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RESUMEN

Este trabajo fin de grado se centra en la estimacion de un mapa de profundidad denso
a partir de un par de imagenes estéreo con distorsion de ‘Ojo de Pez’. La estimacion de
un punto a partir de su proyecciéon en un par de imagenes estéreo es un problema
geométricamente sencillo, al conocer la geometria de la camara utilizada. En cambio,
obtener un resultado denso de la imagen al completo es un problema dificil de resolver.
Ya que se debe buscar a lo largo de linea epipolar para cada pixel que en este caso es
curva debido a la distorsion de la imagen, la solucidon no es trivial debido a que el rango
de busqueda es infinito. En este trabajo se busca acotar este rango de busqueda para asi
simplificar el problema. Para ello se hace uso de una red neuronal o inteligencia artificial
(Al), en especifico, la red MiDaS la cual estima un mapa denso de profundidad de
imagenes monoculares, en el que cada pixel contiene una ‘Semilla de profundidad’, es
decir, un valor de distancia por cada pixel. Este mapa denso aporta regiones de
incertidumbre para cada pixel, lo que permite acotar considerablemente la busqueda en
la curva epipolar. Sin embargo, hay varias consideraciones a tener en cuenta para poder
utilizar este mapa como semilla. En primer lugar, al ser una estimacién monocular, el
mapa denso proporcionado por la red no tiene la escala correcta. Esta escala se corrige a
partir de las medidas de profundidad de emparejamientos aislados que son mas faciles de
estimar. En segundo lugar, el sistema estéreo que define la camara utilizada consta de dos
lentes con gran distorsion de ‘Ojo de pez’, y MiDaS funciona correctamente en imagenes
en perspectiva. Por lo tanto, en este trabajo se han definido y aplicado los modelos
proyectivos que permiten rectificar y des rectificar la distorsion, y se han incluido
algoritmos para obtener una reconstruccion idonea y suavizada de las imagenes.

This final degree work focuses on the estimation of a dense depth map from a pair of
stereo images with 'Fisheye' distortion. The estimation of a point from its projection on a
pair of stereo images is a geometrically simple problem, knowing the geometry of the
camera used. On the other hand, obtaining a dense result from the whole image is a
difficult problem to solve. Since it is necessary to search along the epipolar line for each
pixel, which in this case is curved due to the image distortion, the solution is not trivial
because the search range is infinite. In this work we seek to narrow this search range in
order to simplify the problem. For this purpose, we make use of a neural network or
artificial intelligence (Al), specifically, the MiDaS network which estimates a dense depth
map of monocular images, in which each pixel contains a 'depth seed', i.e., a distance
value for each pixel. This dense map provides uncertainty regions for each pixel, which
allows to considerably narrow down the search on the epipolar curve. However, there are
several considerations to take into account in order to use this map as a seed. First, being
a monocular estimation, the dense map provided by the network does not have the correct
scale. This scale is corrected from the depth measurements of isolated pairings that are
easier to estimate. Second, the stereo system defining the camera used consists of two
lenses with large 'Fisheye' distortion, and MiDaS works correctly on perspective images.
Therefore, in this work, projective models have been defined and applied to rectify and
de-rectify the distortion, and algorithms have been included to obtain an ideal and
smoothed reconstruction of the images.
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Capitulo 1

Introduccion y objetivos

1.1. Motivacion.

En pleno 2023, la inteligencia artificial (Al), la robotica y la vision por computador
estan a la orden del dia, estan teniendo un fuerte impacto en la sociedad y ofrece nuevas
posibilidades en el entorno industrial.

La vision por computador es clave en el avance de la robdtica. En el caso de este
trabajo, la idea de que un robot fuese capaz de saber en todo momento a qué distancia
estd todo lo que le rodea dotaria a los robots de mayor independencia y seria un gran
avance en la posible utilizacion de robots para la realizacion de trabajos muy tediosos o
perjudiciales para la salud.

La obtencién de un mapa de profundidad denso de un par de imagenes estéreo, o
incluso de un video estéreo, con lente de ‘Ojo de Pez’ ofrece posibilidades de todo tipo.
Por ejemplo, puede utilizarse para escanear objetos 3D moviendo la camara, se pueden
detectar obstaculos que se acercan, se pueden medir distancias entre puntos y obtener
distancias dentro de la imagen y poder recrear mapas 3D de cualquier entorno.

Ademas de otras utilidades, como un control de calidad para medir distancias y
ajustarse a las tolerancias deseadas en procesos de fabricacion y produccion

También seria interesante su aplicacion en camaras de control de calidad en procesos
de fabricacion; al tener un mayor campo de vision, con menos dispositivos seria capaz de
analizar mas piezas.

1.2. Objeto.

En este trabajo se va a abordar la estimacion de profundidad de un par de imagenes
estéreo de forma densa.

Estimar la profundidad de un punto a partir de su proyeccion en un par de imagenes
estéreo es un problema que se puede resolver geométricamente de forma sencilla si
conocemos la traslacion y posicion relativa entre las cdmaras. Resolver este problema
para todos los pixeles de la imagen, es decir de forma densa, es en cambio un problema
mas complicado de resolver porque es muy dificil emparejar cada uno de los pixeles de
las dos imagenes, especialmente cuando hay poca textura. Sin embargo, si que se pueden
emparejar algunos puntos que son féciles de identificar en ambas iméagenes y que
denominamos puntos caracteristicos. Ademads, la propia geometria del sistema estéreo
(geometria epipolar) impone la restriccion epipolar que determina que, dado un punto en
una imagen su correspondiente en la otra imagen se encuentra en su curva epipolar.

El problema para estimar la profundidad de forma densa se reduce entonces en una
busqueda a lo largo de la curva epipolar para cada pixel. Esa curva representa la
proyeccion de un rayo en el que el rango de busqueda es a priori infinito lo que hace esa
busqueda no trivial.



