w2s Universidad
A0 Zaragoza

1542

Trabajo Fin de Grado

Programacion y optimizacion de sistemas
heterogéneos basados en FPGA

Programming and optimization of heterogeneous

systems based on FPGA

Autor

Pablo Cambra Acin

Directores

Rubén Gran Tejero

Dario Suarez Gracia

ESCUELA DE INGENIERIA Y ARQUITECTURA
2023

MASTER

W
Q
<
W
~
Q
S
o
G
W
Q
=
U
w
Q
%)
o
<
<
=

Ingenieria y Arquitectura

.iil Escuela de DECLARACION DE
UniversidadZaragoza AUTORIA Y ORIGINALIDAD

(Este documento debe remitirse a seceina@unizar.es dentro del plazo de depdsito)

D./D2. Ppablo Cambra Acin ,
en aplicacién de lo dispuesto en el art. 14 (Derechos de autor) del Acuerdo de
11 de septiembre de 2014, del Consejo de Gobierno, por el que se
aprueba el Reglamento de los TFGy TFM de la Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de Estudios de la titulacién de

Grado en Ingenieria Informatica (Titulo del Trabajo)

Programacion y optimizacién de sistemas heterogéneos basados en FPGA

es de mi autoria y es original, no habiéndose utilizado fuente sin ser

citada debidamente.

Zaragoza, 31/08/2023

Firmado

CAMBRA digitalmente por

CAMBRA ACIN
ACIN PABLO PABLO - 73429748V Fdo: Pablo Cambra Acin
- 73429748V Fecha: 2023.08.31

17:30:29 +02'00'

AGRADECIMIENTOS

A mis tutores, Dario y Rubén, por guiarme y ayudarme en la realizacién de este
trabajo y resolver las dudas que tenia.

A mi familia, por apoyarme cuando tenia dificultades y no progresaba en este
proyecto.

Y por ultimo a Denis Navarro, por dejarnos utilizar la maquina del I13A.

Indice

1. Introduccién

1.1.
1.2.
1.3.
1.4.

MotivaciOn
Objetivos
Alcance

Descripcion de este documento L.

2. Estado del arte

2.1.

2.2.

2.3.

Tipos de aceleradores
2.1.1. ASIC . . o
2.1.2. FPGA
2.1.3. GPU . . . o
Programacion de los aceleradores
22.1. FPGA
222, GPU . . .o
Entornos de programacién
2.3.1. FPGA
232, GPU

3. Memoria HBM2 en FPGAs de Xilinx

3.1.
3.2.

Interfaces AXT
Memoria HBM2 oo o
3.2.1. Estructura interna de un stack HBM2.
3.2.2. Organizacién de la memoria HBM2 de una FPGA Xilinx

3.2.3. Crossbar de la memoria

4. Entorno de desarrollo

4.1.

4.2.

Entorno
4.1.1. Hardware
4.1.2. Software

Método de conexidén remotoo

10
10
10

13
13
13
13
15
15
16
18
18
18
19

21
22
23
23
24
25

5. Validacion experimental
5.1. Metodologia de trabajo L
5.1.1. Flujode trabajo.

5.1.2. Reportes .

5.2. Diferencias entre versiones HDL y HLS
5.2.1. Version HDL o
5.2.2. Version HLS o o

5.2.3. Comparativa de los diferentes codigos

5.3. Aumento del ancho de banda utilizando vectorizacién

5.4. Diferencias en la organizacion de los datos en memoria

5.5. Uso de varias Compute Units

5.6. Comparacién final
6. Conclusiones
7. Bibliografia
Lista de Figuras
Lista de Tablas

Anexos

31
31
32
33
33
34
35
36
37
38
40
42

45

47

49

51

52

Capitulo 1

Introduccion

1.1. Motivacion

En informatica, hay tipos de problemas que por su estructura o naturaleza, no se
adaptan bien a los procesadores de propdésito general, haciendo que su resolucion no sea
eficiente en términos de tiempo y tampoco de energia, aspecto tan importante hoy en
dia.

Para mejorar estos problemas, se empezaron a utilizar aceleradores dedicados
funcionando junto al procesador de propdsito general, para que fuera el acelerador el
que se encargara de resolver el problema, dejando al procesador de propdsito general la
tarea de controlar el acelerador.

Estos aceleradores aportan numerosas ventajas con respecto a los problemas
mencionados anteriormente, y es que al ser especificos pueden obtener una mayor
eficiencia energética a la vez que un mayor rendimiento que un procesador de proposito
general.

Entre los aceleradores de los que se disponen, la FPGA se presenta como una
alternativa interesante en términos de rendimiento y eficiencia energética, aunque no
tanto con respecto a la programabilidad, la cual es baja. Esto se podra comprobar mas

adelante.

1.2. Objetivos

Este TFG pretende abordar la problematica que hay en torno a la programacion de
las FPGAs para resolver dichos problemas, y como herramientas actuales nos permiten
realizar dicha tarea con un nivel de abstracciéon mayor, obteniendo con ello una facilidad
y velocidad en el desarrollo superior.

También abordaremos el uso de la memoria de la manera éptima para alcanzar el
mayor rendimiento, ya que en problemas livianos, esta suele ser el limitante.

Por 1ltimo, se abordaran las diferencias entre utilizar un lenguaje de alto nivel para

desarrollar cédigo o un lenguaje de descripcién de hardware.

1.3. Alcance

El alcance de este TFG, con respecto a los problemas de programabilidad se han
cumplido, ya que durante la elaboracion del mimso se ha podido comprobar la veracidad
de estas afirmaciones.

También se ha cumplido el segundo objetivo, ya que se ha realizado una labor de
investigacion y experimentacion con respecto al uso de la memoria.

El tercer objetivo no se ha cumplido tanto por conseguir desarrollar codigo, sino
por comparar un mismo cédigo ya desarrollado con ambas alternativas y las diferencias
y dificultades a la hora de realizar modificaciones sobre estos.

Hay que anadir que nunca se habia trabajado con FPGAs, ni con las herramientas
que nos permiten disenar cddigo para estas, y al ser especificas y complicadas no se ha
llegado todo lo lejos que se hubiera querido.

En el anexo 1 podemos observar la organizacion y el tiempo de las diferentes tareas

realizadas durante este TFG.

1.4. Descripcién de este documento

En el capitulo 2 hablaremos de los diferentes aceleradores que existen, como se puede
desarrollar c6digo para ellos y las herramientas que nos lo permiten. En concreto nos
centraremos en las FPGAs, sus problemas, limitaciones y las herramientas que tenemos
para intentar subsarnarlos.

En el capitulo 3 hablaremos de la memoria HBM2 en una FPGA y su estructura,
de las interfaces que se utilizan para interconectar la memoria con el dispositivo y cémo
utilizarla de manera eficiente para obtener un mayor rendimiento.

En el capitulo 4 hablaremos del entorno donde se han desarrollado los experimentos,

tanto el hardware como el software utilizados y del flujo de trabajo seguido.

10

En el capitulo 5 hablaremos de los experimentos realizados, explicando que se queria
obtener con ellos y posteriormente conclusiones comparando los resultados esperados con
los finalmente obtenidos. En concreto nos vamos a centrar en diferentes experimentos
para tratar de comparar el rendimiento utilizando diferentes tipos de datos, diferentes
organizaciones de los datos en los distintos bancos de memoria, y una comparacion del
mismo c6digo implementado utilizando lenguajes de descripcién de hardware (HDL) y
un lenguaje de alto nivel (HLS).

Por tltimo, en el capitulo 6 hablaremos sobre las conclusiones que se han obtenido

realizando este trabajo.

11

12

Capitulo 2

Estado del arte

Una vez que el escalado de Moore parece que ha llegado a su fin [1], se han
propuesto arquitecturas alternativas a los procesadores de propodsito general para seguir
aumentando el rendimiento de los computadores. Muchas de estas propuestas se basan
en el uso de un procesador de propdsito general junto con uno o varios dispositivos de
computo especifico, o aceleradores, que colaboran entre si.

En este capitulo vamos a hablar de los diferentes tipos de aceleradores, de la
programacion que nos encontramos en cada uno de ellos y por ultimo de los entornos y

herramientas de programacién que tenemos en cada uno de ellos.

2.1. Tipos de aceleradores

En los sistemas heterogéneos disponemos de varios tipos de dispositivos aceleradores.

A continuacién, vamos a describir que tipos existen y sus principales caracteristicas.

2.1.1. ASIC

Como primera opcién, tenemos los ASICs, del inglés Application-Specific Integrated
Circuit, que son dispositivos que disponen un hardware especifico para desarrollar
una tarea concreta. Estos dispositivos ofrecen un muy buen rendimiento, con el punto
negativo de que su hardware no es programable, por lo que solo podran realizar la
tarea para la que han sido disenados. Estos dispositivos son interesantes en entornos
en los que no hay variabilidad con el cédigo, ya que son los mas eficientes y que mas

rendimiento obtienen, aunque también son los dispositivos mas caros.

