de score calculado por

MISP en su modelo de Decaying IOCs, en cada uno de los datos, y eliminar

aquellos que no se consideren válidos (en el modelo de MISP se considera

inválido si el valor de la función cae por debajo del threshold : 30). Esta

rotación requiere consultar y calcular todos los valores de la función de cada

indicador, lo que supone una gran complejidad de implementación además

de un gran consumo de recursos. Por otro lado, el modelo es solo aplicable

a unos tipos de datos concretos. Se opta por no utilizar este criterio.

2. Rotación suave: Según el criterio obtenido en la sección 3.1.3, un atributo

en media se vuelve inválido tras aproximadamente 60 d́ıas. Una opción

cómoda y sencilla en implementación es consultar la fecha de última

modificación de cada dato. Si esa fecha es mayor de 60 d́ıas, el atributo

se borra de la base de datos. Se implementa esta rotación en el proyecto.

− Tipo de atributo: Se puede establecer un filtrado extra que áısle únicamente los

IOCs que puedan ser detectados por los NIDS. Esto posee una ligera diferencia

con el primer criterio de filtrado. Que un dato sea exportable hacia los IDS no

quiere decir que un NIDS sea capaz de detectarlo. En esta fase no se utiliza este

filtrado como tal, pero en secciones posteriores se ignorarán ciertos tipo de datos

para su exportación por no ser de utilidad para el sistema.

La única poĺıtica establecida en esta fase es la de rotación, el resto de procesado se

hará en la fase de exportación. Como se ha explicado antes, se establece el criterio de

rotación suave. Para implementarlo, recurrimos de nuevo a la API de MISP, a través

de peticiones HTTP. La rotación suave se puede realizar de dos formas:

− A nivel de evento: Se buscan los eventos cuya fecha de última modificación sea

mayor de 60 d́ıas. Se obtienen los eventId de cada uno de ellos para posteriormente

eliminarlos. Es fácil de implementar y no consume muchos recursos, pero es

posible que existan atributos dentro de un evento no eliminado que estén

obsoletos. Al editar los eventos, se modifica su fecha de última modificación, pero

no la de los atributos que están dentro. Aśı, se puede tener un evento modificado

recientemente con atributos envejecidos.

19

− A nivel de atributo: Se hace lo mismo que a nivel de evento, pero con los

atributos. Tanto su implementación como su consumo de recursos es costosa,

pero la rotación a cambio es más limpia y eficiente.

En este caso, dadas las capacidades de cómputo de la MVMISP, se utiliza la rotación

a nivel de evento. Se realiza una búsqueda de eventos con una solicitud POST a la

URL: https://misp.local/events/restSearch, indicando en los parámetros de la petición

el valor de timestamp. Este valor indica la fecha de última modificación de los eventos.

Se especifica un rango de tiempo en el formato adecuado: [”120d”, ”60d”]. Con este

parámetro, se indica que se requieren los eventos cuya última fecha de modificación se

encuentre entre los 60 y 120 d́ıas.

Una vez hecho esto, la API proporciona como respuesta una lista de eventos en

formato json2 (aśı especificado en la cabecera de la solicitud). Mediante procesado de

la lista con Python, obtenemos los eventId de cada evento y lo almacenamos en una

variable. Para cada ID almacenado, realizamos una solicitud a la API para borrar cada

evento, especificando el propio ID en la URL: https://misp.local/events/delete/eventId.

Todo este proceso se recoge en un script de Python: IOC rotation.py.

Filtrado y exportación de datos

Como última fase de automatización de la plataforma MISP, se van a exportar los

datos adquiridos y procesados para poder alimentar los detectores de intrusos de red.

Como se ha expuesto anteriormente, la exportación se hace a través de ficheros de

reglas. La disposición de dos NIDS complica la exportación, puesto que cada uno de

ellos posee un formato distinto a interpretar en los ficheros de reglas. En consecuencia,

para cada uno de los detectores se deben exportar ficheros de reglas diferentes.

La estructura de la información en ficheros de reglas es una parte crucial a la hora

de comenzar con la exportación. La primera idea que surge es utilizar un fichero para

almacenar todas las reglas simultáneamente. Es una solución aceptable, sin embargo

de esta forma no se tiene ninguna clasificación y la depuración de errores se vuelve

más compleja. Por este motivo, se opta por dividir los ficheros de reglas por tipo de

atributo, obteniendo aśı varios ficheros de reglas para cada NIDS.

A la hora de implementar la exportación, se utiliza un procedimiento diferente para

cada uno de los NIDS, debido a las diferencias de formato. Sin embargo, en ambos

casos la exportación se realiza a través de una solicitud HTTP POST hacia la URL:

https://misp.local/attributes/restSearch. Con esta petición, se filtra la búsqueda de los

atributos a exportar, introduciendo ciertos parámetros:

2JSON: JavaScript Object Notation. Formato ligero de intercambio de datos de fácil lectura y
escritura para los usuarios. Además, es fácil de analizar y generar por parte de las máquinas.

20

− returnFormat : Formato de los datos que se solicitan. Aqúı reside la principal

diferencia de implementación entre Suricata y Zeek.

• Suricata: Se especifica de forma nativa el formato de salida ’suricata’. Las

reglas se crean sin ningún procesado de datos posterior.

• Zeek : Se usa el formato de salida json. A continuación se realiza procesado

de esos datos para crear las reglas en el formato que Zeek interpreta. La

exportación no es nativa desde MISP.

− to ids : De todos los datos que existen en la plataforma, solo se exportan aquellos

a partir de los cuales se puedan crear reglas. Es decir, los que tengan el flag

activado.

− timestamp: Como la exportación a ficheros de reglas es diaria, se filtran los

atributos cuya última fecha de modificación haya sido durante el d́ıa. En el

formato de la API: ’1d’.

− type: Se separa por tipo de IOC en los ficheros de reglas. Por lo tanto,

especificamos el tipo de dato que vamos a filtrar.

Se realiza una petición a la API por cada tipo de dato y por cada returnFormat, dado

que el resto de parámetros es constante.

Los tipos de datos a partir de los que vamos a crear ficheros de reglas son diferentes

entre Suricata y Zeek, puesto que la exportación en un caso es nativa, pero en el otro

requiere de procesado posterior. Se escogen los tipos de IOCs que cumplen la condición

de ser exportables hacia los IDS y que además sean detectables por los mismos.

Aśı, se tienen los distintos tipos de datos usados para la exportación:

− Suricata: domain, domain-ip, hostname, hostname-port, ip-dst, ip-dst-port,

ip-src, ip-src-port, url, md5, sha1, sha256, sha512.

− Zeek: domain, hostname, url, ip-src, ip-dst, md5, sha1, sha256, sha512,

ja3-fingerprint-md5

Tras realizar esta solicitud POST a la API y el posterior procesado de los datos

en el caso de Zeek, se crea un fichero para cada tipo de atributo y se vuelcan las

reglas en el formato adecuado. Se introduce una etiqueta temporal para diferenciar los

d́ıas en los que se exportan las reglas, puesto que el d́ıa siguiente se exportan nuevas

reglas hacia el mismo fichero. De esta forma, se controla tanto el tipo de dato como las

fechas de exportación. Todo lo anterior se efectúa mediante el script export IOCs.py.

21

Figura 3.7: Fichero de reglas de ip-dst para Suricata

Los ficheros de reglas se almacenan en una carpeta en la máquina virtual donde está

instalado MISP.

En las Figuras 3.7 y 3.8 se aprecia el formato y contenido que tiene un fichero de

reglas para un tipo de dato en concreto tanto para Suricata como para Zeek. Se observa

como existe una regla por cada una de las ĺıneas del fichero.

Figura 3.8: Fichero de reglas de domain para Zeek

Puede ocurrir que, por conflicto en alguna fecha, se exporte erróneamente dos veces

la misma regla en un fichero. Esto podŕıa derivar en un error en los IDS. Para solventar

este tipo de problemas, se crea un script denominado duplicate lines.py, que revisa los

ficheros en busca de ĺıneas duplicadas, después de haber exportado nuevas reglas. Si

encuentra alguna, la elimina, dejando aśı el fichero sin ĺıneas repetidas.

Automatización

Se han definido tres etapas para la configuración de la plataforma MISP y se han

desarrollado las herramientas necesarias para mantener y automatizar la instancia. Por

último, se deben establecer los procedimientos para lograr que todas estas herramientas

se ejecuten cuando sea necesario. Las funcionalidades que se han implementado a lo

largo de este apartado son en su totalidad scripts en el lenguaje de programación

Python. Por lo tanto, necesitamos una herramienta extra que sea capaz de ejecutar el

código necesario en el tiempo adecuado. Nuestra instancia de MISP está alojada en una

MV con una distribución Debian 11 de Linux. Sabiendo esto, la opción más cómoda

para la gestión de los tiempos de ejecución de scripts es la herramienta Crontab.

Con Crontab, se pueden programar órdenes para ejecutar cualquier tarea como si

se hiciera desde la consola de comandos a una hora y una fecha determinada. De esta

22

forma, se automatiza la ejecución de scripts que configuran y controlan la instancia de

MISP. Se trata de añadir ĺıneas en un fichero, indicando en un formato espećıfico la

fecha y la frecuencia de ejecución de los comandos que se deben lanzar. En el Anexo D

se explica el funcionamiento de esta herramienta. En la Figura 3.9, se define el fichero

de Crontab utilizado para la automatización de la instancia.

Figura 3.9: Fichero de Crontab de la MV de MISP.

La primera ĺınea corresponde a la automatización de la rotación de los IOCs. Para

ello, se ejecuta el código IOC rotation.py el d́ıa 1 a las 00:01 de los meses impares del

año. De esta forma, se ejecuta la rotación cada 2 meses.

Los tres comandos siguientes corresponden a las fases de adquisición, procesado y

exportación de los datos. Se ejecutan cada d́ıa a las 00:20, 00:30 y 00:35. Las horas de

ejecución coinciden con la hora de actualización de los feeds introducidos en MISP.

El tiempo entre comandos se ha determinado realizando pruebas sobre el tiempo

de ejecución de cada una de las tareas. En ningún caso, el tiempo de ejecución supera

el minuto, la elección de los tiempos es orientativa.

Por último, se encuentra un comando que ejecuta un script de subida de los ficheros

de reglas a un repositorio privado de Github. Este código se ejecuta diariamente a las

00:40, una vez terminado el tratamiento de los datos en la instancia. En la siguiente

sección se entrará en más detalles sobre este procedimiento.

