
Trabajo Fin de Grado

Automatización del aprovisionamiento de recursos en
proyectos de microservicios: Diseño e implementación de un

MVP
Resource provisioning automation in microservices projects:

Design and implementation of an MVP

Autor

José Maŕın D́ıez

Director

Daniel Doḿınguez Guillén

Ponente

José Javier Merseguer Hernáiz

Escuela de Ingenieŕıa y Arquitectura
2023

Repositorio de la Universidad de Zaragoza - Zaguan https://zaguan.unizar.es

https://zaguan.unizar.es

Resumen

En un sector caracterizado por su constante evolución como el de las tecnoloǵıas de la información,
aparecen continuamente nuevas necesidades y desaf́ıos. Estos factores acarrean inevitablemente un
incremento significativo de la complejidad y el tamaño de los sistemas software. En respuesta a esta
tendencia, determinados enfoques arquitectónicos, en particular los microservicios, adquieren cada
vez más relevancia debido a su capacidad para establecer sistemas altamente escalables, mantenibles
y con un rendimiento superior.
Sin embargo, esta complejidad trae consigo requerimientos adicionales que exigen la implantación
de procesos de gestión y desarrollo más sofisticados. En este escenario, la combinación de auto-
matización y desarrollo de software emerge como una estrategia imprescindible para alcanzar el
éxito.
Este trabajo se centra principalmente en la automatización de uno de los aspectos más cŕıticos en el
desarrollo de dichos sistemas. Concretamente, se presenta la creación de una innovadora herramienta
destinada a operar como componente auxiliar en el ciclo de desarrollo de software, enfocándose en
la tarea particular de aprovisionamiento de recursos.
Los resultados derivados de la construcción de una primera versión, orientada a cubrir las necesidades
básicas, presentan un gran potencial. Las pruebas iniciales evidencian una notable simplificación del
proceso de gestión de recursos. Asimismo, este avance ha tenido un impacto positivo en el proceso
de desarrollo, provocando mejoras sustanciales en la eficiencia y validando la utilidad del sistema
desarrollado.

II

Índice general

1. Introducción 1
1.1. Motivación . 1
1.2. Objetivo . 1
1.3. Alcance . 2
1.4. Estructura del documento . 3

2. Análisis 4
2.1. Necesidades del sistema . 4
2.2. Requisitos funcionales y no funcionales . 6

2.2.1. Recomendaciones para la especificación de requisitos 6
2.2.2. Diccionario de datos . 8

3. Diseño 9
3.1. Arquitectura . 9

3.1.1. Arquitectura de Puertos y Adaptadores . 9
3.1.2. Justificación de la elección de la Arquitectura de Puertos y Adaptadores . . . 11
3.1.3. Arquitectura del sistema . 12

3.2. Modelo de datos . 15
3.2.1. Proceso de transformación de datos . 15

3.3. Interfaz e integración . 16
3.3.1. Interfaz del sistema . 17
3.3.2. Integración con herramientas de gestión . 17

3.4. Diseño de algoritmos . 19
3.4.1. Procesamiento de lenguaje natural . 19

4. Desarrollo 20
4.1. Aplicación . 20

4.1.1. Procesamiento de lenguaje natural . 20
4.1.2. Integración con la herramienta de gestión 21

4.2. Tecnoloǵıas utilizadas . 22
4.2.1. Aplicación . 23
4.2.2. Base de datos . 24
4.2.3. Gestión de contenedores . 24
4.2.4. Visualización . 24
4.2.5. Otras . 25

5. Pruebas 26
5.1. Objetivo de las pruebas . 26
5.2. Estrategia de las pruebas . 26
5.3. Entorno de pruebas . 27

III

5.4. Resultado de las pruebas . 28

6. Conclusión 30
6.1. Trabajo a futuro . 30

Referencias 35

Apéndices 39

A. Dedicación 40

B. Instrucción para la detección de tareas 41

C. Modelo de datos extendido 42

D. Documentación de la API 44

E. Entorno de Pruebas 45

F. Casos de Prueba 46

IV

1 Introducción

La automatización desempeña un papel crucial durante el ciclo de vida del software, especialmente
en proyectos de microservicios [1, 2], donde debido a la propia naturaleza de la arquitectura, se
requiere la creación y gestión de un gran número de servicios. Esta automatización permite liberar a
los desarrolladores de tareas manuales y repetitivas, permitiéndoles enfocarse en tareas más técnicas
y estratégicas, acelerando aśı el proceso de desarrollo. Esto no solo ahorra tiempo y recursos, sino
que también reduce el riesgo de cometer errores humanos y mejora la calidad general del software.
Por ello, la automatización se convierte en un elemento clave para el éxito de los proyectos software.

1.1. Motivación

Durante este último año, como miembro del equipo encargado de la construcción de un nuevo
sistema para una de las grandes empresas del comercio electrónico de España, he podido observar
la importancia de agilizar y automatizar diferentes tareas. Esta nueva solución permite a la empresa
realizar una migración exitosa de su plataforma de comercio, evolucionando desde una arquitectura
monoĺıtica hacia una basada en microservicios.
Dentro del proceso de desarrollo de arquitecturas de microservicios, se identifican una serie de
procesos mecánicos y repetitivos que no aportan valor al producto desde la perspectiva del negocio.
Sin embargo, esas tareas consumen tiempo y esfuerzo. La naturaleza modular y distribuida de los
microservicios son ideales para la automatización de diversos aspectos del desarrollo. Algunas de las
tareas candidatas para la automatización son:

Despliegue y gestión de contenedores. Se refiere al proceso de empaquetar y desplegar nuevos
cambios en diferentes entornos.
Generación de código base. Partiendo de plantillas predefinidas, es posible generar automáti-
camente la estructura básica del código para la creación de nuevos microservicios.
Pruebas y compilaciones. Mediante la automatización de las pruebas y compilaciones, cada vez
que se realiza un cambio, se puede garantizar la calidad del software a medida que evoluciona.
Aprovisionamiento de recursos. La automatización puede encargarse del aprovisionamiento y
configuración de los recursos necesarios, como bases de datos o sistemas de mensajeŕıa.

1.2. Objetivo

El objetivo de este Trabajo Fin de Grado es abordar la creación de un sistema de automatización
diseñado para agilizar determinadas tareas del proceso de desarrollo de software. En particular, se
centra en la automatización de las tareas de aprovisionamiento de recursos de infraestructura y

1

generación de código. Estas tareas espećıficas han sido seleccionadas debido a su nivel de adopción
actual, que se encuentra menos avanzada en comparación a otras, las cuales están más consolidadas.
Los potenciales beneficios e impactos derivados de esta solución son múltiples. Se espera un incre-
mento notable en la eficiencia del equipo de desarrollo, aśı como una reducción significativa de los
errores humanos. Adicionalmente, se prevé una disminución en los tiempos y demoras causadas por
la dependencia de terceros.
En resumen, el propósito principal de este proyecto es reducir el tiempo dedicado a la realización
de tareas y procesos inherentes al ciclo de vida del software en el contexto del desarrollo de micro-
servicios. Al minimizar la dependencia de terceros y proporcionar al equipo una mayor fluidez, los
desarrolladores podrán enfocarse en tareas de mayor complejidad, lo cual tendrá un impacto positivo
en el resultado final del software.

1.3. Alcance

El alcance de este trabajo es el desarrollo de un Producto Ḿınimo Viable de una herramienta
destinada a integrarse en el proceso de construcción de software. La meta es la creación de un
software que permita el aprovisionamiento de recursos y la generación de código, con el fin de
automatizar y agilizar el proceso de desarrollo de proyectos de gran tamaño.
El producto se crea con las caracteŕısticas ḿınimas para cumplir su propósito principal. Enfocándose
inicialmente en ofrecer una funcionalidad básica de aprovisionamiento de recursos. En el desarrollo
de microservicios se precisa de una amplia variedad de recursos, que pueden abarcar tanto elementos
de software como de infraestructura.
Este proyecto se enfoca en los recursos más comúnmente empleados, incluyendo la creación y confi-
guración de colecciones en bases de datos NoSQL, tanto en MongoDB [3] como en Couchbase [4].
También se contempla la creación y configuración de topics en Kafka [5], además de la creación de
repositorios. Por último, también entra dentro del alcance del sistema la generación de plantillas de
código base para facilitar nuevos desarrollos.
Hay algunos conceptos y caracteŕısticas que, aunque se mencionan, por razones de tiempo, no
entran dentro del desarrollo del MVP. Por ejemplo, se menciona la implementación de un módulo
de inteligencia artificial. Si bien este es un campo prometedor, se ha decidido no llevar a cabo esta
implementación y apostar por la utilización de un modelo ya existente. Tampoco se lleva a cabo la
creación de una interfaz gráfica para el sistema. La elaboración de estos componentes implica un
esfuerzo significativo que desv́ıa la atención de la funcionalidad central.
El sistema resultante de este trabajo es un software funcional probado en un entorno de desarrollo.
De acuerdo con la escala Technology Readiness Level (TRL) [6], que es una medida reconocida
para evaluar la madurez de una tecnoloǵıa, este sistema se encuentra entre los niveles 4 y 5. Esto
significa, que el software ha demostrado su capacidad para cumplir con los requisitos establecidos
en un entorno de laboratorio, aunque aún requiere pruebas adicionales en un entorno relevante para
alcanzar el nivel 5. Con este nivel de madurez el sistema ha superado las etapas iniciales de desarrollo
y permite extraer las primeras conclusiones.
La idea es poder validar rápidamente la utilidad de la herramienta y, a partir de la información
obtenida, mejorar su desarrollo para posibles futuras versiones.

2

1.4. Estructura del documento

En este documento, se aborda el desarrollo del sistema mencionado, comenzando con un análisis de
las necesidades y requisitos del mismo. Se describe en detalle el diseño de la arquitectura propuesta,
su interfaz y su modelo de datos. A continuación, se detalla el proceso de desarrollo del sistema,
incluyendo las tecnoloǵıas utilizadas. Posteriormente, se expone la metodoloǵıa y el plan de pruebas
realizado. Por último, se extraen algunas conclusiones y se proponen recomendaciones para futuros
desarrollos.

3

2 Análisis

Para garantizar el éxito de cualquier aplicación software, es fundamental contar con una clara com-
prensión de las necesidades del sistema. En este caṕıtulo, se exploran estas necesidades, se discuten
los elementos clave de unos buenos requisitos software y se presenta un listado detallado de requisitos
funcionales y no funcionales sobre los que se construye la herramienta.
Este análisis proporciona una serie de beneficios. En primer lugar, se establece una contrato que
define las funcionalidades y caracteŕısticas que el software debe tener. Esto evita malentendidos
futuros y asegura que todas las partes están de acuerdo sobre lo que debe hacer la herramienta.
Además, al revisar los requisitos en una etapa temprana, antes de comenzar el diseño, se pueden
identificar y corregir omisiones, malentendidos e incoherencias, lo cual resulta mucho más fácil y
menos costoso que hacerlo en etapas avanzadas del ciclo de desarrollo, donde incluso el cambio más
ḿınimo puede implicar un rediseño completo.

2.1. Necesidades del sistema

El software debe satisfacer una serie de necesidades fundamentales para lograr los objetivos esta-
blecidos con su desarrollo. En primer lugar, se plantea la necesidad de contar con una interfaz
centralizada que funcione como punto de entrada para el aprovisionamiento de recursos en los
proyectos donde se integre. Esta interfaz tiene la responsabilidad de unificar la administración de
múltiples infraestructuras tecnológicas, las cuales son comúnmente empleadas en la creación de mi-
croservicios. Espećıficamente, la herramienta gestiona tecnoloǵıas de bases de datos, de mensajeŕıa
y de colaboración, lo que posibilita una gestión más eficiente de estos recursos.
En ĺınea con esto, se contempla la inclusión de bases de datos NoSQL, como MongoDB y Couch-
base, ampliamente utilizadas en arquitecturas de microservicios. La creación de colecciones es algo
muy común, ya que para reducir el acoplamiento entre servicios, es habitual seguir enfoques como
Database per service [7].
Además, se reconoce la relevancia de las plataformas de streaming, como Kafka, para mantener la
comunicación entre microservicios. Crear topics en estas plataformas es esencial pero laborioso. Por
esta razón, la herramienta también asume la responsabilidad crear y configurar estos topics.
Los repositorios, como Github, Bitbucket o GitLab, son otros recursos esenciales para la colaboración
y el desarrollo. Estas plataformas permiten llevar un control de versiones y facilitan la integración y
entrega continua (CI/CD) [8]. La herramienta en cuestión asume, dado el nivel de complejidad en
la creación y configuración de repositorios, la responsabilidad de manejar este proceso.
En otro contexto, es esencial que la herramienta ofrezca una funcionalidad de generación de código
fuente. Esto implica que la herramienta de aprovisionamiento debe tener la capacidad de producir una
plantilla de código base que sirva como punto de partida para el desarrollo de un nuevo microservicio.