Por otro lado, recientemente han aparecido métodos basados en inteligencia artificial
y redes neuronales que son capaces de estimar profundidad a partir de una inica imagen.
Esta profundidad, al contrario de la triangulacion en un sistema estéreo, no se puede
considerar una medida ya que es inferida a partir de los datos de ejemplo utilizados para
entrenar la red. Al identificar elementos en la escena la red ha aprendido tamafios tipicos
de esos elementos y los puede localizar a una profundidad o a otra. Estos sistemas nos
dan directamente los mapas de profundidad densos en los que los tamafos relativos son
correctos, pero tienen un problema de escala.

En este proyecto se quiere utilizar una red neuronal para estimacion de profundidad
monocular (MiDaS) para simplificar el problema de estimacion de profundidad densa en
un sistema estéreo.

La idea principal es estimar una semilla de profundidad densa para cada pixel
utilizando MiDaS. Como es facil estimar emparejamientos de puntos caracteristicos en la
imagen se va a medir la profundidad de estos puntos con el par estéreo y se van a comparar
estas medidas con los proporcionados por la red. Esto nos va a permitir establecer una
escala con la que escalar el mapa denso de profundidad a la geometria de la escena.

Este mapa denso preliminar va a definir una region de incertidumbre para cada pixel
que va a permitir reducir considerablemente el rango de busqueda en la curva epipolar.

Como el sistema estéreo que se va a utilizar tiene lentes de ojo de pez de elevada
distorsion y la red MiDaS esta pensada para trabajar con imagenes perspectivas, ademas,
se van a tener que implementar una serie de algoritmos que rectifiquen y des rectifiquen
imagenes para pasar del dominio del ojo de pez al de imagen perspectiva y viceversa.

Esta memoria se estructura en seis capitulos. En el primero, la introduccion, se explica
cudl es la motivacion para realizar este trabajo, los objetivos de este trabajo y la estructura
general del software. En el segundo capitulo se definen todas las herramientas utilizadas
en la realizacion de este trabajo. Se explicard qué camara se utiliza y las caracteristicas
de las imagenes obtenidas. Finalmente, se define la fase de definicion, donde se explica
paso a paso las implementaciones que se van a introducir en el cddigo para obtener lo
indicado en cada fase. En el tercer capitulo se expone la fase de desarrollo. Para cada paso
se implementaran explicaciones del cddigo escrito y su seguimiento paso a paso. En el
cuarto capitulo se muestran evidencias de los resultados obtenidos con el uso de imagenes
y un breve analisis de los resultados obtenidos en cada parte. Finalmente, se hace un
analisis de los resultados finales donde se prueba el resultado final de trabajo y se
comprueba que funciona correctamente y que se tienen los resultados esperados. En el
quinto capitulo se comentan posibles lineas futuras de este trabajo, las conclusiones de
este y una explicacion de como ha sido posible su realizacion. Finalmente, en la memoria
se presenta también la bibliografia utilizada en el trabajo, una lista de figuras y los anexos.



Capitulo 2

Fase de definicion

En este capitulo se especifican las herramientas y softwares utilizados. Ademas del
dispositivo utilizado para obtener las imagenes. También, se incluye una descripcion
general del plan de accion a seguir en el proyecto para montar el cédigo correctamente.

2.1. Herramientas, softwares y entornos utilizados.

En primer lugar, se ha realizado una previa formacion individual en Python. Se han
utilizado softwares para el desarrollo e implementacion de librerias y entornos, como
‘PyCharm’ y ‘Anaconda Navigator’, respectivamente. También se cuenta con un c6digo
inicial de partida donde ya se tiene un procesamiento inicial de los pixeles de la imagen
de entrada, el cual habrd que modificar para nuestro caso.

Se trabaja en el entorno virtual con los paquetes necesarios para poder utilizar la red
neuronal ‘MiDaS’. En caso de utilizarla en un entorno sin estos paquetes, la red neuronal
no funcionaria.

En cuanto a las librerias utilizadas en Python, tenemos las siguientes: ‘numpy’,
‘Matplotlib, ‘glob’, ‘Pytorch’, ‘os’, ‘OpenCV’, ‘Image’ (from PIL), ‘math’ y ‘scipy.io’.
Se escogen principalmente librerias utilizadas para vision por computador, andlisis
matematico y aprendizaje profundo.

2.2. Camara Intel RealSense T265.

La camara Intel RealSense T265 es un dispositivo electronico de localizacidon y mapeo
simultaneo utilizado principalmente en robdtica y drones. Es un dispositivo de baja
potencia, pequefio y ligero con un peso de 55 gramos. Utiliza la tecnologia SLAM, que
es capaz de construir o actualizar un mapa de un entorno desconocido, mientras al mismo
tiempo realiza un seguimiento de su propia ubicacion dentro de ese entorno [1].

Cuenta con dos sensores de lente de ojo de pez con un campo de vision combinado de
163+5° unidades de medicion inercial (IMU), y una VPU, que es donde todos los
algoritmos del SLAM se realizan. Es extremadamente eficiente y tiene una velocidad de
procesamiento muy alta idonea para aplicaciones de realidad virtual y aumentada [1].

o (inteD REALSENSE ®

Figura 1. Camara Intel RealSense T265 [1].

A partir de imagenes estéreo obtenidas de esta camara se realiza el trabajo, se conocen
los parametros intrinsecos y extrinsecos para nuestro modelo de camara.



2.3. Plan de accion.
Rectificacion imagen ojo de pez.

En primer lugar, se transforma una imagen en perspectiva de ojo de pez en una imagen
sin distorsion y de vista plana. Para ello se aplicard el modelo directo de proyeccion de
Kannala-Brandt [5] (ver Anexo A para mas detalle).

Obtencion ‘Semilla de profundidad’.

En segundo lugar, una vez obtenida la imagen en perspectiva plana, esta se introduce
en la red neuronal ‘MiDaS’ [2]. El resultado es un mapa de profundidad de la imagen
rectificada. Los valores obtenidos en esta imagen de profundidad no estan escalados con
la realidad y no proporcionan medidas reales.

Recomposicion de la perspectiva de ojo de pez.