2.1.2. FPGA

Como segunda opcion, tenemos las FPGAs, que son dispositivos basados en bloques
légicos programables, también llamados CLBs a partir de ahora, que pueden ser

modificados via programacién para realizar una tarea u otra. Estos CLBs estan

13

interconectados entre si por IOBs, que sirven de buses de datos y senales entre los

distintos bloques.

carry in clk

|
—
s
.

|

|
-
>

;L DFF| "~

T ;

1! CLB :
carF\;out clk

Figura 2.1: Estructura de un CLB (akka-technologies)

En la figura 2.1 se pueden ver los distintos elementos légicos programables que
componen cada CLB. A continuaciéon vamos a pasar a describir cada elemento que
componen los CLBs y que funcién realizan.

Por un lado tenemos las look-up tables (LUT), que son tablas de biusqueda
programables y que para entrada tienen una salida definida. Estas tablas se pueden
utilizar por ejemplo para implementar diferentes operaciones como una suma, o puertas
logicas.

Por otro lado tenemos los multiplexores, que nos sirven para elegir entre multiples
valores de entrada.

Por otro lado tenemos los Flip Flops D (DFF), que sirven para guardar el estado
del circuito durante varios flancos de reloj.

Por tltimo tenemos los Full Adders (FA), que sirven para sumar 2 senales binarias.

Las FPGAs se situan un paso por delante de los ASICs en programabilidad como
hemos visto, aunque obtienen un rendimiento y eficiencia inferiores. Estos dispositivos se
vuelven interesantes en entornos de investigacién o desarrollo, donde el comportamiento
cambia con frecuencia.

Para este apartado se ha tomado como referencia la web akka-technologies [2].

Tenemos 2 principales fabricantes de FPGAs, los cuales son Intel [3] y Xilinx [4].
Cada fabricante tiene sus propias herramientas para desarrollar codigo tanto en RTL
como en HLS. Intel dispone de OneAPI [5] para HLS y Quartus [6] para RTL. Mientras
tanto Xilinx nos proporciona Vitis [7] para HLS y Vivado [8] para RTL. Estas dos
herramientas funcionan en conjunto utilizando Vitis. Ambos fabricantes proporcionan

funcionalidades parecidas, cada una compatible con sus dispositivos.

14

2.1.3. GPU

Por tdltimo, tenemos las GPUs, cuyo hardware no es programable. En ese sentido
estarfan cerca de los ASICs debido a que su hardware es fijo, aunque tienen un modelo
de computo parecido al de una CPU. La diferencia entre ambos es que las GPUs tienen
nicleos mucho mas sencillos pero cuentan con un gran numero de estos, por lo que se
hacen interesantes para tareas de aceleracion.

Estos dispositivos son los mas programables y mas extendidos a nivel general, debido
a su popularidad en el procesamiento de imagenes como por ejemplo en videojuegos.

También es una ventaja su modelo de computacion mas parecido al de una CPU.

CPU GPU FPGA ASIC

< PROGRAMABILIDAD

L RENDIMIENTOD

L EFICIENCIA

]
L COSTE POR UNICAD >

Figura 2.2: Clasificacién de los diferentes aceleradores

En la figura 2.2 podemos observar la relacién que hay entre los diferentes tipos de
aceleradores en términos de rendimiento, programabilidad, eficiencia y coste. Siendo
los ASICs los mas eficientes pero méas costosos y menos programables y las CPUs
convencionales las mas baratas y programables pero las que menos rendimiento y

eficiencia ofrecen.

2.2. Programacién de los aceleradores

El desafio principal de los aceleradores es su programacién, ya que suele resultar
muy costoso obtener grandes rendimientos, sin embargo esta no es igual para todos los
tipos de aceleradores que hemos nombrado.

En este apartado se centra de la programacion en FPGAs, por ser el tipo de
dispositivo elegido en este TFG, y de la programacién de GPUs. De los ASICs no vamos

a hablar, por su incapacidad de ser programados mencionada anteriormente.

15

2.2.1. FPGA

Las FPGAS tradicionalmente se programaban en RTL como podian ser HDL o
Verilog. Estos lenguajes de descripcién de hardware le indican al hardware como tiene
que comportarse. El mayor punto negativo de estos lenguajes es su dificultad y lentitud
para desarrollar codigo para los dispositivos debido a lo especificos que son.

Posteriormente, para tratar de agilizar estas tareas, se anadié un paso intermedio, en
el que el programador desarrolla el cédigo en un lenguaje de alto nivel y es el compilador
el que se encarga de traducir el codigo en alto nivel a RTL, para que finalmente pueda ser
programado en la FPGA. Este nivel superior se conoce como High Level Synthesis(HLS).

Dentro de HLS, tenemos varias alternativas como pueden ser C/C++ u OpenCL,
aunque en la actualidad hay alternativas para muchos lenguajes de propésito general.

Utilizando HLS hay que tener en cuenta que no en todos los casos el compilador va
a ser capaz de sintetizar el cddigo en alto nivel de una forma 6ptima y serd tarea del

programador tratar de optimizarlo mas si es necesario.

module Acumulador (

2 input wire clk,

3 input wire reset,

| input wire [7:0] vector [0:7],
5| input wire [3:0] size,

6| output wire [7:0] acumulado

1)

o| reg [7:0] acc;

11| always @(posedge clk or posedge reset) begin

12 if (reset) begin

13 acc <= 0;

14 end else begin

15 for (integer i =0; i < size; i =1 + 1) begin
vector[i];

+

16 acc <= acc
17 end

18 end

19 end

1 assign acumulado = acc;
2

3| endmodule

Listing 2.1: Ejemplo de cédigo de un acumulador en RTL

1| std: :vector vector = ...;
2| float acc = 0.0f;

|for(int i = 0; 1 < size; i++){
s|acc += vectorl[i];

6| ¥

Listing 2.2: Ejemplo de cédigo de un acumulador en C++

16

En el listing 2.1 podemos ver las grandes diferencias que hay tanto en términos de
longitud de c6digo, como en complejidad del mismo. Podemos ver la cantidad de senales
que tenemos, asi como la estructura del bucle, que es mucho mas compleja. Por otro
lado, tenemos el listing 2.2 donde se puede ver el mismo codigo pero programado en
C++. Se puede observar la menor complejidad tanto en tamano como en facilidad de
lectura. Esto también es debido a que los programadores estan mucho mas familiarizados
con lenguajes de alto nivel que tienen una sintaxis parecida.

A todo esto tenemos que sumar el hecho de que cuando se genera cédigo en RTL
para una FPGA, también se generan toda una serie de ficheros relacionados con las
interfaces de memoria, lo cual hace que el cédigo no sea tan sencillo como el mostrado

en el ejemplo 2.1 y dificulte atin méas su comprensién.

Lenguaje de alto nivel(C, C++, OpenCL)

Traguctor(HLS)

Programador

RTL(VHDL, Verilog...)

Compilador

Bitstream

Figura 2.3: Pasos que sigue un kernel hasta ejecutarse en una FPGA

En la figura 2.3, de elaboracién propia, podemos ver los pasos que sigue el cdédigo
desde que es desarrollado por el programador hasta que se programa en la FPGA.
Podemos ver que hay dos alternativas como hemos comentado anteriormente y el
programador puede elegir disenar el codigo directamente en RTL, ahorrandose el primer
paso del proceso.

El proceso completo consiste en:

— El cédigo en alto nivel es traducido por el compilador a RTL.
— El codigo RTL se convierte en un bitstream, un archivo binario.

— El archivo se carga en la FPGA para su ejecucion.

17

En definitiva, la programabilidad de las FPGAs es mala, por el hecho de que en
ocasiones nos veamos obligados a desarrollar el codigo en RTL, como hemos mencionado
anteriormente. También nos encontramos que compilar cédigo para estos dispositivos es
muy lento, del orden de horas, ya que tiene que programar el hardware del dispositivo,
y realizar cambios a una gran velocidad no es posible si no se utiliza emulacién. Por
ultimo, los errores de ejecucion no son facilmente depurables, por lo que se puede hacer

complicado encontrar un fallo en el codigo.

2.2.2. GPU

Las GPUs se programan siguiendo el mismo concepto de paralelizar las tareas lo
maximo posible para sacar el maximo provecho de la gran cantidad de ntcleos que
tienen estos dispositivos. La gran diferencia es que al tener nicleos convencionales, no
es necesario programar el hardware en si.

Las GPUs tienen una mejor programabilidad ya que utilizan el modelo de
programacion Von Neumann, como las CPUs. Esto hace que la programacién sea
igual a la de un procesador convencional utilizando paradigmas de paralelizacion para

aprovechar al maximo el gran nimero de nucleos.

2.3. Entornos de programacion

2.3.1. FPGA

A continuacién nos vamos a centrar en los entornos de programaciéon Vitis [7] y
OneAPI [5].

Por un lado OneAPI [5] es compatible con sus procesadores y FPGAs. Utlizando
HLS es compatible con lenguajes de programacion como C++, Fortran, Python y Data
Parallel C++ (DPC++), que es una extensiéon de C++ de programacién paralela.
Gracias a la plataforma Quartus [6] también se puede desarrollar c6digo en HDL como
puede ser Verilog. OneAPI ofrece librerias mas extensas adaptadas a diferentes trabajos,
ya que es compatible con mayor cantidad de hardware.