4

Otra necesidad crucial es que el sistema sea de baja complejidad, simple en su diseño y funciona-
miento, que permita una fácil adaptación a cada proyecto. Una vez instalado, se pretende que el
software requiera de un mantenimiento ḿınimo. Dado que se trata de una herramienta auxiliar, se
pretende minimizar el tiempo dedicado a su gestión. Esto permitirá evitar complicaciones y trabajo
adicional.
Por otro lado, se busca que el software sea independiente de la tecnoloǵıa y los recursos que
aprovisionará. Esto significa que debe poder integrarse sin problemas en variedad de proyectos que
usen diferentes tecnoloǵıas y proveedores. Esta independencia tecnológica permitirá que el software
sea más flexible y adaptable, facilitando su integración en entornos tecnológicamente heterogéneos.
Para ello, es necesario apostar por un sistema modular, que áısle en la medida de lo posible la lógica
de negocio de la infraestructura.
Asimismo, es imprescindible que la herramienta sea intuitiva y accesible para todos los miembros
del proyecto, independientemente de sus conocimientos sobre infraestructura. Al reducir la barrera
de entrada, se fomentará la colaboración y se podrá liberar a parte del personal de algunas de las
tareas rutinarias.
Finalmente, para proporcionar una representación visual de estas acciones, se presenta el diagrama de
casos de uso de la Figura 2.1. Este diagrama ilustra de manera clara y concisa las diversas funciones
y operaciones que están a disposición de los usuarios al utilizar la herramienta de aprovisionamiento.

Figura 2.1: Diagrama de Casos de Uso de la aplicación

5

2.2. Requisitos funcionales y no funcionales

De acuerdo al IEEE Standard Glossary of Software Engineering Terminology [9], un requisito se
define de la siguiente manera:

1. Una condición o capacidad que necesita un usuario para resolver un problema o alcanzar un
objetivo.

2. Condición o capacidad que debe cumplir o poseer un sistema o componente del sistema para
satisfacer un contrato, norma, especificación u otros documentos impuestos formalmente.

3. Una representación documentada de una condición o capacidad como en 1 o 2.
Los requisitos funcionales se enfocan en las funcionalidades y comportamientos espećıficos que
el sistema debe ofrecer, mientras que los requisitos no funcionales definen caracteŕısticas y res-
tricciones del sistema relacionadas con la disponibilidad, mantenibilidad, fiabilidad, escalabilidad,
etc.
Con base en la identificación de necesidades realizada en la Sección 2.1, se ha elaborado un listado
de los principales requisitos funcionales y no funcionales que servirán como gúıa para el desarrollo
del sistema. Estos requisitos se presentan en las Tablas 2.1 y 2.2, respectivamente.

2.2.1. Recomendaciones para la especificación de requisitos

El IEEE Recommended Practice for Software Requirements Specifications [10] establece un conjunto
de prácticas recomendadas para redactar especificaciones de requisitos de software. Esta práctica
recomendada tiene por objeto describir el contenido y cualidades de una buena especificación de
requisitos de software (SRS).
Según estas recomendaciones, una buena SRS debe cumplir lo siguiente:

1. Debe definir correctamente todos los requisitos del software. Un requisito de software puede
existir debido a la naturaleza de la tarea que debe resolverse o debido a una caracteŕıstica
especial del proyecto.

2. No debe describir ningún detalle de diseño o implementación. Estos deben describirse en la
fase de diseño del proyecto.

3. No debe imponer restricciones que no estén justificadas por los requisitos del software.
Además, una SRS debe cumplir con las siguientes caracteŕısticas:

Correcta: El software cumple todos los requisitos que en ella se establecen.
Sin ambigüedades: Cada requisito debe tener una única interpretación y se deben evitar
términos ambiguos.
Completa: La SRS debe incluir todos los requisitos significativos, ya sean relativos a la
funcionalidad, el rendimiento o las restricciones de diseño.
Consistente: No debe haber conflictos entre los requisitos dentro de la SRS.
Verificable: Debe ser posible verificar si el software cumple con cada requisito. No se pueden
verificar afirmaciones como ”funciona bien”, ya que es imposible definir los términos ”bueno.o
”bien”.

6

Tabla 2.1: Requisitos funcionales del sistema

Código Descripción
RF-1 El sistema debe permitir la creación de colecciones de MongoDB.
RF-2 El sistema debe permitir la creación de colecciones de Couchbase.
RF-3 El sistema debe permitir la creación de topics de Kafka.
RF-4 El sistema debe permitir la creación de repositorios.
RF-5 El sistema debe permitir añadir una plantilla de código a un repositorio.
RF-6 El sistema debe crear un nuevo repositorio cuando el usuario solicita

añadir una plantilla a un repositorio que no existe.
RF-7 El sistema debe crear una rama en el repositorio con el código de la

plantilla al añadirla.
RF-8 El sistema debe permitir al usuario añadir diferentes plantillas de códi-

go personalizados al sistema.
RF-9 El sistema debe admitir la configuración por parte del usuario de los

recursos a crear. Se debe proporcionar una interfaz para que el usuario
ingrese y establezca los valores de configuración pertinentes durante
la creación de los recursos.

RF-10 El sistema debe aplicar valores predeterminados para los parámetros no
especificados por parte del usuario durante la creación de los recursos.

RF-11 El sistema debe almacenar un registro de todas las operaciones realiza-
das, incluyendo información como la fecha, hora y detalles espećıficos
de cada acción. Los registros deben ser almacenados en una base de
datos designada para tal fin.

RF-12 El sistema debe permitir la consulta de las operaciones realizadas.
RF-13 El sistema debe exponer los servicios de creación de recursos a través

de una API REST para facilitar la creación de una interfaz gráfica.
RF-14 El sistema debe suministrar una documentación de la API para facilitar

la utilización del sistema.
RF-15 El sistema debe ser capaz de interpretar instrucciones en lenguaje na-

tural para crear recursos, identificando los detalles asociados a dichos
recursos.

RF-16 El sistema debe ofrecer una funcionalidad de integración que permita a
las aplicaciones de gestión solicitar el aprovisionamiento de un recurso.

Tabla 2.2: Requisitos no funcionales del sistema.

Código Descripción
RNF-1 La API debe seguir la especificación y estándares de OpenAPI supe-

riores a la versión 3.0.0
RNF-2 La documentación de la API debe proporcionar una descripción de

todos los endpoints, aśı como los formatos de solicitud y de respuesta.
RNF-3 Los registros de operaciones deben conservarse durante al menos 3

meses y ser accesibles para fines de auditoŕıa.
RNF-4 El sistema debe poder ser desplegado en cualquier plataforma que

admita Docker.
RNF-5 El sistema requiere acceso a internet para su funcionamiento normal

y para interactuar con servicios externos.

7

Modificable: La estructura y el estilo del SRS deben permitir cambios fáciles y consistentes
en los requisitos.

2.2.2. Diccionario de datos

Colección Es un grupo de documentos relacionados que comparten una estructura común. Los
documentos son registros individuales que almacenan datos en un formato semiestructurado. Las
colecciones son análogas a las tablas de las bases de datos relacionales [11] [12].

Topic Es un canal para almacenar y publicar un flujo de datos, donde los productores env́ıan
mensajes y los consumidores los reciben, permitiendo la transmisión de información en tiempo real.

Repositorio Es un espacio centralizado donde se almacena, comparte y gestiona el código fuente
de un proyecto de software.

Plantilla de código Es un conjunto prediseñado de componentes de código fuente que sigue un
modelo común. Proporciona una estructura inicial y predefinida que los desarrolladores pueden seguir
y evitar comenzar desde cero el desarrollo al crear nuevos microservicios.

8

3 Diseño

En este caṕıtulo, se introduce la arquitectura de Puertos y Adaptadores como enfoque central del
diseño. Posteriormente, se detalla su aplicación en la creación de un sistema adaptable a diferentes
tecnoloǵıas y entornos. Asimismo, se proporciona una descripción del modelo de datos, junto con
el proceso de conversión entre sus múltiples representaciones. Además, se aborda la interfaz del
sistema y su integración con herramientas de gestión. Por último, se introduce la incorporación de
un componente de procesamiento de lenguaje natural.

3.1. Arquitectura

3.1.1. Arquitectura de Puertos y Adaptadores

La arquitectura de puertos y adaptadores es un enfoque que destaca por la construcción de sistemas
altamente adaptables a diferentes tecnoloǵıas y entornos. Para lograr este propósito, la solución
está en la separación entre la lógica de negocio y el código encargado de interactuar con servicios
externos e infraestructura.
Dicha arquitectura (véase Figura 3.1) identifica expĺıcitamente tres bloques fundamentales en un
sistema [13]:

La interfaz de usuario, que permite la interacción con el sistema.
El núcleo de la aplicación, que utiliza la interfaz de usuario para ejecutar la lógica de negocio
y hacer que las cosas realmente sucedan.
El código de infraestructura, cuya función es conectar el núcleo de la aplicación con sistemas
externos, como bases de datos, motores de búsqueda o servicios de terceros mediante APIs.

El elemento esencial de esta arquitectura es el núcleo de la aplicación. Es el código que permite
al sistema cumplir con su propósito. Aunque puedan ser utilizadas diferentes interfaces de usuario
(GUI, CLI, API, etc) y diferente infraestructura (SQL, NoSQL, SMS, Email, etc), el código que
realmente realiza las tareas es el mismo y se encuentra en el núcleo de la aplicación.

Puertos

En una arquitectura de puertos y adaptadores, los puertos son los puntos de entrada y salida que
permiten a la aplicación comunicarse con sistemas externos. Son las interfaces a través de las cuales
el núcleo de la aplicación interactúa con el exterior. Estos puertos se diseñan de manera ajena a la
tecnoloǵıa utilizada por los sistemas externos, permitiendo a la aplicación ser utilizada por dichos
sistemas, sin depender de sus detalles técnicos.

9

Figura 3.1: Bloques de la arquitectura de puertos y adaptadores

Adaptadores

Los adaptadores son componentes que facilitan la comunicación entre la aplicación y los sistemas
externos [14]. Su tarea es adaptar las solicitudes y datos recibidos desde sistemas externos al formato
interno del núcleo, y viceversa, convirtiendo las respuestas generadas por el núcleo de la aplicación al
formato esperado por los sistemas externos. De esta manera, los adaptadores permiten a la aplicación
comunicarse de manera transparente con distintos sistemas.
Existen dos tipos de adaptadores: los Adaptadores Primarios, que le dicen a la aplicación que haga
algo, y los Adaptadores Secundarios, que son invocados por la aplicación para hacer algo.
Los Adaptadores Primarios (ver Figura 3.2) actúan como envoltorios alrededor de un puerto,
utilizando dicho puerto para comunicar al núcleo de la aplicación qué acciones debe realizar. En
esencia, transforman solicitudes provenientes de mecanismos de entrada en llamadas a métodos del
núcleo de la aplicación.
Un ejemplo es una aplicación que necesita recibir peticiones externas de dos opciones: mediante
una API REST y mediante ĺınea de comandos (CLI). Para ambas opciones, se crea un adaptador
espećıfico para recibir y procesar los datos entrantes.
En el caso de la comunicación a través de una API REST, el adaptador será el encargado de recibir
las solicitudes HTTP provenientes de la API, interpretar los datos y convertirlos en llamadas a los
métodos correspondientes del núcleo de la aplicación.
Por otro lado, para la conexión mediante CLI, el adaptador será el responsable de recibir las ins-
trucciones desde la interfaz de ĺınea de comandos, interpretar los datos y pasarlos al núcleo de la
aplicación mediante llamadas a los métodos adecuados. De esta forma, la aplicación podrá recibir y
procesar tanto solicitudes de la API REST como de la CLI, permitiendo una comunicación versátil
con el núcleo de la aplicación.
En cambio, los Adaptadores Secundarios (ver Figura 3.3) no envuelven un puerto, sino que
implementan una interfaz espećıfica (puerto) que luego es utilizada por el núcleo de la aplicación
para interactuar con servicios o tecnoloǵıas externas.
Por ejemplo, dada la necesidad de una aplicación de persistir datos, se crea una interfaz que satisfaga

10

Figura 3.2: Adaptadores Primarios en la arquitectura de puertos y adaptadores

las necesidades. Con métodos, por ejemplo, para guardar y borrar datos. A partir de ah́ı, siempre
que la aplicación requiera guardar o eliminar datos, será necesario un adaptador que implemente la
interfaz de persistencia previamente definida.
Si se quiere persistir los datos en una base de datos PostgreSQL, entonces, habrá que crear un
adaptador espećıfico para PostgreSQL que implemente la interfaz de persistencia y contenga los
métodos necesarios para guardar y eliminar filas en una tabla.
Por otro lado, si se opta por utilizar otro tipo de sistema de base de datos, como MongoDB (un
sistema NoSQL), bastaŕıa con crear un nuevo adaptador que implemente la interfaz de persistencia y
esté diseñado espećıficamente para trabajar con MongoDB, incluyendo los métodos necesarios para
guardar y eliminar documentos en una colección.
En resumen, los puertos son interfaces que definen la forma en que el núcleo del sistema interactúa
con el exterior, mientras que los adaptadores implementan dichas interfaces para conectarse con
tecnoloǵıas concretas. Esta modularidad y desacoplamiento permite al sistema adaptarse a diferentes
tecnoloǵıas y servicios sin necesidad de modificar el núcleo del mismo.
Esta arquitectura resulta especialmente beneficiosa cuando se busca adaptar el sistema a múltiples
entornos o cuando se prevén cambios frecuentes debido a requisitos cambiantes o nuevas tecnoloǵıas.