3.2. Almacenamiento de ficheros de reglas

Ya exportados los datos como ficheros de reglas, el siguiente paso es transmitir esos

ficheros hacia los detectores de intrusos de red para que empiecen a funcionar. Un punto

importante a tener en cuenta, es que los destinatarios de esta información son una MV

23

situada en la misma red que la MV de MISP, que contiene los datos, y otra máquina,

la Raspberry Pi 4, localizada en una red privada remota. Existen una gran variedad

de procedimientos para enviar estos archivos a través de la red. Las caracteŕısticas que

se buscan en el env́ıo de estos ficheros son integridad y confidencialidad. A ráız de

estas cualidades, surgen diferentes formas de realizar este transporte de datos:

− SFTP: Secure File Transfer Protocol. Protocolo de red que permite la

transferencia segura de archivos entre un cliente y un servidor sobre SSH. A

diferencia de FTP, SFTP cifra la información durante la transferencia. Tiene

el inconveniente de que ocupa un gran ancho de banda en la red durante la

transferencia. Además, posee una gran complejidad para alcanzar la red privada

remota donde se encuentra la Raspberry Pi 4.

− SCP: Secure Copy Protocol. Similar a SFTP. Transferencia segura de archivos

entre dos equipos remotos. SCP es más eficiente en la transmisión pero pierde en

interactividad con los archivos a enviar. Dispone de los mismos problemas que

SFTP.

− Repositorio de Github: Github es una plataforma de alojamiento de proyectos

con un control de versiones Git. Dispone de una funcionalidad de alojamiento

de proyectos privados en Internet, con acceso seguro a través de tokens. La

transferencia se puede realizar clonando el repositorio creado en el equipo destino.

Se elige utilizar este sistema de almacenamiento y transferencia.

Se crea un repositorio privado de Github, al que solo se puede acceder desde una

cuenta privada o a través de un token de autenticación expedido desde esa cuenta,

el cual sólo el propietario conoce. De esta forma, se suben al repositorio en la nube

diariamente los ficheros de reglas actualizados. Se usa un script desarrollado en bash,

git.sh, que utiliza el token privado para poder ejecutar la operación push de Git y subir

los archivos actualizados.

Figura 3.10: Repositorio privado de Github para el almacenamiento de ficheros de
reglas.

24

Tras la subida de archivos al repositorio, se pueden descargar los archivos desde

cualquier equipo que disponga del token de autenticación simplemente ejecutando la

operación clone de Git.

3.3. Suricata como NIDS

3.3.1. Introducción

Suricata es un detector de intrusos de red (NIDS) de alto rendimiento, aunque

también se utiliza como sistema de prevención de intrusos (IPS) o como un monitor

de seguridad en la red. Es una herramienta de código abierto desarrollada por el OISF

(Open Information Security Foundation).

En este proyecto se utiliza Suricata como NIDS, alimentado por reglas

personalizadas y actualizadas diariamente con datos provenientes de la plataforma

MISP. Las reglas (también denominadas signatures en el contexto de este IDS) son el

eje entorno el que gira Suricata.

Figura 3.11: Funcionamiento básico de Suricata.

La herramienta interpreta los ficheros en los que se contienen signatures en el

formato correcto y analiza el tráfico por las interfaces de red que se le indiquen en

su configuración, tal y como se describe en la Figura 3.11. Si detecta la presencia

de una regla, Suricata genera una alerta creando ficheros de logs donde se guarda la

25

información sobre la detección. Estos ficheros son: fast.log y eve.json. El primero recoge

las alertas en texto plano para su consulta rápida. El segundo guarda en formato json

las alertas generadas y se utiliza para exportar esa información de alertas hacia otros

sistemas como Elastic Stack.

En el Anexo B, se incluye la definición del formato de las reglas de Suricata.

3.3.2. Configuración y automatización

Desde MISP se exportan ficheros de reglas clasificados por tipo de dato y dentro de

cada fichero por fecha. El objetivo de este apartado es la puesta en marcha de Suricata

para, con los ficheros de reglas exportados, analizar la interfaz de red de un equipo y

detectar conexiones maliciosas.

Descarga de ficheros de reglas

La primera parte del proceso de configuración pasa por obtener los archivos de reglas

procedentes de MISP. Como se ha detallado anteriormente, los ficheros se encuentran

en un repositorio privado de Github, accesible únicamente a través de un token de

autenticación. Desde un script en bash, gitids.sh, se introduce el token para acceder

al repositorio privado y ejecutar la operación git clone, junto con la operación git pull

para descargar los ficheros en el equipo donde se encuentra Suricata.

suricata.yaml

La configuración de la herramienta se hace a partir de este fichero escrito en el

lenguaje YAML3. La primera configuración a implementar es la definición de la variable

$HOME NET. En esta variable se debe definir, según la documentación de Suricata

[15], la dirección IP de la interfaz monitorizada, además de las redes locales que están

en uso. En el caso del escenario con MVs, la red privada donde se monitoriza el tráfico

coincide con la red: 192.168.153.0/24. Sin embargo, se utiliza un rango más grande,

debido a la topoloǵıa del escenario. Aśı, se usa la dirección: 192.168.0.0/16, como

se ve en la Figura 3.12 . En el entorno doméstico, la red local por convenio suele

ser la 192.168.1.0/24, pero puede haber variaciones como 192.168.0.0/24. Por otro

lado, la variable $EXTERNAL NET se considera como todas las redes que no son

$HOME NET.

El nombre de la interfaz donde se analiza el tráfico debe indicarse también en ese

fichero, en el apartado af-packet. Por ejemplo, en el caso de la MV se utiliza la interfaz

3YAML: Formato de serialización de datos legible por humanos inspirado en lenguajes como XML,
C, Python, Perl, aśı como en el formato de los correos electrónicos. Se utiliza para implementar
archivos de configuración de cualquier programa.

26

eth0.

Figura 3.12: Ejemplo de parte de fichero de suricata.yaml.

Figura 3.13: Ejemplo de parte de fichero de suricata.yaml. Ruta de los ficheros de reglas
utilizados.

Suricata comprende un sistema de actualización de reglas mediante fuentes

proporcionadas por la propia herramienta, llamadas ET Open ruleset. Sin embargo,

esta funcionalidad no se utiliza puesto que las reglas provienen de la instancia de

MISP configurada con anterioridad.

Con ese fin, debemos añadir el directorio donde se van a encontrar las reglas,

para que el programa sea capaz de leerlas y detectarlas. Para ello, en el apartado

default-rule-path se deja la ruta por defecto: /etc/suricata/rules. En las siguientes

ĺıneas, se especifican todos los nombres de los ficheros de reglas a utilizar, tal y como se

muestra en la Figura 3.13. Una vez hecho esto, se deben incluir en la ruta por defecto

los archivos descargados desde el repositorio de Github. Para ello, se realiza una simple

copia de los archivos hacia esa ruta. El resto de configuraciones del fichero se dejan por

defecto.

27

Llegados a este punto, solo debemos reiniciar Suricata para que la herramienta

cargue los nuevos ficheros de reglas. Con ese objetivo, se ejecuta el comando:

systemctl restart suricata

Se obtiene en el archivo suricata.log los ficheros y reglas cargados, lo que se ilustra en

la Figura 3.14.

Figura 3.14: Fichero de log suricata.log tras reiniciar el servicio.

Automatización

Como se ha hecho en la instancia de MISP, la automatización se realiza a través

de Crontab. El fichero de Crontab de la máquina virtual comparte la configuración de

Suricata y Zeek. El detalle se ilustra en la Figura 3.15.

Figura 3.15: Fichero de Crontab de la MV de Suricata/Zeek.

La primera ĺınea detalla la ejecución del script para descargar las reglas desde

el repositorio, que continua en el tiempo inmediatamente después de terminar la

exportación desde MISP. Esta tarea se ejecuta diariamente. Lo siguiente es el copiado,

también diario, de los ficheros de reglas hacia la ruta donde los NIDS interpretan las

reglas. Se hace para ambos IDS. Por último, se reinicia diariamente el servicio de ambos

detectores para que carguen las nuevas reglas en sus sistemas.

3.4. Zeek como NIDS

3.4.1. Introducción

Al igual que Suricata, Zeek es algo más que un detector de intrusos de red. Esta

herramienta dispone de una inmensa variedad de funcionalidades relacionadas con la

28

monitorización y seguridad en red, aśı como frameworks espećıficos para ejecutar tareas

determinadas. Entre ellas se incluyen medidas de rendimiento y solución de problemas.

La caracteŕıstica definitoria de Zeek es la diversidad de logs que podemos consultar.

Cada uno de estos logs se encarga de informar acerca de una cualidad del sistema

analizado. Por ejemplo: conn.log, que informa de todas las conexiones de red que se

realizan en la interfaz; http.log, usado para describir únicamente las conexiones HTTP

o intel.log, fichero donde se almacenan todas las alertas generadas por el framework de

inteligencia de Zeek, el cual usaremos para cargar reglas.

Figura 3.16: Funcionamiento básico de Zeek.

Por otro lado, Zeek dispone de dos modos de funcionamiento:

− Modo standalone : Modo básico de funcionamiento. Utiliza un único proceso

para monitorizar el tráfico de red. Consume pocos recursos del sistema, pero

dependiendo de la configuración de Zeek existen casos donde este modo no

funciona correctamente.

− Modo cluster : Despliega un conjunto de nodos para la monitorización de la red.

La arquitectura estándar está formada por: manager, proxy, worker 1 y worker 2.

Zeek permite cambiar esta configuración a través de un archivo de configuración.

Consume más recursos del sistema a cambio de un mayor rendimiento. Usaremos

esta configuración en ambos entornos de red.

Para integrar Zeek en nuestro sistema, haremos uso de Intelligence Framework,

que permite la detección de tráfico malicioso a partir de reglas espećıficas. El

funcionamiento es similar a Suricata: introducimos los ficheros de reglas en el lenguaje

de Zeek (Intelligence Data), se analiza la red en busca de matches de las reglas y se

generan alertas en intel.log, como se puede ver en la Figura 3.16.

29

En el Anexo B, se incluye la definición del formato de las reglas de Zeek.

3.4.2. Configuración y automatización

En este punto se deben configurar dos elementos por separado: Zeek y el Intelligence

Framework. Se configuran en ese orden [16].

Configuración de Zeek

Lo primero que se debe hacer, es configurar el modo cluster para la arquitectura de

detección. Para ello, se edita el fichero de configuración node.cfg. En la Figura 3.17 se

detalla la configuración, estableciendo cada uno de los nodos. Los workers monitorizan

la red en la interfaz eth0.