Por otro lado Vitis [7] estd pensada para aprovechar las FPGAs de Xilinx. Esta
herramienta estd basada en OpenCL y permite generar kernels tanto en HLS (C++)
como en RTL utilizando Vivado [8].

18

2.3.2. GPU

Existen 2 fabricantes principales de GPUs, NVIDIA [9] y AMD [10], cada una con
su propia plataforma para generar cédigo para sus dispositivos.

NVIDIA utiliza CUDA [11], que es un modelo de programacién escrito en C/C++,
pero que tiene compatibilidad con otros lenguajes como Fortran o Python.

Mientras tanto, AMD, con ROCm [12], permite utilizar multiples paradigmas para
paralelizar el cédigo, como OpenMP u OpenCL, la herramienta en la que esta basada
Vitis para generar los kernels. También admite Python. Una caracteristica importante
es que dispone de una plataforma de programacion llamada HIP [13], que ofrece un
nivel de abstraccién para que los programadores puedan desarrollar su cédigo para las

GPUs pensando en la portabilidad entre los distintos fabricantes.

19

20

Capitulo 3

Memoria HBM2 en FPGAs de
Xilinx

En este capitulo vamos a hablar de la memoria de las FPGAs Xilinx, de su estructura,
limitaciones y de las interfaces que utilizan las FPGAs para interconectar diferentes
componentes entre si.

Para el tipo de problemas que se resuelven con las FPGAs es muy importante
gestionar correctamente los accesos a memoria, y para ello es importante conocer su
estructura y limitaciones. En concreto, la Alveo U280, que es el modelo con el que hemos
trabajado, cuenta con memoria HBM2, que obtiene un ancho de banda teérico cuando
se agregan todos los bancos de 460 GB/s. El ancho de banda real que se consigue es de
420 GB/s.

LUTs, I0Bs, canales de interconexion

AXI-0 AXI-1 ANE -2 seersssssssinm s AXI - 31
MEMORIA HEM2 PCI KERNEL

Figura 3.1: Ejemplo de interconexién de la FPGA con diferentes componentes

En la figura 3.1 podemos ver un esquema general de como diferentes componentes
de la FPGA y dispositivos se conectan entre si. Para ello se hace uso de unas interfaces
multipropésito llamadas AXI (Advanced eXtensible Interface), que fueron disenadas por
ARM [14]. Estas interfaces pueden ser usadas para conectar la memoria, dispositivos
PCI o inclusive otros kernels para transferir datos entre varios de ellos. A continuacion

vamos a pasar a describir en mayor detalle tanto las interfaces AXI como la estructura

21

de la memoria de la FPGA.

3.1. Interfaces AXI

Las interfaces AXI4 se utilizan como se ha visto en la figura 3.1 para conectar el
hardware con diferentes dispositivos de la FPGA. Disponemos de 32 canales AXI. Las
interfaces AXI tienen un ancho de 512 bits, y disponemos de varios tipos de ellas, de

las cuales vamos a explicar sus caracteristicas a continuacion:

— AXI4-Lite, pensada para operaciones de memoria que no necesiten un gran ancho

de banda, como senales de control o registros.

— AXI4-Full, pensada para operaciones que necesitan una gran cantidad de ancho
de banda.

— AXI4-Stream, pensada para operaciones de stream de gran ancho de banda,

principalmente utilizado para comunicar diferentes kernels entre si.

Para nuestro trabajo se van a usar las interfaces AXI4-Full para los datos de entrada
y de salida, como son vectores con los que vamos a operar y las interfaces AXI4-Lite,
para senales de control como puede ser el tamano de los vectores.

Uno de los principales dispositivos que interconectan estas interfaces AXI, es la
memoria de la FPGA, que tiene un ancho de 256 bits, por lo que no estaremos
aprovechando toda la interfaz, aunque debido a que estas interfaces han sido disenadas
para conectar una gran variedad de dispositivos, se decidié implementar un ancho de

512 bits, aunque para la memoria se esté desaprovechando.

Address

AXI
Master Address

Response

Figura 3.2: Canales interfaz AXI

Cada interfaz AXI, tiene 3 canales para la escritura y 2 canales para la lectura,

como se puede ver en la figura 3.2. Tenemos una excepcion la interfaz AXI4-Lite, que

22

como solo puede ser de lectura o de escritura, pero no ambas a la vez, solo tenemos los
3 canales de escritura o los 2 de lectura.

Para las lecturas, el master envia la direccién que quiere leer junto a varias senales
de control y el esclavo responde con el dato por el otro canal.

Para las escrituras, el master envia la direccion donde quiere escribir junto con las
senales de control. Acto seguido envia el dato que quiere escribir y espera a que el
esclavo envie la respuesta para comprobar si se ha escrito bien o ha habido algin tipo
de error.

Para agilizar las lecturas y escrituras, podemos hacer que cuando se quiera leer o
escribir, a la hora de mandar los datos, se envien varios seguidos sin necesidad de volver
a enviar la direccion, para leer o escribir en direcciones consecutivas. Esto se denomina

lectura y escritura en rafaga o burst.

3.2. Memoria HBM?2

La memoria HBM2 es una memoria de gran ancho de banda, utilizada en dispositivos
de alto rendimiento aunque muy costosa. A continuacién vamos a pasar a describir sus

caracterisitcas y su organizacion en una FPGA de Xilinx.

3.2.1. Estructura interna de un stack HBM?2

Microbump

PHY GPU/CPU/Soc Die
oot O 0 O O

0 0000000000 000

] [] []] [[] [l [[] (]]]]]
(I T I N I N N NN N S I N W

Package Substrate

Figura 3.3: Estructura de un stack HBM2

23

Esta memoria se organiza apilando los chips unos encima de otros como se puede
ver en la figura 3.3, formando stacks de memoria e interconectandolos con el dispositivo
mediante la interfaz AXI mencionada anteriormente, colocando un componente encima
de otro, consiguiendo una distancia entre componentes mucho menor que en una memoria

DDR convencional, reduciendo con ello latencia y aumentando el rendimiento.

3.2.2. Organizacién de la memoria HBM2 de una FPGA Xilinx

1 23 45 87 B 91071 1292 1415 1617 1299 2021 RIS 2435 2627 0 ZEI0 2031
1| 1] I | | | 1|11 [1
TYYY YT YY Ot¥YE YV YY V¥ AV TYEY TRt
e -] [el
— - | |- S
b - b - 44 b | b e 44 A4 44 Switch
- [[+ ad i Metwork
ry ¥ L L TTYTfTYT 1Y% %1 L L v i rF Ty ¥ ¥
MCs, PHY's,
M0 | a1 (X3 | T mict [|macs| | macs([mecy | |mecz(|mce| |mcio)iscaa| | mcizli mciz| [sacis |[mcs 1.
B |={|={|= ==l =] F{|= EREIEIGIE g =l=l == |=li=] |={]|=] e B||= |=||=
= k=1 k=1 2 cfleflc]|e cile ol |o|g|c|c cl [ellel efle lelle] |<lle] |z ol |el|e
allallalle allaflalla =1 R R R R R TR E N E ERE EREIEIE I EREIEIEIE
aljfzy= 41154157 sll= 9 HIENEE &l TS |% a1 |2 = 415 1= 7 = B
HEBEM Stack 1 HEM Stack 2 EHIBT

Figura 3.4: Estructura de la memoria de una FPGA de Xilinx

En la figura 3.4 podemos ver la estructura de la memoria HBM2 de una FPGA de
Xilinx. Podemos ver que esta formada por 2 stacks de memoria, cada uno formado por 8
controladores de memoria, denominados MC en la figura, que gestionan 2 pseudocanales
(PC) cada uno, marcados en amarillo. El ancho de bits total de un stack HBM2 es de
1024 bits, dividido entre los 8 controladores, lo que supone un ancho cada uno de 128
bits. Cada PC tiene un ancho de 64 bits, aunque son independientes, por lo que se les
pueden enviar 2 comandos, uno detras del otro, pero no hay necesidad de esperar a que
el primero termine para enviar el segundo.

Para compensar las diferencias de ancho de los canales, los chips HBM2 funcionan
al doble de frecuencia que las interfaces AXI para comunicar con las memorias, es decir,
si la interfaz AXI funciona a 450 Mhz, el chip tendra que funcionar a 900 Mhz para

compensar que en cada transaccion él puede enviar la mitad de datos.

24

3.2.3. Crossbar de la memoria

Para que todas las interfaces AXI puedan acceder a todo el espacio de memoria
disponible se utiliza un crossbar segmentado compuesto por 8 segmentos. Cada segmento
del crossbar, marcado en gris en la figura 3.4, se comunica directamente con 2
controladores de memoria, es decir con 4 PCs. Cada interfaz AXI esta conectada
directamente a un solo segmento del crossbar.

Esto implica que si se desconoce la estructura de memoria y repartimos los datos a
los que va a acceder una interfaz AXI en varios bancos, puede provocar que la interfaz
tenga que acceder a bancos que no corresponden a su segmento del crossbar, por lo
que tenga que cruzar varios segmentos hasta llegar al banco y hacer la operacién de

memoria.