3.1.2. Justificación de la elección de la Arquitectura de Puertos y Adap-
tadores

La decisión de aplicar esta arquitectura está motivada por las necesidades identificadas en la Sec-
ción 2.1. La arquitectura de puertos y adaptadores ofrece una serie de beneficios que la hacen
especialmente apropiada para el contexto de la herramienta que se busca crear.
En primer lugar, proporciona una interfaz centralizada a través de los puertos, que actúan como
puntos de entrada y salida del sistema. Esto permite gestionar toda la infraestructura tecnológica
desde un único lugar, lo que facilita el control y el aprovisionamiento de recursos.

11

Figura 3.3: Adaptadores Secundarios en la arquitectura de puertos y adaptadores

Gracias a la separación de la lógica de negocio del resto de componentes, se consigue aislar y
proteger el núcleo del sistema de las dependencias externas y la infraestructura. De igual manera,
los adaptadores permiten a la aplicación funcionar con diferentes tecnoloǵıas, al tiempo que
se mantienen desacoplados los detalles de implementación del aprovisionamiento de recursos. Esta
caracteŕıstica permite a la aplicación integrarse fácilmente en diversos proyectos con proveedores y
tecnoloǵıas heterogéneas sin requerir cambios significativos en su núcleo.
Además, la arquitectura ayuda a alcanzar el objetivo de desarrollar un sistema mantenible y
extensible. Al dividir el sistema en capas bien definidas y con responsabilidades espećıficas, y
desacoplarlo de los componentes externos, se facilita la modificación o reemplazo de estos últimos
sin afectar al núcleo de la aplicación, facilitando el mantenimiento y minimizando el impacto derivado
de futuras modificaciones. Esto también facilita las pruebas del sistema.
En resumen, la arquitectura de puertos y adaptadores responde adecuadamente a las necesidades del
sistema que se pretende desarrollar. Su capacidad para adaptarse a diferentes tecnoloǵıas y entornos,
para proporcionar una interfaz centralizada y para dotar a la aplicación de un fácil mantenimiento, la
convierten en una solución óptima para la herramienta de automatización de recursos en proyectos
de microservicios.

3.1.3. Arquitectura del sistema

Siguiendo los conceptos y pautas descritas en la sección anterior, se ha diseñado la estructura de la
aplicación. Este diseño, basado en la arquitectura de puertos y adaptadores, potencia la adaptabilidad
y la independencia tecnológica, aspectos fundamentales del sistema.
El diseño y la estructuración de la arquitectura tienen como objetivo principal cumplir con los
requisitos y las necesidades identificadas del proyecto. La Figura 3.4 ilustra cómo se han materializado
los conceptos en términos de la arquitectura.
A continuación, se presenta cómo cada adaptador se relaciona con un puerto de entrada o salida y
facilita la comunicación entre el núcleo y el entorno externo.

12

Figura 3.4: Diagrama de la arquitectura basada en puertos y adaptadores

Adaptadores primarios y puertos de entrada

Los adaptadores primarios cumplen con la función de permitir la interacción con la interfaz de usuario
y convertir las solicitudes en llamadas al núcleo de la aplicación definidas por los puertos de entrada.
A continuación, se presenta la lista de adaptadores primarios junto con sus respectivos puertos de
entrada:

Adaptadores API REST: Estos adaptadores reciben las solicitudes provenientes de la API
REST y las traducen en objetos y llamadas a métodos espećıficos del núcleo para ejecutar las
operaciones correspondientes.

• MongoController : Sirve como punto de entrada para operaciones relacionadas con Mon-
goDB. Actúa como intermediario para la creación de colecciones, adaptando las opera-
ciones definidas por el puerto IMongoCollectionService.

• CouchbaseController : Gestiona solicitudes asociadas a Couchbase. Hace posible la crea-
ción de colecciones, funcionando como enlace a través del puerto de entrada ICouchba-
seCollectionService.

• KafkaController : Facilita operaciones en el broker de Kafka. Encapsula la creación de
topics mediante el uso del puerto de entrada IKafkaTopicService.

• RepositoriesController : Maneja solicitudes que implican operaciones en repositorios ex-
ternos, como Bitbucket. Facilita la creación de repositorios a través del puerto de entrada
IRepositoriesService.

• TemplatesController : Transforma las solicitudes para la generación de código fuente me-
diante el uso del puerto de entrada ITemplatesService.

13

• OperationQueryController : Se enfoca en consultas a la base de datos de la aplicación.
Facilita las acciones de búsqueda de operaciones a través del puerto de entrada IOpera-
tionQueryService.

Adaptador Webhook: Permite la integración del sistema con aplicaciones de gestión al
transformar los datos recibidos por Webhooks en acciones entendibles por el núcleo de la
aplicación. Se explica con más detalle en la Sección 3.3.2.

• JiraController : Utilizado para la interacción con Jira. Traduce las peticiones realizadas
por Jira en operaciones que la aplicación puede procesar. Facilita la creación de recursos
a través de llamadas a los métodos definidos por el puerto de entrada IResourceService-
Factory.

Adaptadores secundarios y puertos de salida

Los adaptadores secundarios son responsables de interactuar con la infraestructura y sistemas ex-
ternos. A continuación, se presentan los adaptadores secundarios y los puertos de salida que imple-
mentan:

Adaptadores de base de datos:
• PersistanceAdapter : Administra la persistencia de los datos de la aplicación. Transforma

las operaciones definidas por IPersistance en acciones compatibles con la API espećıfica
del sistema de bases de datos utilizado.

Adaptadores de sistemas externos:
• BitbucketAdapter : Se encarga de la comunicación con el sistema de control de versiones.

Traduce las operaciones definidas en la aplicación a llamadas compatibles con la API de
Bitbucket, a través del puerto de salida IRepository.

• KafkaAdapter : Posibilita la comunicación con Kafka. Transforma las operaciones defini-
das en el puerto IKafka en acciones ejecutables mediante la API de Kafka.

• ChatGPTAdapter : Facilita la comunicación con ChatGPT. Convierte las solicitudes y
respuestas definidas en el puerto IChatGPT en llamadas que la API de OpenAI puede
entender.

• CouchbaseAdapter : Encargado de interactuar con Couchbase. Adapta las operaciones
del puerto de salida ICouchbase a la API de Couchbase.

• MongoAdapter : Simplifica la comunicación con MongoDB. Adapta las operaciones del
puerto IMongo a la API de MongoDB.

• JiraAdapter : Permite la interacción del sistema con la API de Jira.
• FilesystemAdapter : Gestiona el sistema de ficheros, permitiendo a la aplicación inter-

actuar con él. Traduce las operaciones definidas en IFileSystem a llamadas al sistema
operativo.

• GitAdapter : Ajusta las operaciones de IGit para trabajar con el sistema de control de
versiones Git. Traduce las operaciones en comandos comprensibles por Git.

14

Flujo de ejecución

El proceso de ejecución de la aplicación sigue el camino que se detalla en la Sección 3.1.1. Cuando
un usuario interactúa con la interfaz de usuario, esta acción genera una solicitud que se dirige al
sistema. Esta solicitud se canaliza a través de un adaptador primario, el cual a su vez llama al núcleo
de la aplicación. En el núcleo se llevan a cabo las operaciones de aprovisionamiento. Para hacer esto,
el núcleo se comunica con los adaptadores secundarios que a su vez establecen interacciones con la
base de datos de la aplicación y con diversos componentes de infraestructura externos (MongoDB,
Couchbase, Kafka, etc.). Una vez se completa la operación, el resultado se devuelve a través de
los mismos adaptadores, pasando nuevamente por el núcleo y finalmente presentándose al usuario a
través de la interfaz de usuario.

3.2. Modelo de datos

El modelo de datos de una aplicación se refiere a la representación estructurada de la informa-
ción que maneja y procesa. Para esta aplicación, como se detalla en el diagrama del Apéndice C, se
opta por continuar con un enfoque modular al dividir el modelo de datos en tres representaciones
distintas: el modelo de datos interno, el modelo de datos de la base de datos y el modelo de datos
de transferencia. Cada uno de estos modelos desempeña un papel espećıfico en el funcionamiento
de la aplicación.
El modelo de datos interno, se encuentra en el núcleo de la aplicación. Este modelo define
las entidades clave de la lógica de negocio, sus reglas de validación y otros elementos que rigen
la aplicación. El modelo de datos interno es independiente de las tecnoloǵıas de almacenamiento y
presentación, lo que garantiza que la lógica de negocio no se vea comprometida por cambios externos
al núcleo de la aplicación.
El modelo de datos de la base de datos representa la estructura para el almacenamiento y
consulta de datos de la aplicación. Este modelo se basa en el modelo de datos interno, pero está
diseñado y optimizado para satisfacer las necesidades de persistencia y recuperación en la base de
datos. La separación entre el modelo de datos de la base de datos y el modelo de datos interno áısla
la lógica de negocio de la tecnoloǵıa de la base de datos (Relacional, NoSQL, Grafo).
El modelo de datos de transferencia, actúa como puente entre los sistemas externos y el núcleo
de la aplicación. Los DTOs (Data Transfer Objects) encapsulan y transmiten la información necesaria
para realizar las operaciones, evitando aśı la transferencia innecesaria de datos, además de la expo-
sición directa del modelo interno. La utilización de DTOs también facilita la adaptación a cambios
en los requisitos de presentación sin afectar la lógica del negocio en el núcleo de la aplicación.

3.2.1. Proceso de transformación de datos

La comunicación entre distintos bloques se logra mediante el uso de adaptadores y mappers. Cada
adaptador de la aplicación, se encarga de convertir los datos del modelo espećıfico de su tecnoloǵıa
al modelo de datos interno del núcleo, y viceversa [15].
El proceso de transformación comienza cuando los datos llegan a la capa de presentación. Estos
datos se representan utilizando un modelo de datos de transferencia (DTOs). Luego, los adaptadores
de la capa de presentación, mediante el uso de mappers, transforman los DTOs al modelo de datos
interno. Una vez que los datos son procesados en el núcleo de la aplicación, los adaptadores realizan
la transformación inversa: emplean mappers para convertir los datos desde el modelo de datos interno

15

en DTOs de respuesta. De manera similar, los adaptadores de la capa de infraestructura gestionan
la transformación entre el modelo de datos interno y el modelo requerido para llevar a cabo sus
operaciones.
Por ejemplo, para el caso en el que la aplicación recibe una solicitud HTTP a través de la API REST.
Los datos de esta solicitud necesitan ser traducidos de JSON a objetos de dominio comprensibles
para la lógica de la aplicación. Cuando la aplicación necesita responder a esta solicitud, los objetos
de dominio se convierten nuevamente a formato JSON. De manera análoga, cuando la aplicación
necesita almacenar datos en base de datos, los objetos de dominio se transforman en los modelos
adecuados, como colecciones para bases de datos NoSQL o tablas para bases de datos SQL. Esto
también aplica en sentido inverso para las operaciones de consulta en la base de datos.
El siguiente diagrama (Figura 3.5) ilustra cómo interactúan y se relacionan las tres representaciones
del modelo de datos en la aplicación.