Figura 3.17: Ejemplo de node.cfg en modo cluster.

El siguiente paso, al igual que en Suricata, es configurar las redes donde se produce

la monitorización. Esto se configura en el archivo networks.cfg y se detalla la red

192.168.0.0/16 en este caso.

De manera opcional, se puede establecer el periodo de rotación de los logs, pero no

es relevante para este proyecto.

Una vez configurado, ya se puede lanzar Zeek usando el comando zeekctl deploy,

comando que tendremos que usar a la hora de introducir nuevas reglas para que estas

se carguen en el sistema.

30

Intelligence Framework

La configuración de este apartado requiere la creación de una carpeta extra en los

archivos de Zeek, donde almacenaremos los ficheros de reglas y los scripts necesarios

para inicializar este servicio.

El primer archivo que se escribe en esta carpeta es load .zeek, donde indicamos

que debe ejecutar un script llamado main, incluido en el mismo directorio. En ese

archivo, incluiremos toda la información necesaria para activar y poner en marcha el

Intelligence Framework. Para ello, debemos indicar a Zeek en este fichero que cargue

algunos scripts relacionados con este framework, además de indicar la ruta hacia los

ficheros de reglas. Esto se observa en la Figura 3.18. Los archivos de reglas se colocan

en la ruta especificada.

Figura 3.18: Fichero main para la carga de Intelligence Framework.

El último punto a considerar es la modificación del archivo de configuración

local.zeek, en el que se debe indicar que lea la carpeta donde hemos incluido los scripts

y ficheros de reglas. También se debe detallar que el formato de los logs sea json, útil

para su exportación hacia Elastic Stack. Para ello, se usan los comandos:

@load misp_zeek

@load policy/tuning/json-logs.zeek

Una vez hecho esto, reiniciamos el sistema con zeekctl deploy para cargar las nuevas

configuraciones y el sistema estará listo para funcionar.

Automatización

La automatización se consigue de la misma forma que en Suricata, a través de

Crontab en la misma máquina. En la Figura 3.9 se encuentran los comandos a utilizar

para automatizar Zeek. Es el mismo proceso que con el otro IDS, solo cambiando la

ruta, los archivos de reglas y el comando para reiniciar el programa.

31

3.5. Elastic Stack

Elastic Stack comprende un conjunto de herramientas de código abierto,

diseñadas para adquirir datos desde cualquier plataforma, en cualquier formato para

posteriormente buscar, analizar y visualizar estos datos en tiempo real. Aunque se

trata de una solución gratuita, existen licencias de pago que introducen funcionalidades

adicionales como X-Pack.

En este proyecto, se pretende usar la infraestructura de Elastic para centralizar los

logs generados por los detectores de intrusos de red. En consecuencia, obtendremos un

sistema que recoge todas las alertas en un entorno de red al completo.

Elastic Stack consta de una gran colección de herramientas que funcionan de forma

independiente. En nuestro caso, se utilizan 3 de ellas para gestionar la centralización

y visualización de los logs generados: Filebeat, ElasticSearch y Kibana.

− Filebeat : Herramienta instalada en la máquina donde se ejecutan los detectores

de intrusos para recoger los logs generados por los mismos y enviarlos hacia

Elasticsearch. Incluye módulos espećıficos para centralizar logs desde Suricata y

Zeek, lo que facilita su configuración. También posee funciones de procesamiento,

pero no se van a utilizar.

− ElasticSearch: Motor de búsqueda y anaĺıtica de datos integrado en Elastic Stack.

Incluye soporte para cualquier tipo de dato, lo que lo hace muy versátil en

cualquier entorno. Lo usaremos para recibir y procesar los logs en formato json

procedentes de los NIDS en una máquina virtual diferente.

− Kibana: Plataforma de análisis y visualización de datos. Se conecta con

Elasticsearch para obtener la información y representarla en diferentes formatos

y figuras. Posee un portal web para la consulta de la información.

Figura 3.19: Infraestructura básica de Elastic Stack conectada con los NIDS.

En la Figura 3.19 se ilustra el funcionamiento básico de la infraestructura, conectada

con los NIDS.

32

En conjunto las 3 herramientas conforman un sistema de centralización y

visualización de logs, lo que podŕıa denominarse un Centro de Operaciones de Red

(NOC).

Por otra parte, al ser un sistema intercomunicado, es preciso tener en cuenta la

seguridad de las transferencias de información. Por ello, en el apartado de configuración

deberemos establecer las opciones necesarias para implementar la seguridad en las

comunicaciones. Se utilizarán conexiones con el protocolo TLS.

La parte de instalación, configuración y automatización se incluye en el Anexo G

al final de la memoria.

33

34

Caṕıtulo 4

Pruebas y análisis de los resultados

Tras configurar y automatizar la infraestructura, se realizan una serie de pruebas

con el objetivo de verificar el correcto funcionamiento del sistema al completo. La

verificación mediante tests cobra sentido una vez los datos hayan sido exportados.

Esto supone que la parte del sistema que involucra MISP no se ha puesto a prueba,

sino que se ha ido depurando hasta que los datos han sido procesados y exportados

correctamente. Las pruebas se realizan en los dos escenarios especificados en el Caṕıtulo

2 e incluyen la detección de alertas por parte de ambos NIDS y su posterior visualización

en Kibana.

4.1. Escenario de red con MVs

Se realizan las pruebas pertinentes en el escenario de red con máquinas virtuales.

Este escenario es experimental y supone un primer acercamiento a un entorno de

red real. Las pruebas se dividen en pruebas de detección en los NIDS y pruebas de

visualización de las alertas generadas.

4.1.1. Detección de intrusos de red

Este escenario tiene la peculiaridad de que los NIDS están instalados en una única

MV, por lo que el tráfico que monitorizan únicamente pertenece a esa máquina en

cuestión. Esto facilita la ejecución de pruebas y su análisis posterior.

Para poner a prueba los NIDS, se consultan los ficheros de reglas cargados en

los detectores. Se realizan acciones en dicha máquina con el objetivo de que los

NIDS detecten alguna de las reglas definidas en los archivos. Por ejemplo, en el caso

de direcciones IP, se realizan conexiones hacia esas IP, al igual que con dominios,

hostnames o URLs. Para los hash, se realizan solicitudes HTTP POST, incluyendo en

los datos de la petición alguno de los hashes maliciosos.

35

Tras realizar las pruebas con estos métodos, se incluyen resultados de las detecciones

realizadas tanto por Suricata como por Zeek.

En el caso de Suricata, los logs que se generan a partir de las reglas se recogen en

dos ficheros distintos, tal y como se explicó en el caṕıtulo anterior. Estos ficheros son:

fast.log y eve.json. Tras ”forzar” manualmente alguna de las reglas, el resultado en

estos ficheros se observa en las Figuras 4.1 y 4.2.

Figura 4.1: Archivo fast.log tras la detección de una IP maliciosa.

Figura 4.2: Archivo eve.json tras la detección de un dominio malicioso.

El archivo eve.json es el único que se env́ıa hacia el sistema de Elastic Stack. La

detección de reglas personalizadas con Suricata funciona correctamente en este entorno.

En el caso de Zeek, se utiliza un único fichero llamado intel.log. De la misma manera

que en Suricata, realizamos pruebas de detección para comprobar si se generan alertas.

En las Figuras 4.3 y 4.4, se ilustran dos ejemplos de detección de reglas, una de detección

de dominio malicioso y otro de una URL maliciosa.

Figura 4.3: Archivo intel.log tras la detección de un dominio malicioso.

Figura 4.4: Archivo intel.log tras la detección de una URL maliciosa.

Este archivo se env́ıa a la infraestructura de Elastic Stack para visualizar la

información de forma más explicativa.

Se aprecia que los NIDS funcionan correctamente en la detección de reglas

personalizadas procedentes de MISP, mostrando en los logs información relevante

acerca de su procedencia, caracterización y descripción. En la siguiente sección, se

muestran las visualizaciones que generan las alertas en Kibana.

4.1.2. Visualización de datos

Kibana posee unos dashboards predefinidos para visualizar la información sacada

desde cada uno de los NIDS. Usaremos estas vistas para analizar la información

recolectada por la plataforma.

36

Suricata

El dashboard de Suricata se divide en dos partes: eventos y alertas. Esto se debe

a que el fichero eve.json no solo recoge las alertas de detección, sino también las

conexiones que se realizan por esa interfaz, lo que se denominan eventos. Aśı, obtenemos

una representación de todas las conexiones realizadas por la MV, además de un display

dedicado exclusivamente a alertas. En las Figuras 4.5, 4.6 y 4.7; se observan diferentes

representaciones de datos recogidos desde Suricata. Por un lado, se encuentran las

alertas recogidas en una lista, mientras que los eventos se muestran en gráficos más

complejos y tablas de datos.

Figura 4.5: Recopilatorio de alertas recogidas en Kibana.

Figura 4.6: Recopilatorio de alertas clasificadas por d́ıa recogidas en Kibana.

37

Figura 4.7: Recopilatorio de eventos de Suricata recogidos en Kibana.

Zeek

Zeek env́ıa las alertas recogidas en el fichero intel.log hacia la plataforma de Kibana.

Como en Suricata, existe un dashboard predefinido para mostrar la información que

Zeek env́ıa. En la Figura 4.8 se detalla una de las representaciones que se muestran

tras la recepción de alertas. El resto de visualizaciones se mostrarán en el siguiente

escenario.

Figura 4.8: Gráfico de conexiones detectadas por Zeek.

4.2. Escenario de red domiciliario

A ráız de que la configuración ha sido la misma en ambos escenarios, los resultados

obtenidos son similares. La única diferencia notable reside en el hecho de que, a través

de la Raspberry Pi 4, se puede capturar el tráfico de toda la red y analizar el tráfico de

cada dispositivo conectado. En el escenario virtual sólo se capturaba el tráfico de una

única máquina. La capacidad de análisis es mayor, aśı como la cantidad de datos que

se generan.

38

4.2.1. Detección de intrusos de red

El procedimiento utilizado es el mismo, aśı como los resultados obtenidos. Se analiza

el fichero intel.log tras detectar una regla en la Raspberry procedente de una conexión

realizada desde un ordenador conectado a la red doméstica, ilustrado en la Figura 4.9.

La dirección origen 192.168.0.13 corresponde con la dirección del ordenador conectado

a la red doméstica.