M4 —bl = 56

M5 > » 57

S4 —] [—— e

S5 4— le—— M7
l l M L

Figura 3.5: Estructura de un segmento del crossbar

En la figura 3.5 podemos ver la estructura de las conexiones de un segmento del
crossbar. Podemos observar que tiene conexiones directas con todos los PCs que estan
alineados a él y como las conexiones laterales son las que comunican un segmento con
sus contiguos. Es el hecho de pasar estas conexiones lo que provoca una latencia extra,
y por tanto pérdida de rendimiento, ya que no se estd accediendo directamente al banco
de memoria.

Para este capitulo se ha tomado como referencia tanto para la informaciéon como para
las figuras, salvo la figura 3.1, de elaboracién propia, un repositorio de Xilinx [15] acerca
de las interfaces AXI y dos apartados de la documentacién oficial de Vitis [16] [17]

acerca de la memoria HBM?2.

25

26

Capitulo 4

Entorno de desarrollo

En este capitulo se va a hablar de las herramientas de desarrollo que se han utilizado
y del entorno donde se ha realizado el trabajo. Vamos a hablar tanto del software como
del hardware que se ha usado y sus caracteristicas. También vamos a hablar de la
organizacién que se ha seguido a la hora de trabajar en el proyecto y de como se ha

configurado el entorno para poder llevarlo a cabo.

4.1. Entorno

Para el entorno de desarrollo se ha utilizado una méaquina en el I3A (Instituto de
investigacién e Ingenieria de Aragén) para poder hacer uso de las FPGAs disponibles
en dicho laboratorio. Esta maquina ha sido aportada por Denis Navarro, al cual se le

agradece por dejarnos utilizarla.

4.1.1. Hardware

El hardware con el que cuenta esta maquina es una Xilinx Alveo U280.

En la figura 4.1 podemos ver las principales caracteristicas de la memoria de la
U280. Se pueden observar diferencias de organizacién en términos de capacidad y de
nimero de bancos. Dado que la memoria HBM2 esta pensada para obtener el maximo
rendimiento trabajando en paralelo se colocan un gran nimero de bancos. Con respecto
a la capacidad, las memorias HBM2 son bastante méas costosas que las DDR4.

Los médulos HBM2 estan organizados en 2 stacks de 4 GB cada uno, como se ha

visto en el capitulo 3.

Memoria \ Bancos \ Capacidad total \ Ancho de banda total \ Ancho de banda por banco

HBM2 32 8 GB 460 GB/s 14.37 GB/s

DDRA4 2 32 GB 38 GB/s 19 GB/s

Tabla 4.1: Memorias disponibles en la FPGA [18]

27

El dispositivo tiene un consumo de 225W y un total de 1079000 LUTs.
La maquina remota tiene como procesador un AMD Epyc 7443P. Este procesador

cuenta con 24 nicleos y 48 hilos.

4.1.2. Software

El entorno de desarrollo que se ha utilizado ha sido Vitis, que es la plataforma de
desarrollo de software para los aceleradores de Xilinx.

En esta herramienta disponemos de 3 modos de compilacion. La emulacion por
software, que simplemente emula el comportamiento, pero no tiene nada en cuenta del
hardware contra el que se va a ejecutar. Este método es el mas rapido de compilar. La
emulacion hardware, que también emula el comportamiento, pero ya tiene en cuenta
caracteristicas de la FPGA. Este método es més lento de compilar, por lo que solo se
ha utlizado cuando el cédigo funcionaba correctamente y habia que probar diferentes
configuraciones del hardware. Por tltimo, disponemos de la compilacién hardware, que
genera el bitstream completo para la FPGA, y que lo manda a ejecutar en el hardware
real. Este método solo se ha utilizado cuando se han querido obtener niimeros reales
de ancho de banda y de rendimiento, ya que el tiempo de compilacién era de unas 2-3
horas, por lo que solo se ha utilizado después de asegurarse de que el cédigo funcionaba
correctamente.

Esta herramienta puede compilar tanto coédigo en HLS como cédigo en HDL,
utilizando Vivado. La tnica diferencia es que al compilar cédigo en HLS se anade
un paso intermedio, como esta explicado en el capitulo 2, donde se traduce el codigo
HLS a RTL.

Al principio, se optd por desarrollar en local durante las primeras pruebas para
conocer el entorno de desarrollo de Vitis y como se programaba y se configuraba un
kernel . Para ello se utilizé6 por completo el entorno grafico utilizando el cédigo del
proyecto de ejemplo. Una vez se hicieron las primeras pruebas y pasamos a querer
ejecutar en hardware real, se paso a la maquina remota mencionada anteriormente,
para poder utilizar la Alveo U280.

Para realizar las distintas pruebas, se tomé como base el repositorio GitHub de Xilinx
VitisAccelExamples [19], y a partir de ahi, siguiendo la misma forma de desarrollar el
codigo, se fueron haciendo diferentes versiones de los kernels.

Para desarrollar el codigo se ha utilizado el editor Gedit, que venia instalado en la
maquina remota.

Para compilar el codigo, se ha utilizado el comando make en la terminal, junto con
ficheros Makefile, proporcionados en el repositorio de GitHub antes mencionado, siendo

estos modificados segin se requeria para las distintas versiones.

28

Para visualizar los reportes de compilacion y de ejecuciéon una vez realizadas las
pruebas se ha utilizado la herramienta grafica del entorno Vitis, Vitis Analyzer, que
permite visualizar varios parametros como pueden ser el ancho de banda, las memorias
usadas, el uso de recursos en la FPGA, el esquema de conexiones de los kernels con la

memoria, entre otros.

4.2. Método de conexion remoto

Para poder acceder a la maquina remota, se ha utilizado un proxy SSH con la
maquina central.cps.unizar.es. La configuracion para poder realizar la conexion se puede
ver en el anexo 1.

Para poder conectarnos a la maquina remota de manera grafica y asi poder utilizar
las aplicaciones de reportes y editar el codigo remotamente de manera mas cémoda, se
ha utilizado la herramienta VNCServer!. Se ha configurando el servidor en la maquina
remota y un tunel SSH en el puerto 5904 de la maquina local, para poder acceder

mediante VNC Viewer. El tunel se puede ver como esta configurado en el anexo 1.

Thttps://www.realvnc.com/es/

29

30

Capitulo 5

Validacion experimental

En HLS, siguiendo la terminologia de la programacién del modelo de OpenCL, y
por simplificar en este TFG, se considerara qué la programacién de las FPGA se realiza
mediante kernels, que son las funciones que nuestro dispositivo va a acabar programando
en su hardware y va a ejecutar para resolver el problema.

Estos kernels tienen argumentos de entrada y de salida, que tendran que ser
proporcionados al acelerador por el host. En nuestro caso es el procesador de propdsito
general. Para ello antes de ejecutar el kernel necesitaremos generar los datos con los que
vamos a trabajar y copiarlos en la memoria del acelerador. Una vez acabe la ejecucién
del kernel, tendremos que recuperar los resultados calculados.

Estos kernels se ejecutan en lo que se llama Compute Unit (CU), que es una regién
del hardware del dispositivo que se va a encargar de ejecutar nuestro kernel. A la hora
de resolver un problema, se pueden usar varias CUs para utilizar una mayor cantidad
de hardware y obtener un rendimiento mayor puesto que varias instancias del kernel se
ejecutaran concurrentemente.

Todas las versiones analizadas en este TFG son modificaciones sobre un kernel de

suma de vectores de enteros del tipo 5.1.

res[i] = a[i] + b[il

Listing 5.1: cuerpo principal del kernel analizado de suma de vectores

Analizandolo, podemos ver que las iteraciones son independientes entre si, por lo

que al no haber dependencias este problema sera muy pararelizable.

5.1. Metodologia de trabajo

Para realizar los experimentos, primero se ha partido de un kernel base de suma de
vectores ya que era sencillo y existian bastantes ejemplos ya desarrollados. Como base se
ha utilizado el repositorio de GitHub de Xilinx VitisAccelExamples [19]. Posteriormente,

se ha analizado su rendimiento y caracteristicas.

31

Con los anélisis e intentando paliar las limitaciones, se han ido creando versiones de
manera iterativa, para comprobar si podian mejorar el rendimiento. Para ello primero
se ha teorizado sobre las posibles mejoras y luego se ha comprobado si efectivamente lo

eran. En caso negativo, se ha intentado averiguar la razén.

También se han creado versiones cuyo objetivo es verificar las caracteristicas de la

memoria, aunque no fueran simplemente para mejorar el rendimiento.

La primera prueba ha consistido en analizar versiones desarrolladas en HLS y HDL
del mismo cédigo. Primero se han analizado ambas versiones utilizando un solo banco
de memoria y posteriormente se han modificado para que hagan uso de varios bancos.
El objetivo de esta prueba ha sido comprobar las diferencias desde el punto de vista de
la versatilidad y programabilidad entre las dos alternativas y ver si se podia ganar algo
de rendimiento simplemente utilizando mas bancos de memoria, sin modificar nada mas

del cédigo.

La segunda prueba ha consistido en vectorizar un kernel en HLS para comprobar
como el hecho de emplear datos escalares hacia que no se estuviera aprovechando todo

el ancho de la memoria, y analizar la ganancia de rendimiento.