Figura 3.5: Modelo de datos: Interacción entre modelo interno, de la base de datos y de transferencia

3.3. Interfaz e integración

En cualquier aplicación software, la interfaz desempeña un papel fundamental al ser el medio a
través del cual los usuarios y otros sistemas se comunican con ella. La función de las interfaces es
facilitar la interacción del usuario, mejorar su experiencia y permitir la conexión con otros sistemas.
En definitiva, potenciar la utilización del sistema.
Existen diversos tipos de interfaces, cada uno con un propósito espećıfico. Dentro de este proyecto,
se distinguen dos tipos de interfaces: la interfaz del sistema y la interfaz de usuario.
La interfaz del sistema es el canal a partir del cual la aplicación permite a otros sistemas comu-
nicarse y colaborar con ella. Para este proyecto, la interfaz del sistema se presenta como una API
REST.
Por otro lado, la interfaz de usuario permite a los usuarios finales interactuar con el software de
manera visual e intuitiva. En este caso, en lugar de desarrollar una interfaz gráfica propia, se ha
decidido apostar por la integración con herramientas ya existentes.

16

3.3.1. Interfaz del sistema

La API REST permite la ejecución de operaciones a través de una serie de endpoints. Cada uno
de estos endpoint se corresponde con una funcionalidad espećıfica del sistema y está diseñado para
recibir y enviar datos en formato JSON.
Cumpliendo con el requisito RF-14, para facilitar la comprensión, se provee una documentación
técnica junto con la API REST. Esta documentación se encuentra en formato OpenAPI e incluye
la descripción de todos los endpoints, aśı como los formatos de solicitud y de respuesta. Además,
mediante el uso de tecnoloǵıas como Swagger, es posible generar una interfaz web que permite
visualizar e incluso probar la API REST (véase Apéndice D).
A continuación, se presenta un breve resumen de los endpoints de la aplicación para el aprovisiona-
miento de recursos:

POST /resources/mongo/databases/{database name}: Crea una colección en una base
de datos MongoDB.
POST /resources/kafka/topics/: Crea un topic en un broker de Apache Kafka.
POST /resources/couchbase/buckets/{bucket name}: Crea una colección en un bucket
de Couchbase.
POST /resources/repositories/projects/{project key}: Crea un repositorio remoto en
un proyecto espećıfico.
POST /resources/templates/{template type}: Genera una plantilla espećıfica y/o la car-
ga en un repositorio remoto.
GET /operations/: Obtiene una lista de operaciones realizadas por el sistema
GET /operations/{operation id}: Obtiene los detalles de una operación concreta.

En resumen, la API REST permite a otras aplicaciones y servicios aprovechar las capacidades del
sistema desarrollado, permitiendo la creación de soluciones personalizadas que se adapten a las
necesidades espećıficas de los proyectos y organizaciones.

3.3.2. Integración con herramientas de gestión

En el ámbito de los proyectos de software, especialmente en aquellos de envergadura considerable,
surge un gran desaf́ıo: su gestión. Para asegurar el éxito de estos proyectos, es una práctica común
recurrir a herramientas de gestión especializadas. Estas herramientas facilitan la planificación de
tareas, el seguimiento de los avances y la gestión de incidencias en todas las etapas del ciclo de
desarrollo.
Conforme al requisito funcional RF-16, resulta esencial que el sistema de aprovisionamiento de
recursos pueda integrarse con estas herramientas de gestión. En la ĺınea con esto, en lugar de crear
una interfaz gráfica de cero, se opta por la integración con herramientas ampliamente reconocidas
en el ámbito de proyectos de software, como GitHub Projects, GitLab Projects, Trello o Jira. Esta
decisión se fundamenta en la idea de que los equipos de desarrollo ya están familiarizados con estas
plataformas y las utilizan de manera regular para gestionar sus proyectos.
El propósito de esta integración es simplificar la experiencia de los usuarios finales. De esta manera,
se evita que los equipos de desarrollo tengan que aprender a usar una nueva herramienta, ya que
el sistema se convierte en una extensión del entorno de trabajo que usan habitualmente. Esta

17

estrategia no solo reduce la curva de aprendizaje, sino que también elimina la necesidad de alternar
entre diferentes interfaces, lo cual mejora la eficiencia y la productividad.
Aunque existen diversas herramientas disponibles en el mercado, todas comparten similitudes en
cuanto a su integración con servicios externos. Estas herramientas principalmente ofrecen dos méto-
dos de comunicación y colaboración con otros sistemas:

1. REST APIs: Permiten la interacción con la plataforma de manera programática. A través
de estas APIs, es posible consultar, crear, actualizar y administrar tareas. Esto habilita a
aplicaciones externas a comunicarse con la aplicación de gestión.

2. Webhooks: Son notificaciones automáticas enviadas desde la plataforma de gestión a una
URL espećıfica en respuesta a eventos predefinidos, como la creación o modificación de una
tarea. Los Webhooks permiten a aplicaciones externas recibir información en tiempo real desde
la plataforma de gestión.

Estos dos mecanismos posibilitan una comunicación bidireccional entre la plataforma de gestión y el
sistema de aprovisionamiento de recursos, garantizando que ambos sistemas puedan colaborar para
cumplir con el objetivo.
El diagrama de secuencia de la Figura 3.6 ilustra cómo este enfoque permite que la aplicación de
gestión active notificaciones ante eventos espećıficos, desencadenando las acciones correspondientes
en el sistema de aprovisionamiento. Luego, el sistema informa sobre los resultados de la operación,
manteniendo una trazabilidad de las operaciones.

Figura 3.6: Diagrama de Secuencia: Creación y aprovisionamiento de un recurso a través de una
aplicación de gestión

18

3.4. Diseño de algoritmos

3.4.1. Procesamiento de lenguaje natural

En la fase de análisis se identifica una necesidad relacionada con la accesibilidad de la herramienta.
Con el propósito de reducir su complejidad y fomentar su uso por todo tipo de usuarios, se refleja el
requisito funcional RF-15 (ver Tabla 2.1), que establece la capacidad del sistema para interpretar
instrucciones en lenguaje natural.
Para abordar el desaf́ıo de hacer la comunicación con la aplicación más sencilla, y accesible, se
opta por incorporar inteligencia artificial a la solución. La función de esta IA es agregar una capa
adicional al sistema, transformando instrucciones en lenguaje natural (sin estructura) en un formato
estructurado (JSON), que la aplicación pudiera comprender y procesar de manera efectiva.

Figura 3.7: Proceso de transformación de instrucciones

Dado que el desarrollo completo de un sistema de inteligencia artificial está fuera del alcance de
este proyecto, se decide utilizar un modelo existente: GPT-3.5-Turbo de OpenAI. Esta tecnoloǵıa
ha demostrado ser una opción sólida para tareas de inferencia, extracción de información y transfor-
mación de texto. Su propósito es lograr la conversión de instrucciones en lenguaje natural a JSON,
permitiendo aśı que la aplicación comprenda y ejecute las solicitudes de los usuarios.
En resumen, la utilización de inteligencia artificial permite la transformación del lenguaje natural a
un formato estructurado comprensible por la aplicación. Esto permite satisfacer el requisito funcional
de interpretar instrucciones en lenguaje natural y crear recursos, facilitando la accesibilidad de la
herramienta a todos los miembros del proyecto.

19

4 Desarrollo

En este caṕıtulo, se detalla el proceso de desarrollo del sistema, abarcando alguno de sus aspectos más
caracteŕısticos, y su integración con una herramienta de gestión. En primer lugar, se explora cómo se
implementa la transformación de instrucciones en lenguaje natural a JSON, mediante tecnoloǵıas de
inteligencia artificial. Además, se presenta la integración con Jira, una de las herramientas de gestión
más utilizadas, mostrando cómo se configura un Webhook. Después, se analizan las tecnoloǵıas
empleadas para llevar a cabo con éxito la creación de la aplicación. Desde la elección del lenguaje
de programación hasta la elección de la base de datos.

4.1. Aplicación

4.1.1. Procesamiento de lenguaje natural

Como se indicó en la Sección 3.4.1, el sistema debe ser capaz de convertir instrucciones redactadas
en lenguaje natural en datos con formato JSON. Para lograr esta transformación, se ha utilizado la
tecnoloǵıa GPT, reconocida por su habilidad para comprender y procesar textos.
El proceso de desarrollo ha consistido en la integración del sistema con la API de OpenAI y, en mayor
medida, en la elaboración de una instrucción optimizada para la tarea en cuestión, cuyo resultado
final se presenta en el Apéndice B. La finalidad de la instrucción es orientar al modelo de inteligencia
artificial para capturar con precisión el propósito de la tarea, extraer la información necesaria y
convertirla a un formato adecuado para su procesado por la aplicación. Esta interacción se realiza
de manera sencilla: el usuario proporciona instrucciones en lenguaje natural, la aplicación las env́ıa a
procesar y el modelo, entrenado con una amplia variedad de datos, produce respuestas en el formato
adecuado. Finalmente, la aplicación recibe estas respuestas y las utiliza para su propósito.
Para visualizar el proceso, se presenta un ejemplo en la Figura 4.1, que demuestra cómo una ins-
trucción en lenguaje natural se transforma en un objeto JSON empleando inteligencia artificial.
En la figura, se observa como se introduce una instrucción en lenguaje natural para la creación de un
topic de Kafka, especificando ciertos aspectos técnicos de configuración. A través de la interacción
con el servicio de inteligencia artificial, el sistema interpreta la instrucción y genera el objeto JSON
correspondiente.
Este ejemplo demuestra la capacidad del sistema para reconocer las intenciones del usuario, identifi-
cando la operación que desea llevar a cabo e inferir la información relacionada con la configuración
del recurso que el usuario quiere crear. Además, ilustra su precisión en la conversión del texto en
una estructura de datos espećıfica.

20

(a) Especificación de la tarea (b) Resultado del procesamiento

Figura 4.1: Procesamiento de lenguaje natural para la detección de tareas de aprovisionamiento

4.1.2. Integración con la herramienta de gestión

El proceso de desarrollo ha consistido en la configuración y creación de una serie de elementos en
Jira para su integración con la aplicación desarrollada. La integración se lleva a cabo mediante la
configuración de un Webhook, que, cuando una tarea de tipo espećıfico se inicia, realiza una llamada
a un endpoint expuesto por la API de la aplicación. A continuación, se presenta una descripción
detallada del proceso, acompañada de una serie de imágenes ilustrativas.

Creación de un tipo de incidencia

En primer lugar, se diseñó un nuevo tipo de tarea en Jira, denominado ’Resource’. Este tipo de tarea
se creó para distinguir las tareas relacionadas con el aprovisionamiento de recursos de otras tareas
que se llevan a cabo durante el desarrollo.

Figura 4.2: Configuración del tipo de incidencia ’Resource’ en Jira

Definición del flujo de trabajo

Se definió un flujo de trabajo espećıfico para el tipo de tarea ’Resource’ en Jira. El flujo de trabajo
comprende una serie de estados que representan el progreso del proceso de aprovisionamiento de
recursos. Estos estados incluyen ’Por hacer’, ’En progreso’, ’Error’ y ’Hecho’

21

Figura 4.3: Flujo de trabajo para el tipo de incidencia ’Resource’

Configuración del Webhook

Para lograr la integración, se configuró un Webhook en Jira. Este Webhook está vinculado al tipo de
tarea ’Resource’ y se activa cuando la tarea cambia a un estado espećıfico, en concreto, cuando se
encuentra en el estado ’En progreso’. Para garantizar que el Webhook solo se activa en las situaciones
deseadas, se añaden una serie de filtros. Además, se proporciona la URL del endpoint de la API de
la aplicación, que debe ser invocado cuando se cumplen las condiciones del Webhook.