Figura 4.9: Detección de un dominio malicioso desde la Raspberry Pi 4 en un ordenador
conectado a la red doméstica.

Los logs de Suricata en la Raspberry son similares a los observados en el apartado

anterior por lo que no se volverán a mostrar.

4.2.2. Visualización de datos

Del mismo modo que en el otro escenario, se env́ıan los datos con Filebeat desde

la Raspberry en la red doméstica hasta la MV de Elastic Stack. Para ello, la conexión

debe pasar por el firewall privado del servidor de la Universidad de Zaragoza, realizando

traducciones NAT para llegar a su destino. Tras realizar esto, se reciben las siguientes

visualizaciones basadas en los dashboards de Zeek. De nuevo, los logs de Suricata, al

haberse mostrado en el apartado anterior, no se mostrarán en este.

Figura 4.10: Gráfico de dominios más detectados por Zeek.

39

Figura 4.11: Gráfico de direción de las conexiones detectadas por Zeek.

Figura 4.12: Gráfico de sesiones detectadas por Zeek.

40

Caṕıtulo 5

Conclusiones y ĺıneas futuras

5.1. Conclusiones

A lo largo del proyecto, se han desarrollado un conjunto de herramientas, con

el objetivo de entender su funcionamiento y sincronizar sus caracteŕısticas. En

consecuencia, se ha logrado conformar un sistema completo que se ejecuta de manera

automática, cumpliendo los objetivos impuestos en el Caṕıtulo 1.

La idea clave en este proyecto es la capacidad de orquestar cada uno de los

componentes de la infraestructura, de tal forma que se ejecuten individualmente

para aportar su rendimiento al sistema final. Por otro lado, las dificultades que se

han enfrentado a lo largo del trabajo han sido provocadas por la heterogeneidad del

conjunto global. En cada paso, se ha tenido que atender a los protocolos, formatos y

configuraciones necesarias para que la herramienta estudiada se ejecute según nuestras

necesidades, compatibilizando su funcionamiento con el resto de elementos de la

infraestructura. Además, se ha llevado cada herramienta del trabajo hacia un equilibrio

entre sus limitaciones y los requisitos necesarios.

La plataforma MISP se eligió dada su versatilidad a la hora de gestionar una base

de datos ya estructurada y centralizada de Indicadores de Compromiso. Aunque MISP

posee una gran variedad de funcionalidades interesantes, se han utilizado únicamente

las necesarias para llevar a cabo las tareas que se requeŕıan en el trabajo. La ventaja

que supone MISP frente a la gestión ”cruda” de datos obtenidos desde fuentes Open

Source resulta abismal en términos de automatización, eficiencia, gestión, exportación y

comunidad. En una primera aproximación, MISP supońıa un lugar de almacenamiento

y gestión de IOCs. Sin embargo, al final del trabajo se ha convertido en la plataforma

central, desde la que se administra la información utilizada, manejándola a través de

su API. Dicha API, entre las demás formas de manejo de datos, ha supuesto junto con

el lenguaje Python la solución idónea dada su flexiblidad y sencillez. La exportación

hacia los NIDS ha sido la fase más compleja de implementar en esta plataforma, dado

41

que se disponen de dos formatos distintos, uno nativo desde MISP. Además, se requiere

estructurar la información exportada, para su fácil gestión en las siguientes fases. Esto

supone la capacidad de adaptación que se ha tenido a lo largo del proyecto. Se ha

encontrado una solución no nativa a través de Python para exportar los IOCs hacia los

NIDS. También se ha logrado estructurar la información de las reglas de forma intuitiva

y clara. Por último, la administración de los sistemas Linux es clave para llevar a cabo

la administración en todas sus fases.

Suricata y Zeek suponen un reto añadido en el trabajo. Se han escogido ambos NIDS

para afirmar que ambos pueden funcionar en un entorno como este, además de poder

aprender el funcionamiento de cada uno, con sus configuraciones y puesta en marcha.

Al fin y al cabo, estos detectores se han utilizado con el mismo propósito: detección de

ciberamenazas a través de ficheros de reglas. Esto supone que, aun con sus diferencias,

la configuración realizada ha sido similar. Suricata es un sistema sencillo, por lo que

su configuración ha sido menos costosa. Sin embargo, la integración de Zeek es más

compleja, dada su gran variedad de funcionalidades. Se debe configurar su modo de

funcionamiento, además de estudiar el framework de inteligencia espećıfico, entre los

muchos otros que dispone. Además, al ser el formato de reglas más flexible, durante

el desarrollo de la herramienta se detectaron algunos problemas de implementación,

solventados con el tiempo. Los resultados obtenidos tras la exportación y detección

de ciberamenazas son correctos. Se generan las alertas pertinentes cuando se provocan

conexiones maliciosas, lo que significa el cumplimiento de uno de los objetivos del

proyecto.

El producto Elastic Stack pasa a un segundo plano en este trabajo, siendo el

resultado final obtenido tras realizar el resto de fases del proyecto. Este conjunto de

programas supone una solución sencilla de implementar y visual, para la administración

de los logs generados por los NIDS. De todas las herramientas implementadas, esta es la

más sencilla y menos costosa de implementar. En cuanto a resultados de la plataforma,

se han podido visualizar todas las alertas y eventos generados por ambos detectores de

intrusos, lo que evidencia el correcto funcionamiento da cada una de las partes de la

infraestructura.

En cuanto a la aplicación del sistema a un entorno doméstico real, los resultados

evidencian la capacidad de adaptación que el proyecto posee, obteniendo resultados

favorables en un entrono complejo y real. La configuración de la Raspberry Pi 4, permite

el análisis completo de todo un entorno de red real, extrapolando las capacidades de

los NIDS desde una máquina completa hasta un entorno de red real y complejo.

En conclusión, el desarrollo de este sistema heterogéneo global y automatizado

supone un argumento firme de que cualquier sistema es configurable y automatizable,

42

haciendo uso de las herramientas precisas. Además, este trabajo significa una

contribución más en el campo de la ciberseguridad, en un entorno digital en constante

evolución y creciente complejidad. En términos personales, este trabajo ha significado

un gran avance de mis conocimientos en este campo. Ha sido un experiencia muy

enriquecedora además de interesante y satisfactoria, por la cantidad de horas dedicada,

y por el resultado final obtenido.

5.2. Ĺıneas futuras

Los desarrollos posteriores a este trabajo pueden ir enfocados hacia cada una de las

partes que lo conforman. Aśı, existen varias ĺıneas en las que se podŕıa explorar para

conseguir una ampliación de las capacidades del sistema.

En cuanto a la gestión y centralización de IOCs en MISP, existen varias ĺıneas de

trabajo que quedan abiertas. En la parte de adquisición de datos, dependiendo de las

capacidades de almacenamiento de la plataforma, se podŕıa importar más fuentes de

datos, con el objetivo de enriquecer la base de datos del sistema. Esto se podŕıa realizar

de forma manual, a través de la publicación de eventos desde la API o importando más

feeds incluidos por defecto en MISP. En el apartado de procesado de datos se nombraron

varias formas de filtrar los datos, que no se acabaron implementando en el sistema

final. Una de las ĺıneas a seguir puede ser la limpieza profunda de la base de datos para

obtener una plataforma pura de datos válidos para la exportación. Para ello, se podŕıa

limpiar la instancia quitando los atributos que no tengan el flag to ids activado, entre

otros cambios. La rotación se podŕıa hacer de forma estricta, consiguiendo una base

de datos más eficiente.

En el almacenamiento y env́ıo de ficheros de reglas, se podŕıan explorar otras

opciones de transferencia y almacenamiento de información, utilizando máquinas extra

y otros protocolos de transporte, como los descritos en la sección 2 del Caṕıtulo 3. Se

busca mejorar la seguridad en el traspaso de información a través de protocolos más

seguros.

Los NIDS no podŕıan cambiar su modo de funcionamiento, pero dependiendo de la

máquina en la que esté instalado, sus capacidades de detección cambian. Si tratamos

de aplicar el sistema a un entorno de red real analizando todo el tráfico de la red,

el número de núcleos del procesador influye en el rendimiento de los detectores de

intrusos. De esta forma, a mayor capacidad de procesamiento, mayores pueden ser las

redes a analizar en cuanto a dispositivos o volumen de tráfico. Esta ĺınea de trabajo

tiene que ver con la escalabilidad del sistema.

La solución Elastic Stack tiene poco margen de mejora, puesto que solo se encarga

43

de visualizar los datos. La única forma de incrementar su rendimiento seŕıa creando

dashboards personalizados para la visión aún más eficiente de la información dispuesta.

Por último, en cuanto al sistema como conjunto global, se podŕıa integrar junto con

otros sistemas para contribuir en las siguientes fases de actuación frente a incidentes de

seguridad. En esta ĺınea, el sistema funcionaŕıa junto con IPSs (Intrusion Prevention

Systems) para neutralizar y prevenir las conexiones maliciosas que se realizan en los

entornos de red reales.

44

Caṕıtulo 6

Bibliograf́ıa

[1] Dı́ez F. El instituto nacional de ciberseguridad gestionó 119.000 incidentes en

2022. El Páıs, 2023.

[2] NIST. https://www.cynet.com/incident-response. Accedido por última vez

en agosto de 2023.

[3] Suricata. https://suricata.io/. Accedido por última vez en agosto de 2023.

[4] Zeek. https://zeek.org/. Accedido por última vez en agosto de 2023.

[5] Indicador de Compromiso. https://es.wikipedia.org/wiki/Indicador_de_

compromiso/. Accedido por última vez en agosto de 2023.

[6] MISP. https://www.misp-project.org/. Accedido por última vez en agosto de

2023.

[7] Elastic Stack. https://www.elastic.co/es/elastic-stack. Accedido por

última vez en agosto de 2023.

[8] Security Operations Centers Working Group documentation. https://

wlcg-soc-wg-doc.web.cern.ch/index.html. Accedido por última vez en agosto

de 2023.

[9] Alexandre Dulaunoy Andras Iklody, Gerard Wagener and Sami Mokaddem.

Decaying indicators of compromise. CIRCL- Computer Incident Response Center

Luxembourg, 2018.

[10] awesome iocs. https://github.com/sroberts/awesome-iocs. Accedido por

última vez en agosto de 2023.

[11] A List of the Best Open Source Threat Intelligence Feeds. https://logz.io/

blog/open-source-threat-intelligence-feeds/. Accedido por última vez en

agosto de 2023.