La tercera prueba ha consistido en explorar las dificultades de un buen uso de la
memoria HBM y de comprobar como, en caso de no conocer la estructura de la memoria
mencionada en el capitulo 3, no se obtendra todo el rendimiento posible. Para ello se
han creado dos ejemplos, uno que no viola ninguna restriccién de rendimiento, y otro

que si que lo hace.

Por 1ltimo, se ha tratado de aumentar el rendimiento todo lo posible, y explorar el
uso de multiples Compute Units, generando multiples instancias del mismo kernel y

poniendo a trabajar esas CUs en paralelo resolviendo distintas partes del problema.

5.1.1. Flujo de trabajo

El flujo de trabajo para cada kernel ha sido, generar un cédigo que compilara en
modo software para comprobar su correccion. Para revisar los diferentes modos de
compilacién ir a la seccién 4.1.2. Una vez funcionaba correctamente, se probaba con
emulacion hardware que las conexiones de la memoria con los kernels y las CUs iban a
funcionar correctamente. Por tltimo, se compilaba en modo hardware para extraer el
rendimiento real y comprobar los datos numéricos con lo esperado, para posteriormente

sacar conclusiones.

32

5.1.2. Reportes

Las mejoras de rendimiento se han podido observar en los reportes de compilaciéon y
de ejecucion. En el reporte de compilacion se puede observar los recursos de la FPGA
utilizados, asi como las conexiones de los puertos del kernel con la memoria o las
estimaciones de frecuencia que va a alcanzar nuestro kernel.

En el reporte de ejecucién podemos observar diferentes apartados. A continuacién
vamos a resaltar los que nos han parecido mas interesantes.

Uno de ellos es el tiempo de ejecucion, como se puede ver en la figura 5.1 donde se
nos muestra el tiempo de ejecucion por cada instancia del kernel y en que instante de
tiempo se ha empezado a ejecutar. Es decir, si tuviéramos varias CUs, se mostraria el

tiempo de ejecucion de cada una de ellas.

4 Top Kernel Execution
>

cernel Kernel Instance Context Command Devl Start Duration
eme Address I Queus ID Jevice Time {ms) (ms}
krnl_vadd 0x201b4afo 0 0 wdlink_uz280_gen3x16_xdma_base 1-0 11544.300 39.679

Figura 5.1: Ejemplo de tiempo de ejecucion

Otro reporte muy tutil para todas estas pruebas va a ser el del ancho de banda
obtenido. Este reporte se puede ver en la figura 5.2, donde se nos muestra tanto el nimero
de transferencias realizadas como el ancho de banda obtenido, todo ello desglosado por

puerto y banco.

« Data Transfer: Kernels from/to Global Memory
b

Kernel Device Memory Transfer Number of Transfer BW Util wrt Current BW Util wrt Ideal Max BW on Current
Arguments I Resources Type Transfers Rate (MBfs) Port Config (%) Port Config (%) Port Config (ME/s)

krnl_vadd_1/m_axi_gmem0 inl line_u280_gen3xd6_xdma_base 10 HEM[O] READ 625000 1010.540 0.000 5.250 0.000
krnl_vadd_1/m_axi_gmeml in2 xilinx_u280_gen3x16_xdma_base_1-0 HEM[L] READ 625000 1010540 0.000 5,250 0.000
krnl_vadd_1/m_axi_gmem2 outt_r «llink u280_gen3x16 xdma_base 10 HBM[2] WRITE 625000 1010.520 0.000 5.249 0.000

Compute Unit Port

Figura 5.2: Ejemplo de ancho de banda

Por 1ltimo, otro reporte que se ha considerado interesante ha sido el del timerline
de ejecucién, observable en la figura 5.3. Se puede ver la linea temporal de la encolacion
del kernel en la FPGA, la ejecucion del mismo y las lecturas y escrituras que se realizan

en los diferentes bancos HBM y para los diferentes argumentos del kernel.

5.2. Diferencias entre versiones HDL y HLS

Lo primero que vamos a probar son varias versiones desarrolladas en HDL y en
HLS, para ver las diferencias que hay entre ambas, y la dificultad para cambiar ciertos

parametros sin cambiar el kernel en si.

33

Kernel Enqueues
xilin_u280_genax1 6_.. vadd.link:ken|_vadd |1
Kernel Enqueue 1 krnl_vadd
User and Intemal Events
General 00

willnx_u280_genaxl 6_xdma_base_1
kel vadd.linkxclbin [User Events from APIs and Internally Generated Events: General |

Compute Unit kmi_vadd_1
Executions

Parallel Executions 1
m_axI_gmem0-HEM[0] (in1)

Read Channel

write Channel
m_ax_gmeml HEM[1] (in2)

Read Channel

wite Channel 00
m_ax_gmem2-HBM (2] (out_r)

Read Channel 00

write Channel Write HEM[2]

Figura 5.3: Timeline de ejecucion

5.2.1. Version HDL

Esta primera version estd desarrollada en HDL. El cddigo del sumador se puede
encontrar en el anexo 3. Este kernel almacena todos los datos en el banco HBM 0 y utiliza
tipos de datos escalares de 32 bits. Al trabajar con un solo banco de memoria podemos
esperar un bajo ancho de banda utilizado, debido a acumular todas las operaciones de
memoria en un solo banco, teniendo 32 de ellos disponibles, y a utilizar solamente 32 de
los 512 bits de ancho por cada interfaz AXI. Esto es debido a que estamos utilizando
tipos de datos escalares en lugar de vectoriales, como se usaran en versiones posteriores.

Como resultados tenemos un tiempo de ejecuciéon de 66.70 ms, con un ancho de
banda de 1.80 GB/s. Es un ancho de banda bastante bajo, teniendo en cuenta que el
méaximo para un banco HBM son unos 13 GB/s.

La siguiente prueba parte del cédigo anterior, con la diferencia de que se va a utilizar
un banco de memoria para cada vector de entrada o salida del problema. Esto se hace
para comprobar la facilidad de cambiar ciertas configuraciones, como en este caso los

bancos de memoria, e intentar mejorar el ancho de banda y el rendimiento del cédigo.

= s krnl vadd rtl 1
. — i,

T krnl_vadd_rtl
. 1082 MB/s WRITE h
HBM[0] m axi_gmem| 1200 MB/s READ

a
b
LALL - -
] .
x86 LI s_axi_control

=PCIE HBM[1] length_r

DDR[0]
Figura 5.4: Diagrama AXI del kernel en RTL con multiples bancos

Podemos observar en la figura 5.4, que aunque se estan utilizando varios bancos

34

w

HBM, todos comparten la misma interfaz AXI. En siguientes versiones se vera si esto
es un limitante o no, mapeando los diferentes argumentos del kernel a interfaces AXI
diferentes.

Para lograr estos cambios, se han anadido unos flags al fichero de compilacién

Makefile, que se pueden ver en el codigo 5.2.

CONN_FLAGS := --connectivity.sp krnl_vadd_rtl_1.a:HBM[O]
—--connectivity.sp krnl_vadd_rtl_1.b:HBM[1]
—--connectivity.sp krnl_vadd_rtl_1.c:HBM[2]

v++ -1 $(TRACE_FLAGS) $(CONN_FLAGS) $(VPP_FLAGS) -t
$ (TARGET) --platform $(PLATFORM) $(VPP_LDFLAGS)
--temp_dir $(TEMP_DIR) -o’$(LINK_OUTPUT)’ $(+)

Listing 5.2: Mapeo a diferentes bancos de memoria

Durante todos los experimentos, el proceso habra sido el mismo, modificando el indice
de los bancos a los que se quieran mapear las variable.

Los resultados de esta prueba son un tiempo de ejecucién de 66.70 ms y un ancho
de banda de 1.80 GB/s.

Tenemos el mismo rendimiento que en la versién anterior, aunque se haya cambiado
la configuracién del kernel para usar varios bancos de memoria. Aunque no tenemos
una respuesta clara para esto, puede ser debido a que al no poder explotar un solo
banco de memoria, por mucho que se anadan mas bancos no se aumente el rendimiento

ya que el limitante no esta siendo el banco en si.

5.2.2. Versiéon HLS

Ahora vamos a probar una version que hace lo mismo que la primera vista en RTL
pero en HLS. Este codigo también almacena todas las variables en un solo banco y
utiliza tipos de datos escalares de 32 bits.

En esta prueba obtenemos un tiempo de ejecucion de 39.67 ms y un ancho de banda
de 3.02 GB/s. Estamos obteniendo el doble de rendimiento que con la versién en RTL,
probablemente debido a diferencias en la implementacion en la version en HLS genera
un codigo diferente, que al final logra sacar un mayor rendimiento aunque ambos estén
resolviendo el mismo kernel de suma de vectores.

Como tultima prueba, vamos a generar otra version en HLS, que utilice varios bancos
de memoria como la version en RTL. Para ello se ha seguido el mismo método explicado
anteriormente. La diferencia con la versién en RTL es que en esta se han podido
configurar las interfaces AXI para que fueran diferentes para cada banco de memoria,
simplemente anadiendo un pragma por argumento del kernel, como se puede ver en el

codigo 5.3.