En tercer lugar, se transforma el mapa de profundidad devuelto por la red neuronal al
modelo de proyeccion original de la cdmara de ojo de pez. Para ello se utiliza el modelo
de inverso de Kannala-Brandt [5]; es decir, se realiza la metodologia inversa que se ha
aplicado en la 1* fase.

Obtencion geométrica de profundidad y obtencion de escala.

A continuacidn, se escogen puntos caracteristicos de las imagenes estéreo (La imagen
estéreo que se obtiene esta compuesta por la imagen que proporciona la lente izquierda y
por la imagen correspondiente a la lente derecha) que proporciona la camara, los cuales
son proyecciones de puntos 3D en la realidad. Haciendo uso del par de imagenes y
aplicando geometria epipolar; es decir, triangulando estos puntos 3D con ambas iméagenes
y la propia geometria de la camara (Distancia entre ambas lentes.) [3], se obtienen
medidas con incertidumbre de las profundidades de estos puntos.

Se obtienen también los valores de profundidad proporcionados por la red neuronal en
estos mismos puntos. Las imagenes utilizadas para obtener estos valores se obtienen al
recomponer la perspectiva inicial, ya que la triangulacion de puntos se realiza con
imagenes con perspectiva ojo de pez.

Se obtiene una escala con ambas medidas de profundidad con seis puntos aleatorios
de entre el conjunto de puntos caracteristicos emparejados. Esta semilla se utiliza para
ajustar el mapa de profundidad al tamafio de la escena. Este mapa de profundidad escalado
por su parte se utiliza para acotar la busqueda a lo largo de la curva epipolar para un
refinamiento de la medida de profundidad. El resto de puntos caracteristicos se utilizan
para evaluar la viabilidad del mapa de profundidad escalado como semilla.

Obtencion rango de busqueda.

Finalmente, se obtiene el rango de biisqueda en la curva epipolar donde se encuentra
el punto real. [3] Tomando como entrada un punto cualquiera de la imagen izquierda se
define una region en la imagen derecha donde se acotara la bisqueda de la curva epipolar.

Para definir un rango razonable para el tamafo de este 4rea se proyectan 24 puntos
caracteristicos de la imagen izquierda en la imagen derecha de los que previamente se



conoce su localizacién en la imagen derecha y por lo tanto se puede estimar su
profundidad. Los errores de posicionamiento entre los puntos proyectados y los mismos
puntos calculados con la informacién proporcionada por la red neuronal nos van a dar
una estimacion del rango a utilizar en la busqueda acotada.

En base a un estudio de los errores, se obtiene un rango de busqueda que agiliza el
proceso de emparejamiento de puntos 3D. Conociéndose los limites donde se encuentra
el punto real, se acota el problema y por lo tanto su coste computacional.



Capitulo 3

Fase de desarrollo

En esta capitulo se detalla el funcionamiento del codigo implementado para la realizacion
de cada fase del procedimiento a seguir.

Rectificacion imagen ojo de pez.

Para aplicar el modelo de proyeccion de Kannala-Brandt [Anexo A] en la imagen con
perspectiva de ojo de pez se sigue el siguiente procedimiento.

Interpolacion

e —

Aplicacion Modelo Kannala \

) \? i -
\ Fad T
| Z |
Aplicacion Modelo Pin-Hole "
Imagen Perspectiva .
Ojo de Pez Imagen Perspectiva
Plana
Figura 2. Esquema 3D para rectificar la imagen de entrada.
. Interpolacion .
Ojo de pez — Perspectiva Plana
T v <)
/s r 4 X
a
X
A ¥
72 |
x

Aplicacion Pin-Hole  ponqa1a directo

Figura 3. Esquema 2D para rectificar la imagen de entrada.

Se define primero la imagen en perspectiva. Esta se trata como una matriz con su
respectivo nimero de columnas y de filas (1024 x 1024), la cual tiene 3 canales, RGB
(Red-Green-Blue). Se aplica el modelo de proyeccion Pin-Hole [4] a esta matriz de
entrada y se obtienen los rayos 3D de la imagen desde la referencia definida en el modelo
[Figura 2 y 3].

Para reconstruir la imagen obtenida mediante el modelo Pin-Hole [Anexo A] al tamafio
original de entrada en perspectiva plana, es necesario aplicar una interpolacion bilineal
[Figura 4]. A continuacidn, a los rayos 3D de la imagen perspectiva se le aplica el modelo
de Kannala-Brandt, y se obtienen los pixeles de estos rayos con su distorsion en ojo de
pez. Con estos pixeles se obtienen los cuatro indices de la interpolacion bilineal a aplicar
en la imagen original de entrada de 848 x 800 pixeles.



 Punto 3D

Perspectiva Plana

Perspectiva Ojo de Pez l

1
E
!

Figura 4. Interpolacion bilineal para reconstruir la perspectiva plana.

Este método se basa en la interpolacion lineal en dos direcciones. En primer lugar, se
realiza una interpolacion lineal en la direccion horizontal y luego en la direccion vertical.
La interpolacion bilineal utiliza cuatro pixeles adyacentes para calcular el valor del pixel
interpolado [Anexo B]. Se reconstruye la imagen original al tamafo de la nueva imagen
en perspectiva plana (1024 x 1024) con estos nuevos pixeles interpolados ya calculados,
a los cuales ya se les ha aplicado la distorsion.

Obtencion ‘Semilla de profundidad’

En este paso, se hace uso de la libreria numpy, OpenCV y Pytorch de Python. También
se utiliza la red neuronal de MiDaS [2] [Anexo C], que hace uso de pyTorch, una libreria
de deep learning que facilita el entrenamiento y ejecucion de redes neuronales.

Perspectiva e | feet eclia
P MiDaS s Plana
L Distancias

Figura 5. Procedimiento que seguir con la red neuronal.

En primer lugar, se toma una red ya entrenada para la estimacidén monocular de
profundidad, definiendo su tamafio. En este caso se escoge el tamafio grande (precision
alta y velocidad de deduccion baja).

