
Trabajo Fin de Grado

Programación y optimización de sistemas
heterogéneos basados en FPGA

Programming and optimization of heterogeneous
systems based on FPGA

Autor

Pablo Cambra Aćın

Directores

Rubén Gran Tejero

Daŕıo Suárez Gracia

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2023



2



DECLARACIÓN DE 
AUTORÍA Y ORIGINALIDAD 

TR
A
B
A
JO
S 
D
E 
FI
N
 D
E 
G
R
A
D
O
 /
 F
IN
 D
E 
M
Á
ST
ER

(Este documento debe remitirse a seceina@unizar.es dentro del plazo de depósito)  

D./Dª.   , 

en aplicación de lo dispuesto en el art. 14 (Derechos de autor) del Acuerdo de 

11  de   septiembre de  2014,  del  Consejo  de  Gobierno,  por  el  que  se  

aprueba el Reglamento  de  los  TFG y  TFM  de  la  Universidad  de   Zaragoza,

Declaro  que  el  presente  Trabajo  de  Fin  de  Estudios   de   la   titulación   de               

(Título del Trabajo)

es de mi autoría y es original, no habiéndose utilizado fuente sin ser 

citada debidamente.

Zaragoza, 

Fdo: 

Pablo Cambra Acín

Grado en Ingeniería Informática

Programación y optimización de sistemas heterogéneos basados en FPGA

31/08/2023

Pablo Cambra Acín

CAMBRA 
ACIN PABLO 
- 73429748V

Firmado 
digitalmente por 
CAMBRA ACIN 
PABLO - 73429748V 
Fecha: 2023.08.31 
17:30:29 +02'00'

3



4



AGRADECIMIENTOS

A mis tutores, Daŕıo y Rubén, por guiarme y ayudarme en la realización de este

trabajo y resolver las dudas que teńıa.

A mi familia, por apoyarme cuando teńıa dificultades y no progresaba en este

proyecto.

Y por último a Denis Navarro, por dejarnos utilizar la máquina del I3A.

5



6



Índice

1. Introducción 9

1.1. Motivación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2. Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3. Alcance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4. Descripción de este documento . . . . . . . . . . . . . . . . . . . . . . . 10

2. Estado del arte 13

2.1. Tipos de aceleradores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1. ASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2. FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3. GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Programación de los aceleradores . . . . . . . . . . . . . . . . . . . . . 15

2.2.1. FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2. GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3. Entornos de programación . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1. FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2. GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. Memoria HBM2 en FPGAs de Xilinx 21

3.1. Interfaces AXI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. Memoria HBM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1. Estructura interna de un stack HBM2 . . . . . . . . . . . . . . . 23

3.2.2. Organización de la memoria HBM2 de una FPGA Xilinx . . . . 24

3.2.3. Crossbar de la memoria . . . . . . . . . . . . . . . . . . . . . . 25

4. Entorno de desarrollo 27

4.1. Entorno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1. Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2. Método de conexión remoto . . . . . . . . . . . . . . . . . . . . . . . . 29

7



5. Validación experimental 31

5.1. Metodoloǵıa de trabajo . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1. Flujo de trabajo . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.2. Reportes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2. Diferencias entre versiones HDL y HLS . . . . . . . . . . . . . . . . . . 33

5.2.1. Versión HDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.2. Versión HLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.3. Comparativa de los diferentes códigos . . . . . . . . . . . . . . . 36

5.3. Aumento del ancho de banda utilizando vectorización . . . . . . . . . . 37

5.4. Diferencias en la organización de los datos en memoria . . . . . . . . . 38

5.5. Uso de varias Compute Units . . . . . . . . . . . . . . . . . . . . . . . 40

5.6. Comparación final . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6. Conclusiones 45

7. Bibliograf́ıa 47

Lista de Figuras 49

Lista de Tablas 51

Anexos 52

8



Caṕıtulo 1

Introducción

1.1. Motivación

En informática, hay tipos de problemas que por su estructura o naturaleza, no se

adaptan bien a los procesadores de propósito general, haciendo que su resolución no sea

eficiente en términos de tiempo y tampoco de enerǵıa, aspecto tan importante hoy en

d́ıa.

Para mejorar estos problemas, se empezaron a utilizar aceleradores dedicados

funcionando junto al procesador de propósito general, para que fuera el acelerador el

que se encargara de resolver el problema, dejando al procesador de propósito general la

tarea de controlar el acelerador.

Estos aceleradores aportan numerosas ventajas con respecto a los problemas

mencionados anteriormente, y es que al ser espećıficos pueden obtener una mayor

eficiencia energética a la vez que un mayor rendimiento que un procesador de propósito

general.

Entre los aceleradores de los que se disponen, la FPGA se presenta como una

alternativa interesante en términos de rendimiento y eficiencia energética, aunque no

tanto con respecto a la programabilidad, la cual es baja. Esto se podrá comprobar más

adelante.

9



1.2. Objetivos

Este TFG pretende abordar la problemática que hay en torno a la programación de

las FPGAs para resolver dichos problemas, y cómo herramientas actuales nos permiten

realizar dicha tarea con un nivel de abstracción mayor, obteniendo con ello una facilidad

y velocidad en el desarrollo superior.

También abordaremos el uso de la memoria de la manera óptima para alcanzar el

mayor rendimiento, ya que en problemas livianos, esta suele ser el limitante.

Por último, se abordarán las diferencias entre utilizar un lenguaje de alto nivel para

desarrollar código o un lenguaje de descripción de hardware.

1.3. Alcance

El alcance de este TFG, con respecto a los problemas de programabilidad se han

cumplido, ya que durante la elaboración del mimso se ha podido comprobar la veracidad

de estas afirmaciones.

También se ha cumplido el segundo objetivo, ya que se ha realizado una labor de

investigación y experimentación con respecto al uso de la memoria.

El tercer objetivo no se ha cumplido tanto por conseguir desarrollar código, sino

por comparar un mismo código ya desarrollado con ambas alternativas y las diferencias

y dificultades a la hora de realizar modificaciones sobre estos.

Hay que añadir que nunca se hab́ıa trabajado con FPGAs, ni con las herramientas

que nos permiten diseñar código para estas, y al ser espećıficas y complicadas no se ha

llegado todo lo lejos que se hubiera querido.

En el anexo 1 podemos observar la organización y el tiempo de las diferentes tareas

realizadas durante este TFG.

1.4. Descripción de este documento

En el caṕıtulo 2 hablaremos de los diferentes aceleradores que existen, como se puede

desarrollar código para ellos y las herramientas que nos lo permiten. En concreto nos

centraremos en las FPGAs, sus problemas, limitaciones y las herramientas que tenemos

para intentar subsarnarlos.

En el caṕıtulo 3 hablaremos de la memoria HBM2 en una FPGA y su estructura,

de las interfaces que se utilizan para interconectar la memoria con el dispositivo y cómo

utilizarla de manera eficiente para obtener un mayor rendimiento.

En el caṕıtulo 4 hablaremos del entorno donde se han desarrollado los experimentos,

tanto el hardware como el software utilizados y del flujo de trabajo seguido.

10



En el caṕıtulo 5 hablaremos de los experimentos realizados, explicando que se queŕıa

obtener con ellos y posteriormente conclusiones comparando los resultados esperados con

los finalmente obtenidos. En concreto nos vamos a centrar en diferentes experimentos

para tratar de comparar el rendimiento utilizando diferentes tipos de datos, diferentes

organizaciones de los datos en los distintos bancos de memoria, y una comparación del

mismo código implementado utilizando lenguajes de descripción de hardware (HDL) y

un lenguaje de alto nivel (HLS).

Por último, en el caṕıtulo 6 hablaremos sobre las conclusiones que se han obtenido

realizando este trabajo.

11



12



Caṕıtulo 2

Estado del arte

Una vez que el escalado de Moore parece que ha llegado a su fin [1], se han

propuesto arquitecturas alternativas a los procesadores de propósito general para seguir

aumentando el rendimiento de los computadores. Muchas de estas propuestas se basan

en el uso de un procesador de propósito general junto con uno o varios dispositivos de

cómputo espećıfico, o aceleradores, que colaboran entre śı.

En este caṕıtulo vamos a hablar de los diferentes tipos de aceleradores, de la

programación que nos encontramos en cada uno de ellos y por último de los entornos y

herramientas de programación que tenemos en cada uno de ellos.

2.1. Tipos de aceleradores

En los sistemas heterogéneos disponemos de varios tipos de dispositivos aceleradores.