35

1 #pragma HLS INTERFACE m_axi port = inl bundle = gmemO
2 #pragma HLS INTERFACE m_axi port = in2 bundle = gmeml
3 #pragma HLS INTERFACE m_axi port = out bundle = gmem2

Listing 5.3: Mapeo de los puertos a las interfaces AXI

—1 B [— krnl vadd 1
LB | I
HBMI0] krnl_vadd
. M_AXI|_GMEMQO|1011 MB/s READ in1
e 5 M_AXI_GMEML1 (1011 MB/s READ .
+— . C in2
m — M_AXI_GMEM2 1011 MB/s WRITE out
PCIE HBM[1] S_AXI_CONTROL .

HBM[2]

— i

DDR[0]

Figura 5.5: Diagrama de la conexion de multiples interfaces AXI y multiples bancos

Podemos ver en la figura 5.5 que los diferentes argumentos del kernel ya no comparten
interfaz AXI, sin embargo, el tiempo de ejecucién obtenido ha sido de 39.67 ms y el
ancho de banda ha sido de 3.02 GB/s. No notamos ninguna mejoria en el rendimiento,
como en las dos versiones RTL. Esto es debido a que, como no se esta logrando explotar

un solo banco, por mucho que se agregen mas bancos el rendimiento no va a aumentar.

5.2.3. Comparativa de los diferentes cédigos

Vamos a calcular diferentes métricas de complejidad a la hora de programar el cédigo
y a la hora de evaluar la mantenibilidad de las dos versiones escalares mencionadas como
el numero de lineas o el volumen de Halstead. Para estas métricas solo se ha estudiado

el codigo del acelerador ya que la parte del host es idéntica para ambas versiones, sean
RTL o HLS.

’ Versién \ Ntmero de lineas \ Volumen de Halstead ‘
RTL escalar 68 122.62
HLS escalar 7 53.15

Tabla 5.1: Tabla con métricas de complejidad de las diferentes versiones escalares

36

Para ambas métricas solo se ha tenido en cuenta el fichero del sumador en RTL y
la funcién que realizaba la suma en HLS. La metodologia para calcular el nimero de
lineas ha sido simplemente contar cuantas de ellas tenia cada fichero que conformaba el
kernel en las diferentes versiones. Para calcular el volumen de Halstead se ha utilizado
la férmula 5.6 donde N es el nimero total de operandos y operadores y n es el nimero

de operandos y operadores diferentes.

V =N -logan
Figura 5.6: Volumen de Halstead

Mirando el ntimero de lineas podemos ver la enorme diferencia que hay entre las
dos versiones, haciendo mucho més compleja la tarea de revisar el codigo en RTL, asi
como su mantenibilidad ya que esta implementado en varios ficheros. Por tltimo, el
volumen de Halstead nos indica que el cédigo en RTL es mas complejo que la version
en HLS. Esto es por el mayor niimero de senales que en RTL tenemos que controlar,
mientras que en alto nivel no son necesarias.

En estas métricas hay que recalcar que aunque no se han medido sobre todo el
c6digo RTL, a la hora de modificar los pardmetros del kernel como pueden ser ciertos
parametros sobre la memoria, tendremos que modificar los ficheros que genera la
herramienta cuando se genera un kernel en RTL, como pueden ser los ficheros que

controlan las interfaces AXI tanto para lectura como para escritura.

5.3. Aumento del ancho de banda utilizando
vectorizacion

En esta prueba vamos a utilizar tipos de datos vectoriales para tratar de aumentar el
rendimiento de nuestro kernel, aunque se volvera a utilizar un solo banco para todos los
datos. Vamos a utilizar el tipo de dato vectorial hls: :vector, cada uno de 16 elementos,
para ocupar el ancho de 512 bits de la interfaz AXI y realizar varias operaciones al mismo
tiempo. El codigo se puede encontrar en el anexo 4. En esta prueba se espera un mayor
uso del ancho de banda debido a que estaremos moviendo més datos por transaccién en
memoria al utilizar todo el ancho del canal, aunque seguimos dependiendo de un solo
banco de memoria, el cual serd el limitante.

Los resultados de la prueba han sido mejores que en pruebas anteriores, con un
tiempo de ejecucién de 9.27 ms y un ancho de banda de 12.94 GB/s.

Con estos resultados estamos dividiendo el tiempo de ejecuciéon por 4 a la vez que

37

se multiplica por 4 el ancho de banda obtenido. Con estos datos podemos concluir que
el ancho de banda obtenido y el tiempo de ejecucién tienen una gran relacion entre si,
puesto que si aumenta uno disminuye otro y viceversa.

Por 1ultimo, respecto al ancho de banda obtenido, podemos decir que estamos bastante
cerca del limite de ancho de banda para un solo banco de memoria. Si quisiéramos
aumentar mas el ancho de banda, tendriamos que pensar en utilizar varios bancos con
tipos de datos vectoriales o varias CUs. Después de esta prueba, podemos concluir que
el hecho de estar utilizando tipos de datos escalares es mucho mas limitante que solo
utilizar un banco HBM o utilizar varios de ellos. Esto es debido a que, como hemos
mencionado anteriormente, estamos aprovechando mucho mejor el ancho del canal, y

siendo mas eficientes con las operaciones en memoria.

5.4. Diferencias en la organizacion de los datos en
memoria

En estas pruebas vamos a verificar como la diferente organizacion de los datos del
kernel en los distintos bancos de memoria puede afectar al ancho de banda obtenido,
cambiando con ello el rendimiento de nuestro kernel como se explica en el capitulo 3.

En ambas versiones se van a usar tipos de datos vectoriales, tal y como se usaron en
la prueba 5.3.

En la primera versiéon vamos a organizar los datos como se ve en la figura 5.7,
para comprobar que efectivamente no hay limitacion en el ancho de banda con esa
distribucién de los datos.

Una vez realizada la prueba, el tiempo de ejecucién ha sido de 3.12 ms y el ancho de
banda ha sido de 39 GB/s. Estos nimeros estén cerca del limite para 3 bancos siendo
usados por el kernel, ya que estamos utilizando 3 interfaces AXI, que seria de unos 43
GB/s, por lo que el rendimiento obtenido es satisfactorio.

A continuacién vamos a probar si con otra organizacion de los datos, a priori peor,
el rendimiento cae, o por el contrario se mantiene. Para ello vamos a intentar organizar
los datos de tal manera que el hecho de tener que pasar entre diferentes segmentos del
crossbar limite el ancho de banda, como se ha explicado en el capitulo 3. Para lograrlo
vamos a intercalar los datos de in2 y de res en los bancos de 16 a 31 y los datos de inl
en los bancos de 0 a 15. Esta organizacion se puede observar en la figura 5.8.

En esta prueba, el tiempo de ejecucion ha sido de 6.22 ms, obteniendo un ancho
de banda de 19.30 GB/s. Estos resultados son bastante peores, teniendo en cuenta la
cantidad de bancos que se estan utilizando, visibles en en la figura 5.8.

Podemos ver, comparando con la versiéon anterior, que el tiempo de ejecucion ha

38

=t

HEM[O]

: . — krnl vadd 1

HEM|3] krnl wadd
KA | G EMO 3140 ME s READ
- . MR | GHEML [13147 MEs READ

B |G E M2 |5 17 il
HEM[4] S_aa() CONTROL

1
aF

K

1*86 EacE 1m

HEM[B]

HBM[3]

HBM[10]

HEM[11]

— ki

COR(0)

Figura 5.7: Diagrama de conexion de un kernel usando muiiltiples bancos por argumento

39

HBM
0-15

inl

in2 KRNL_VADD

out

HBM
16-31

Figura 5.8: Diagrama de conexién de un kernel usando miltiples bancos por argumento
con una mala organizacion

sido el doble, y el ancho de banda obtenido ha sido menor.

Con estos resultados, podemos asegurar que si no se tiene cuidado y una interfaz
AXI tiene que recorrer varios segmentos del crossbar, debido a la forma en la que
se organizan los datos, experimentaremos una pérdida en el rendimiento tal como se

explico en el capitulo 3.

5.5. Uso de varias Compute Units

En esta prueba, vamos a instanciar multiples Compute Units (CU), para tratar
de aumentar el ancho de banda y el rendimiento, ya que vamos a partir el problema
en trozos, y los vamos a resolver en multiples CUs en paralelo. Cada CU utilizara
operaciones vectoriales, y tendré cada argumento, es decir tanto los vectores de entrada
como el de salida, mapeados a un moédulo HBM. Cada médulo HBM solo sera usado por
un argumento de una CU para no saturar un banco y repartir los accesos a memoria. Al
tener varias instancias del mismo kernel resolviendo porciones pequenas del problema
en paralelo y con memoria separada entre ellos, esperamos que el rendimiento pueda
mejorar considerablemente.

En el codigo 5.4 se puede ver como se pasan los argumentos para cada CU, tanto de
entrada como de salida, y se pone en ejecuciéon. Posteriormente habra que esperar a

que todas las CUs acaben para recoger los resultados.