En segundo lugar, se utiliza la red neuronal con las imagenes iniciales en perspectiva
plana y se obtienen las nuevas imagenes con el mismo formato de tamafio, pero con la
diferencia de que la imagen ahora tnicamente tiene un canal. Los valores que da este
canal son distancias, pero estas no estan escaladas a valores referenciados a la realidad.
Esto se debe a que a partir de una inica imagen no se puede medir profundidad por lo que
la red neuronal tiene que inferir el mapa de relieve de la imagen de entrada a partir de los
datos de entrenamiento, es decir asignando valores tipicos relacionados con los elementos
que puede identificar.

Recomposicion de la perspectiva de ojo de pez.

Se quiere obtener una estimacion densa de la profundidad en la imagen de ojo de pez.
Para ello se va a des-rectificar el mapa de profundidad obtenido de la red aplicando el
modelo inverso de proyeccion de Kannala-Brandt [Anexo A] en la imagen de profundidad
obtenida en la segunda fase se sigue el siguiente procedimiento, y se hace uso de las
librerias de numpy, OpenCV de Python.
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Figura 6. Esquema 3D para recomponer la perspectiva ojo de pez.

Perspectiva Plana Interpolacion

Distancias ot i Perspectiva Ojo de Pez
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x

Kannala Inverso  Aplicacion inversa Pin-Hole
Figura 7. Esquema 2D para recomponer la perspectiva ojo de pez.

En primer lugar, se aplica el modelo inverso de proyeccion con los pixeles de la imagen
con el tamafio original (848 x 800), los pardmetros intrinsecos y pardmetros de distorsion
para obtener los rayos 3D que origina la imagen que da la cdmara [Figura 6 y 7].

A continuacion, se obtienen los pixeles 2D a partir de los rayos 3D y su relacion con
la perspectiva plana [Figura 6 y 7]. (Esta relacion depende directamente del tamafio de la
imagen de entrada), con los que se obtendran los indices de la interpolacion bilineal.

Punto 3D

\!-'crspccm a Plana

Perspectiva Ojo de Pc// N\

Z

Figura 8. Interpolacion bilineal para reconstruir la perspectiva ojo de pez.

De igual manera que para la primera fase, pero ahora haciendo el proceso inverso, se
aplica la interpolacion [Anexo B] a la imagen plana de profundidad y se reconstruye la
misma imagen de profundidad. Pero ahora, con el tamafio original y con la distorsion
original de ojo de pez.

12



Obtencion geométrica de profundidad y obtencion de escala.

Ademas de la estimacion monocular de profundidad densa obtenida de la red neuronal
Midas, se pueden utilizar el par de iméagenes estéreo para medir profundidad.

Esta medicion requiere identificar cada punto de la imagen izquierda en la imagen
derecha lo que es facil para determinados puntos caracteristicos pero dificil en regiones
en las que no hay textura o en regiones similares entre si.

Sin embargo, una vez emparejados algunos puntos caracteristicos vamos a tener
mediciones que se pueden utilizar para escalar el mapa de profundidad denso obtenido
como salida la red Midas.

En la fase actual del proceso se utilizan puntos correspondientes en ambas imagenes.
Estos puntos se emparejarian de forma automadtica utilizando métodos clasicos de
deteccion y emparejamiento de caracteristicas o métodos basados en Deep Learning como
SuperGlue [6]. En este trabajo se van a emparejar de forma manual y se van a utilizar
para obtener una estimacion de la escala a aplicar al mapa denso de profundidad.

En primer lugar, se obtienen los rayos 3D de ambas imagenes para estos puntos
mediante el modelo inverso de proyeccion de Kannala-Brandt [Anexo A]. A continuacion,
se definen las matrices de translacion y rotacion entre la referencia de la lente izquierda
y de la derecha.

Punto 3D

-

Linea epipolar

¥ . .
X Distancia
N Geométrica
Desde Lente Derecha
Plano
Epipolar
Matriz Translacion
yaLy entre lentes aN
4 —— AN = ' -
) Z
Lente Izquierda Lente Derecha

Figura 9. Geometria epipolar para obtener distancias geométricas.
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Posteriormente, mediante la triangulacion de los mismos puntos entre ambas imagenes
se obtienen los puntos 3D en el sistema de referencia de la camara izquierda. La tercera
coordenada de estos puntos 3D corresponde con la medida de profundidad en ese pixel.
A continuacion, se extraen los valores de profundidad que da la red neuronal a los mismos
puntos que estamos evaluando geométricamente.

Mildas

Triangulacion

-
Figura 10. Comparacion de tamafios a escala entre los valores que aporta MiDaS y la geometria epipolar.

Finalmente, se debe corregir la distancia proporcionada por la red ya que como se ve
en la figura 10 la red representa las distancias de manera gigantesca. Para ello se aplica
la escala a la lente izquierda, la cual se obtiene realizando una media de las escalas
obtenidas en seis puntos, de los cuales se tiene una alta confianza de su posicion y por
eso se usan. La escala de cada punto se obtiene dividiendo la medida calculada mediante
triangulacion entre la medida extraida de la red para ese mismo punto.

Obtencion rango de busqueda.

En este Gltimo paso se busca obtener los intervalos de un rango de busqueda de la
posicion real de los puntos en la linea epipolar (en la imagen derecha) dada la posicion
de un punto de la imagen izquierda. El objetivo es afinar el emparejamiento de puntos 3D
a partir de las imagenes estereo. Para ello, se toman 24 puntos, de los que se conoce el
emparejamiento y posicion 3D, para estudiar como varian las distancias residuales entre
la proyeccion del punto y su posicion real, y definir un rango de busqueda acorde para
todos los posibles puntos de la imagen. El rango de busqueda se entiende graficamente
como el area donde se encuentra el punto real y, por lo tanto, donde el emparejamiento es
perfecto.
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Figura 11. Representacion del rango de busqueda en la imagen y en la geometria epipolar.

En primer lugar, una vez que ya se ha normalizado la imagen de profundidad con el
uso de la escala obtenida anteriormente se obtienen los puntos 3D que definen el total de
la imagen izquierda de profundidad con la escala aplicada. Posteriormente, se proyectan
estos puntos 3D en la referencia de la cdmara derecha y a partir de ellos se obtienen los
pixeles correspondientes a esos rayos en la imagen derecha.