A continuación, vamos a describir que tipos existen y sus principales caracteŕısticas.

2.1.1. ASIC

Como primera opción, tenemos los ASICs, del inglés Application-Specific Integrated

Circuit, que son dispositivos que disponen un hardware espećıfico para desarrollar

una tarea concreta. Estos dispositivos ofrecen un muy buen rendimiento, con el punto

negativo de que su hardware no es programable, por lo que solo podrán realizar la

tarea para la que han sido diseñados. Estos dispositivos son interesantes en entornos

en los que no hay variabilidad con el código, ya que son los más eficientes y que más

rendimiento obtienen, aunque también son los dispositivos más caros.

2.1.2. FPGA

Como segunda opción, tenemos las FPGAs, que son dispositivos basados en bloques

lógicos programables, también llamados CLBs a partir de ahora, que pueden ser

modificados v́ıa programación para realizar una tarea u otra. Estos CLBs están

13



interconectados entre śı por IOBs, que sirven de buses de datos y señales entre los

distintos bloques.

Figura 2.1: Estructura de un CLB (akka-technologies)

En la figura 2.1 se pueden ver los distintos elementos lógicos programables que

componen cada CLB. A continuación vamos a pasar a describir cada elemento que

componen los CLBs y que función realizan.

Por un lado tenemos las look-up tables (LUT), que son tablas de búsqueda

programables y que para entrada tienen una salida definida. Estas tablas se pueden

utilizar por ejemplo para implementar diferentes operaciones como una suma, o puertas

lógicas.

Por otro lado tenemos los multiplexores, que nos sirven para elegir entre múltiples

valores de entrada.

Por otro lado tenemos los Flip Flops D (DFF), que sirven para guardar el estado

del circuito durante varios flancos de reloj.

Por último tenemos los Full Adders (FA), que sirven para sumar 2 señales binarias.

Las FPGAs se situan un paso por delante de los ASICs en programabilidad como

hemos visto, aunque obtienen un rendimiento y eficiencia inferiores. Estos dispositivos se

vuelven interesantes en entornos de investigación o desarrollo, donde el comportamiento

cambia con frecuencia.

Para este apartado se ha tomado como referencia la web akka-technologies [2].

Tenemos 2 principales fabricantes de FPGAs, los cuales son Intel [3] y Xilinx [4].

Cada fabricante tiene sus propias herramientas para desarrollar código tanto en RTL

como en HLS. Intel dispone de OneAPI [5] para HLS y Quartus [6] para RTL. Mientras

tanto Xilinx nos proporciona Vitis [7] para HLS y Vivado [8] para RTL. Estas dos

herramientas funcionan en conjunto utilizando Vitis. Ambos fabricantes proporcionan

funcionalidades parecidas, cada una compatible con sus dispositivos.

14



2.1.3. GPU

Por último, tenemos las GPUs, cuyo hardware no es programable. En ese sentido

estaŕıan cerca de los ASICs debido a que su hardware es fijo, aunque tienen un modelo

de cómputo parecido al de una CPU. La diferencia entre ambos es que las GPUs tienen

núcleos mucho más sencillos pero cuentan con un gran número de estos, por lo que se

hacen interesantes para tareas de aceleración.

Estos dispositivos son los más programables y más extendidos a nivel general, debido

a su popularidad en el procesamiento de imágenes como por ejemplo en videojuegos.

También es una ventaja su modelo de computación más parecido al de una CPU.

Figura 2.2: Clasificación de los diferentes aceleradores

En la figura 2.2 podemos observar la relación que hay entre los diferentes tipos de

aceleradores en términos de rendimiento, programabilidad, eficiencia y coste. Siendo

los ASICs los más eficientes pero más costosos y menos programables y las CPUs

convencionales las más baratas y programables pero las que menos rendimiento y

eficiencia ofrecen.

2.2. Programación de los aceleradores

El desafio principal de los aceleradores es su programación, ya que suele resultar

muy costoso obtener grandes rendimientos, sin embargo esta no es igual para todos los

tipos de aceleradores que hemos nombrado.

En este apartado se centra de la programación en FPGAs, por ser el tipo de

dispositivo elegido en este TFG, y de la programación de GPUs. De los ASICs no vamos

a hablar, por su incapacidad de ser programados mencionada anteriormente.

15



2.2.1. FPGA

Las FPGAS tradicionalmente se programaban en RTL como pod́ıan ser HDL o

Verilog. Estos lenguajes de descripción de hardware le indican al hardware como tiene

que comportarse. El mayor punto negativo de estos lenguajes es su dificultad y lentitud

para desarrollar código para los dispositivos debido a lo espećıficos que son.

Posteriormente, para tratar de agilizar estas tareas, se añadió un paso intermedio, en

el que el programador desarrolla el código en un lenguaje de alto nivel y es el compilador

el que se encarga de traducir el código en alto nivel a RTL, para que finalmente pueda ser

programado en la FPGA. Este nivel superior se conoce como High Level Synthesis(HLS).

Dentro de HLS, tenemos varias alternativas como pueden ser C/C++ u OpenCL,

aunque en la actualidad hay alternativas para muchos lenguajes de propósito general.

Utilizando HLS hay que tener en cuenta que no en todos los casos el compilador va

a ser capaz de sintetizar el código en alto nivel de una forma óptima y será tarea del

programador tratar de optimizarlo más si es necesario.

1 module Acumulador (

2 input wire clk,

3 input wire reset,

4 input wire [7:0] vector [0:7],

5 input wire [3:0] size,

6 output wire [7:0] acumulado

7 );

8

9 reg [7:0] acc;

10

11 always @(posedge clk or posedge reset) begin

12 if (reset) begin

13 acc <= 0;

14 end else begin

15 for (integer i = 0; i < size; i = i + 1) begin

16 acc <= acc + vector[i];

17 end

18 end

19 end

20

21 assign acumulado = acc;

22

23 endmodule

Listing 2.1: Ejemplo de código de un acumulador en RTL

1 std::vector vector = ...;

2 float acc = 0.0f;

3

4 for(int i = 0; i < size; i++){

5 acc += vector[i];

6 }

Listing 2.2: Ejemplo de código de un acumulador en C++

16



En el listing 2.1 podemos ver las grandes diferencias que hay tanto en términos de

longitud de código, como en complejidad del mismo. Podemos ver la cantidad de señales

que tenemos, aśı como la estructura del bucle, que es mucho más compleja. Por otro

lado, tenemos el listing 2.2 donde se puede ver el mismo código pero programado en

C++. Se puede observar la menor complejidad tanto en tamaño como en facilidad de

lectura. Esto también es debido a que los programadores están mucho más familiarizados

con lenguajes de alto nivel que tienen una sintaxis parecida.

A todo esto tenemos que sumar el hecho de que cuando se genera código en RTL

para una FPGA, también se generan toda una serie de ficheros relacionados con las

interfaces de memoria, lo cual hace que el código no sea tan sencillo como el mostrado

en el ejemplo 2.1 y dificulte aún más su comprensión.

Figura 2.3: Pasos que sigue un kernel hasta ejecutarse en una FPGA

En la figura 2.3, de elaboración propia, podemos ver los pasos que sigue el código

desde que es desarrollado por el programador hasta que se programa en la FPGA.

Podemos ver que hay dos alternativas como hemos comentado anteriormente y el

programador puede elegir diseñar el código directamente en RTL, ahorrándose el primer

paso del proceso.

El proceso completo consiste en:

− El código en alto nivel es traducido por el compilador a RTL.

− El código RTL se convierte en un bitstream, un archivo binario.

− El archivo se carga en la FPGA para su ejecución.

17



En definitiva, la programabilidad de las FPGAs es mala, por el hecho de que en

ocasiones nos veamos obligados a desarrollar el código en RTL, como hemos mencionado

anteriormente. También nos encontramos que compilar código para estos dispositivos es

muy lento, del orden de horas, ya que tiene que programar el hardware del dispositivo,

y realizar cambios a una gran velocidad no es posible si no se utiliza emulación. Por

último, los errores de ejecución no son fácilmente depurables, por lo que se puede hacer

complicado encontrar un fallo en el código.

2.2.2. GPU

Las GPUs se programan siguiendo el mismo concepto de paralelizar las tareas lo

máximo posible para sacar el máximo provecho de la gran cantidad de núcleos que

tienen estos dispositivos. La gran diferencia es que al tener núcleos convencionales, no

es necesario programar el hardware en śı.

Las GPUs tienen una mejor programabilidad ya que utilizan el modelo de

programación Von Neumann, como las CPUs. Esto hace que la programación sea

igual a la de un procesador convencional utilizando paradigmas de paralelización para

aprovechar al máximo el gran número de núcleos.