Figura 4.4: Configuración del Webhook de Jira para notificaciones en tiempo real

4.2. Tecnoloǵıas utilizadas

La industria del software es un sector en constante evolución, impulsado por una continua aparición de
tecnoloǵıas que fomentan la creación de nuevos soluciones informáticas. Este rápido progreso genera
un amplio abanico de tecnoloǵıas disponibles para utilizar en el desarrollo de software. El propósito
de este apartado es detallar, entre la extensa gama de posibilidades, las tecnoloǵıas empleadas en el

22

desarrollo de la herramienta. Estas abarcan desde el lenguaje de programación y el framework web
empleados para construir la aplicación, hasta aspectos relevantes como la persistencia de datos, la
gestión de contenedores, el control de versiones o herramientas de visualización

Figura 4.5: Diagrama de las tecnoloǵıas utilizadas en el desarrollo de la aplicación

4.2.1. Aplicación

Una decisión clave en el desarrollo de cualquier aplicación es seleccionar el lenguaje de programación
adecuado. Para esta herramienta, se ha optado por Python debido a sus numerosas ventajas. Esta
elección se basa principalmente en la facilidad de desarrollo y flexibilidad que proporciona el lenguaje,
aspectos necesarios para la creación de un MVP.
Python es conocido por su sintaxis simple, que facilita y acelera el proceso de desarrollo. Además,
la amplia comunidad con la que cuenta detrás ofrece y mantiene una gran cantidad de bibliotecas
y módulos, que pueden aprovecharse para implementar soluciones de todo tipo.
En cuanto al framework para construir la API, se ha escogido FastAPI debido a sus caracteŕısticas
y facilidad de uso. FastAPI es un framework moderno que permite construir una API potente al
mismo tiempo que se mantienen todas las ventajas del lenguaje.
Aunque existen otras opciones más completas en el desarrollo web con Python, como Django, ideales
para el desarrollo de aplicaciones más complejas, en el caso de un MVP, resultan innecesarias, ya
que se valoran otras caracteŕısticas, como la agilidad para adaptar rápidamente el producto a nuevas
necesidades o requisitos cambiantes.
Otro factor clave que ha ayudado a la elección de FastAPI es su uso de Pydantic para definir el
modelo de datos, y asegurar que los datos enviados a la API y utilizados por la aplicación son válidos,
reduciendo aśı el número de errores y mejorando la calidad general del código.
Además, FastAPI incorpora la generación automática de documentación basada en OpenAPI, lo que
facilita el uso de la API tanto a usuarios que quieran hacer uso de ella, como para terceros que
deseen integrarse.

23

En resumen, la elección de Python y FastAPI proporciona una combinación de agilidad y simplicidad
en el desarrollo, ideal para sentar las bases de la herramienta y comenzar el desarrollo.

4.2.2. Base de datos

Para gestionar y almacenar los datos de manera eficiente, la aplicación se apoya en MongoDB
como sistema de almacenamiento. Esta elección se fundamenta principalmente en su flexibilidad y
capacidad de adaptación a datos heterogéneos. MongoDB, como base de datos no relacional, permite
almacenar documentos JSON sin un esquema ŕıgido y predefinido, lo que resulta especialmente
relevante en el contexto de la herramienta, donde los datos no siempre tienen la misma forma o
estructura.
Además, al permitir realizar cambios en el esquema de datos sin afectar a operaciones existentes,
MongoDB facilita la implementación de nuevas funcionalidades y modificaciones futuras del MVP,
sin requerir migraciones de datos. Esta ventaja resulta crucial para garantizar la adaptabilidad y man-
tenimiento eficiente de la aplicación a medida que evoluciona y se ajusta a las diferentes necesidades
de los distintos proyectos.

4.2.3. Gestión de contenedores

La gestión de contenedores desempeña un papel fundamental en el despliegue de la aplicación y sus
servicios. Docker se ha elegido como la herramienta principal para empaquetar la aplicación debido
a las numerosas ventajas y facilidades que proporciona en el proceso de despliegue y la gestión de
infraestructura.
Al encapsular la aplicación junto a sus dependencias en contenedores, Docker proporciona un entorno
de ejecución aislado, asegurando que la aplicación se ejecuta de la misma manera, sin requerir
configuraciones espećıficas, en cualquier entorno, ya sea local, de pruebas o en producción.
Además, se utiliza Docker Compose para desplegar los múltiples contenedores que forman el sistema,
incluyendo la aplicación, la base de datos y los demás servicios. Docker Compose permite definir y
gestionar toda infraestructura en un único archivo de configuración. Al ejecutar un solo comando,
es capaz de iniciar y coordinar la creación de todos los contenedores necesarios.
En resumen, la elección de Docker para empaquetar la aplicación y Docker Compose para gestionar
posteriormente el despliegue de los contenedores permite una gestión y un mantenimiento eficiente
de la infraestructura, facilitando aśı el proceso de desarrollo y despliegue del sistema completo.

4.2.4. Visualización

Durante el desarrollo de la aplicación, se han empleado diversas herramientas para visualizar la
infraestructura, como Redpanda Console y MongoDB Compass, para los topics y colecciones de
MongoDB respectivamente. Además, se han aprovechado las herramientas de visualización nativas
proporcionadas por Couchbase y Bitbucket para obtener información detallada sobre las colecciones
y los repositorios de código, facilitando aśı el desarrollo y monitorización de la aplicación.

24

4.2.5. Otras

Para el desarrollo del código, se ha utilizado el editor de texto Visual Studio. Asimismo, para el
versionado del código se ha utilizado Git, y Github para el almacenamiento del mismo. Además, se
ha empleado Postman, una herramienta que ha permitido probar y validar manualmente las distintas
funcionalidades de la aplicación, de forma rápida y precisa.

25

5 Pruebas

En el desarrollo de software, las pruebas automáticas desempeñan un papel fundamental al detectar
errores y garantizar la calidad y fiabilidad del producto final. Estas pruebas permiten verificar de
manera rápida el funcionamiento del software en diferentes escenarios, asegurando el cumplimiento
de los requisitos establecidos.

5.1. Objetivo de las pruebas

El desarrollo de pruebas automáticas se ha convertido en una práctica ampliamente adoptada debido
a sus numerosas ventajas. En primer lugar, las pruebas permiten identificar y corregir errores en el
software antes de que afecten a los usuarios finales. Esto permite garantizar la calidad y fiabilidad
del producto, evitando problemas que puedan afectar al resultado final. Las pruebas contribuyen a la
detección de errores en el código y problemas de integración entre componentes, lo que contribuye
a la estabilidad y la confianza del software.
En segundo lugar, las pruebas en el desarrollo de software son un elemento clave para asegurar el
cumplimiento de los requisitos. A través de las pruebas, se verifica si el software funciona según lo
acordado y si cumple con los criterios de aceptación establecidos.
Además, a medida que se realizan cambios en el código o se añaden nuevas funcionalidades, las
pruebas automáticas aseguran que las modificaciones no introduzcan nuevos errores sobre las fun-
cionalidades previamente desarrolladas. Esto brinda confianza en el producto y proporciona a los
desarrolladores la seguridad de que todo continúa funcionando.
Por último, también mejoran la eficiencia y la productividad del equipo de desarrollo. Al detectar
errores en etapas tempranas, se evita tener que rehacer trabajo y los costes asociados. Y adicio-
nalmente, por el hecho de estar automatizadas, los desarrolladores pueden ejecutar conjuntos de
pruebas completos, de manera más repetitiva, rápida y segura, lo que ahorra tiempo y recursos a
largo plazo. En resumen, las pruebas en el desarrollo de software son esenciales para garantizar la
calidad, cumplir con los requisitos del cliente y mejorar la eficiencia del proceso de desarrollo.

5.2. Estrategia de las pruebas

En el ámbito del software, existen numerosas técnicas de pruebas que permiten asegurarse del correc-
to funcionamiento del producto. Se distinguen fundamentalmente dos tipos de pruebas: las pruebas
manuales y las pruebas automáticas. Las pruebas manuales se realizan en persona, interactuando con
el software, haciendo clic y navegando por la aplicación. Por otro lado, las pruebas automáticas son
realizadas por una máquina que ejecuta un conjunto de escenarios o casos de prueba previamente
definidos.

26

En el contexto de este proyecto, para abordar la necesidad de crear un producto con bajo coste
de mantenimiento, se ha optado por la implementación de pruebas automáticas. Las pruebas au-
tomáticas presentan una mayor consistencia y reducen las posibilidades de errores humanos, lo que
las convierte en la opción preferida para asegurar la calidad del software en un entorno de desarrollo
en constante evolución.
Dentro del espectro de pruebas automáticas, se han considerado diversos tipos, tales como pruebas
unitarias, pruebas de integración y pruebas funcionales. Sin embargo, debido a las limitaciones de
tiempo y a la naturaleza espećıfica de la aplicación, se ha decidido enfocar los esfuerzos en las
pruebas funcionales.
Las pruebas funcionales se centran en validar el correcto funcionamiento de los requisitos
del sistema, incluyendo la interacción con todos los componentes involucrados en cada caso de
uso. Estas pruebas aseguran que la aplicación cumpla con los requisitos establecidos y se comporte
de acuerdo con las expectativas del usuario final.
Esta elección está fundamentada en la naturaleza de la aplicación, que se basa principalmente
en la integración de diversos servicios externos, y no tanto en una lógica de negocio compleja.
Las pruebas funcionales permiten abordar de manera exhaustiva todas las funcionalidades de la
aplicación, garantizando la correcta integración de los servicios externos y la respuesta adecuada del
software ante diversos escenarios.
Además, la automatización de las pruebas funcionales agiliza el proceso de verificación, permitiendo
obtener resultados precisos en un tiempo reducido. De esta forma, se logra una mayor eficiencia en
el proceso de pruebas y se asegura que el software cumpla con los estándares de calidad requeridos,
sentando las bases para un desarrollo de bajo coste de mantenimiento.
En el Apéndice F se detallan los casos de prueba realizados.

5.3. Entorno de pruebas

Durante la etapa de pruebas de un software, es crucial disponer de un entorno de pruebas que
permita asegurar la calidad del producto antes de su despliegue en producción. Este entorno debe
tratarse de un ambiente aislado y controlado, que permita realizar experimentos y ejecutar pruebas
sin correr riesgos ni afectar a sistemas cŕıticos.
En el marco de este trabajo, se ha optado por el uso de Docker para la construcción del entorno de
laboratorio (véase Apéndice E). Docker es una solución ligera y portable, especialmente adecuada
para la creación de entornos de pruebas controlados, que encapsula la aplicación y sus dependencias
en un contenedor. Además, permite implementar fácilmente redes internas para la comunicación entre
diferentes componentes, simulando, a menor escala, la infraestructura de un entorno de producción.
Este tipo de entornos asegura una ejecución más fiable y precisa de las pruebas, facilitando la limpieza
inmediata tras cada ejecución. Esta solución permite realizar cada prueba de manera independiente
y aislada, evitando cualquier posible interferencia con residuos de ejecuciones previas. Además,
simplifica el proceso de pruebas, ya que los desarrolladores no necesitan preocuparse del estado del
entorno.
Otra ventaja significativa radica en la rapidez de despliegue que Docker proporciona. Los contene-
dores pueden ser creados y destruidos rápidamente, lo que acelera el ciclo de pruebas y facilita la
adaptación del entorno de laboratorio a diferentes configuraciones.

27

Figura 5.1: Diagrama del entorno de pruebas implementado para garantizar la funcionalidad de la
aplicación

5.4. Resultado de las pruebas

Los resultados obtenidos en las pruebas han sido positivos y satisfactorios (véase Figura 5.2), demues-
tran la calidad del software realizado y contribuyen a la validación temprana de la herramienta. Este
logro refleja el enfoque acertado en las pruebas automáticas, permitiendo obtener resultados rápidos
y precisos, proporcionando una base sólida para su mejora continua en el futuro y garantizando un
producto robusto y de bajo mantenimiento.
Pese a que se demuestra la capacidad de la herramienta para cumplir con los requisitos en un entorno
de laboratorio con datos de muestra, se reconoce la necesidad de realizar pruebas adicionales en un
entorno relevante y con datos reales para alcanzar el nivel de madurez superior.

28

Figura 5.2: Resultado de ejecución de las pruebas. Todos los tests han sido superados, validando el
correcto funcionamiento del software.