Finalmente, una vez proyectados los pixeles de la cdmara izquierda en la derecha, se
procede con una comparacion de posicion de los 24 puntos. Se comparan las posiciones
ya conocidas de esos puntos en la imagen derecha con las posiciones de esos mismos
puntos provenientes de la imagen izquierda que se han proyectado en la imagen derecha.
Se estudian las diferencias de posicionamiento de pixeles de los puntos mencionados
anteriormente y se define un cierto rango de busqueda que se ajuste bien.

De esta manera, la proyeccion de cualquier punto de la imagen izquierda en la imagen
derecha se tomara como el centro de la elipse que recogera el drea donde se encuentra el
punto real; es decir, el area donde el emparejamiento de puntos es correcto.
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Capitulo 4

Fase de evaluacion.

En este capitulo se van a analizar los resultados obtenidos con ejemplos de cada una de
las fases. También se hace una evaluacion global del proceso.

4.1. Analisis de resultados por fases.

Rectificacion imagen ojo de pez.

En esta primera fase, lo primero que se presenta es la imagen original, la cual cuenta
con una distorsion de ojo de pez, tanto de la lente izquierda como de la lente derecha.

LEFT RIGHT

Figura 12. Imagen obtenida con la cimara Intel RealSense T265, lente izquierda y derecha.

A continuacion, se muestra la seccion de la imagen original que se selecciona para
aplicar el modelo de proyeccion.

LEFT RIGHT

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Figura 13. Seleccion del area de la a rectificar mediante modelo Pin-Hole, lente izquierda y derecha.
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Se puede observar como se selecciona uUnicamente la zona de la imagen con
informacion de la imagen con perspectiva de ojo de pez; es decir, la zona que no es negra.
Finalmente, se presentan las imagenes originales de entrada en perspectiva plana.

LEFT RIGHT

200

400

600

800

1000
400 600 800 1000 0 200 400 600 800 1000

Figura 14. Imagenes en perspectiva plana, lente izquierda y derecha.

Se observa que aparece una parte de la imagen en perspectiva plana en negro, esto se
debe a que se estd cogiendo algo de negro de la imagen original y al aplicar el modelo de
Kannala-Brandt aparece esa zona oscura que representa mas o menos un cuarto de la
imagen. Pero esto no es algo que vaya a afectar en gran medida al resultado final.

Obtencion ‘Semilla de profundidad’.

Para esta segunda fase donde se obtiene la ‘semilla de profundidad’ se continua con la
ultima imagen obtenida en la primera fase, la imagen perspectiva [Figura 4].

LEFT RIGHT

200 200
400
600

600

800 800 4

1000
0 200 400 600 800 1000 0 200 400 600 800 1000

1000

Figura 15. Imagenes de profundidad en perspectiva plana, lente izquierda y derecha.
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Se ha utilizado un tamafo de red grande. Se ajusta bien este tamafio de red para la
obtencion del mapa de relieve de la imagen de entrada.

LEFT RIGHT

Figura 16. Imagenes de profundidad en perspectiva plana en escala de grises, lente izquierda y
derecha.

Se observa ahora la dupla de imagenes en perspectiva plana y de profundidad en escala
de grises.

Recomposicion de la perspectiva de ojo de pez.

En esta tercera fase se recompone la perspectiva plana de la imagen obtenida
anteriormente y se obtiene la imagen en perspectiva de ojo de pez con la aplicacion de la
red neuronal.

LEFT RIGHT

100
200 200
300 300
400 400
500 500
600 600

700 700

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Figura 17. Imagenes de profundidad en perspectiva ojo de pez, lente izquierda y derecha.
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Figura 18. Imagenes de profundidad en perspectiva ojo de pez en escala de grises, lente izquierda y
derecha.

Obtencion geométrica de profundidad y obtencion de escala.

Para esta fase, el primer paso es exponer donde estan los puntos de los cuales se han
obtenido sus profundidades mediante triangulacion tanto en la imagen original de
entrada [Figura 2] y la Glltima imagen obtenida en la tercera fase [Figura 7].

LEFT RIGHT

400 500 600 700 800 o 100 200 300 400 500 600

Figura 19. Puntos definidos en imagenes originales, lente izquierda y derecha.
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LEFT

400 500

600 700 800

o 100 200

300

RIGHT

400 500 600 700

Figura 20. Puntos definidos en imagenes de profundidad en perspectiva de ojo de pez, lente
izquierda y derecha.

Distancias Distancias Red Distancia Red neuronal | Error distancia Triangulacion
Puntos Triangulacion (m) Neuronal con escala (m) vs Red con escala (m)
1 0,13156 15,18522 1,19417 1,06261
2 0,12844 15,2301 1,19770 1,06926
3 0,56949 4,65435 0,36602 0,20347
4 0,38916 7,98596 0,62802 0,23886
5 0,76163 7,30427 0,57441 0,18722
6 0,42558 8,73546 0,68696 0,26138
7 0,73562 5,94573 0,46757 0,26805
8 0,70388 6,0021 0,47201 0,23187
9 0,70726 7,01156 0,55139 0,15587
10 0,4161 8,46605 0,66577 0,24967
11 0,74418 6,14183 0,48300 0,26118
12 0,70853 7,22554 0,56822 0,14031
13 0,34678 8,58461 0,67510 0,32832
14 0,36098 11,31426 0,88976 0,52878
15 0,57776 3,22761 0,25382 0,32394
16 0,63648 3,69344 0,29045 0,34603
17 0,64353 3,75052 0,29494 0,34859
18 0,75447 3,28982 0,25871 0,49576
19 0,63132 3,15864 0,24840 0,38292
20 0,6982 3,09232 0,24318 0,45502
21 0,26748 12,69697 0,99849 0,73101
22 0,40282 2,82769 0,22237 0,18045
23 0,4303 2,9164 0,22935 0,20095
24 0,45554 3,16826 0,24915 0,20639

Tabla 1. Profundidades y error en calculos de profundidades para los 24 puntos.
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Se observan 24 puntos y sus distancias o profundidades, unas se han obtenido mediante
triangulacion y otras se han obtenido directamente del mapa denso de profundidad que
proporciona la red neuronal [Tabla 1]. Se tienen en cuenta Unicamente seis puntos, los
cuales se encuentran a distintas profundidades y en distintas zonas de la imagen, para el
posterior calculo de la escala. Puntos = [1, 2, 5, 6, 20, 22].