2.3. Entornos de programación

2.3.1. FPGA

A continuación nos vamos a centrar en los entornos de programación Vitis [7] y

OneAPI [5].

Por un lado OneAPI [5] es compatible con sus procesadores y FPGAs. Utlizando

HLS es compatible con lenguajes de programación como C++, Fortran, Python y Data

Parallel C++ (DPC++), que es una extensión de C++ de programación paralela.

Gracias a la plataforma Quartus [6] también se puede desarrollar código en HDL como

puede ser Verilog. OneAPI ofrece libreŕıas más extensas adaptadas a diferentes trabajos,

ya que es compatible con mayor cantidad de hardware.

Por otro lado Vitis [7] está pensada para aprovechar las FPGAs de Xilinx. Esta

herramienta está basada en OpenCL y permite generar kernels tanto en HLS (C++)

como en RTL utilizando Vivado [8].

18



2.3.2. GPU

Existen 2 fabricantes principales de GPUs, NVIDIA [9] y AMD [10], cada una con

su propia plataforma para generar código para sus dispositivos.

NVIDIA utiliza CUDA [11], que es un modelo de programación escrito en C/C++,

pero que tiene compatibilidad con otros lenguajes como Fortran o Python.

Mientras tanto, AMD, con ROCm [12], permite utilizar múltiples paradigmas para

paralelizar el código, como OpenMP u OpenCL, la herramienta en la que está basada

Vitis para generar los kernels. También admite Python. Una caracteŕıstica importante

es que dispone de una plataforma de programación llamada HIP [13], que ofrece un

nivel de abstracción para que los programadores puedan desarrollar su código para las

GPUs pensando en la portabilidad entre los distintos fabricantes.

19



20



Caṕıtulo 3

Memoria HBM2 en FPGAs de
Xilinx

En este caṕıtulo vamos a hablar de la memoria de las FPGAs Xilinx, de su estructura,

limitaciones y de las interfaces que utilizan las FPGAs para interconectar diferentes

componentes entre śı.

Para el tipo de problemas que se resuelven con las FPGAs es muy importante

gestionar correctamente los accesos a memoria, y para ello es importante conocer su

estructura y limitaciones. En concreto, la Alveo U280, que es el modelo con el que hemos

trabajado, cuenta con memoria HBM2, que obtiene un ancho de banda teórico cuando

se agregan todos los bancos de 460 GB/s. El ancho de banda real que se consigue es de

420 GB/s.

Figura 3.1: Ejemplo de interconexión de la FPGA con diferentes componentes

En la figura 3.1 podemos ver un esquema general de como diferentes componentes

de la FPGA y dispositivos se conectan entre śı. Para ello se hace uso de unas interfaces

multipropósito llamadas AXI (Advanced eXtensible Interface), que fueron diseñadas por

ARM [14]. Estas interfaces pueden ser usadas para conectar la memoria, dispositivos

PCI o inclusive otros kernels para transferir datos entre varios de ellos. A continuación

vamos a pasar a describir en mayor detalle tanto las interfaces AXI como la estructura

21



de la memoria de la FPGA.

3.1. Interfaces AXI

Las interfaces AXI4 se utilizan como se ha visto en la figura 3.1 para conectar el

hardware con diferentes dispositivos de la FPGA. Disponemos de 32 canales AXI. Las

interfaces AXI tienen un ancho de 512 bits, y disponemos de varios tipos de ellas, de

las cuales vamos a explicar sus caracteŕısticas a continuación:

− AXI4-Lite, pensada para operaciones de memoria que no necesiten un gran ancho

de banda, como señales de control o registros.

− AXI4-Full, pensada para operaciones que necesitan una gran cantidad de ancho

de banda.

− AXI4-Stream, pensada para operaciones de stream de gran ancho de banda,

principalmente utilizado para comunicar diferentes kernels entre śı.

Para nuestro trabajo se van a usar las interfaces AXI4-Full para los datos de entrada

y de salida, como son vectores con los que vamos a operar y las interfaces AXI4-Lite,

para señales de control como puede ser el tamaño de los vectores.

Uno de los principales dispositivos que interconectan estas interfaces AXI, es la

memoria de la FPGA, que tiene un ancho de 256 bits, por lo que no estaremos

aprovechando toda la interfaz, aunque debido a que estas interfaces han sido diseñadas

para conectar una gran variedad de dispositivos, se decidió implementar un ancho de

512 bits, aunque para la memoria se esté desaprovechando.

Figura 3.2: Canales interfaz AXI

Cada interfaz AXI, tiene 3 canales para la escritura y 2 canales para la lectura,

como se puede ver en la figura 3.2. Tenemos una excepción la interfaz AXI4-Lite, que

22



como solo puede ser de lectura o de escritura, pero no ambas a la vez, solo tenemos los

3 canales de escritura o los 2 de lectura.

Para las lecturas, el master env́ıa la dirección que quiere leer junto a varias señales

de control y el esclavo responde con el dato por el otro canal.

Para las escrituras, el master env́ıa la dirección donde quiere escribir junto con las

señales de control. Acto seguido env́ıa el dato que quiere escribir y espera a que el

esclavo env́ıe la respuesta para comprobar si se ha escrito bien o ha habido algún tipo

de error.

Para agilizar las lecturas y escrituras, podemos hacer que cuando se quiera leer o

escribir, a la hora de mandar los datos, se env́ıen varios seguidos sin necesidad de volver

a enviar la dirección, para leer o escribir en direcciones consecutivas. Esto se denomina

lectura y escritura en ráfaga o burst.

3.2. Memoria HBM2

La memoria HBM2 es una memoria de gran ancho de banda, utilizada en dispositivos

de alto rendimiento aunque muy costosa. A continuación vamos a pasar a describir sus

caracteŕısitcas y su organización en una FPGA de Xilinx.

3.2.1. Estructura interna de un stack HBM2

Figura 3.3: Estructura de un stack HBM2

23



Esta memoria se organiza apilando los chips unos encima de otros como se puede

ver en la figura 3.3, formando stacks de memoria e interconectandolos con el dispositivo

mediante la interfaz AXI mencionada anteriormente, colocando un componente encima

de otro, consiguiendo una distancia entre componentes mucho menor que en una memoria

DDR convencional, reduciendo con ello latencia y aumentando el rendimiento.

3.2.2. Organización de la memoria HBM2 de una FPGA Xilinx

Figura 3.4: Estructura de la memoria de una FPGA de Xilinx

En la figura 3.4 podemos ver la estructura de la memoria HBM2 de una FPGA de

Xilinx. Podemos ver que está formada por 2 stacks de memoria, cada uno formado por 8

controladores de memoria, denominados MC en la figura, que gestionan 2 pseudocanales

(PC) cada uno, marcados en amarillo. El ancho de bits total de un stack HBM2 es de

1024 bits, dividido entre los 8 controladores, lo que supone un ancho cada uno de 128

bits. Cada PC tiene un ancho de 64 bits, aunque son independientes, por lo que se les

pueden enviar 2 comandos, uno detrás del otro, pero no hay necesidad de esperar a que

el primero termine para enviar el segundo.

Para compensar las diferencias de ancho de los canales, los chips HBM2 funcionan

al doble de frecuencia que las interfaces AXI para comunicar con las memorias, es decir,

si la interfaz AXI funciona a 450 Mhz, el chip tendrá que funcionar a 900 Mhz para

compensar que en cada transacción él puede enviar la mitad de datos.

24



3.2.3. Crossbar de la memoria

Para que todas las interfaces AXI puedan acceder a todo el espacio de memoria

disponible se utiliza un crossbar segmentado compuesto por 8 segmentos. Cada segmento

del crossbar, marcado en gris en la figura 3.4, se comunica directamente con 2

controladores de memoria, es decir con 4 PCs. Cada interfaz AXI está conectada

directamente a un solo segmento del crossbar.

Esto implica que si se desconoce la estructura de memoria y repartimos los datos a

los que va a acceder una interfaz AXI en varios bancos, puede provocar que la interfaz

tenga que acceder a bancos que no corresponden a su segmento del crossbar, por lo

que tenga que cruzar varios segmentos hasta llegar al banco y hacer la operación de

memoria.