40

for (int i = 0; i < NUM_KERNEL; i++) {
if (i == (NUM_KERNEL - 1)) resto = DATA_SIZE Y% NUM_KERNEL;

// Setting the
OCL_CHECK (err,
OCL_CHECK (err,
OCL_CHECK (err,
OCL_CHECK (err,

k_vadd Arguments

err
err
err
err

krnls[i] .setArg(0, buffer_inputl[i]));

= krnls[i].setArg(1l, buffer_input2[i]));

krnls[i] .setArg(2, buffer_output_add[i]));
krnls[i] .setArg(3, size + resto));

// Invoking the kernel

OCL_CHECK (err,

err

q.enqueueTask (krnls[i]));

Listing 5.4: Instancia de varias CUs

il s krnl_vadd 1
L |
HBM[O] krnl_vadd
. M_AXlI GMEMO|13218 MB/s READ in1
! : . : M _AXI GMEML|13231 MB/s READ in2
M _AXI GMEM2Z|13316 MB/s WRITE
T out
HBM[1] S_AXI_CONTROL siza
—1[
L B |
HBM[2]
THRL krnl_vadd 2
HBM[4] jnLvadd
M_AXI GMEMO|13313 MB/s WRITE .
— M_AXI_GMEML (13229 MB/s READ nt
i : II : _AXI_ 1 /s REA in2
M AX]I GMEMZ|13229 MB/s READ
LI} out
HBM[5] S_AXI_CONTROL size
¥ - . =
L B |
HBM[6]

Figura 5.9: Diagrama del conexionado de multiples CUs con sus bancos

Esta figura muestra las conexiones de los bancos con los puertos de las dos primeras
CUs de nuestro kernel. El resto de conexiones seria de la misma manera, utilizando
los 3 bancos contiguos para cada puerto. Mirando esta figura, podemos asumir que el
ancho de banda va a ser mucho mayor que en versiones anteriores, ya que vamos a estar

resolviendo trozos del problema en paralelo usando bancos HBM independientes entre

’

S1.

Para esta prueba, se ha cambiado la metodologia de mapeo de las variables a los
diferentes bancos, puesto que también habia que elegir las diferentes CUs. Para ello se

ha utilizado un fichero .cfg que se puede consultar en el anexo 2. Para poderlo utilizar

41

también se ha anadido una linea al Makefile como se puede ver en el codigo 5.5. Con
esas lineas de codigo se le dice al compilador que busque un fichero .cfg para leer la

configuracion y aplicarla.

VPP_LDFLAGS_krnl_vadd += --config ./krnl_vadd.cfg

v++ -1 $(TRACE_FLAGS) $(VPP_FLAGS) $(VPP_LDFLAGS)

-t $(TARGET) --platform $(PLATFORM) --temp_dir $(TEMP_DIR)
$ (VPP_LDFLAGS_krnl_vadd) —o’$(LINK_OUTPUT)’ $(+)

Listing 5.5: Modificaciones al fichero Makefile para leer el fichero de configuracion

En esta prueba el tiempo de ejecucion ha sido de 0.45 ms y el ancho de banda
obtenido de 316.80 GB/s. Estas métricas son bastante buenas, ya que nos acercamos
al limite de ancho de banda que es posible obtener utilizando 24 bancos de memoria,
que es de 344 GB/s, si multiplicamos el ancho de banda tedrico de 14.37 GB/s por los
bancos que estamos utilizando.

Hay que recalcar el reporte original media un tiempo de 3.60 ms, pero revisando
los reportes mas a fondo esa métrica es una suma del tiempo de ejecucion de todas las
CUs, por lo que nos puede dar una idea equivocada del rendimiento del kernel.

5.6. Comparacion final

Por 1ltimo vamos a analizar una tabla comparativa de todas las versiones que se han
ido realizando, anadiendo como métrica las OPs, es decir, las operaciones por segundo

que han realizado las diferentes versiones.

Tiempo de Ancho de
Versién ejecucion (ms) | banda (GB/s) | OPs (GOPs)

RTL escalar 66.67 1.80 0.15

HLS escalar 39.60 3.02 0.25

HLS vectorial 9.27 12.94 1.08
Organizacién de los datos correcta 3.12 39.00 3.20
Organizacién de los datos incorrecta 6.22 19.30 1.61
Varias CUs 0.45 316.80 22.22

Tabla 5.2: Tabla comparativa de las diferentes versiones

En la tabla 5.2 podemos observar las diferencias de rendimiento y de ancho de banda
que hay entre las diferentes versiones.

Podemos ver que la version para la que mas rendimiento se obtiene es en la versién
con miultiples CUs, ya que tenemos més grado de paralelismo, tanto de las operaciones
como del ancho de banda. Los datos de GOPs son coherentes, ya que obtenemos
aproximadamente 8 veces mas GOPs que la version que tiene los datos organizados

correctamente y puede obtener todo el ancho de banda de los bancos.

42

Aunque no estemos en el limite del ancho de banda de la FPGA podemos esperar
que si se utilizara un kernel que pudiera utilizar todos los bancos disponibles el ancho
de banda escalaria en consonancia, llegando al limite de rendimiento de la FPGA.

También, que el hecho de vectorizar los kernels ayuda mucho en el rendimiento, ya
que utilizando versiones escalares no se ha podido aumentar el rendimiento aunque se

haya aumentado el nimero de bancos de memoria utilizados.

43

44

Capitulo 6

Conclusiones

En conclusién, la elaboracion de este TFG ha representado un esfuerzo en la
exploracion e investigacion de la programaciéon de sistemas heterogéneos.

Como primera conclusion, la baja programabilidad de las FPGAs es cierta, debido a
sus largos tiempos de compilacion sin emulacién, su dificultad para desarrollar un cédigo
correcto debido a que hay que ser muy especifico para que todo funcione correctamente
y debido a la vaguedad de los errores de compilacién proporcionados por el compilador.

Con respecto a los accesos a memoria, se ha llegado a la conclusién de que es muy
importante conocer la estructura y la organizacion de la memoria que estamos utilizando
para optimizar en la manera de lo posible el rendimiento de nuestro codigo y evitar
cuellos de botella.

Con respecto a las diferencias entre desarrollar codigo utilizando HLS y HDL, aunque
no se ha conseguido desarrollar coédigo en HDL, si que se intenté al comienzo del trabajo,
no lograndose. También hemos visto, analizando las 2 versiones del mismo kernel
implementadas de las 2 diferentes maneras, las ventajas que ofrece HLS, permitiendo
una comprension mucho mayor del codigo que su equivalente en HDL, asi como una
mayor versatilidad a la hora de realizar cambios sobre este.

Como conclusion adicional, podemos decir que parte de la dificultad para desarrollar
codigo para estos sistemas es debido a lo especificos que son, ya que solo tenemos
disponible la documentacién oficial y apenas hay ejemplos concretos de disenos, o si
los hay, solo se implementan las optimizaciones individualmente y es complicado si se

quiere sacar provecho de varias de estas a la vez.

45

46

Capitulo 7

Bibliografia

1]

2]

Jeffrey S. Vetter, Erik P. DeBenedictis, and Thomas M. Conte. Architectures for
the post-moore era. IEEE Micro, 37(4):6-8, 2017.

Juan Manuel Manchado Ortega y Jorge Antonio Garcia Pérez. Fpga: qué es
y cudles son las caracteristicas de este componente. akka-technologies. https:

//www.akka-technologies.com/fpga.
Intel. Intel official website. https://www.intel.com.

Xilinx Inc. Vitis unified software platform documentation: Application
acceleration development (ugl393), 2023. https://docs.xilinx.com/r/en-US/

ugl393-vitis—-application-acceleration/HBM-Configuration-and-Use.

Intel. Intel oneapi toolkits, 2023. https://www.intel.com/content/www/us/en/
developer/tools/oneapi/toolkits.html.

Intel. Intel quartus prime. https://www.intel.la/content/www/x1/es/
products/details/fpga/development-tools/quartus-prime.html.

Xilinx Inc. Vitis unified software platform, 2023. https://www.xilinx.com/
products/design-tools/vitis/vitis-platform.html.

Intel. Vivado ml overview, 2023. https://www.xilinx.com/products/

design-tools/vivado.html.
Nvidia. Nvidia official website. https://www.nvidia.com/es-es/.
AMD. Amd official website. https://www.amd. com.

Nvidia. Cuda-x bibliotecas aceleradas por gpu para ia y hpc, 2023. https:

//www.nvidia.com/es-es/technologies/cuda-x/.

47

https://www.akka-technologies.com/fpga
https://www.akka-technologies.com/fpga
https://www.intel.com
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/HBM-Configuration-and-Use
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/HBM-Configuration-and-Use
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://www.intel.la/content/www/xl/es/products/details/fpga/development-tools/quartus-prime.html
https://www.intel.la/content/www/xl/es/products/details/fpga/development-tools/quartus-prime.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.nvidia.com/es-es/
https://www.amd.com
https://www.nvidia.com/es-es/technologies/cuda-x/
https://www.nvidia.com/es-es/technologies/cuda-x/

[12] AMD. Computacién de alto rendimiento(hpc) en rocm, 2023. https://www.amd.

com/es/graphics/servers-solutions-rocm-hpc.

[13] AMD. Hip github repository, 2023. https://github.com/
ROCm-Developer-Tools/HIP.

[14] ARM. Especificacién de arm del protocolo axi. https://developer.arm.com/
documentation/ihi0022/latest/.

[15] florentw. Axi basics 1 - introduction to axi, 2023. https://support.xilinx.com/
s/article/105391471language=en_US.