Entonces, se formula la escala a aplicar a toda la imagen de profundidad como la
proporcidon que hay entre la medida de profundidad obtenida a partir de la red neuronal
‘MiDaS’ y la obtenida mediante el método de triangulacion, tnicamente teniendo en
cuenta los seis puntos anteriormente mencionados, con los que se tiene en cuenta de
manera general toda la informacion que aporta la imagen de entrada y a su vez la imagen
obtenida con la red. El valor final de la escala a aplicar para la imagen izquierda serd una
media de los valores obtenidos con los seis puntos.

Este valor de escala [Tabla 2] es un valor orientativo para acotar la solucion de la
ultima fase del trabajo.

Escala Izquierda | 0,0786403

Tabla 2. Escala para imagen profundidad lente izquierda.
Obtencion rango de busqueda.

En la siguiente imagen se representa la distancia que hay entre los puntos originales
de la imagen y la proyeccion de esos mismos puntos proveniente de la imagen izquierda.
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Figura 21. Distancias residuales entre los puntos para la imagen derecha.
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Los puntos azules son los ya conocidos y propios de la imagen derecha, obtenidos de
forma manual. Los puntos verdes son los puntos provenientes de la imagen izquierda
proyectados en la imagen derecha. La linea negra que une los puntos es la distancia
residual; es decir, el error de posicionamiento cuando se hace la proyeccion. En la linea
epipolar se encuentran las proyecciones (Puntos verdes) y los puntos reales (Puntos
azules), pero esta linea no se representa en la figura 21.

La calidad de la proyeccion del punto en comparacién con su posicion real es
totalmente dependiente del valor de la escala que se aplica en la imagen izquierda.

La obtencidn de una escala que sea buena tanto para puntos a corta distancia, media
distancia y larga distancia es complicado, ya que el mapa de profundidad obtenido
tampoco es tan detallado y este no es perfecto. Dependiendo del valor de la escala las
proyecciones de ciertos puntos seran mejores.

Las proyecciones de los puntos se encuentran a la izquierda del punto real cuando en
la linea epipolar la estimacion de distancia del punto es menor que la distancia real del
punto. En cambio, cuando esta estimacion es mayor que la del punto real, la proyeccion
del punto se encuentra a la derecha del punto real. Esto sucede porque para obtener el
rango de busqueda, se conoce la distancia y la posicion exacta de los puntos en la imagen
derecha, ya que se han obtenido de forma manual.

Figura 23. Recorte 2 en distancias residuales entre los puntos para la imagen derecha.
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El rango de busqueda vendra definido por el area de una elipse con centro en la
proyeccion del punto, la anchura y la altura serda la méxima distancia entre las
proyecciones obtenidas y los puntos reales de estas proyecciones [Tabla 3]. Se tiene en
cuenta un nivel de confianza para asegurar que se recoge toda el area necesaria y que
ningn emparejamiento se quede fuera de esta area.

Maxima Distancia Horizontal (Pixeles) 94,18
Maéxima Distancia Vertical (Pixeles) 10,11

Tabla 3. Maximas distancias entre puntos y sus proyecciones en pixeles.

El nivel de confianza se aplica a la distancia vertical y horizontal maxima entre los
puntos originales y sus proyecciones estimadas en la imagen derecha, con lo que se define
el rango maximo de anchura y altura del area de la elipse. Se implementa para asegurar
que el area definida contiene el punto real y su estimacion en la curva epipolar, la cual
atraviesa el area de busqueda. Su valor se ha definido mediante prueba y error, hasta que
se ha encontrado un valor adecuado; en nuestro caso, se ha escogido finalmente un nivel
de confianza de 4. Es una manera sencilla de asegurar que el rango de busqueda siempre
contenga el punto real que se busca.

Anchura (Pixeles) Altura (Pixeles) Nivel Confianza Area (Pixeles?) % Reduccién
94,18 10,11 1 747,82 99,89
188,36 20,22 2 2991,30 99,56
282,54 30,33 3 6730,42 99,01
376,72 40,44 4 11965,19 98,24
470,9 50,55 5 18695,61 97,24

Tabla 4. Rangos de busqueda segun el nivel de confianza.

En esta tabla 4, se observa como en funcion del valor que se le de al nivel de confianza.
Incremente el area de buisqueda. Vemos que hasta un nivel de confianza de 5 el porcentaje
de reduccion de area de busqueda se reduce en minimo un 97 % respecto del total de la
imagen que tiene un area de 678400 pixeles cuadros.

23



4.2. Analisis de resultado final.

Como resultado final, obtenemos un proceso automatico donde se escogera cualquier
punto de la imagen izquierda y se obtendra el rango de busqueda para la iteracion de
geometria epipolar en la imagen derecha. Es decir, se obtiene el area de la imagen donde
se sabe que se encuentra el punto correspondiente al elegido en la imagen izquierda.

Para ello se define en primer lugar, el punto que se va a escoger de la imagen izquierda.

Figura 24. Punto en la imagen izquierda y posicion [x,y]=[503,396].

0 100 200 300 400 500 600 700 800

Figura 25. Punto en la imagen derecha y posicion [X,y]=[486,399].

Entonces, se obtiene la proyeccion de ese punto proveniente de la imagen izquierda en
la imagen derecha (Punto verde) y se representa el area de buisqueda donde se encuentra
el punto (Punto azul) al que hay que emparejar el punto inicial de partida de la imagen
izquierda [Figura 16].
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Figura 26. Area de busqueda para emparejamiento en la imagen derecha punto inicial. NC = 3.