Figura 3.5: Estructura de un segmento del crossbar

En la figura 3.5 podemos ver la estructura de las conexiones de un segmento del

crossbar. Podemos observar que tiene conexiones directas con todos los PCs que están

alineados a él y como las conexiones laterales son las que comunican un segmento con

sus contiguos. Es el hecho de pasar estas conexiones lo que provoca una latencia extra,

y por tanto pérdida de rendimiento, ya que no se está accediendo directamente al banco

de memoria.

Para este caṕıtulo se ha tomado como referencia tanto para la información como para

las figuras, salvo la figura 3.1, de elaboración propia, un repositorio de Xilinx [15] acerca

de las interfaces AXI y dos apartados de la documentación oficial de Vitis [16] [17]

acerca de la memoria HBM2.

25



26



Caṕıtulo 4

Entorno de desarrollo

En este caṕıtulo se va a hablar de las herramientas de desarrollo que se han utilizado

y del entorno donde se ha realizado el trabajo. Vamos a hablar tanto del software como

del hardware que se ha usado y sus caracteŕısticas. También vamos a hablar de la

organización que se ha seguido a la hora de trabajar en el proyecto y de como se ha

configurado el entorno para poder llevarlo a cabo.

4.1. Entorno

Para el entorno de desarrollo se ha utilizado una máquina en el I3A (Instituto de

investigación e Ingenieria de Aragón) para poder hacer uso de las FPGAs disponibles

en dicho laboratorio. Esta máquina ha sido aportada por Denis Navarro, al cual se le

agradece por dejarnos utilizarla.

4.1.1. Hardware

El hardware con el que cuenta esta máquina es una Xilinx Alveo U280.

En la figura 4.1 podemos ver las principales caracteŕısticas de la memoria de la

U280. Se pueden observar diferencias de organización en términos de capacidad y de

número de bancos. Dado que la memoria HBM2 está pensada para obtener el máximo

rendimiento trabajando en paralelo se colocan un gran número de bancos. Con respecto

a la capacidad, las memorias HBM2 son bastante más costosas que las DDR4.

Los módulos HBM2 están organizados en 2 stacks de 4 GB cada uno, como se ha

visto en el caṕıtulo 3.

Memoria Bancos Capacidad total Ancho de banda total Ancho de banda por banco

HBM2 32 8 GB 460 GB/s 14.37 GB/s

DDR4 2 32 GB 38 GB/s 19 GB/s

Tabla 4.1: Memorias disponibles en la FPGA [18]

27



El dispositivo tiene un consumo de 225W y un total de 1079000 LUTs.

La máquina remota tiene como procesador un AMD Epyc 7443P. Este procesador

cuenta con 24 núcleos y 48 hilos.

4.1.2. Software

El entorno de desarrollo que se ha utilizado ha sido Vitis, que es la plataforma de

desarrollo de software para los aceleradores de Xilinx.

En esta herramienta disponemos de 3 modos de compilación. La emulación por

software, que simplemente emula el comportamiento, pero no tiene nada en cuenta del

hardware contra el que se va a ejecutar. Este método es el más rápido de compilar. La

emulación hardware, que también emula el comportamiento, pero ya tiene en cuenta

caracteŕısticas de la FPGA. Este método es más lento de compilar, por lo que solo se

ha utlizado cuando el código funcionaba correctamente y hab́ıa que probar diferentes

configuraciones del hardware. Por último, disponemos de la compilación hardware, que

genera el bitstream completo para la FPGA, y que lo manda a ejecutar en el hardware

real. Este método solo se ha utilizado cuando se han querido obtener números reales

de ancho de banda y de rendimiento, ya que el tiempo de compilación era de unas 2-3

horas, por lo que solo se ha utilizado después de asegurarse de que el código funcionaba

correctamente.

Esta herramienta puede compilar tanto código en HLS como código en HDL,

utilizando Vivado. La única diferencia es que al compilar código en HLS se añade

un paso intermedio, como está explicado en el caṕıtulo 2, donde se traduce el código

HLS a RTL.

Al principio, se optó por desarrollar en local durante las primeras pruebas para

conocer el entorno de desarrollo de Vitis y como se programaba y se configuraba un

kernel . Para ello se utilizó por completo el entorno gráfico utilizando el código del

proyecto de ejemplo. Una vez se hicieron las primeras pruebas y pasamos a querer

ejecutar en hardware real, se pasó a la máquina remota mencionada anteriormente,

para poder utilizar la Alveo U280.

Para realizar las distintas pruebas, se tomó como base el repositorio GitHub de Xilinx

VitisAccelExamples [19], y a partir de ah́ı, siguiendo la misma forma de desarrollar el

código, se fueron haciendo diferentes versiones de los kernels.

Para desarrollar el código se ha utilizado el editor Gedit, que veńıa instalado en la

máquina remota.

Para compilar el código, se ha utilizado el comando make en la terminal, junto con

ficheros Makefile, proporcionados en el repositorio de GitHub antes mencionado, siendo

estos modificados según se requeŕıa para las distintas versiones.

28



Para visualizar los reportes de compilación y de ejecución una vez realizadas las

pruebas se ha utilizado la herramienta gráfica del entorno Vitis, Vitis Analyzer, que

permite visualizar varios parámetros como pueden ser el ancho de banda, las memorias

usadas, el uso de recursos en la FPGA, el esquema de conexiones de los kernels con la

memoria, entre otros.

4.2. Método de conexión remoto

Para poder acceder a la máquina remota, se ha utilizado un proxy SSH con la

máquina central.cps.unizar.es. La configuración para poder realizar la conexión se puede

ver en el anexo 1.

Para poder conectarnos a la máquina remota de manera gráfica y aśı poder utilizar

las aplicaciones de reportes y editar el código remotamente de manera más cómoda, se

ha utilizado la herramienta VNCServer1. Se ha configurando el servidor en la máquina

remota y un tunel SSH en el puerto 5904 de la máquina local, para poder acceder

mediante VNC Viewer. El tunel se puede ver como está configurado en el anexo 1.

1https://www.realvnc.com/es/

29



30



Caṕıtulo 5

Validación experimental

En HLS, siguiendo la terminoloǵıa de la programación del modelo de OpenCL, y

por simplificar en este TFG, se considerará qué la programación de las FPGA se realiza

mediante kernels, que son las funciones que nuestro dispositivo va a acabar programando

en su hardware y va a ejecutar para resolver el problema.

Estos kernels tienen argumentos de entrada y de salida, que tendrán que ser

proporcionados al acelerador por el host. En nuestro caso es el procesador de propósito

general. Para ello antes de ejecutar el kernel necesitaremos generar los datos con los que

vamos a trabajar y copiarlos en la memoria del acelerador. Una vez acabe la ejecución

del kernel, tendremos que recuperar los resultados calculados.

Estos kernels se ejecutan en lo que se llama Compute Unit (CU), que es una región

del hardware del dispositivo que se va a encargar de ejecutar nuestro kernel. A la hora

de resolver un problema, se pueden usar varias CUs para utilizar una mayor cantidad

de hardware y obtener un rendimiento mayor puesto que varias instancias del kernel se

ejecutarán concurrentemente.

Todas las versiones analizadas en este TFG son modificaciones sobre un kernel de

suma de vectores de enteros del tipo 5.1.

1 res[i] = a[i] + b[i]

Listing 5.1: cuerpo principal del kernel analizado de suma de vectores

Analizándolo, podemos ver que las iteraciones son independientes entre śı, por lo

que al no haber dependencias este problema será muy pararelizable.

5.1. Metodoloǵıa de trabajo

Para realizar los experimentos, primero se ha partido de un kernel base de suma de

vectores ya que era sencillo y exist́ıan bastantes ejemplos ya desarrollados. Como base se

ha utilizado el repositorio de GitHub de Xilinx VitisAccelExamples [19]. Posteriormente,

se ha analizado su rendimiento y caracteŕısticas.

31



Con los análisis e intentando paliar las limitaciones, se han ido creando versiones de

manera iterativa, para comprobar si pod́ıan mejorar el rendimiento. Para ello primero

se ha teorizado sobre las posibles mejoras y luego se ha comprobado si efectivamente lo

eran. En caso negativo, se ha intentado averiguar la razón.

También se han creado versiones cuyo objetivo es verificar las caracteŕısticas de la

memoria, aunque no fueran simplemente para mejorar el rendimiento.

La primera prueba ha consistido en analizar versiones desarrolladas en HLS y HDL

del mismo código. Primero se han analizado ambas versiones utilizando un solo banco

de memoria y posteriormente se han modificado para que hagan uso de varios bancos.

El objetivo de esta prueba ha sido comprobar las diferencias desde el punto de vista de

la versatilidad y programabilidad entre las dos alternativas y ver si se pod́ıa ganar algo

de rendimiento simplemente utilizando más bancos de memoria, sin modificar nada más

del código.