29

6 Conclusión

A lo largo de este documento, se han detallado las fases de creación de un Producto Ḿınimo Viable
(MVP), explorando todas sus etapas de desarrollo, desde la idea inicial hasta la obtención de un
software totalmente funcional.
El resultado, representado en este Trabajo de Fin de Grado, se ha materializado en un sistema
destinado a integrarse como herramienta auxiliar en el ciclo de desarrollo de software, ofreciendo
una funcionalidad básica en un área clave: el aprovisionamiento de recursos.
Esta herramienta demuestra su vaĺıa especialmente en la construcción de sistemas a gran escala, con
un enfoque particular en aquellos basados en arquitecturas de microservicios. Dentro de este contexto
es donde se espera que la herramienta alcance su máximo potencial, ya que estas arquitecturas
requieren de la gestión una gran cantidad de recursos.
Los objetivos planteados al comienzo de este trabajo se han cumplido con éxito en su totalidad,
desarrollando el producto acordado y probándolo en un entorno de laboratorio. A medida que se iba
avanzando en el desarrollo, la aparición de algunos problemas ha impulsado la búsqueda de soluciones
innovadoras. En particular, la incorporación de inteligencia artificial ha enriquecido la herramienta,
dotándola de un valor adicional.
Este proyecto no solamente ha supuesto la construcción de un sistema software, sino que también ha
sentado las bases para futuros desarrollos en el campo de la automatización. Los logros alcanzados
ofrecen una contribución significativa en el ámbito del aprovisionamiento de recursos.

6.1. Trabajo a futuro

A pesar de haber logrado un Producto Ḿınimo Viable (MVP) funcional que cumple con el propósito
principal de automatizar y agilizar el proceso de desarrollo mediante el aprovisionamiento de recur-
sos y generación de código, existen diversos aspectos que pueden hacer evolucionar y mejorar la
herramienta. A continuación, se presentan algunos de los elementos que tienen potencial para ser
considerados en trabajos futuros:

1. Ampliación de recursos: El alcance del MVP se centra en los recursos más utilizados,
como las bases de datos NoSQL o topics de Kafka. Para futuros desarrollos, seŕıa conveniente
expandir al abanico de recursos soportados. Esta expansión podŕıa incluir otras bases de datos,
sistemas de mensajeŕıa e incluso el aprovisionamiento de recursos en proveedores en la nube,
como AWS, Google Cloud o Microsoft Azure.

2. Interfaz Gráfica de Usuario (GUI): Conforme el producto evoluciona, seŕıa beneficioso
incorporar una interfaz gráfica de administración. Dicha interfaz podŕıa mejorar significativa-
mente el sistema en términos de monitorización y visualización, facilitando el control de todas
las operaciones que se llevan a cabo.

30

3. Inteligencia Artificial Avanzada: Aunque se ha decidido no implementar un módulo de
inteligencia artificial propio, seŕıa interesante explorar si incorporar una inteligencia artificial
espećıficamente entrenada para esta tarea podŕıa optimizar aún más el proceso de aprovisiona-
miento. Se podŕıa ir más allá, permitiendo que la IA no solamente transforme las descripciones
de los recursos a crear en un formato adecuado para la aplicación. Sino que el usuario ni si-
quiera tuviera que indicar qué recursos deben crearse. En su lugar, la propia IA, basándose en
patrones y conocimiento previo, seŕıa capaz de identificar cuáles son los recursos que deben
generarse para cada labor.

31

Acrónimos

API Application Programming Interface.

CLI Command Line Interface.

DTO Data Transfer Object.

GPT Generative Pretrained Transformer.
GUI Graphical User Interface.

IA Inteligencia Artificial.

JSON JavaScript Object Notation.

MVP Minimum Viable Product.

REST REpresentational State Transfer.

SRS Software Requirements Specifications.

32

33

Glosario

Caso de Prueba (1) Conjunto de entradas de prueba, condiciones de ejecución y resultados espera-
dos desarrollados para un objetivo concreto, como ejercitar una determinada ruta de programa
o verificar el cumplimiento de un requisito espećıfico.
(2) Documentación que especifica las entradas, los resultados previstos y un conjunto de
condiciones de ejecución para un elemento de prueba.

Entorno software Conjunto espećıfico de configuraciones, recursos y condiciones bajo las cuales
una aplicación o sistema opera.

Herramienta software Software utilizado en el desarrollo, comprobación, análisis o mantenimiento
de un programa o su documentación.

Microservicios Los microservicios son un enfoque arquitectónico y organizativo para el desarrollo
de software donde el software está compuesto por pequeños servicios independientes que se
comunican a través de API bien definidas. Los propietarios de estos servicios son equipos
pequeños independientes [2].

Producto Ḿınimo Viable Estrategia de desarrollo de software que consiste en crear un producto
con un conjunto ḿınimo de caracteŕısticas necesarias para satisfacer a los primeros usuarios y
recopilar información valiosa para el desarrollo posterior.

Prompt Conjunto de palabras que desencadenan la generación de contenidos a través de un software
de inteligencia artificial.

Pruebas funcionales (1) Pruebas que ignoran el mecanismo interno de un sistema o componente
y se centran únicamente en los resultados generados en respuesta a entradas y condiciones de
ejecución seleccionadas.
(2) Pruebas realizadas para evaluar la conformidad de un sistema o componente con los
requisitos funcionales especificados.

Requisito funcional Requisito que especifica una función que un sistema o componente de un
sistema debe ser capaz de realizar.

Webhook Función que permite a una aplicación o servicio recibir notificaciones automáticas y
en tiempo real de eventos o cambios ocurridos en otro sistema externo. Es una forma de
comunicación unidireccional en la que el sistema externo env́ıa datos estructurados a una URL
espećıfica (endpoint) previamente configurada en la aplicación receptora.

34

Referencias

[1] S. Newman, Building Microservices. O’Reilly Media, 2021, isbn: 9781492033998. dirección:
https://books.google.es/books?id=aPM5EAAAQBAJ.

[2] AWS. ((What are Microservices?)) (), dirección: https ://aws .amazon .com/microservices/
(visitado 28-08-2023).

[3] MongoDB. ((¿Qué Es MongoDB?)) (), dirección: https://www.mongodb.com/es/what- is-
mongodb (visitado 28-08-2023).

[4] Couchbase. ((Couchbase: The Modern Database for Enterprise Applications.)) (), dirección:
https://www.couchbase.com/ (visitado 28-08-2023).

[5] ConfluentInc. ((What is Apache Kafka?)) (), dirección: https://www.confluent.io/what- is-
apache-kafka/ (visitado 28-08-2023).

[6] NASA. ((Technology Readiness Levels - NASA Earth Science and Technology Office.)) (19 de
mar. de 2020), dirección: https://esto.nasa.gov/trl/ (visitado 11-07-2023).

[7] C. Richardso. ((Microservices Pattern: Database per service.)) (), dirección: https://microservices.
io/patterns/data/database-per-service.html (visitado 26-08-2023).

[8] GitLab. ((What is CI/CD?)) (), dirección: https://about.gitlab.com/topics/ci-cd/ (visitado
27-08-2023).

[9] ((IEEE Standard Glossary of Software Engineering Terminology,)) IEEE Std 610.12-1990, págs. 1-84,
dic. de 1990. doi: 10.1109/IEEESTD.1990.101064.

[10] ((IEEE Recommended Practice for Software Requirements Specifications,)) IEEE Std 830-1998,
págs. 1-40, 1998. doi: 10.1109/IEEESTD.1998.88286.

[11] Macrometa. ((What Are Collections in Databases?)) (), dirección: https://www.macrometa.
com/articles/what-are-collections-in-databases.

[12] MongoDB. ((Databases and Collections; MongoDB Manual.)) (), dirección: https ://www.
mongodb.com/docs/manual/core/databases-and-collections/ (visitado 24-08-2023).

[13] H. Graça. ((DDD, Hexagonal, Onion, Clean, CQRS, . . . How I put it all together.)) (16 de
nov. de 2017), dirección: https://herbertograca.com/2017/11/16/explicit-architecture-01-
ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/ (visitado 05-08-2023).

[14] S. Woltmann. ((Hexagonal Architecture - What Is It? Why Should You Use It?)) (18 de
ene. de 2013), dirección: https://www.happycoders.eu/software-craftsmanship/hexagonal-
architecture/ (visitado 26-08-2023).

[15] THECODEST. ((The Power of Hexagonal Architecture.)) (13 de jun. de 2023), dirección: https:
//thecodest.co/blog/t-strong-he-power-of-hexagonal-architecture/ (visitado 17-08-2023).

[16] I. Fulford y A. Ng. ((ChatGPT Prompt Engineering for Developers.)) (30 de abr. de 2023),
dirección: https ://www.deeplearning .ai/short - courses/chatgpt - prompt- engineering- for -
developers/ (visitado 23-06-2023).

[17] OMG. ((Unified Modeling Language, v2.5.1.)) (12 de abr. de 2019), dirección: https://www.
omg.org/spec/UML/2.5.1/PDF (visitado 16-08-2023).

35

https://books.google.es/books?id=aPM5EAAAQBAJ
https://aws.amazon.com/microservices/
https://www.mongodb.com/es/what-is-mongodb
https://www.mongodb.com/es/what-is-mongodb
https://www.couchbase.com/
https://www.confluent.io/what-is-apache-kafka/
https://www.confluent.io/what-is-apache-kafka/
https://esto.nasa.gov/trl/
https://microservices.io/patterns/data/database-per-service.html
https://microservices.io/patterns/data/database-per-service.html
https://about.gitlab.com/topics/ci-cd/
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/IEEESTD.1998.88286
https://www.macrometa.com/articles/what-are-collections-in-databases
https://www.macrometa.com/articles/what-are-collections-in-databases
https://www.mongodb.com/docs/manual/core/databases-and-collections/
https://www.mongodb.com/docs/manual/core/databases-and-collections/
https://herbertograca.com/2017/11/16/explicit-architecture-01-ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/
https://herbertograca.com/2017/11/16/explicit-architecture-01-ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/
https://www.happycoders.eu/software-craftsmanship/hexagonal-architecture/
https://www.happycoders.eu/software-craftsmanship/hexagonal-architecture/
https://thecodest.co/blog/t-strong-he-power-of-hexagonal-architecture/
https://thecodest.co/blog/t-strong-he-power-of-hexagonal-architecture/
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

Lista de Tablas

2.1. Requisitos funcionales del sistema . 7
2.2. Requisitos no funcionales del sistema. 7

A.1. Horas dedicadas a la elaboración del trabajo . 40

E.1. Imágenes de Docker empleadas para cada componente del sistema 45

F.1. Caso de prueba para la creación de una colección de MongoDB 46
F.2. Caso de prueba para la creación de múltiples colecciones de MongoDB 46
F.3. Caso de prueba para el manejo del error al intentar crear una colección de mongo

que ya existe . 47
F.4. Caso de prueba para la creación de una colección de Couchbase 47
F.5. Caso de prueba para la creación de múltiples colecciones de Couchbase 47
F.6. Caso de prueba para la creación de una colección de Couchbase en un scope perso-

nalizado . 47
F.7. Caso de prueba para el manejo del error al intentar crear una colección de Couchbase

que ya existe . 48
F.8. Caso de prueba para el manejo del error al intentar crear una colección de Couchbase

en un scope que no existe . 48
F.9. Caso de prueba para la creación de un topic de Kafka 48
F.10. Caso de prueba para la creación de múltiples topics de Kafka 48
F.11. Caso de prueba para el manejo del error al intentar crear un topic de Kafka que ya

existe . 49
F.12. Caso de prueba para el manejo del error al intentar crear un topic de Kafka con una

cleanup policy inválida . 49
F.13. Caso de prueba para el manejo del error al intentar crear un topic de Kafka con un

message timestamp type inválido . 49
F.14. Caso de prueba para la creación de un repositorio 49
F.15. Caso de prueba para la creación de múltiples repositorios 50
F.16. Caso de prueba para el manejo del error al intentar crear un repositorio que ya existe 50
F.17. Caso de prueba para el manejo del error al intentar crear un repositorio en un proyecto

que no existe . 50
F.18. Caso de prueba para la creación de una plantilla en un nuevo repositorio 51
F.19. Caso de prueba para la creación de una plantilla en un repositorio existente 51
F.20. Caso de prueba para el manejo del error al intentar crear una plantilla no disponible 51
F.21. Caso de prueba para la persistencia de los detalles cuando se realiza una operación . 51
F.22. Caso de prueba para la consulta de operaciones por identificador 52
F.23. Caso de prueba para consultar las últimas operaciones realizadas 52
F.24. Caso de prueba para la creación de un recurso a partir de una incidencia 52

36

F.25. Caso de prueba para el manejo del error al intentar crear un recurso a partir de una
incidencia sin la información necesaria . 52

F.26. Caso de prueba para el manejo del error al intentar crear un recurso desconocido a
partir de una incidencia . 53

F.27. Caso de prueba para comprobar que el aprovisionamiento no se inicia si la incidencia
no está en progreso . 53