El area de busqueda en la aplicacion de iteracion de geometria epipolar para el
emparejamiento de puntos es de 6731,10 pixeles al cuadrado, lo que supone una reduccion
del area de busqueda total del 99% respecto de la imagen completa. Se aplica un nivel de
confianza de 3 para el rango de anchura y de altura de la elipse. Que se ve que es bueno
para recoger el punto real en la zona de emparejamiento.

Ahora, vamos a probar con los puntos donde mas difiere la proyeccion de esos mismos
puntos con la posicion real (Por ejemplo, el punto cero). Se mantienen el mismo nivel de
confianza y se ve que el rango de biisqueda es un poco justo para este tipo de puntos que
estan a una distancia corta [Figura 17].
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Figura 27. Area de busqueda para emparejamiento en la imagen derecha punto 0. NC = 3.

Se reajusta el nivel de confianza a 4 para asegurar que en estos puntos mas cercanos
se recoja el punto real en el area de busqueda [Figura 18]. El area de busqueda es de
11966,40 pixeles al cuadrado y una reduccion del area de busqueda total del 98,24 %
respecto de la imagen completa.

100
200
300
400
500
600

700

0 100 200 300 400 500 600 700 800

Figura 28. Area de bisqueda para emparejamiento en la imagen derecha punto 0. NC = 4.
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Capitulo 5

Conclusiones y lineas futuras.

5.1. Conclusion.

Como conclusion de este trabajo, se puede decir que ha tenido un resultado positivo y
que tiene varias lineas de futuro, algunas mas ambiciosas que otras. A lo largo de este
trabajo se ha hecho un tratamiento de iméagenes en términos de transformacioén de modelos
proyectivos mediante rectificacion de imagenes. Ademas, se ha integrado una red
neuronal llamada ‘MiDaS’ que es capaz de obtener una primera estimacion de la
profundidad de una imagen plana, lo que agiliza mucho el proceso de estimacion de la
profundidad de toda la imagen obtenida. También se aplica geometria epipolar con el par
de imagenes para triangular puntos y obtener medidas reales de profundidades en unos
puntos determinados, con lo que se consigue un primer valor estimado de la escala a
aplicar a los valores de profundidad que se obtienen de la red ‘MiDaS’. Finalmente, se
obtiene un intervalo en el que sabremos donde se encuentra un punto de la imagen
izquierda en la imagen derecha. Este intervalo se define como una elipse en la figuray en
esa zona se encuentra el punto buscado; es decir, el emparejamiento.

5.2. Lineas futuras.

Como lineas futuras de este trabajo destaca una por encima del resto, la cual es
automatizar este proceso de obtencion de la profundidad total de la imagen. El primer
paso seria automatizar el emparejamiento de los puntos caracteristicos que ahora se hace
de forma manual. El segundo paso que seguir seria realizar una busqueda epipolar de
todos los puntos 3D de la imagen. Se definirian las lineas epipolares de todos estos puntos
y haciendo uso del rango de biisqueda obtenido en este trabajo se podria acotar zonas de
la linea epipolar donde se encuentra el punto en la realidad. Este resultado permitiria
automatizar una estimacion densa de profundidad.

Otras proyecciones mas ambiciosas en este proyecto seria extender la estimacion de
profundidades a videos que permitiese fusionar un mapa denso utilizando el sistema de
odometria visual del sistema estéreo.

Como posibles aplicaciones y futuros desarrollos de este proyecto seria la
incorporacion de este sistema como sensor de un robot lo que permitiria que la propia
maquina fuese capaz de saber a qué distancia esta todo lo que le rodea. También hay que
decir que existen otros dispositivos para obtener profundidades mas rapidamente y que
son mas precisos (Por ejemplo, el sensor LIDAR). La ventaja de este dispositivo es que
con Unico sensor se realizan diferentes tareas, lo que reduce costes.

5.3. Realizacion del trabajo.

Para la realizacién de este trabajo, tengo que agradecer mucho la implicacion,
participacion y seguimiento del director y codirector del TFG. También quiero mencionar
que este TFG se ha trabajado en paralelo al que realiza mi companero César Rodriguez,
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sobre célculo de profundidades en imagenes de ojo de pez unicamente utilizando
geometria epipolar.

Para la realizacion de este trabajo se ha contado con cédigos ya hechos y material de
teoria sobre modelos de proyeccion y céalculos de profundidades utilizando geometria
epipolar. Estas fuentes han sido proporcionadas por los directores del trabajo.

Con el uso de estos codigos y estas fuentes, se ha desarrollado el codigo que sustenta
este trabajo. En ¢l se ha obtenido como resultado un rango de busqueda de
emparejamiento de puntos, a partir de una primera estimacion de la profundidad
utilizando la escala obtenida y la red neuronal. Se llega a obtener una medida aproximada
de profundidad en cualquier punto.
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Anexo A. Modelos proyectivos de camara.

Se hace uso de dos modelos proyectivos para la realizacion de este trabajo; el modelo
Pin-Hole y el modelo de Kannala-Brandt. Se define en este anexo la definicién de cada
modelo, su representacion y su modelaje matematico.

Modelo Pin-Hole

El modelo directo Pin-Hole es una funcion que transforma un punto 3D en el sistema
de referencia de la cdmara a un punto en la imagen de coordenadas (En este caso, pixeles).
Los rayos son rectos al chocar en la imagen, y la imagen se rota 180 °.

F:R3 - R?
Punto 3D:
T
Xp = (xp Yo Zp)

Punto en imagen de coordenadas:

X =(u v)’
Desarrollo de la funcion:
I[L*x—p+uc] [fu*x—p+uc]
u dy, 2z | Z,
Xo=[0] =F(x,) =] | = (1.1)
W ’ IL*y—+v | fi *y_p‘H’
ldv Zp CJ l v Zp CJ

Donde f es la distancia focal de la cadmara, u, y v, son las coordenadas en la imagen
del centro 6ptico, d,, y d,, es el tamanio de un pixel en la imagen.

plano
virtual
imagen

centro Optico

“plano imagen

_:_nyntro optico

412 | ,4
gje optico X J€ optico

- - ! (x'}’)

y v *
M (X.Y.Z) y M (X, Y.7)

Figura 29. Funcionamiento de la camara Pin-Hole. Se representa en la izquierda la proyeccion en plano de la imagen
real, y en la derecha la proyeccion en el plano de la imagen virtual.