La segunda prueba ha consistido en vectorizar un kernel en HLS para comprobar

como el hecho de emplear datos escalares haćıa que no se estuviera aprovechando todo

el ancho de la memoria, y analizar la ganancia de rendimiento.

La tercera prueba ha consistido en explorar las dificultades de un buen uso de la

memoria HBM y de comprobar como, en caso de no conocer la estructura de la memoria

mencionada en el caṕıtulo 3, no se obtendrá todo el rendimiento posible. Para ello se

han creado dos ejemplos, uno que no viola ninguna restricción de rendimiento, y otro

que si que lo hace.

Por último, se ha tratado de aumentar el rendimiento todo lo posible, y explorar el

uso de múltiples Compute Units, generando múltiples instancias del mismo kernel y

poniendo a trabajar esas CUs en paralelo resolviendo distintas partes del problema.

5.1.1. Flujo de trabajo

El flujo de trabajo para cada kernel ha sido, generar un código que compilara en

modo software para comprobar su corrección. Para revisar los diferentes modos de

compilación ir a la sección 4.1.2. Una vez funcionaba correctamente, se probaba con

emulación hardware que las conexiones de la memoria con los kernels y las CUs iban a

funcionar correctamente. Por último, se compilaba en modo hardware para extraer el

rendimiento real y comprobar los datos numéricos con lo esperado, para posteriormente

sacar conclusiones.

32



5.1.2. Reportes

Las mejoras de rendimiento se han podido observar en los reportes de compilación y

de ejecución. En el reporte de compilación se puede observar los recursos de la FPGA

utilizados, aśı como las conexiones de los puertos del kernel con la memoria o las

estimaciones de frecuencia que va a alcanzar nuestro kernel.

En el reporte de ejecución podemos observar diferentes apartados. A continuación

vamos a resaltar los que nos han parecido más interesantes.

Uno de ellos es el tiempo de ejecución, como se puede ver en la figura 5.1 donde se

nos muestra el tiempo de ejecución por cada instancia del kernel y en que instante de

tiempo se ha empezado a ejecutar. Es decir, si tuviéramos varias CUs, se mostraŕıa el

tiempo de ejecución de cada una de ellas.

Figura 5.1: Ejemplo de tiempo de ejecución

Otro reporte muy útil para todas estas pruebas va a ser el del ancho de banda

obtenido. Este reporte se puede ver en la figura 5.2, donde se nos muestra tanto el número

de transferencias realizadas como el ancho de banda obtenido, todo ello desglosado por

puerto y banco.

Figura 5.2: Ejemplo de ancho de banda

Por último, otro reporte que se ha considerado interesante ha sido el del timerline

de ejecución, observable en la figura 5.3. Se puede ver la linea temporal de la encolación

del kernel en la FPGA, la ejecución del mismo y las lecturas y escrituras que se realizan

en los diferentes bancos HBM y para los diferentes argumentos del kernel.

5.2. Diferencias entre versiones HDL y HLS

Lo primero que vamos a probar son varias versiones desarrolladas en HDL y en

HLS, para ver las diferencias que hay entre ambas, y la dificultad para cambiar ciertos

parámetros sin cambiar el kernel en śı.

33



Figura 5.3: Timeline de ejecución

5.2.1. Versión HDL

Esta primera versión está desarrollada en HDL. El código del sumador se puede

encontrar en el anexo 3. Este kernel almacena todos los datos en el banco HBM 0 y utiliza

tipos de datos escalares de 32 bits. Al trabajar con un solo banco de memoria podemos

esperar un bajo ancho de banda utilizado, debido a acumular todas las operaciones de

memoria en un solo banco, teniendo 32 de ellos disponibles, y a utilizar solamente 32 de

los 512 bits de ancho por cada interfaz AXI. Esto es debido a que estamos utilizando

tipos de datos escalares en lugar de vectoriales, como se usarán en versiones posteriores.

Como resultados tenemos un tiempo de ejecución de 66.70 ms, con un ancho de

banda de 1.80 GB/s. Es un ancho de banda bastante bajo, teniendo en cuenta que el

máximo para un banco HBM son unos 13 GB/s.

La siguiente prueba parte del código anterior, con la diferencia de que se va a utilizar

un banco de memoria para cada vector de entrada o salida del problema. Esto se hace

para comprobar la facilidad de cambiar ciertas configuraciones, como en este caso los

bancos de memoria, e intentar mejorar el ancho de banda y el rendimiento del código.

Figura 5.4: Diagrama AXI del kernel en RTL con múltiples bancos

Podemos observar en la figura 5.4, que aunque se están utilizando varios bancos

34



HBM, todos comparten la misma interfaz AXI. En siguientes versiones se verá si esto

es un limitante o no, mapeando los diferentes argumentos del kernel a interfaces AXI

diferentes.

Para lograr estos cambios, se han añadido unos flags al fichero de compilación

Makefile, que se pueden ver en el código 5.2.

1 CONN_FLAGS := --connectivity.sp krnl_vadd_rtl_1.a:HBM[0]

2 --connectivity.sp krnl_vadd_rtl_1.b:HBM[1]

3 --connectivity.sp krnl_vadd_rtl_1.c:HBM[2]

4

5 v++ -l $(TRACE_FLAGS) $(CONN_FLAGS) $(VPP_FLAGS) -t

6 $(TARGET) --platform $(PLATFORM) $(VPP_LDFLAGS)
7 --temp_dir $(TEMP_DIR) -o’$(LINK_OUTPUT)’ $(+)

Listing 5.2: Mapeo a diferentes bancos de memoria

Durante todos los experimentos, el proceso habrá sido el mismo, modificando el ı́ndice

de los bancos a los que se quieran mapear las variable.

Los resultados de esta prueba son un tiempo de ejecución de 66.70 ms y un ancho

de banda de 1.80 GB/s.

Tenemos el mismo rendimiento que en la versión anterior, aunque se haya cambiado

la configuración del kernel para usar varios bancos de memoria. Aunque no tenemos

una respuesta clara para esto, puede ser debido a que al no poder explotar un solo

banco de memoria, por mucho que se añadan más bancos no se aumente el rendimiento

ya que el limitante no está siendo el banco en śı.

5.2.2. Versión HLS

Ahora vamos a probar una versión que hace lo mismo que la primera vista en RTL

pero en HLS. Este código también almacena todas las variables en un solo banco y

utiliza tipos de datos escalares de 32 bits.

En esta prueba obtenemos un tiempo de ejecución de 39.67 ms y un ancho de banda

de 3.02 GB/s. Estamos obteniendo el doble de rendimiento que con la versión en RTL,

probablemente debido a diferencias en la implementación en la versión en HLS genera

un código diferente, que al final logra sacar un mayor rendimiento aunque ambos estén

resolviendo el mismo kernel de suma de vectores.

Como última prueba, vamos a generar otra versión en HLS, que utilice varios bancos

de memoria como la versión en RTL. Para ello se ha seguido el mismo método explicado

anteriormente. La diferencia con la versión en RTL es que en esta se han podido

configurar las interfaces AXI para que fueran diferentes para cada banco de memoria,

simplemente añadiendo un pragma por argumento del kernel, como se puede ver en el

código 5.3.

35



1 #pragma HLS INTERFACE m_axi port = in1 bundle = gmem0

2 #pragma HLS INTERFACE m_axi port = in2 bundle = gmem1

3 #pragma HLS INTERFACE m_axi port = out bundle = gmem2

Listing 5.3: Mapeo de los puertos a las interfaces AXI

Figura 5.5: Diagrama de la conexión de múltiples interfaces AXI y multiples bancos

Podemos ver en la figura 5.5 que los diferentes argumentos del kernel ya no comparten

interfaz AXI, sin embargo, el tiempo de ejecución obtenido ha sido de 39.67 ms y el

ancho de banda ha sido de 3.02 GB/s. No notamos ninguna mejoŕıa en el rendimiento,

como en las dos versiones RTL. Esto es debido a que, como no se está logrando explotar

un solo banco, por mucho que se agregen más bancos el rendimiento no va a aumentar.

5.2.3. Comparativa de los diferentes códigos

Vamos a calcular diferentes métricas de complejidad a la hora de programar el código

y a la hora de evaluar la mantenibilidad de las dos versiones escalares mencionadas como

el número de lineas o el volumen de Halstead. Para estas métricas solo se ha estudiado

el código del acelerador ya que la parte del host es idéntica para ambas versiones, sean

RTL o HLS.