[16] Xilinx Inc. Hbm performance concepts. axi high bandwidth memory controller
logicore ip product guide (pg276), 2023. https://docs.xilinx.com/r/en-US/
pg276-axi-hbm/HBM-Performance-Concepts.

[17] Xilinx Inc. Vitis unified software platform documentation: Application
acceleration development (ugl393), 2023. https://docs.xilinx.com/r/en-US/

ugl393-vitis-application-acceleration/HBM-Configuration-and-Use.

[18] Xilinx Inc. Alveo u280 data center accelerator card. https://www.xilinx.com/

products/boards-and-kits/alveo/u280.html#specifications.

[19] Xilinx Inc. Vitis_accel_examples. https://github.com/Xilinx/Vitis_Accel_

Examples.

48

https://www.amd.com/es/graphics/servers-solutions-rocm-hpc
https://www.amd.com/es/graphics/servers-solutions-rocm-hpc
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://developer.arm.com/documentation/ihi0022/latest/
https://developer.arm.com/documentation/ihi0022/latest/
https://support.xilinx.com/s/article/1053914?language=en_US
https://support.xilinx.com/s/article/1053914?language=en_US
https://docs.xilinx.com/r/en-US/pg276-axi-hbm/HBM-Performance-Concepts
https://docs.xilinx.com/r/en-US/pg276-axi-hbm/HBM-Performance-Concepts
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/HBM-Configuration-and-Use
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/HBM-Configuration-and-Use
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#specifications
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html#specifications
https://github.com/Xilinx/Vitis_Accel_Examples
https://github.com/Xilinx/Vitis_Accel_Examples

Lista de Figuras

2.1.
2.2.
2.3.

3.1.
3.2.
3.3.
3.4.
3.5.

o.1.
0.2
3.3.
0.4.
2.5.
2.6.
D.7.
0.8.

5.9.

Estructura de un CLB (akka-technologies) 14
Clasificacién de los diferentes aceleradores 15
Pasos que sigue un kernel hasta ejecutarse en una FPGA 17
Ejemplo de interconexién de la FPGA con diferentes componentes . . . 21
Canales interfaz AXT 22
Estructura de un stack HBM2 000 23
Estructura de la memoria de una FPGA de Xilinx 24
Estructura de un segmento del crossbar 25
Ejemplo de tiempo de ejecuciéono 33
Ejemplo de ancho de bandao 0L 33
Timeline de ejecucién 34
Diagrama AXI del kernel en RTL con multiples bancos 34
Diagrama de la conexién de multiples interfaces AXI y multiples bancos 36

Volumen de Halstead 37
Diagrama de conexién de un kernel usando miiltiples bancos por argumento 39

Diagrama de conexién de un kernel usando miltiples bancos por

argumento con una mala organizacién L 40
Diagrama del conexionado de multiples CUs con sus bancos 41
Diagrama de Gantt del proyecto 55

49

50

Lista de Tablas

4.1. Memorias disponibles en la FPGA [18] 27

5.1. Tabla con métricas de complejidad de las diferentes versiones escalares 36

5.2. Tabla comparativa de las diferentes versiones 42

51

52

Anexos

53

Tareas

Subtareas

br

May | Jun ‘ Jul

[Agos |

Documentacion

Puesta en marcha del entorno

Pruebas experimentales

Memoria

Uso basico de la herramienta

disefio basico de un Kernel

estructura de la memoria

uso de la memoria

estudio de los reportes

Ejecucion y estudio del kemel de ejemplo
Configuracién del entorno remoto
Comparativa HLS y HDL

Uso de multiples bancos de memaria
Uso de datos vectoriales

Uso de miltiples CUs

Redaccion

—

Feb [Mar | Al
l

e

[

Figura 1: Diagrama de Gantt del proyecto

55

\
=

—

Host central
HostName central.cps.unizar.es
User a779935

Host TFGLab
HostName 155.210.134.18
Port 3334
User pcabra
ProxyJump central
LocalForward 5904 localhost:5904

Listing 1: Configuracién fichero ssh

[connectivity]

sp=krnl_vadd_1.in1:HBM[O]
sp=krnl_vadd_1.in2:HBM[1]
sp=krnl_vadd_1.out:HBM[2]

sp=krnl_vadd_2.in1:HBM[4]
sp=krnl_vadd_2.in2:HBM[5]
sp=krnl_vadd_2.out:HBM[6]

sp=krnl_vadd_3.in1:HBM[8]
sp=krnl_vadd_3.in2:HBM[9]
sp=krnl_vadd_3.out:HBM[10]

sp=krnl_vadd_4.inl:HBM[12]

5| sp=krnl_vadd_4.in2:HBM[13]

sp=krnl_vadd_4.out:HBM[14]

sp=krnl_vadd_5.in1:HBM[16]
sp=krnl_vadd_5.in2:HBM[17]
sp=krnl_vadd_5.out:HBM[18]

sp=krnl_vadd_6.inl:HBM[20]
sp=krnl_vadd_6.in2:HBM[21]
sp=krnl_vadd_6.out:HBM[22]

sp=krnl_vadd_7.inl:HBM[24]
sp=krnl_vadd_7.in2:HBM[25]
sp=krnl_vadd_7.out:HBM[26]

sp=krnl_vadd_8.in1:HBM[28]
sp=krnl_vadd_8.in2:HBM[29]
sp=krnl_vadd_8.out :HBM[30]

nk=krnl_vadd:8

[profile]
data=all:all:all

Listing 2: Fichero .cfg para asignar diferentes bancos con diferentes CUs

56

/%%
Copyright (C) 2019-2021 Xilinx, Inc

Licensed under the Apache License, Version 2.0 (the "License"). You may
not use this file except in compliance with the License. A copy of the
License is located at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

¥ X X X X X X X X X X X ¥

*
~

NIIII17777777777177717777777777777717777

// Description: Basic Adder, no overflow. Unsigned. Combinatorial.

LILIIIII71T770777777777777777707777777077777777777777777777777777777777777/7/77777

‘default_nettype none

;lmodule krnl_vadd_rtl_adder #(

parameter integer C_DATA_WIDTH = 32,

// Data width of both input and output data

parameter integer C_NUM_CHANNELS = 2

// Number of input channels. Only a value of 2 implemented.

)

(
input wire aclk,
input wire areset,
input wire [C_NUM_CHANNELS-1:0] s_tvalid,
input wire [C_NUM_CHANNELS-1:0] [C_DATA_WIDTH-1:0] s_tdata,
output wire [C_NUM_CHANNELS-1:0] s_tready,
output wire m_tvalid,
output wire [C_DATA_WIDTH-1:0] m_tdata,
input wire m_tready

)3

timeunit 1ps;
timeprecision 1ps;

/1111777777777 777777777777777/777/777/7777777777777777/777/7777777777/77/777/777/7777
7| // Variables

LILI1111771777777777707777777777777707777777777777777777777777777777777/777777

9| logic [C_DATA_WIDTH-1:0] acc;

LIII1I111777
// Logic
LILITTII177 77777077777 777

5| always_comb begin

acc = s_tdatal[0];
for (int i = 1; i < C_NUM_CHANNELS; i++) begin

57

acc = acc + s_tdatali];
end
end

assign m_tvalid = &s_tvalid;
assign m_tdata = acc;

5|// Only assert s_tready when transfer has been accepted.

tready asserted on all channels simultaneously

7|assign s_tready = m_tready & m_tvalid ? {C_NUM_CHANNELS{1’b1}}

{C_NUM_CHANNELS{1°b0}};
endmodule : krnl_vadd_rtl_adder

‘default_nettype wire

Listing 3: Sumador de una suma de vectores en HDL

void krnl_vadd(hls::vector<int,16>* inl, hls::vector<int,16>* in2,
hls::vector<int,16>* out, int size) {

#pragma HLS INTERFACE m_axi port = inl bundle = gmemO

#pragma HLS INTERFACE m_axi port in2 bundle = gmeml

#pragma HLS INTERFACE m_axi port = out bundle = gmemO

for(int i = 0; 1 < c_size;i++){
#pragma HLS pipeline II=1
out[i] = ini1[i] + in2[i];

Listing 4: Ejemplo de suma de vectores vectorial

58

	Introducción
	Motivación
	Objetivos
	Alcance
	Descripción de este documento

	Estado del arte
	Tipos de aceleradores
	ASIC
	FPGA
	GPU

	Programación de los aceleradores
	FPGA
	GPU

	Entornos de programación
	FPGA
	GPU

	Memoria HBM2 en FPGAs de Xilinx
	Interfaces AXI
	Memoria HBM2
	Estructura interna de un stack HBM2
	Organización de la memoria HBM2 de una FPGA Xilinx
	Crossbar de la memoria

	Entorno de desarrollo
	Entorno
	Hardware
	Software

	Método de conexión remoto

	Validación experimental
	Metodología de trabajo
	Flujo de trabajo
	Reportes

	Diferencias entre versiones HDL y HLS
	Versión HDL
	Versión HLS
	Comparativa de los diferentes códigos

	Aumento del ancho de banda utilizando vectorización
	Diferencias en la organización de los datos en memoria
	Uso de varias Compute Units
	Comparación final

	Conclusiones
	Bibliografía
	Lista de Figuras
	Lista de Tablas
	Anexos