45

https://www.cynet.com/incident-response
https://suricata.io/
https://zeek.org/
https://es.wikipedia.org/wiki/Indicador_de_compromiso/
https://es.wikipedia.org/wiki/Indicador_de_compromiso/
https://www.misp-project.org/
https://www.elastic.co/es/elastic-stack
https://wlcg-soc-wg-doc.web.cern.ch/index.html
https://wlcg-soc-wg-doc.web.cern.ch/index.html
https://github.com/sroberts/awesome-iocs
https://logz.io/blog/open-source-threat-intelligence-feeds/
https://logz.io/blog/open-source-threat-intelligence-feeds/

[12] The Ultimate List of Free and Open source

Threat Intelligence Feedss. https://socradar.io/

the-ultimate-list-of-free-and-open-source-threat-intelligence-feeds/.

Accedido por última vez en agosto de 2023.

[13] MISP administration. https://www.circl.lu/doc/misp/administration/.

Accedido por última vez en agosto de 2023.

[14] PyMISP. https://github.com/MISP/PyMISP. Accedido por última vez en agosto

de 2023.

[15] Suricata User Guide. https://docs.suricata.io/en/suricata-6.0.10/.

Accedido por última vez en agosto de 2023.

[16] Zeek Documentation. https://docs.zeek.org/en/master/. Accedido por

última vez en agosto de 2023.

[17] abuse.ch. https://abuse.ch/#platforms. Accedido por última vez en agosto de

2023.

[18] AlienVaultOTX. https://otx.alienvault.com/browse/global/. Accedido por

última vez en agosto de 2023.

[19] How to Use the Python Requests Module With REST APIs. https://www.nylas.

com/blog/use-python-requests-module-rest-apis/. Accedido por última vez

en agosto de 2023.

[20] How to Automate Tasks with cron Jobs in Linux. https://www.freecodecamp.

org/news/cron-jobs-in-linux/. Accedido por última vez en agosto de 2023.

[21] Install MISP on Ubuntu 22.04/Ubuntu 20.04. https://kifarunix.com/

install-misp-on-ubuntu/. Accedido por última vez en agosto de 2023.

[22] Spot suspicious activity on your local network with Suricata Intrusion Detection

System (IDS) on Raspberry Pi. https://jufajardini.wordpress.com/2021/

02/15/suricata-on-your-raspberry-pi/#architecture. Accedido por última

vez en agosto de 2023.

[23] Installing the Elastic Stack. https://www.elastic.co/guide/en/

elastic-stack/8.9/installing-elastic-stack.html. Accedido por última

vez en agosto de 2023.

46

https://socradar.io/the-ultimate-list-of-free-and-open-source-threat-intelligence-feeds/
https://socradar.io/the-ultimate-list-of-free-and-open-source-threat-intelligence-feeds/
https://www.circl.lu/doc/misp/administration/
https://github.com/MISP/PyMISP
https://docs.suricata.io/en/suricata-6.0.10/
https://docs.zeek.org/en/master/
https://abuse.ch/#platforms
https://otx.alienvault.com/browse/global/
https://www.nylas.com/blog/use-python-requests-module-rest-apis/
https://www.nylas.com/blog/use-python-requests-module-rest-apis/
https://www.freecodecamp.org/news/cron-jobs-in-linux/
https://www.freecodecamp.org/news/cron-jobs-in-linux/
https://kifarunix.com/install-misp-on-ubuntu/
https://kifarunix.com/install-misp-on-ubuntu/
https://jufajardini.wordpress.com/2021/02/15/suricata-on-your-raspberry-pi/#architecture
https://jufajardini.wordpress.com/2021/02/15/suricata-on-your-raspberry-pi/#architecture
https://www.elastic.co/guide/en/elastic-stack/8.9/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/8.9/installing-elastic-stack.html

[24] IDS exportation. https://github.com/albertoines/IDS_exportation.

Accedido por última vez en agosto de 2023.

47

https://github.com/albertoines/IDS_exportation

48

Lista de Figuras

2.1. Escenario de red con MVs . 7

2.2. Escenario de red domiciliario . 9

3.1. Arquitectura general de MISP . 11

3.2. Visualización de atributos en la instancia MISP 13

3.3. Visualización de eventos en la instancia MISP 13

3.4. Herramienta de MISP para visualizar la función de decaimiento 15

3.5. Feeds activos en la instancia de MISP 16

3.6. Tweet de ejemplo para su integración en MISP 18

3.7. Fichero de reglas de ip-dst para Suricata 22

3.8. Fichero de reglas de domain para Zeek 22

3.9. Fichero de Crontab de la MV de MISP. 23

3.10. Repositorio privado de Github para el almacenamiento de ficheros de

reglas. 24

3.11. Funcionamiento básico de Suricata. 25

3.12. Ejemplo de parte de fichero de suricata.yaml. 27

3.13. Ejemplo de parte de fichero de suricata.yaml. Ruta de los ficheros de

reglas utilizados. 27

3.14. Fichero de log suricata.log tras reiniciar el servicio. 28

3.15. Fichero de Crontab de la MV de Suricata/Zeek. 28

3.16. Funcionamiento básico de Zeek. 29

3.17. Ejemplo de node.cfg en modo cluster. 30

3.18. Fichero main para la carga de Intelligence Framework. 31

3.19. Infraestructura básica de Elastic Stack conectada con los NIDS. 32

4.1. Archivo fast.log tras la detección de una IP maliciosa. 36

4.2. Archivo eve.json tras la detección de un dominio malicioso. 36

4.3. Archivo intel.log tras la detección de un dominio malicioso. 36

4.4. Archivo intel.log tras la detección de una URL maliciosa. 36

4.5. Recopilatorio de alertas recogidas en Kibana. 37

49

4.6. Recopilatorio de alertas clasificadas por d́ıa recogidas en Kibana. 37

4.7. Recopilatorio de eventos de Suricata recogidos en Kibana. 38

4.8. Gráfico de conexiones detectadas por Zeek. 38

4.9. Detección de un dominio malicioso desde la Raspberry Pi 4 en un

ordenador conectado a la red doméstica. 39

4.10. Gráfico de dominios más detectados por Zeek. 39

4.11. Gráfico de direción de las conexiones detectadas por Zeek. 40

4.12. Gráfico de sesiones detectadas por Zeek. 40

A.1. Visualización de feeds usados en la instancia MISP 54

B.1. Ejemplo de regla en el formato de Suricata. 57

B.2. Ejemplo de regla en el formato de Zeek. 58

C.1. Función restSearch de Python para realizar una petición a la API de

MISP. 62

E.1. Interfaz web de la instancia de MISP 71

G.1. Apartado del fichero kibana.yml donde se detalla la configuración

automática. 80

G.2. Archivo suricata.yml. 81

50

Anexos

51

Anexos A

Estudio de fuentes Open Source

MISP proporciona por defecto una amplia gama de feeds Open Source. Estos

feeds proceden de organizaciones, empresas e instituciones que ofrecen sus datos

de inteligencia de ciberamenazas de forma gratuita. Los colectivos son de diversas

procedencias y su información está diseñada para que adopte el formato correcto con

el objetivo ser importada nativamente hacia la instancia de MISP, en cualquiera de las

tres formas posibles (misp, csv o freetext). Esto facilita mucho la adquisición de datos

por parte de la plataforma [17] [18].

Por otro lado, MISP permite la creación personalizada de feeds por parte de

los usuarios. Esta funcionalidad permite indicar fuentes de datos personalizadas. Sin

embargo, se debe tener en cuenta que si el formato de los datos no es el correcto MISP

es incapaz de adquirir esa información en su base de datos. De manera análoga, a

través de la API de la plataforma podemos publicar nuestros propios eventos o incluso

atributos, de nuevo estructurando los datos de forma adecuada.

En base a las formas que MISP nos ofrece para adquirir los datos hacia su

plataforma, en este trabajo se realiza un estudio de todas las posibilidades de la ingesta

de datos y su repercusión en la plataforma.

Inicialmente, en la fase de desarrollo se activaron 7 fuentes de datos proporcionadas

por defecto por MISP, incluyendo los 3 formatos. Estos feeds ejecutan la operación

fetch diariamente, descargando eventos nuevos hacia la instancia. Además, se incluyó

una fuente configurada de forma manual y una publicación diaria de eventos en la

plataforma mediante un script y la API de MISP.

Las fuentes por defecto incluidas en el desarrollo se dividen en dos grupos, según la

naturaleza de los eventos que publican:

− Feeds diarios o normales: Esta clase de fuente se corresponde con el tipo

de formato misp. Se caracterizan por seguir un criterio a la hora de publicar sus

eventos. Por un lado, algunos siguen la regla de componer un evento con todos los

atributos que han encontrado durante un d́ıa (periodicidad diaria) o simplemente

53

cuando descubren un incidente, agrupan todos los atributos relacionados con él

y confeccionan un evento. Es el caso de los feeds : CIRCL OSINT Feed, The

Botvrij.eu Data, Threatfox y URLhaus.

− Feeds con sólo un evento: Esta clase de fuente se corresponde con los formatos

csv y freetext. Se trata de feeds que al activarlas crean un único evento que

se sobreescribe cada vez que se ejecuta la operación de fecth. Esto se debe a

la simplicidad del formato. Suelen ser listas de valores de atributos, como, por

ejemplo, direcciones IP. Entre las usadas se encuentran: ip-block-list - snort.org,

Tor ALL nodes y Tor exit nodes.

Figura A.1: Visualización de feeds usados en la instancia MISP

Las fuentes introducidas manualmente se comportan de igual manera que alguno

de los dos grupos descritos anteriormente.

La publicación de eventos mediante un script y la API de MISP se trata en la

sección 3.1.3: Configuración y automatización.

Ya caracterizado y comprobado el funcionamiento de los feeds, una pregunta

interesante seŕıa saber cual es el número idóneo de fuentes que debeŕıamos activar

en nuestro sistema. La respuesta vaŕıa dependiendo de las condiciones de la propia

infraestructura, su almacenamiento disponible y las poĺıticas de rotación de los datos.

Se debe tener en cuenta que conforme se activan más fuentes, los datos crecen de manera

más rápida en la base de datos. Consecuentemente, esto supone que la plataforma esté

más enriquecida con datos, a pesar de que los IDS tendrán que consumir más recursos

según la información que les demos para detectar los IOCs. En conclusión, se trata de

buscar un compromiso entre la cantidad de información y la carga que supone para

nuestro sistema.