Versión Número de lineas Volumen de Halstead

RTL escalar 68 122.62

HLS escalar 7 53.15

Tabla 5.1: Tabla con métricas de complejidad de las diferentes versiones escalares

36



Para ambas métricas solo se ha tenido en cuenta el fichero del sumador en RTL y

la función que realizaba la suma en HLS. La metodoloǵıa para calcular el número de

lineas ha sido simplemente contar cuantas de ellas teńıa cada fichero que conformaba el

kernel en las diferentes versiones. Para calcular el volumen de Halstead se ha utilizado

la fórmula 5.6 donde N es el número total de operandos y operadores y n es el número

de operandos y operadores diferentes.

V = N · log2n

Figura 5.6: Volumen de Halstead

Mirando el número de lineas podemos ver la enorme diferencia que hay entre las

dos versiones, haciendo mucho más compleja la tarea de revisar el código en RTL, aśı

como su mantenibilidad ya que está implementado en varios ficheros. Por último, el

volumen de Halstead nos indica que el código en RTL es más complejo que la versión

en HLS. Esto es por el mayor número de señales que en RTL tenemos que controlar,

mientras que en alto nivel no son necesarias.

En estas métricas hay que recalcar que aunque no se han medido sobre todo el

código RTL, a la hora de modificar los parámetros del kernel como pueden ser ciertos

parámetros sobre la memoria, tendremos que modificar los ficheros que genera la

herramienta cuando se genera un kernel en RTL, como pueden ser los ficheros que

controlan las interfaces AXI tanto para lectura como para escritura.

5.3. Aumento del ancho de banda utilizando

vectorización

En esta prueba vamos a utilizar tipos de datos vectoriales para tratar de aumentar el

rendimiento de nuestro kernel, aunque se volverá a utilizar un solo banco para todos los

datos. Vamos a utilizar el tipo de dato vectorial hls::vector, cada uno de 16 elementos,

para ocupar el ancho de 512 bits de la interfaz AXI y realizar varias operaciones al mismo

tiempo. El código se puede encontrar en el anexo 4. En esta prueba se espera un mayor

uso del ancho de banda debido a que estaremos moviendo más datos por transacción en

memoria al utilizar todo el ancho del canal, aunque seguimos dependiendo de un solo

banco de memoria, el cual será el limitante.

Los resultados de la prueba han sido mejores que en pruebas anteriores, con un

tiempo de ejecución de 9.27 ms y un ancho de banda de 12.94 GB/s.

Con estos resultados estamos dividiendo el tiempo de ejecución por 4 a la vez que

37



se multiplica por 4 el ancho de banda obtenido. Con estos datos podemos concluir que

el ancho de banda obtenido y el tiempo de ejecución tienen una gran relación entre śı,

puesto que si aumenta uno disminuye otro y viceversa.

Por último, respecto al ancho de banda obtenido, podemos decir que estamos bastante

cerca del ĺımite de ancho de banda para un solo banco de memoria. Si quisiéramos

aumentar más el ancho de banda, tendŕıamos que pensar en utilizar varios bancos con

tipos de datos vectoriales o varias CUs. Después de esta prueba, podemos concluir que

el hecho de estar utilizando tipos de datos escalares es mucho más limitante que solo

utilizar un banco HBM o utilizar varios de ellos. Esto es debido a que, como hemos

mencionado anteriormente, estamos aprovechando mucho mejor el ancho del canal, y

siendo más eficientes con las operaciones en memoria.

5.4. Diferencias en la organización de los datos en

memoria

En estas pruebas vamos a verificar como la diferente organización de los datos del

kernel en los distintos bancos de memoria puede afectar al ancho de banda obtenido,

cambiando con ello el rendimiento de nuestro kernel como se explica en el caṕıtulo 3.

En ambas versiones se van a usar tipos de datos vectoriales, tal y como se usaron en

la prueba 5.3.

En la primera versión vamos a organizar los datos como se ve en la figura 5.7,

para comprobar que efectivamente no hay limitación en el ancho de banda con esa

distribución de los datos.

Una vez realizada la prueba, el tiempo de ejecución ha sido de 3.12 ms y el ancho de

banda ha sido de 39 GB/s. Estos números están cerca del ĺımite para 3 bancos siendo

usados por el kernel, ya que estamos utilizando 3 interfaces AXI, que seŕıa de unos 43

GB/s, por lo que el rendimiento obtenido es satisfactorio.

A continuación vamos a probar si con otra organización de los datos, a priori peor,

el rendimiento cae, o por el contrario se mantiene. Para ello vamos a intentar organizar

los datos de tal manera que el hecho de tener que pasar entre diferentes segmentos del

crossbar limite el ancho de banda, como se ha explicado en el caṕıtulo 3. Para lograrlo

vamos a intercalar los datos de in2 y de res en los bancos de 16 a 31 y los datos de in1

en los bancos de 0 a 15. Esta organización se puede observar en la figura 5.8.

En esta prueba, el tiempo de ejecución ha sido de 6.22 ms, obteniendo un ancho

de banda de 19.30 GB/s. Estos resultados son bastante peores, teniendo en cuenta la

cantidad de bancos que se están utilizando, visibles en en la figura 5.8.

Podemos ver, comparando con la versión anterior, que el tiempo de ejecución ha

38



Figura 5.7: Diagrama de conexión de un kernel usando múltiples bancos por argumento

39



Figura 5.8: Diagrama de conexión de un kernel usando múltiples bancos por argumento
con una mala organización

sido el doble, y el ancho de banda obtenido ha sido menor.

Con estos resultados, podemos asegurar que si no se tiene cuidado y una interfaz

AXI tiene que recorrer varios segmentos del crossbar, debido a la forma en la que

se organizan los datos, experimentaremos una pérdida en el rendimiento tal como se

explicó en el caṕıtulo 3.

5.5. Uso de varias Compute Units

En esta prueba, vamos a instanciar múltiples Compute Units (CU), para tratar

de aumentar el ancho de banda y el rendimiento, ya que vamos a partir el problema

en trozos, y los vamos a resolver en múltiples CUs en paralelo. Cada CU utilizará

operaciones vectoriales, y tendrá cada argumento, es decir tanto los vectores de entrada

como el de salida, mapeados a un módulo HBM. Cada módulo HBM solo será usado por

un argumento de una CU para no saturar un banco y repartir los accesos a memoria. Al

tener varias instancias del mismo kernel resolviendo porciones pequeñas del problema

en paralelo y con memoria separada entre ellos, esperamos que el rendimiento pueda

mejorar considerablemente.

En el código 5.4 se puede ver como se pasan los argumentos para cada CU, tanto de

entrada como de salida, y se pone en ejecución. Posteriormente habrá que esperar a

que todas las CUs acaben para recoger los resultados.

40



1 for (int i = 0; i < NUM_KERNEL; i++) {

2 if(i == (NUM_KERNEL - 1)) resto = DATA_SIZE % NUM_KERNEL;

3

4 // Setting the k_vadd Arguments

5 OCL_CHECK(err, err = krnls[i].setArg(0, buffer_input1[i]));

6 OCL_CHECK(err, err = krnls[i].setArg(1, buffer_input2[i]));

7 OCL_CHECK(err, err = krnls[i].setArg(2, buffer_output_add[i]));

8 OCL_CHECK(err, err = krnls[i].setArg(3, size + resto));

9

10 // Invoking the kernel

11 OCL_CHECK(err, err = q.enqueueTask(krnls[i]));

12 }

Listing 5.4: Instancia de varias CUs

Figura 5.9: Diagrama del conexionado de múltiples CUs con sus bancos

Esta figura muestra las conexiones de los bancos con los puertos de las dos primeras

CUs de nuestro kernel. El resto de conexiones seŕıa de la misma manera, utilizando

los 3 bancos contiguos para cada puerto. Mirando esta figura, podemos asumir que el

ancho de banda va a ser mucho mayor que en versiones anteriores, ya que vamos a estar

resolviendo trozos del problema en paralelo usando bancos HBM independientes entre

śı.

Para esta prueba, se ha cambiado la metodoloǵıa de mapeo de las variables a los

diferentes bancos, puesto que también hab́ıa que elegir las diferentes CUs. Para ello se

ha utilizado un fichero .cfg que se puede consultar en el anexo 2. Para poderlo utilizar

41



también se ha añadido una linea al Makefile como se puede ver en el código 5.5. Con

esas lineas de código se le dice al compilador que busque un fichero .cfg para leer la

configuración y aplicarla.