F.28. Caso de prueba para la detección de un creado de colección de MongoDB 53
F.29. Caso de prueba para la detección de un creado de colección de Couchbase 54
F.30. Caso de prueba para la detección de un creado de repositorio 54
F.31. Caso de prueba para la detección de un creado de topic de Kafka 54
F.32. Caso de prueba para la generación de una plantilla 54
F.33. Caso de prueba para el manejo del error al detectar la creación de un recurso que no

existe . 55

37

Lista de Figuras

2.1. Diagrama de Casos de Uso de la aplicación . 5

3.1. Bloques de la arquitectura de puertos y adaptadores 10
3.2. Adaptadores Primarios en la arquitectura de puertos y adaptadores 11
3.3. Adaptadores Secundarios en la arquitectura de puertos y adaptadores 12
3.4. Diagrama de la arquitectura basada en puertos y adaptadores 13
3.5. Modelo de datos: Interacción entre modelo interno, de la base de datos y de trans-

ferencia . 16
3.6. Diagrama de Secuencia: Creación y aprovisionamiento de un recurso a través de una

aplicación de gestión . 18
3.7. Proceso de transformación de instrucciones . 19

4.1. Procesamiento de lenguaje natural para la detección de tareas de aprovisionamiento 21
4.2. Configuración del tipo de incidencia ’Resource’ en Jira 21
4.3. Flujo de trabajo para el tipo de incidencia ’Resource’ 22
4.4. Configuración del Webhook de Jira para notificaciones en tiempo real 22
4.5. Diagrama de las tecnoloǵıas utilizadas en el desarrollo de la aplicación 23

5.1. Diagrama del entorno de pruebas implementado para garantizar la funcionalidad de
la aplicación . 28

5.2. Resultado de ejecución de las pruebas. Todos los tests han sido superados, validando
el correcto funcionamiento del software. 29

A.1. Desglose de horas dedicadas a cada tarea: Distribución visual del esfuerzo 40

B.1. Instrucción utilizada para solicitar la clasificación de tareas al modelo de inteligencia
artificial . 41

C.1. Modelo de datos extendido: Modelo interno, de la base de datos y de transferencia . 43

D.1. Interfaz generada con Swagger UI para documentar los endpoints de la API 44

38

Apéndices

39

A Dedicación

A continuación se proporciona un desglose del tiempo dedicado a cada una de las diferentes etapas
del proyecto. Estos datos ilustran una la dedicación cercana a la estimación planteada inicialmente
para la realización del Trabajo Fin de Grado (≈ 300 horas).

Tabla A.1: Horas dedicadas a la elaboración del trabajo

Tarea Tiempo dedicado
Análisis 10.5
Diseño 22
Desarrollo 155
Pruebas 42
Memoria 111.5
Reuniones 5.5
Total 346.5 horas

Figura A.1: Desglose de horas dedicadas a cada tarea: Distribución visual del esfuerzo

40

B Instrucción para la detección de tareas

En la siguiente imagen, se presenta la instrucción (prompt) diseñada para la detección de tareas
de aprovisionamiento de recursos. Esta instrucción ha sido diseñada con la finalidad de guiar a un
modelo de inteligencia artificial en la identificación y extracción de información vinculada al proceso
de aprovisionamiento de recursos.
En este prompt, se puede observar cómo, en primer lugar, se provee un listado de todas las opciones
disponibles para su clasificación. Posteriormente, se solicita inferir los parámetros asociados a cada
una de estas alternativas. Finalmente, se indica el formato en el cual deben ser presentados los
resultados obtenidos.

Figura B.1: Instrucción utilizada para solicitar la clasificación de tareas al modelo de inteligencia
artificial

41

C Modelo de datos extendido

Este apéndice presenta una versión más detallada del modelo de datos previamente introducido en
la Sección 3.2. En este apartado, además de exponer los diversos modelos de datos que constituyen
la aplicación, se proporciona una visión de los atributos que conforman cada objeto. La Figura C.1
muestra las tres representaciones distintas de estos modelos.
Los modelos de datos de transferencia desempeñan la función de recopilar la información procedente
de la interfaz, ya sea esta la interfaz del sistema o la interfaz de usuario. Este proceso implica su
posterior transformación al modelo interno de la aplicación, previa validación exhaustiva de cada
uno de los parámetros. Esta validación se logra a través de comprobaciones numéricas y mediante
el uso de enumeraciones para limitar ciertos valores.
Finalmente, se presenta el modelo de datos correspondiente a la base de datos. Dicho modelo consiste
en un objeto que representa un documento dentro de una base de datos NoSQL, espećıficamente
MongoDB, la cual es utilizada en este sistema.

42

Figura C.1: Modelo de datos extendido: Modelo interno, de la base de datos y de transferencia

43

D Documentación de la API

En este apéndice, se expone la documentación generada en formato de página web correspondiente
a la API de este proyecto. Para su desarrollo, se ha empleado la especificación OpenAPI generada
de manera automática por el framework FastAPI, a partir del código fuente de la aplicación. Esta
documentación permite visualizar de manera cómoda e intuitiva los diferentes endpoints y modelos
de datos asociados a las tareas de aprovisionamiento de recursos. Además, ofrece la funcionalidad
de efectuar pruebas mediante el env́ıo interactivo de peticiones directamente a la aplicación.

Figura D.1: Interfaz generada con Swagger UI para documentar los endpoints de la API

44

E Entorno de Pruebas

El entorno está formado por varios componentes, cada uno de los cuales se despliega en un contenedor
Docker. Para facilitar su gestión se ha creado un archivo Docker Compose. A continuación, se
muestran las imágenes de Docker utilizadas para cada uno de los componentes:

Tabla E.1: Imágenes de Docker empleadas para cada componente del sistema

Componente Descripción de la imagen Imagen de Docker
Web App Construida a partir de una imagen de Python con el

código de la aplicación
python:3.10.111

Database Imagen oficial de MongoDB mongo:latest2

MongoDB Imagen oficial de MongoDB mongo:latest3

Couchbase Imagen oficial de Couchbase couchbase:latest4

Zookeeper Imagen de Zookeeper proporcionada por Confluent Inc confluentinc/cp-
zookeeper:latest5

Kafka Imagen de Kafka proporcionada por Confluent Inc confluentinc/cp-kafka:latest6

Jira Imagen de Jira Core de Atlassian atlassian/jira-core:latest7

Bitbucket Imagen de Bitbucket de Atlassian. atlassian/bitbucket:latest8

1https://hub.docker.com/ /python
2https://hub.docker.com/ /mongo
3https://hub.docker.com/ /mongo
4https://hub.docker.com/ /couchbase
5https://hub.docker.com/r/confluentinc/cp-zookeeper
6https://hub.docker.com/r/confluentinc/cp-kafka
7https://hub.docker.com/r/atlassian/jira-core/
8https://hub.docker.com/r/atlassian/bitbucket

45

https://hub.docker.com/_/python
https://hub.docker.com/_/mongo
https://hub.docker.com/_/mongo
https://hub.docker.com/_/couchbase
https://hub.docker.com/r/confluentinc/cp-zookeeper
https://hub.docker.com/r/confluentinc/cp-kafka
https://hub.docker.com/r/atlassian/jira-core/
https://hub.docker.com/r/atlassian/bitbucket

F Casos de Prueba

Con el fin de asegurar el correcto funcionamiento de la aplicación, se ha diseñado un conjunto
de casos de prueba. Estos abarcan una amplia gama de situaciones, destinadas a evaluar cómo
la aplicación responde al aprovisionar recursos en distintos estados de la infraestructura. Con este
objetivo, se han considerado especialmente los siguientes escenarios:

No hay recursos previos en la infraestructura. Se procede a validar la correcta creación de un
recurso.
Ya se han creado recursos previamente. Se procede a validar la creación de otro recurso
adicional.
Existe un recurso previamente creado. Se verifica el manejo de errores al intentar crear un
recurso idéntico al ya existente.
Se verifican los posibles errores que pueden surgir al intentar crear recursos con configuraciones
inválidas.

A continuación, se detallan todos los escenarios creados para poner a prueba el sistema:

Tabla F.1: Caso de prueba para la creación de una colección de MongoDB

Caso de Prueba 1
Nombre Crear una colección de MongoDB

Entrada
database name: mydatabase
data: {’name’: ’mycollection’}

Pre-condición La base de datos no contiene ninguna colección

Resultado Esperado
Respuesta con código de estado HTTP 201
El cuerpo de la respuesta contiene la información de la colección creada
La colección se ha creado en la base de datos

Tabla F.2: Caso de prueba para la creación de múltiples colecciones de MongoDB

Caso de Prueba 2
Nombre Crear múltiples colecciones de MongoDB

Entrada
database name: mydatabase
data: {’name’: ’new collection’}

Pre-condición Existe una colección previamente creada en la base de datos

Resultado Esperado
Respuesta con código de estado HTTP 201
El cuerpo de la respuesta contiene la información de la colección creada
Ambas colecciones están creadas en la base de datos

46

Tabla F.3: Caso de prueba para el manejo del error al intentar crear una colección de mongo que ya
existe

Caso de Prueba 3
Nombre Crear una colección de MongoDB repetida

Entrada
database name: mydatabase
data: {’name’: ’mycollection’}

Pre-condición Existe una colección previamente creada en la base de datos con el
mismo nombre

Resultado Esperado
Respuesta con código de estado HTTP 409
El cuerpo de la respuesta contiene un mensaje de error indicando que
la colección ya existe
No se ha creado una nueva colección

Tabla F.4: Caso de prueba para la creación de una colección de Couchbase

Caso de Prueba 4
Nombre Crear una colección de Couchbase

Entrada
bucket name: testbucket
data: {’name’: ’mycollection’}

Pre-condición El bucket no contiene ninguna colección

Resultado Esperado
Respuesta con código de estado HTTP 201
El cuerpo de la respuesta contiene la información de la colección creada
La colección se ha creado en el bucket

Tabla F.5: Caso de prueba para la creación de múltiples colecciones de Couchbase

Caso de Prueba 5
Nombre Crear múltiples colecciones de Couchbase

Entrada
bucket name: testbucket
data: {’name’: ’previous collection’}

Pre-condición Existe una colección previamente creada en el bucket

Resultado Esperado
Respuesta con código de estado HTTP 201
El cuerpo de la respuesta contiene la información de la colección creada
Ambas colecciones están creadas en el bucket

Tabla F.6: Caso de prueba para la creación de una colección de Couchbase en un scope personalizado

Caso de Prueba 6
Nombre Crear una colección de Couchbase en un scope personalizado

Entrada
bucket name: testbucket
data: {’name’: ’previous collection’, ’scope name’: ’non default’}

Pre-condición Existe un scope distinto a ’ default’

Resultado Esperado
Respuesta con código de estado HTTP 201
El cuerpo de la respuesta contiene la información de la colección creada
La colección se ha creado en el scope personalizado

47

Tabla F.7: Caso de prueba para el manejo del error al intentar crear una colección de Couchbase
que ya existe

Caso de Prueba 7
Nombre Crear una colección de Couchbase repetida

Entrada
bucket name: testbucket
data: {’name’: ’mycollection’}

Pre-condición Existe una colección previamente creada en el bucket con el mismo
nombre

Resultado Esperado
Respuesta con código de estado HTTP 409
El cuerpo de la respuesta contiene un mensaje de error indicando que
la colección ya existe
No se ha creado una nueva colección

Tabla F.8: Caso de prueba para el manejo del error al intentar crear una colección de Couchbase en
un scope que no existe

Caso de Prueba 8
Nombre Crear una colección de Couchbase en un scope que no existe

Entrada
bucket name: testbucket
data: {’name’: ’previous collection’, ’scope name’: ’non existing’}

Pre-condición No existe el scope en el bucket

Resultado Esperado
Respuesta con código de estado HTTP 404
El cuerpo de la respuesta contiene un mensaje de error indicando que
el scope no existe
No se ha creado el scope ni la colección

Tabla F.9: Caso de prueba para la creación de un topic de Kafka

Caso de Prueba 9
Nombre Crear un topic de Kafka
Entrada data: {topic name: mytopic}
Pre-condición El broker no tiene ningún topic

Resultado Esperado
Respuesta con código de estado HTTP 201
El cuerpo de la respuesta contiene la información del topic creado
El topic se ha creado en el broker

Tabla F.10: Caso de prueba para la creación de múltiples topics de Kafka

Caso de Prueba 10
Nombre Crear múltiples topics de Kafka
Entrada data: {topic name: new topic}
Pre-condición Existe un topic previamente creado en el broker

Resultado Esperado
Respuesta con código de estado HTTP 201
El cuerpo de la respuesta contiene la información del topic creado
Ambos topics están creadas en el broker