El último punto a tener en cuenta en este aspecto es el almacenamiento que supone

la adquisición de todos estos datos por parte de la máquina virtual en la que está

alojada el servidor de MISP. La idea inicial del proyecto incluye la actualización diaria

54

de la base de datos con eventos nuevos. Esto supone que si la base de datos crece de

forma diaria llegará a un punto en el que la base de datos esté llena. La MV dispone

de 140 GB de almacenamiento, lo que supone la limitación más importante en este

punto.

55

56

Anexos B

Formato de reglas

B.1. Suricata

Una parte interesante del desarrollo del proyecto es estudiar el formato que se

requiere para crear reglas personalizadas. Aunque la exportación de reglas es directa

desde MISP, es necesario entender el formato de las reglas en Suricata, con el objetivo

de solventar errores que puedan surgir [15].

Se analiza el formato con un ejemplo concreto de una regla:

Figura B.1: Ejemplo de regla en el formato de Suricata.

En la Figura B.1 se describe el formato que tiene una regla en el NIDS Suricata.

La regla se puede fraccionar en 3 partes diferentes:

− Action: Define la acción a realizar cuando se detecta la regla (alert, drop, pass,

reject).

− Header : Parte principal de la regla. Se divide en:

• Protocol : Especifica el protocolo a nivel de red (ip), nivel de transporte (tcp,

udp, icmp) o nivel de aplicación (http, ftp, tls, smb, dns).

• Source and Destination: Detalla las direcciones IP origen y destino. Existen

variedad de formas de indicar diercciones IP. Algunos ejemplos:

◦ 192.168.1.1: Dirección IP 192.168.1.1.

◦ ![192.168.1.1]: Todas las direcciones menos 192.168.1.1.

57

◦ $HOME NET: Utiliza la variable definida en el fichero de configuración

suricata.yaml para definir la dirección IP.

◦ any: Cualquier dirección IP.

• Source and Destination ports : Detalla los puertos origen y destino. Existen

variedad de formas de indicar los puertos. Algunos ejemplos:

◦ ![80, 83]: Todos los puertos menos 80 y 83.

◦ ![80:83]: Todos los puertos menos del 80 hasta el 83.

◦ any: Cualquier puerto.

• Direction: Simplemente indica el sentido de detección de la regla. Puede ser

direccional o bidireccional.

− Rule options : Se especifican las configuraciones concretas para la implementación

de la regla. Sigue el formato name:setting. Existe una gran variedad de opciones.

Algunos ejemplos de meta-keywords son:

• msg : Mensaje que se muestra en los logs al saltar la regla.

• classtype: Clasifica el tipo de amenaza que supone la regla. Existen unos

tipos definidos en la documentación de la herramienta.

• sid : Identificador único asignado a la regla.

• rev : Version de la regla.

• priority : Prioridad asignada a la regla. Puede ser desde 1 hasta 255.

• reference:url : Indica la fuente de información desde la que se ha obtenido la

regla.

B.2. Zeek

Siguiendo en la ĺınea de Suricata, Zeek posee un formato de reglas espećıfico de

para alimentar su Intelligence Framework [16]. El formato es más sencillo, y se detalla

a continuación mediante un ejemplo:

Figura B.2: Ejemplo de regla en el formato de Zeek.

En la Figura B.2 se describe el formato que tiene una regla en el NIDS Zeek. La

regla se divide en 3 partes diferentes:

58

− Indicator : Valor del dato a detectar.

− Indicator type: Describe el tipo de indicador que se utiliza, en este caso se trata

de un dominio. Otros ejemplos de indicadores son: Intel::URL, Intel::ADDR o

Intel::FILE HASH.

− Meta.source: Breve descripción del dato detectado y la fuente del que proviene.

Todas las separaciones entre campos deben estar tabuladas una vez. Además, al inicio

de cada fichero de datos se debe incluir la ĺınea de cabecera.

Se permite ampliar el formato con más campos, pero, a pesar de su simpleza, este

formato de reglas es efectivo.

59

60

Anexos C

Libreŕıa Python Requests para su
uso en REST APIs

Las REST APIs son interfaces de comunicación entre sistemas de información

(normalmente servicios web) que usan el protocolo HTTP para el transporte de los

datos. Los datos intercambiados suelen estar en formato json, aunque también pueden

estar en formato XML. Python es el lenguaje idóneo para interactuar con esta clase

de APIs. Existe una libreŕıa diseñada espećıficamente para realizar intercambios de

datos entre las REST APIs y Python. Esta libreŕıa se denomina Requests y es de gran

utilidad en este proyecto para gestionar la instancia de MISP a través de su REST API

[19].

C.1. Estructura de la petición

Cuando se quiere interactuar con la REST API, se necesita enviar una petición.

La petición tiene diferentes campos:

− Endpoint : Es la URL que indica los datos a los que se está accediendo dentro de

la API.

− Method : Se indica en este campo como se va a interactuar con los datos. Los

métodos más usados son:

• GET: Obtener datos de la API.

• POST: Crear datos en la API.

• PUT: Reeemplazar datos en la API.

• DELETE: Borrar datos en la API.

− Data: Se involucra en los métodos que requieren cambiar datos en la API. Junto

con la petición, se indican los datos que se quieren crear o con los que se quiere

reemplazar otros datos (POST, PUT).

61

− Headers : Cabecera que incluye los metadatos en la petición. Se adjuntan en

este campo tokens de autenticación, tipo de contenido que queremos recibir

(Content-type) u otros datos relevantes.

C.2. Respuesta

Cuando se realiza una petición a la API, se obtiene una respuesta con el mismo

formato. Por lo tanto, la respuesta tendrá una cabecera y contenido. El contenido

tendrá los datos solicitados en el formato pedido. Normalmente, se utiliza el formato

json para esta clase de peticiones.

C.3. Caso de uso: MISP

Lo primero que se debe hacer para poder usar esta libreŕıa es instalarla en el entorno

de Python e importarla en el código. Una vez hecho esto, se accede a la API de MISP

para realizar una búsqueda parametrizada de atributos. Para ello, se utiliza una función

llamada restSearch, contenida en el script functions.py. Esta función, realizará una

petición a la API y recibirá los datos solicitados para su consulta y procesado. En la

Figura C.1: Función restSearch de Python para realizar una petición a la API de MISP.

Figura C.1, se observa la función descrita. Los parámetros de la función son: la URL de

la instancia privada de MISP (misp url), la cabecera de la petición(headers) y los dos

parámetros de búsqueda (type, timestamp). En este caso, se buscan atributos presentes

en la base de datos sean de un tipo de dato espećıfico y creados en un rango de tiempo

determinado.

62

Como se indica en la sección de estructura de la petición, creamos el endpoint con

la URL de nuestra instancia y añadiendo la URL espećıfica de la API para realizar

búsquedas. Puesto que va a ser una solicitud POST, introducimos los datos para la

búsqueda y formato de los datos. Indicamos que el formato es json, buscando atributos

con el flag to ids, de un tipo y en un rango de tiempo determinados. A continuación se

realiza la petición POST. Si la respuesta es correcta, se reciben los datos solicitados y

se decodifican para su uso. Si ocurre lo contrario, significa que ha habido un error.

Un ejemplo de datos recibidos se detalla a continuación:

"Event":{"org_id":"1","distribution":"0","id":"2875","info":"Tor ALL

nodes feed","orgc_id":"1","uuid":"66692329-f565-49d9-a79b-

e2c3512f3a99"}},

{"id":"27143022","event_id":"2875","object_id":"0","object_relation":

null,"category":"Network activity","type":"ip-

dst","to_ids":true,"uuid":"ca77b1f3-ebb7-4bb1-a0c2-

25ee29e2e927","timestamp":"1693347607","distribution":"5","sharing_gr

oup_id":"0","comment":"","deleted":false,"disable_correlation":false,

"first_seen":null,"last_seen":null,"value":"116.80.79.95","Event":

{"org_id":"1","distribution":"0","id":"2875","info":"Tor ALL nodes

feed","orgc_id":"1","uuid":"66692329-f565-49d9-a79b-e2c3512f3a99"}},

{"id":"27143023","event_id":"2875","object_id":"0","object_relation":

null,"category":"Network activity","type":"ip-

dst","to_ids":true,"uuid":"b6a87d7f-df4b-48cc-98ac-

2f2ca3ee9d7a","timestamp":"1693347607","distribution":"5","sharing_gr

oup_id":"0","comment":"","deleted":false,"disable_correlation":false,

"first_seen":null,"last_seen":null,"value":"117.252.193.166","Event":

{"org_id":"1","distribution":"0","id":"2875","info":"Tor ALL nodes

feed","orgc_id":"1","uuid":"66692329-f565-49d9-a79b-e2c3512f3a99"}},

{"id":"27143025","event_id":"2875","object_id":"0","object_relation":

null,"category":"Network activity","type":"ip-

dst","to_ids":true,"uuid":"fab52250-6e09-4c10-9f14-

2ab6378f7173","timestamp":"1693347607","distribution":"5","sharing_gr

oup_id":"0","comment":"","deleted":false,"disable_correlation":false,

"first_seen":null,"last_seen":null,"value":"129.80.239.117"

63

64

Anexos D

Uso de Crontab para la
automatización de tareas

El uso de Crontab es imprescindible para las tareas de automatización en el

proyecto. En este anexo, se detalla el funcionamiento de la herramienta, con sus

posibilidades de configuración y ejemplos de uso [20].

Cron es una herramienta de gestión de tareas para sistemas Unix o similiar. El

daemon crond activa cron, que se ejecuta en segundo plano. Este proceso lee un fichero

llamado Crontab. En este archivo, utilizando la sintaxis adecuada, se pueden escribir

tareas para que cron las ejecute en una fecha y hora determinada, con posiblidad de

establecer periodicidad. De este modo, en cada uno de los procesos de automatización de

las plataformas, se utiliza esta herramienta para establecer periodicidad en la ejecución

de tareas.

Para acceder al fichero Crontab, se utiliza el siguiente comando:

crontab -e

Una vez dentro, podemos editar el fichero para automatizar nuestras tareas.

D.1. Sintaxis

Se detalla un ejemplo de tarea cron:

* * * * * sh /path/to/script/script.sh

| | | | | |

| | | | | Comando or Script a ejecutar

| | | | |

| | | | |

| | | | |

| | | | Dı́a de la semana (0-6)

65

| | | |

| | | Mes del a~no (1-12)

| | |

| | Dı́a del mes(1-31)

| |

| Hora(0-23)

|

Minuto(0-59)

En el margen izquierdo se tienen 5 asteriscos. Estos se corresponden con los minutos,

horas, d́ıas, meses y d́ıas de la semana de la tarea respectivamente. Los asteriscos

indican para cada campo que la periodicidad para dicha variable es total. Por ejemplo,

un asterisco en el campo ”hora” indica que la tarea se ejecuta cada hora. Si ponemos

un valor concreto, se indica que la tarea se ejecutará a esa hora precisa, de acuerdo con

los demás campos del cron.