1 VPP_LDFLAGS_krnl_vadd += --config ./krnl_vadd.cfg

2 ----

3 v++ -l $(TRACE_FLAGS) $(VPP_FLAGS) $(VPP_LDFLAGS)
4 -t $(TARGET) --platform $(PLATFORM) --temp_dir $(TEMP_DIR)
5 $(VPP_LDFLAGS_krnl_vadd) -o’$(LINK_OUTPUT)’ $(+)

Listing 5.5: Modificaciones al fichero Makefile para leer el fichero de configuración

En esta prueba el tiempo de ejecución ha sido de 0.45 ms y el ancho de banda

obtenido de 316.80 GB/s. Estas métricas son bastante buenas, ya que nos acercamos

al ĺımite de ancho de banda que es posible obtener utilizando 24 bancos de memoria,

que es de 344 GB/s, si multiplicamos el ancho de banda teórico de 14.37 GB/s por los

bancos que estamos utilizando.

Hay que recalcar el reporte original med́ıa un tiempo de 3.60 ms, pero revisando

los reportes más a fondo esa métrica es una suma del tiempo de ejecución de todas las

CUs, por lo que nos puede dar una idea equivocada del rendimiento del kernel.

5.6. Comparación final

Por último vamos a analizar una tabla comparativa de todas las versiones que se han

ido realizando, añadiendo como métrica las OPs, es decir, las operaciones por segundo

que han realizado las diferentes versiones.

Tiempo de Ancho de
Versión ejecución (ms) banda (GB/s) OPs (GOPs)

RTL escalar 66.67 1.80 0.15

HLS escalar 39.60 3.02 0.25

HLS vectorial 9.27 12.94 1.08

Organización de los datos correcta 3.12 39.00 3.20

Organización de los datos incorrecta 6.22 19.30 1.61

Varias CUs 0.45 316.80 22.22

Tabla 5.2: Tabla comparativa de las diferentes versiones

En la tabla 5.2 podemos observar las diferencias de rendimiento y de ancho de banda

que hay entre las diferentes versiones.

Podemos ver que la versión para la que más rendimiento se obtiene es en la versión

con múltiples CUs, ya que tenemos más grado de paralelismo, tanto de las operaciones

como del ancho de banda. Los datos de GOPs son coherentes, ya que obtenemos

aproximadamente 8 veces más GOPs que la versión que tiene los datos organizados

correctamente y puede obtener todo el ancho de banda de los bancos.

42



Aunque no estemos en el ĺımite del ancho de banda de la FPGA podemos esperar

que si se utilizara un kernel que pudiera utilizar todos los bancos disponibles el ancho

de banda escalaŕıa en consonancia, llegando al ĺımite de rendimiento de la FPGA.

También, que el hecho de vectorizar los kernels ayuda mucho en el rendimiento, ya

que utilizando versiones escalares no se ha podido aumentar el rendimiento aunque se

haya aumentado el número de bancos de memoria utilizados.

43



44



Caṕıtulo 6

Conclusiones

En conclusión, la elaboración de este TFG ha representado un esfuerzo en la

exploración e investigación de la programación de sistemas heterogéneos.

Como primera conclusión, la baja programabilidad de las FPGAs es cierta, debido a

sus largos tiempos de compilación sin emulación, su dificultad para desarrollar un código

correcto debido a que hay que ser muy espećıfico para que todo funcione correctamente

y debido a la vaguedad de los errores de compilación proporcionados por el compilador.

Con respecto a los accesos a memoria, se ha llegado a la conclusión de que es muy

importante conocer la estructura y la organización de la memoria que estamos utilizando

para optimizar en la manera de lo posible el rendimiento de nuestro código y evitar

cuellos de botella.

Con respecto a las diferencias entre desarrollar código utilizando HLS y HDL, aunque

no se ha conseguido desarrollar código en HDL, si que se intentó al comienzo del trabajo,

no lográndose. También hemos visto, analizando las 2 versiones del mismo kernel

implementadas de las 2 diferentes maneras, las ventajas que ofrece HLS, permitiendo

una comprensión mucho mayor del código que su equivalente en HDL, aśı como una

mayor versatilidad a la hora de realizar cambios sobre este.

Como conclusión adicional, podemos decir que parte de la dificultad para desarrollar

código para estos sistemas es debido a lo espećıficos que son, ya que solo tenemos

disponible la documentación oficial y apenas hay ejemplos concretos de diseños, o si

los hay, solo se implementan las optimizaciones individualmente y es complicado si se

quiere sacar provecho de varias de estas a la vez.

45



46



Caṕıtulo 7

Bibliograf́ıa

[1] Jeffrey S. Vetter, Erik P. DeBenedictis, and Thomas M. Conte. Architectures for

the post-moore era. IEEE Micro, 37(4):6–8, 2017.

[2] Juan Manuel Manchado Ortega y Jorge Antonio Garćıa Pérez. Fpga: qué es

y cuáles son las caracteŕısticas de este componente. akka-technologies. https:

//www.akka-technologies.com/fpga.

[3] Intel. Intel official website. https://www.intel.com.

[4] Xilinx Inc. Vitis unified software platform documentation: Application

acceleration development (ug1393), 2023. https://docs.xilinx.com/r/en-US/

ug1393-vitis-application-acceleration/HBM-Configuration-and-Use.

[5] Intel. Intel oneapi toolkits, 2023. https://www.intel.com/content/www/us/en/

developer/tools/oneapi/toolkits.html.

[6] Intel. Intel quartus prime. https://www.intel.la/content/www/xl/es/

products/details/fpga/development-tools/quartus-prime.html.

[7] Xilinx Inc. Vitis unified software platform, 2023. https://www.xilinx.com/

products/design-tools/vitis/vitis-platform.html.

[8] Intel. Vivado ml overview, 2023. https://www.xilinx.com/products/

design-tools/vivado.html.

[9] Nvidia. Nvidia official website. https://www.nvidia.com/es-es/.

[10] AMD. Amd official website. https://www.amd.com.

[11] Nvidia. Cuda-x bibliotecas aceleradas por gpu para ia y hpc, 2023. https:

//www.nvidia.com/es-es/technologies/cuda-x/.

47

https://www.akka-technologies.com/fpga
https://www.akka-technologies.com/fpga
https://www.intel.com
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/HBM-Configuration-and-Use
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/HBM-Configuration-and-Use
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://www.intel.la/content/www/xl/es/products/details/fpga/development-tools/quartus-prime.html
https://www.intel.la/content/www/xl/es/products/details/fpga/development-tools/quartus-prime.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.nvidia.com/es-es/
https://www.amd.com
https://www.nvidia.com/es-es/technologies/cuda-x/
https://www.nvidia.com/es-es/technologies/cuda-x/


[12] AMD. Computación de alto rendimiento(hpc) en rocm, 2023. https://www.amd.

com/es/graphics/servers-solutions-rocm-hpc.

[13] AMD. Hip github repository, 2023. https://github.com/

ROCm-Developer-Tools/HIP.

[14] ARM. Especificación de arm del protocolo axi. https://developer.arm.com/

documentation/ihi0022/latest/.

[15] florentw. Axi basics 1 - introduction to axi, 2023. https://support.xilinx.com/

s/article/1053914?language=en_US.

[16] Xilinx Inc. Hbm performance concepts. axi high bandwidth memory controller

logicore ip product guide (pg276), 2023. https://docs.xilinx.com/r/en-US/

pg276-axi-hbm/HBM-Performance-Concepts.

[17] Xilinx Inc. Vitis unified software platform documentation: Application

acceleration development (ug1393), 2023. https://docs.xilinx.com/r/en-US/

ug1393-vitis-application-acceleration/HBM-Configuration-and-Use.

[18] Xilinx Inc. Alveo u280 data center accelerator card. https://www.xilinx.com/

products/boards-and-kits/alveo/u280.html#specifications.

[19] Xilinx Inc. Vitis accel examples. https://github.com/Xilinx/Vitis_Accel_

Examples.