El modelo inverso de Pin-Hole es la funcidon inversa, la cual se desarrolla de la
siguiente manera:

Q:R*->R3=F"1
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Desarrollo de la funcidn:

U — U, Uu—uUc
* S
xp fu fu
X, = ip =F1(x,) = e V= (1.2)
P

fo fo
Se toma el valor de s como uno, ya que en nuestro caso se considera que la profundidad
en coordenadas es para todos los pixeles de la imagen la misma; es decir, la unidad.

Modelo Kannala-Brandt

El modelo directo de Kannala-Brandt se ajusta bien a camara tipo ‘Ojo de pez’, pero
en si mismo propone un modelo de camara genérico. El modelo de proyeccion se
considera que es radialmente simétrico. En este caso, los rayos se curvan para chocar en
la imagen. El modelo describe las diferentes proyecciones de la siguiente manera:

7‘(9) = f(g + k193 + k295 + k307 + k469) (21)

Donde 6 es el angulo que forma el rayo proyectante con el eje Z, r(6)es la distancia
desde el punto proyectado hasta el centro de la imagen, fes la distancia focal de la camara
y k;son los coeficientes de distorsion de la camara.

_______:H ,
N
.......... I;T:____...-’_."_'_:” ./
.\x- ’/ 4

Figura 30. Representacion del modelo de proyeccion Kannala-Brandt.

Se obtiene una buena aproximacion de las diferentes curvas de proyeccion al tomar las
cinco primeras potencias de 6, ya que se consiguen suficientes grados de libertad.

Se obtiene entonces una funcion que transforma un punto 3D definido de forma
esférica en el sistema de referencia de la cdmara a un punto en la imagen de coordenadas
(En este caso, pixeles).

F:R3—R?
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Punto 3D:
X, =@(@) xcosgp 1) *senp 1T
Punto en imagen de coordenadas:
X.=@w v)T

Desarrollo de la funcion:

0 f, cy|*|[r(@) *senq| (2.2)

0 0 1 1

Xe= o] =F(x,) =K+ X, =

5 > 0 Cx] [r(e)*cosq)
*
v

Donde K, es una matriz que esta compuesta por los parametros intrinsecos de la
camara.

El modelo inverso de Kannala-Brandt se basa en obtener los puntos 3D a partir de los
puntos en la imagen de coordenadas. Se define la funcién inversa:

Q . RZ N R3 — F—l
Desarrollo funcion:
Xp

yp] =FY(X)=K1+X, (2.3)
Z
14

X, =
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Anexo B. Interpolacion Bilineal.

Se utiliza la interpolacion bilineal para reconstruir cierta imagen de un tamafo a partir
de otra imagen de distinto tamano. En este anexo se explica como se obtiene la
interpolacion y las razones por las que se utiliza este método para recomponer la imagen.

El método de interpolacion permite el calculo de nuevos datos a partir de un conjunto
de valores conocidos. En el caso de la interpolacion bilineal se tiene en cuenta los valores
en los pixeles conocidos que rodean a uno dado en una vecindad de los 2x2 pixeles mas
cercanos.
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Figura 31. Representacion de la aplicacion de la interpolacion bilineal tanto para recomponer la perspectiva
plana como la de ojo de pez.

Se toma el promedio ponderado de estos 4 pixeles y se calcula el valor interpolado. Se
utiliza este tipo de interpolacién ya que se obtiene un resultado mas suavizado que
utilizando otros métodos mas simples, como el método del pixel més cercano. El tiempo
de procesado es mayor que para métodos mas simples.

En este trabajo se utiliza este tipo de interpolacion para reconstruir las imagenes
porque la perspectiva de ojo de pez y la perspectiva plana tienen distinto tamafio, entonces
los rayos que van hacia la imagen vacia a reconstruir desde el punto 3D no coinciden con
el centro del pixel de la imagen que tiene informacién y se toma en cuenta una media
ponderada de los 4 pixeles mas cercanos a donde cae el rayo. Se mantiene
considerablemente la resolucion de la imagen original.
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Anexo C. Red neuronal MiDasS.

Se utiliza la red neuronal MiDaS en este trabajo y en este anexo se va a explicar que
es exactamente una red neuronal y que tiene de especial el uso de la red MiDaS frente a
otras redes que tienen la misma finalidad.

Las siglas de MiDaS provienen del siguiente acronimo ‘Monocular Depth Estimation
of Dynamic Scenes’. Es una red neuronal profunda que estima la profundidad de escenas
dindmicas a partir de imagen monoculares; es decir, imagenes que se capturan con una
sola camara o lente. Es capaz de estimar la distancia entre los objetos en una imagen.

La estructura de esta red neuronal es bastante compleja y consta de varias capas.
MiDaS utiliza una arquitectura de red neuronal profunda basada en codificacion de
caracteristicas y la decodificacion de profundidad. La red se entrena utilizando un
conjunto de datos de imagen monoculares y profundidades correspondientes. Durante el
entrenamiento, la red aprende a mapear las caracteristicas de las iméagenes a las
profundidades correspondientes.

La arquitectura de MiDaS consta de tres componentes principales:

e La extraccion de caracteristicas: Se realiza mediante una red
neuronal convolucional (CNN) ya entrenada, la cual extrae caracteristicas
utiles de las iméagenes.

e La codificacion de caracteristicas: Se realiza mediante una serie de
capas convolucionales y no lineales que transforman las caracteristicas
extraidas en un espacio latente. El espacio latente es un espacio de alta
dimensiéon que se utiliza para representar las caracteristicas de las
imagenes en una forma mas compacta y significativa.

e La decodificacion de profundidad: Se realiza mediante una serie
de capas convolucionales y no lineales que transforman el espacio latente
en un mapa de profundidad.

La razén de usar esta red en vez de otras que tienen la misma utilidad se basa en que
MiDaS es mejor en términos de precision y velocidad. La red usada en este trabajo ya
esta entrenada previamente.
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