En el margen derecho se describe la tarea a ejecutar, en este caso es la ejecución de

un script en bash en la ruta especificada.

D.2. Casos de uso: automatización

En la instancia de MISP, se requiere exportar los archivos de reglas actualizados

diariamente. Para realizar la actualización de los ficheros de reglas se utiliza el script

export IOCs.py. Para que este código se ejecute diariamente, se utiliza una tarea cron:

Exportacion de los IOCs como archivos de reglas

30 0 * * * sudo python3 /root/scripts/export_IOCs.py

Esta tarea cron indica que el código se ejecutará diariamente a las 00:30. Otro ejemplo

seŕıa la rotación de IOCs mediante el script IOC rotation.py. La tarea cron es la

siguiente:

Rotación IOCs

1 0 1 1,3,5,7,9,11 * sudo python3 /root/scripts/IOC_rotation.py

Esta tarea, según la sintaxis, se ejecutará a las 00:01 del d́ıa 1 de los meses impares del

año. Es decir, cada dos meses, el periodo de rotación de IOCs establecido.

66

Anexos E

Instalación de MISP

La instalación de la plataforma MISP en un sistema operativo como Debian 11

supone un problema por temas de compatiblidad. Para instalar MISP se han seguido

los pasos de instalación para una distribución parecida como es Ubuntu [21]. Siguiendo

estos pasos, la instalación ha sido limpia y el programa funciona correctamente.

El primer paso es instalar las dependencias mediante los siguientes comandos:

sudo apt update

sudo apt install postfix mailutils curl gcc git

gpg-agent make libcaca-dev liblua5.3-dev \

python python3 openssl redis-server vim zip unzip

virtualenv libfuzzy-dev sqlite3 \

moreutils python3-dev python3-pip libxml2-dev

libxslt1-dev zlib1g-dev \

python-setuptools openssl cmake

A continuación, se crea un usuario para usar MISP y se instalan más dependencias

necesarias como MariaDB o PHP:

sudo useradd -s /bin/bash -m -G adm,cdrom,sudo,dip,

plugdev,www-data,staff misp

sudo passwd misp

curl -LsS https://downloads.mariadb.com/MariaDB/mariadb_repo_setup

| sudo bash -s -- --mariadb-server-version=10.9

sudo apt install mariadb-client mariadb-server -y

apt install libapache2-mod-php php php-cli php-dev

php-json php-xml php-mysql php-opcache \

php-readline php-mbstring php-zip php-redis php-gnupg

67

php-intl php-bcmath php-gd php-curl

Se procede con la configuración de la base de datos de MISP. Se crea un usuario y se

le otorgan permisos sobre la base de datos creada:

sudo systemctl start mariadb

sudo mysql_secure_installation

sudo mysql -u root -p -e "create database misp;"

sudo mysql -u root -p -e "grant all on misp.*

to mispadmin@localhost identified by ’MISP-DB-Password’;"

sudo mysql -u root -p -e "flush privileges;"

sudo -Hu www-data cat /var/www/MISP/INSTALL/MYSQL.sql

| mysql -u mispadmin -p misp

Seguimos con la instalación de MISP. Se realiza mediante un clonado del repositorio

oficial de Github. Además, se configura Python para funcionar en el sistema:

sudo mkdir /var/www/MISP

sudo git clone https://github.com/MISP/MISP.git

/var/www/MISP/

sudo git -C /var/www/MISP/ submodule update

--progress --init --recursive

sudo chown -R www-data: /var/www/MISP

sudo -u www-data git -C /var/www/MISP submodule foreach --recursive

git config core.filemode false

sudo -u www-data git -C /var/www/MISP config core.filemode false

sudo -u www-data virtualenv -p python3 /var/www/MISP/venv

sudo mkdir /var/www/.cache/

sudo chown -R www-data: /var/www/.cache/

sudo -u www-data /var/www/MISP/venv/bin/pip

install ordered-set python-dateutil six weakrefmethod

sudo -u www-data /var/www/MISP/venv/bin/pip install

/var/www/MISP/app/files/scripts/misp-stix

68

sudo -u www-data /var/www/MISP/venv/bin/pip install

/var/www/MISP/PyMISP

Se instala CakePHP y se configura PHP para establecer el servidor web:

sudo mkdir -p /var/www/.composer

sudo chown -R www-data: /var/www/.composer

cd /var/www/MISP/app

sudo -u www-data php composer.phar install --no-dev

sudo phpenmod redis

sudo phpenmod gnupg

sudo -u www-data cp -fa /var/www/MISP/INSTALL/setup/config.php

/var/www/MISP/app/Plugin/CakeResque/Config/config.php

Establecemos los permisos necesarios para los directorios de MISP:

sudo chown -R www-data: /var/www/MISP

sudo chmod -R 750 /var/www/MISP

sudo chmod -R g+ws /var/www/MISP/app/tmp /var/www/MISP/app/files

Pasamos a configurar la instancia de MISP con sus ficheros de configuración:

sudo -u www-data cp -a /var/www/MISP/app/Config/bootstrap{.default,}.php

sudo -u www-data cp -a /var/www/MISP/app/Config/database{.default,}.php

sudo -u www-data cp -a /var/www/MISP/app/Config/core{.default,}.php

sudo -u www-data cp -a /var/www/MISP/app/Config/config{.default,}.php

Configuramos el archivo database.php con el siguiente comando:

sudo nano /var/www/MISP/app/Config/database.php

El archivo debe quedar de la siguiente forma:

class DATABASE_CONFIG {

public $default = array(

’datasource’ => ’Database/Mysql’,

//’datasource’ => ’Database/Postgres’,

’persistent’ => false,

’host’ => ’localhost’,

’login’ => ’mispadmin’,

’port’ => 3306, // MySQL & MariaDB

69

//’port’ => 5432, // PostgreSQL

’password’ => ’MISP-DB-Password’,

’database’ => ’misp’,

’prefix’ => ’’,

’encoding’ => ’utf8’,

);

}

A continuación, generamos la MISP GnuPG key :

sudo -u www-data gpg --homedir

/var/www/MISP/.gnupg --batch --gen-key

~/misp-gpg-batch-file

sudo -u www-data gpg --homedir /var/www/MISP/.gnupg --

export --armor admin@kifarunix-demo.com \

| sudo -u www-data tee /var/www/MISP/app/webroot/gpg.asc

Configuramos los workers de la instancia:

sudo systemctl daemon-reload

sudo systemctl enable --now misp-workers

systemctl status misp-workers.service

Inicializamos la configuración de MISP:

sudo -Hu www-data /var/www/MISP/app/Console/cake userInit -q

sudo -Hu www-data /var/www/MISP/app/Console/cake Admin runUpdates

sudo -Hu www-data /var/www/MISP/app/Console/cake Live 1

Configuramos el servidor web Apache para MISP:

sudo cp /var/www/MISP/INSTALL/apache.24.misp.ssl

/etc/apache2/sites-available/misp.conf

sudo nano /etc/apache2/sites-available/misp.conf

Actualizamos las ĺıneas necesarias de este fichero para configurar correctamente la

instancia. En vez de un nombre, se puede definir una dirección IP en el ServerName.

Instalamos los certificados TLS:

70

sudo openssl req -newkey rsa:4096 -days 365 -nodes -x509 -

subj "/CN=*.kifarunix-demo.com" \

-keyout /etc/ssl/private/misp.local.key -out

/etc/ssl/private/misp.local.crt

Por último, se reinicia el servidor:

sudo systemctl restart apache2

Llegados a este punto, ya somos capaces de acceder via web a la instancia de MISP

instalada, con una interfaz como la que se muestra en la Figura A.1.

Figura E.1: Interfaz web de la instancia de MISP

Lo siguiente que se debe hacer es configurar los usuarios que acceden a la instancia.

El resto de configuraciones se detallan en los caṕıtulos de la memoria.

71

72

Anexos F

Instalación de Suricata y Zeek

Para la instalación de ambas herramientas, se recurre a las documentaciones oficiales

de cada uno de ellos [15],[16]. En estas páginas, se detallan los pasos a seguir para

realizar una instalación limpia de los NIDS. En este anexo únicamente se incluyen las

instrucciones de instalación, descrita la configuración en el Caṕıtulo 2 de la memoria.

F.1. Suricata

F.1.1. MV Debian 11

La instalación en la documentación hace referencia al sistema operativo Ubuntu,

pero dada su similitud con Debian 11, la instalación es compatible con el sistema. Se

comienza instalando los paquetes necesarios:

sudo add-apt-repository ppa:oisf/suricata-stable

sudo apt update

sudo apt install suricata jq

Para comprobar la versión, se utilizan los comandos:

sudo suricata --build-info

sudo systemctl status suricata

F.1.2. Raspberry Pi 4

Para el caso de la Raspberry Pi 4, la instalación es ligeramente diferente[22]. Se

comienza instalando las dependencias necesarias en el dispositivo:

sudo apt install libpcre3 libpcre3-dbg libpcre3-dev build-essential libpcap-

dev libyaml-0-2 libyaml-dev pkg-config zlib1g zlib1g-dev make libmagic-dev

libjansson-dev rustc cargo python-yaml python3-yaml liblua5.1-dev

73

Se obtiene el código de Suricata y lo descomprimimos:

wget https://www.openinfosecfoundation.org/download/suricata-6.0.1.tar.gz

tar -xvf suricata-6.0.1.tar.gz

Desde la carpeta se configura la instalación:

cd $HOME/suricata-6.0.1/

./configure --prefix=/usr --sysconfdir=/etc --localstatedir=/var --enable-

nfqueue --enable-lua

Una vez hecho esto, se procede finalmente con la instalación:

make

sudo make install

cd $HOME/suricata-6.0.1/

sudo make install-full

F.2. Zeek

F.2.1. MV Debian 11

Se sigue la documentación para la instalación en el caso del sistema operativo

utilizado. Se realiza el proceso mediante el paquete binario:

echo ’deb http://download.opensuse.org/repositories/security:/zeek/Debian_11/

/’ | sudo tee /etc/apt/sources.list.d/security:zeek.list

curl -fsSL

https://download.opensuse.org/repositories/security:zeek/Debian_11/Release.key

| gpg --dearmor | sudo tee /etc/apt/trusted.gpg.d/security_zeek.gpg >

/dev/null

sudo apt update

sudo apt install zeek

Una vez instalado, se debe ajustar la ruta del entorno:

export PATH=/opt/zeek/bin:$PATH

74

F.2.2. Raspberry Pi 4

Para la instalación de Zeek en el dispositivo, se instala el paquete directamente:

dpkg -i zeek_5.1.1_armhf.deb

Se instalan las dependencias necesarias para instalar af-packet y se termina con la

instalación:

apt install python3-venv python3-pip

pip3 install GitPython semantic-version --user

export PATH=/usr/local/zeek/bin:$PATH

zeekctl stop

zkg autoconfig

apt-get install raspberrypi-kernel-headers

zkg install zeek/zeek/zeek-af_packet-plugin

75

76

Anexos G

Instalación y configuración de
Elastic Stack

G.1. Instalación

Se detalla la instalación de las herramientas utilizadas en el proyecto, pertenecientes

al producto Elastic Stack. En este caso, se trata de las instalaciones de Elasticsearch,

Kibana y Filebeat [23]. Tanto en el sistema operativo Debian 11 como en la Raspberry

Pi 4, la instalación de estos paquetes es idéntica.