48

https://www.amd.com/es/graphics/servers-solutions-rocm-hpc
https://www.amd.com/es/graphics/servers-solutions-rocm-hpc
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://developer.arm.com/documentation/ihi0022/latest/
https://developer.arm.com/documentation/ihi0022/latest/
https://support.xilinx.com/s/article/1053914?language=en_US
https://support.xilinx.com/s/article/1053914?language=en_US
https://docs.xilinx.com/r/en-US/pg276-axi-hbm/HBM-Performance-Concepts
https://docs.xilinx.com/r/en-US/pg276-axi-hbm/HBM-Performance-Concepts
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/HBM-Configuration-and-Use
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/HBM-Configuration-and-Use
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#specifications
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#specifications
https://github.com/Xilinx/Vitis_Accel_Examples
https://github.com/Xilinx/Vitis_Accel_Examples


Lista de Figuras

2.1. Estructura de un CLB (akka-technologies) . . . . . . . . . . . . . . . . 14

2.2. Clasificación de los diferentes aceleradores . . . . . . . . . . . . . . . . 15

2.3. Pasos que sigue un kernel hasta ejecutarse en una FPGA . . . . . . . . 17

3.1. Ejemplo de interconexión de la FPGA con diferentes componentes . . . 21

3.2. Canales interfaz AXI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3. Estructura de un stack HBM2 . . . . . . . . . . . . . . . . . . . . . . . 23

3.4. Estructura de la memoria de una FPGA de Xilinx . . . . . . . . . . . . 24

3.5. Estructura de un segmento del crossbar . . . . . . . . . . . . . . . . . . 25

5.1. Ejemplo de tiempo de ejecución . . . . . . . . . . . . . . . . . . . . . . 33

5.2. Ejemplo de ancho de banda . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3. Timeline de ejecución . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4. Diagrama AXI del kernel en RTL con múltiples bancos . . . . . . . . . 34

5.5. Diagrama de la conexión de múltiples interfaces AXI y multiples bancos 36

5.6. Volumen de Halstead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.7. Diagrama de conexión de un kernel usando múltiples bancos por argumento 39

5.8. Diagrama de conexión de un kernel usando múltiples bancos por

argumento con una mala organización . . . . . . . . . . . . . . . . . . . 40

5.9. Diagrama del conexionado de múltiples CUs con sus bancos . . . . . . 41

1. Diagrama de Gantt del proyecto . . . . . . . . . . . . . . . . . . . . . . 55

49



50



Lista de Tablas

4.1. Memorias disponibles en la FPGA [18] . . . . . . . . . . . . . . . . . . 27

5.1. Tabla con métricas de complejidad de las diferentes versiones escalares 36

5.2. Tabla comparativa de las diferentes versiones . . . . . . . . . . . . . . . 42

51



52



Anexos

53





Figura 1: Diagrama de Gantt del proyecto

55



1 Host central

2 HostName central.cps.unizar.es

3 User a779935

4

5 Host TFGLab

6 HostName 155.210.134.18

7 Port 3334

8 User pcabra

9 ProxyJump central

10 LocalForward 5904 localhost:5904

Listing 1: Configuración fichero ssh

1 [connectivity]

2 sp=krnl_vadd_1.in1:HBM[0]

3 sp=krnl_vadd_1.in2:HBM[1]

4 sp=krnl_vadd_1.out:HBM[2]

5

6 sp=krnl_vadd_2.in1:HBM[4]

7 sp=krnl_vadd_2.in2:HBM[5]

8 sp=krnl_vadd_2.out:HBM[6]

9

10 sp=krnl_vadd_3.in1:HBM[8]

11 sp=krnl_vadd_3.in2:HBM[9]

12 sp=krnl_vadd_3.out:HBM[10]

13

14 sp=krnl_vadd_4.in1:HBM[12]

15 sp=krnl_vadd_4.in2:HBM[13]

16 sp=krnl_vadd_4.out:HBM[14]

17

18 sp=krnl_vadd_5.in1:HBM[16]

19 sp=krnl_vadd_5.in2:HBM[17]

20 sp=krnl_vadd_5.out:HBM[18]

21

22 sp=krnl_vadd_6.in1:HBM[20]

23 sp=krnl_vadd_6.in2:HBM[21]

24 sp=krnl_vadd_6.out:HBM[22]

25

26 sp=krnl_vadd_7.in1:HBM[24]

27 sp=krnl_vadd_7.in2:HBM[25]

28 sp=krnl_vadd_7.out:HBM[26]

29

30 sp=krnl_vadd_8.in1:HBM[28]

31 sp=krnl_vadd_8.in2:HBM[29]

32 sp=krnl_vadd_8.out:HBM[30]

33

34 nk=krnl_vadd:8

35

36 [profile]

37 data=all:all:all

Listing 2: Fichero .cfg para asignar diferentes bancos con diferentes CUs

56



1 /**

2 * Copyright (C) 2019-2021 Xilinx, Inc

3 *

4 * Licensed under the Apache License, Version 2.0 (the "License"). You may

5 * not use this file except in compliance with the License. A copy of the

6 * License is located at

7 *

8 * http://www.apache.org/licenses/LICENSE-2.0

9 *

10 * Unless required by applicable law or agreed to in writing, software

11 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT

12 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the

13 * License for the specific language governing permissions and limitations

14 * under the License.

15 */

16

17 ////////////////////////////////////////////////////////////////////////////////

18 // Description: Basic Adder, no overflow. Unsigned. Combinatorial.

19 ////////////////////////////////////////////////////////////////////////////////

20

21 ‘default_nettype none

22

23 module krnl_vadd_rtl_adder #(

24 parameter integer C_DATA_WIDTH = 32,

25 // Data width of both input and output data

26 parameter integer C_NUM_CHANNELS = 2

27 // Number of input channels. Only a value of 2 implemented.

28 )

29 (

30 input wire aclk,

31 input wire areset,

32

33 input wire [C_NUM_CHANNELS-1:0] s_tvalid,

34 input wire [C_NUM_CHANNELS-1:0][C_DATA_WIDTH-1:0] s_tdata,

35 output wire [C_NUM_CHANNELS-1:0] s_tready,

36

37 output wire m_tvalid,

38 output wire [C_DATA_WIDTH-1:0] m_tdata,

39 input wire m_tready

40

41 );

42

43 timeunit 1ps;

44 timeprecision 1ps;

45

46 /////////////////////////////////////////////////////////////////////////////

47 // Variables

48 /////////////////////////////////////////////////////////////////////////////

49 logic [C_DATA_WIDTH-1:0] acc;

50

51 /////////////////////////////////////////////////////////////////////////////

52 // Logic

53 /////////////////////////////////////////////////////////////////////////////

54

55 always_comb begin

56 acc = s_tdata[0];

57 for (int i = 1; i < C_NUM_CHANNELS; i++) begin

57



58 acc = acc + s_tdata[i];

59 end

60 end

61

62 assign m_tvalid = &s_tvalid;

63 assign m_tdata = acc;

64

65 // Only assert s_tready when transfer has been accepted.

66 tready asserted on all channels simultaneously

67 assign s_tready = m_tready & m_tvalid ? {C_NUM_CHANNELS{1’b1}} :

68 {C_NUM_CHANNELS{1’b0}};

69

70 endmodule : krnl_vadd_rtl_adder

71

72 ‘default_nettype wire

Listing 3: Sumador de una suma de vectores en HDL

1

2 void krnl_vadd(hls::vector<int,16>* in1, hls::vector<int,16>* in2,

3 hls::vector<int,16>* out, int size) {

4 #pragma HLS INTERFACE m_axi port = in1 bundle = gmem0

5 #pragma HLS INTERFACE m_axi port = in2 bundle = gmem1

6 #pragma HLS INTERFACE m_axi port = out bundle = gmem0

7

8 for( int i = 0; i < c_size;i++){

9 #pragma HLS pipeline II=1

10 out[i] = in1[i] + in2[i];

11 }

12

13 }

Listing 4: Ejemplo de suma de vectores vectorial

58


	Introducción
	Motivación
	Objetivos
	Alcance
	Descripción de este documento

	Estado del arte
	Tipos de aceleradores
	ASIC
	FPGA
	GPU

	Programación de los aceleradores
	FPGA
	GPU

	Entornos de programación
	FPGA
	GPU


	Memoria HBM2 en FPGAs de Xilinx
	Interfaces AXI
	Memoria HBM2
	Estructura interna de un stack HBM2
	Organización de la memoria HBM2 de una FPGA Xilinx
	Crossbar de la memoria


	Entorno de desarrollo
	Entorno
	Hardware
	Software

	Método de conexión remoto

	Validación experimental
	Metodología de trabajo
	Flujo de trabajo
	Reportes

	Diferencias entre versiones HDL y HLS
	Versión HDL
	Versión HLS
	Comparativa de los diferentes códigos

	Aumento del ancho de banda utilizando vectorización
	Diferencias en la organización de los datos en memoria
	Uso de varias Compute Units
	Comparación final

	Conclusiones
	Bibliografía
	Lista de Figuras
	Lista de Tablas
	Anexos