48

Tabla F.11: Caso de prueba para el manejo del error al intentar crear un topic de Kafka que ya existe

Caso de Prueba 11
Nombre Crear un topic de Kafka repetido
Entrada data: {topic name: existing topic}
Pre-condición Existe un topic previamente creado en el broker con el mismo nombre

Resultado Esperado
Respuesta con código de estado HTTP 409
El cuerpo de la respuesta contiene un mensaje de error indicando que
el topic ya existe
No se ha creado un nuevo topic

Tabla F.12: Caso de prueba para el manejo del error al intentar crear un topic de Kafka con una
cleanup policy inválida

Caso de Prueba 12
Nombre Crear un topic de Kafka con una cleanup policy inválida
Entrada data: {topic name: invalid topic, cleanup policy: [’invalid’]}
Pre-condición El broker no tiene ningún topic

Resultado Esperado
Respuesta con código de estado HTTP 400
El cuerpo de la respuesta contiene un mensaje de error indicando que
la cleanup policy es inválida
No se ha creado el topic

Tabla F.13: Caso de prueba para el manejo del error al intentar crear un topic de Kafka con un
message timestamp type inválido

Caso de Prueba 13
Nombre Crear un topic de Kafka con un message timestamp type inválido
Entrada data: {topic name: invalid topic, message timestamp type: ’invalid’}
Pre-condición El broker no tiene ningún topic

Resultado Esperado
Respuesta con código de estado HTTP 400
El cuerpo de la respuesta contiene un mensaje de error indicando que
el message timestamp type el inválido
No se ha creado el topic

Tabla F.14: Caso de prueba para la creación de un repositorio

Caso de Prueba 14
Nombre Crear un repositorio

Entrada
project key: testproj
data: {’name’: ’myrepository’}

Pre-condición El proyecto no tiene ningún repositorio

Resultado Esperado
Respuesta con código de estado HTTP 201
El cuerpo de la respuesta contiene la información del repositorio creado
El repositorio se ha creado en el proyecto

49

Tabla F.15: Caso de prueba para la creación de múltiples repositorios

Caso de Prueba 15
Nombre Crear múltiples repositorios

Entrada
project key: testproj
data: {’name’: ’new repository’}

Pre-condición Existe un repositorio previamente creado en el proyecto

Resultado Esperado
Respuesta con código de estado HTTP 201
El cuerpo de la respuesta contiene la información del nuevo repositorio
creado
Ambos repositorios están creados en el proyecto

Tabla F.16: Caso de prueba para el manejo del error al intentar crear un repositorio que ya existe

Caso de Prueba 16
Nombre Crear un repositorio repetido

Entrada
project key: testproj
data: {’name’: ’previous repository’}

Pre-condición Existe un repositorio previamente creado en el proyecto con el mismo
nombre

Resultado Esperado
Respuesta con código de estado HTTP 409
El cuerpo de la respuesta contiene un mensaje de error indicando que
el repositorio ya existe
No se ha creado un nuevo repositorio

Tabla F.17: Caso de prueba para el manejo del error al intentar crear un repositorio en un proyecto
que no existe

Caso de Prueba 17
Nombre Crear un repositorio en un proyecto que no existe

Entrada
project key: non existing
data: {’name’: ’my repository’}

Pre-condición No existe el proyecto

Resultado Esperado
Respuesta con código de estado HTTP 404
El cuerpo de la respuesta contiene un mensaje de error indicando que
el proyecto no existe
No se ha creado el proyecto ni el repositorio

50

Tabla F.18: Caso de prueba para la creación de una plantilla en un nuevo repositorio

Caso de Prueba 18
Nombre Crear una plantilla en un nuevo repositorio

Entrada
template type: agr
data: {’project key’: ’testproj’, ’name’: ’myrepository’}

Pre-condición No existe ningún repositorio

Resultado Esperado
Respuesta con código de estado HTTP 201
El cuerpo de la respuesta contiene la información de la plantilla creada
El repositorio se ha creado en el proyecto
La plantilla se ha subido a una rama del repositorio

Tabla F.19: Caso de prueba para la creación de una plantilla en un repositorio existente

Caso de Prueba 19
Nombre Crear una plantilla en un repositorio existente

Entrada
template type: agr
data: {’project key’: ’testproj’, ’name’: ’previous repository’}

Pre-condición No existe ningún repositorio

Resultado Esperado
Respuesta con código de estado HTTP 201
El cuerpo de la respuesta contiene la información de la plantilla creada
La plantilla se ha subido a una rama del repositorio

Tabla F.20: Caso de prueba para el manejo del error al intentar crear una plantilla no disponible

Caso de Prueba 20
Nombre Crear una platilla no disponible

Entrada
template type: ’no existing’
data: {’project key’: ’testproj’, ’name’: ’myrepository’}

Pre-condición No existe el proyecto

Resultado Esperado
Respuesta con código de estado HTTP 400
El cuerpo de la respuesta contiene un mensaje de error indicando que
la plantilla no existe
La plantilla no se ha subido a una rama del repositorio

Tabla F.21: Caso de prueba para la persistencia de los detalles cuando se realiza una operación

Caso de Prueba 21
Nombre Persistir la información cuando se realiza una operación
Entrada topic name: ’random’
Pre-condición Una base de datos sin ninguna operación

Resultado Esperado
La operación queda persistida en base de datos
El campo ’details’ del documento contiene la información del recurso
creado

51

Tabla F.22: Caso de prueba para la consulta de operaciones por identificador

Caso de Prueba 22
Nombre Consultar la información de una operación a partir de su identificador
Entrada id: 1
Pre-condición Una base de datos con una operación de identificador 1

Resultado Esperado
La operación es devuelta
El campo ’details’ del documento contiene la información del recurso
creado en la operación 1

Tabla F.23: Caso de prueba para consultar las últimas operaciones realizadas

Caso de Prueba 23
Nombre Consultar la información de las últimas operaciones realizadas
Entrada id: 1
Pre-condición Una base de datos con dos operaciones

Resultado Esperado
Devuelve dos operaciones
El campo ’details’ de ambas operaciones contiene la información de
su recurso correspondiente

Tabla F.24: Caso de prueba para la creación de un recurso a partir de una incidencia

Caso de Prueba 24
Nombre Crea un recurso mediante lenguaje natural

Entrada
T́ıtulo: ’Crear colección de mongo’
Descripción: ’Se solicita la creación de la colección testcollection en
mydatabase’
Estado: ’En progreso’

Pre-condición Un sistema sin recursos previamente creados

Resultado Esperado
Respuesta con código de estado HTTP 204
Se ha escrito un comentario en la incidencia informando de que la
operación ha sido realizada con éxito
La colección se ha creado correctamente

Tabla F.25: Caso de prueba para el manejo del error al intentar crear un recurso a partir de una
incidencia sin la información necesaria

Caso de Prueba 25
Nombre Crear un recurso mediante lenguaje natural sin la información necesaria

Entrada
T́ıtulo: ’Crear colección de mongo’
Descripción: ’Se solicita la creación de la colección testcollection’
Estado: ’En progreso’

Pre-condición Un sistema sin recursos previamente creados

Resultado Esperado
Respuesta con código de estado HTTP 400
El cuerpo de la respuesta contiene un mensaje de error indicando que
la información que falta
Se ha escrito un comentario en la incidencia informando de que la
operación no ha sido realizada

52

Tabla F.26: Caso de prueba para el manejo del error al intentar crear un recurso desconocido a partir
de una incidencia

Caso de Prueba 26
Nombre Crear un recurso desconocido mediante lenguaje natural

Entrada
T́ıtulo: ’Crear una tabla en postgresql’
Descripción: ’Se solicita la creación de la tabla testtable en la base de
datos mydatabase’
Estado: ’En progreso’

Pre-condición Un sistema sin recursos previamente creados

Resultado Esperado
Respuesta con código de estado HTTP 404
El cuerpo de la respuesta contiene un mensaje de error indicando que
el recurso solicitado no existe
Se ha escrito un comentario en la incidencia informando que la ope-
ración no ha sido realizada

Tabla F.27: Caso de prueba para comprobar que el aprovisionamiento no se inicia si la incidencia no
está en progreso

Caso de Prueba 27
Nombre Crear un recurso con una incidencia que no está en progreso

Entrada
T́ıtulo: ’Crear colección de mongo’
Descripción: ’Se solicita la creación de la colección testcollection en
mydatabase’
Estado: ’To Do’

Pre-condición Un sistema sin recursos previamente creados

Resultado Esperado
Respuesta con código de estado HTTP 204
No se ha realizado ninguna operación de aprovisionamiento

Tabla F.28: Caso de prueba para la detección de un creado de colección de MongoDB

Caso de Prueba 29
Nombre Infiere de una incidencia en lenguaje natural la creación de una colec-

ción de MongoDB

Entrada
T́ıtulo: ’Crear una colección de mongo’
Descripción: ’Crea la colección testcollection en mytestdatabase’

Pre-condición

Resultado Esperado
Infiere la creación de una colección de MongoDB
Detecta todos los parámetros proporcionados

53

Tabla F.29: Caso de prueba para la detección de un creado de colección de Couchbase

Caso de Prueba 29
Nombre Infiere de una incidencia en lenguaje natural la creación de una colec-

ción de Couchbase

Entrada
T́ıtulo: ’Crear una colección de couchbase’
Descripción: ’Crea la colección testcollection en mytestbucket’

Pre-condición

Resultado Esperado
Infiere la creación de una colección de Couchbase
Detecta todos los parámetros proporcionados

Tabla F.30: Caso de prueba para la detección de un creado de repositorio

Caso de Prueba 30
Nombre Infiere de una incidencia en lenguaje natural la creación de un reposi-

torio

Entrada
T́ıtulo: ’Crear repositorio’
Descripción: ’Crea el repositorio testrepository en testproj’

Pre-condición

Resultado Esperado
Infiere la creación de un repositorio
Detecta todos los parámetros proporcionados

Tabla F.31: Caso de prueba para la detección de un creado de topic de Kafka

Caso de Prueba 31
Nombre Infiere de una incidencia en lenguaje natural la creación de un topic

de Kafka

Entrada
T́ıtulo: ’Crear topic’
Descripción: ’Crea el topic testtopic de 12 particiones y politica delete’

Pre-condición

Resultado Esperado
Infiere la creación de un topic de Kafka
Detecta todos los parámetros proporcionados

Tabla F.32: Caso de prueba para la generación de una plantilla

Caso de Prueba 32
Nombre Infiere de una incidencia en lenguaje natural la generación de una

plantilla

Entrada
T́ıtulo: ’Crear microservicio testservice-agr’
Descripción: ’Genera la plantilla en testproj’

Resultado Esperado
Infiere la generación de una plantilla
Detecta todos los parámetros proporcionados

54

Tabla F.33: Caso de prueba para el manejo del error al detectar la creación de un recurso que no
existe

Caso de Prueba 33
Nombre Infiere de una incidencia en lenguaje natural que el recurso solicitado

no existe

Entrada
T́ıtulo: ’Crear tabla de postgreSQL’
Descripción: ’Crea la tabla testtable en mydatabase’

Pre-condición
Resultado Esperado Detecta que el recurso solicitado no existe

55

	Introducción
	Motivación
	Objetivo
	Alcance
	Estructura del documento

	Análisis
	Necesidades del sistema
	Requisitos funcionales y no funcionales
	Recomendaciones para la especificación de requisitos
	Diccionario de datos

	Diseño
	Arquitectura
	Arquitectura de Puertos y Adaptadores
	Justificación de la elección de la Arquitectura de Puertos y Adaptadores
	Arquitectura del sistema

	Modelo de datos
	Proceso de transformación de datos

	Interfaz e integración
	Interfaz del sistema
	Integración con herramientas de gestión

	Diseño de algoritmos
	Procesamiento de lenguaje natural

	Desarrollo
	Aplicación
	Procesamiento de lenguaje natural
	Integración con la herramienta de gestión

	Tecnologías utilizadas
	Aplicación
	Base de datos
	Gestión de contenedores
	Visualización
	Otras

	Pruebas
	Objetivo de las pruebas
	Estrategia de las pruebas
	Entorno de pruebas
	Resultado de las pruebas

	Conclusión
	Trabajo a futuro

	Referencias
	Apéndices
	Dedicación
	Instrucción para la detección de tareas
	Modelo de datos extendido
	Documentación de la API
	Entorno de Pruebas
	Casos de Prueba