G.1.1. Elasticsearch

Utilizamos el paquete Debian para la instalación en ambos casos. En primer lugar,

se importa la clave PGP del paquete:

wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo gpg --

dearmor -o /usr/share/keyrings/elasticsearch-keyring.gpg

A continuación se instala a través del repositotio de APT:

sudo apt-get install apt-transport-https

echo "deb [signed-by=/usr/share/keyrings/elasticsearch-keyring.gpg]

https://artifacts.elastic.co/packages/8.x/apt stable main" | sudo tee

/etc/apt/sources.list.d/elastic-8.x.list

Por último, se procede a la instalación de paquete Debian:

sudo apt-get update && sudo apt-get install elasticsearch

Para hacerlo de forma manual, se ejecutan los siguientes comandos (utilizados en la

Raspberry Pi 4 :

77

wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-

8.9.1-amd64.deb

wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-

8.9.1-amd64.deb.sha512

shasum -a 512 -c elasticsearch-8.9.1-amd64.deb.sha512

sudo dpkg -i elasticsearch-8.9.1-amd64.deb

G.1.2. Kibana

De la misma forma que en la sección anterior, se instala Kibana. Los comandos

anteriores, al haber sido ejecutados anteriormente, no hace falta su reejecución:

sudo apt-get update && sudo apt-get install kibana

De forma manual(Raspberry Pi 4):

wget https://artifacts.elastic.co/downloads/kibana/kibana-8.9.1-amd64.deb

shasum -a 512 kibana-8.9.1-amd64.deb

sudo dpkg -i kibana-8.9.1-amd64.deb

G.1.3. Filebeat

Esta instalación se realiza en una máquina distinta en el escenario de MVs. En la

Raspberry se hace de la misma forma. La instalación se realiza con el paquete Debian:

curl -L -O https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-

8.9.1-amd64.deb

sudo dpkg -i filebeat-8.9.1-amd64.deb

G.2. Configuración y automatización

Con el fin de configurar la infraestructura correctamente, se sigue un orden concreto

en la puesta a punto de cada herramienta. Se empieza con Elasticsearch, después Kibana

y por último se configura Filebeat.

Elasticsearch

Esta herramienta se instala y configura en la MV de Elastic Stack, dado que se

encargará de la recepción de los datos, además del posterior análisis y búsqueda de los

mismos. Como cada elemento en el sistema, Elasticsearch contiene sus configuraciones

78

en un fichero YAML: elasticsearch.yml. Para vincular la dirección IP a la herramienta,

se utiliza la ĺınea en el fichero:

network.bind_host: ["127.0.0.1", "yourprivateip"]

Donde ”yourprivateip” se sustituye por la IP privada del equipo. La otra dirección es

de loopback.

Al final del fichero de configuración, se añaden un par de ĺıneas extra:

discovery.type: single-node

xpack.security.enabled: true

En el discovery.type indicamos que el modo de funcionamiento incluye un nodo único

(no usamos un clúster). En la siguiente ĺınea, activamos xpack, un paquete que

proporciona una capa de seguridad extra al programa.

Con este par de configuraciones sencillas, Elasticsearch está listo para funcionar.

Para iniciarlo se utiliza:

systemctl start elasticsearch.service

Por defecto, esta herramienta intercambia su tráfico a través del puerto 9200.

Kibana

El siguiente paso, es la configuración de Kibana. Este software se ejecutará en la

MV de Elastic Stack, en paralelo con Elasticsearch. El objetivo de la configuración será

conectar ambas herramientas a través de protocolos seguros. Durante la instalación

de Elasticsearch, se genera una Kibana enrollment-token, utilizado por Kibana para

conectarse al nodo donde se ejecuta Elasticsearch. De este modo, con Elasticsearch

iniciado, arrancamos Kibana e introducimos el siguiente comando:

bin/kibana-setup --enrollment-token <enrollment-token>

Donde enrollment-token se sustituye por el token en cuestión. Aśı, conseguimos

que, automáticamente, se produzcan las configuraciones de seguridad entre ambos

programas.

De nuevo, existe un fichero denominado kibana.yml donde se recogen las

configuraciones a implementar. Tras ejecutar el comando detallado anteriormente, se

añaden unas ĺıneas a este fichero de forma automática, como se muestra en la Figura

G.1.

Por último, a este fichero se añade la siguiente ĺınea:

79

Figura G.1: Apartado del fichero kibana.yml donde se detalla la configuración
automática.

server.host: "yourprivateip"

Donde ”yourprivateip” se sustituye por la IP privada de la MV donde se ejecuta el

software.

En estas condiciones ya se puede iniciar Kibana, que creará un servidor web al que

se puede acceder desde el navegador, indicando la dirección IP y el puerto 5601. Para

inicializar el servicio:

systemctl start kibana.service

Filebeat

Filebeat se instala en las máquinas donde se generan los logs a analizar. En este

proyecto, serán la MV de Zeek/Suricata en el entorno de MVs y la Raspberry Pi 4 en el

entorno doméstico. Esta herramienta se conecta a Elasticsearch para enviarle los logs

generados por los NIDS, que a su vez son exportados a Kibana para su visualización.

Tras la instalación, se genera el archivo de configuración filebeat.yml. Lo editamos

para configurar la conexión con el servidor de Elasticsearch y Kibana.

La primera configuración del fichero es la conexión con el servidor de Kibana. Para

ello, añadimos la siguiente ĺınea en el fichero:

host: "yourprivateip:5601"

Donde ”yourprivateip” indica la dirección IP donde se encuentra instalado la

herramienta Kibana.

A continuación, se configura la conexión con Elasticsearch. Para ello, en la parte

del archivo que corresponde, se deben añadir las siguientes ĺıneas:

hosts: ["https://yourprivateip:9200"]

username: "elastic"

password: "xxx"

ssl:

enabled: true

ca_trusted_fingerprint: "xxx"

80

Donde ”yourprivateip” es la IP donde se encuentra la herramienta, password es la

contraseña creada durante la instalación y ca trusted fingerprint es el certificado SSL1

para la autenticidad y cifrado de los datos.

Por último, se añaden los módulos correspondientes a los NIDS para que Filebeat

extriaga sus logs y los exporte hacia Elasticsearch. Para activar los módulos se ejecutan

los comandos:

filebeat modules enable suricata

filebeat modules enable zeek

Una vez hecho esto, se crean unos ficheros de configuración, a los cuales podemos

acceder para indicarle al programa cuales son los logs que se quieren exportar. Estos

archivos son suricata.yml y zeek.yml. En estos archivos, se indican las rutas de los

ficheros de logs que queremos exportar. En este trabajo, se busca exportar en formato

json (por simplicidad en el procesado en Elasticsearch) los ficheros eve.json e intel.log.

En la figura G.2 se ilustra la estructura del fichero suricata.yml.

Figura G.2: Archivo suricata.yml.

El fichero zeek.yml tiene una estructura similar, pero con posiblidad de activar todos

los logs de los que dispone el programa. En este caso solo se activa intel.log.

De esta forma, se da por terminada la configuración de la infraestructura Elastic

Stack. Filebeat recoge los logs y se los env́ıa a Elasticsearch. Este los procesa y Kibana

utiliza esa información para visualizarlo en formato de sus dashboards.

1SSL: Secure Socket Layer. Protocolo de seguridad que ofrece privacidad, autenticación e integridad
a las comunicaciones en Internet

81

82

Anexos H

Código, repositorio de Github

En el repositorio de Github [24], sigue en funcionamiento la automatización de

MISP, pudiendo acceder a los ficheros de reglas actualizados diariamente. Por otro

lado, en el repositorio se encuentran todos los scripts utilizados durante el desarrollo,

disponible para aquellos interesados en el proyecto.

83

	Lista de Acrónimos
	Introducción
	Contexto y motivación
	Objetivos
	Herramientas
	Estructura y organización de la memoria

	Escenarios de trabajo y configuración
	Escenario de red con MVs
	Escenario de red domiciliario

	Desarrollo y despliegue
	MISP
	Introducción
	Arquitectura de la información
	Ciclo de vida de un IOC
	Configuración y automatización

	Almacenamiento de ficheros de reglas
	Suricata como NIDS
	Introducción
	Configuración y automatización

	Zeek como NIDS
	Introducción
	Configuración y automatización

	Elastic Stack

	Pruebas y análisis de los resultados
	Escenario de red con MVs
	Detección de intrusos de red
	Visualización de datos

	Escenario de red domiciliario
	Detección de intrusos de red
	Visualización de datos

	Conclusiones y líneas futuras
	Conclusiones
	Líneas futuras

	Bibliografía
	Lista de Figuras
	Anexos
	Estudio de fuentes Open Source
	Formato de reglas
	Suricata
	Zeek

	Librería Python Requests para su uso en REST APIs
	Estructura de la petición
	Respuesta
	Caso de uso: MISP

	Uso de Crontab para la automatización de tareas
	Sintaxis
	Casos de uso: automatización

	Instalación de MISP
	Instalación de Suricata y Zeek
	Suricata
	MV Debian 11
	Raspberry Pi 4

	Zeek
	MV Debian 11
	Raspberry Pi 4

	Instalación y configuración de Elastic Stack
	Instalación
	Elasticsearch
	Kibana
	Filebeat

	Configuración y automatización

	Código, repositorio de Github

