«2s Universidad
188 Zaragoza

Trabajo Fin de Grado

Automatizacion del aprovisionamiento de recursos en
proyectos de microservicios: Diseno e implementacion de un

MVP

Resource provisioning automation in microservices projects:
Design and implementation of an MVP

Autor

José Marin Diez

Director

Daniel Dominguez Guillén

Ponente

José Javier Merseguer Hernaiz

Escuela de Ingenieria y Arquitectura
2023

Repositorio de la Universidad de Zaragoza - Zaguan https://zaguan.unizar.es

https://zaguan.unizar.es

Resumen

En un sector caracterizado por su constante evolucién como el de las tecnologias de la informacién,
aparecen continuamente nuevas necesidades y desafios. Estos factores acarrean inevitablemente un
incremento significativo de la complejidad y el tamano de los sistemas software. En respuesta a esta
tendencia, determinados enfoques arquitecténicos, en particular los microservicios, adquieren cada
vez mas relevancia debido a su capacidad para establecer sistemas altamente escalables, mantenibles
y con un rendimiento superior.

Sin embargo, esta complejidad trae consigo requerimientos adicionales que exigen la implantacién
de procesos de gestion y desarrollo mas sofisticados. En este escenario, la combinaciéon de auto-
matizacién y desarrollo de software emerge como una estrategia imprescindible para alcanzar el
éxito.

Este trabajo se centra principalmente en la automatizaciéon de uno de los aspectos mas criticos en el
desarrollo de dichos sistemas. Concretamente, se presenta la creacién de una innovadora herramienta
destinada a operar como componente auxiliar en el ciclo de desarrollo de software, enfocandose en
la tarea particular de aprovisionamiento de recursos.

Los resultados derivados de la construccién de una primera version, orientada a cubrir las necesidades
basicas, presentan un gran potencial. Las pruebas iniciales evidencian una notable simplificacion del
proceso de gestion de recursos. Asimismo, este avance ha tenido un impacto positivo en el proceso
de desarrollo, provocando mejoras sustanciales en la eficiencia y validando la utilidad del sistema
desarrollado.

Indice general

1. Introduccion
1.1. Motivacidn
1.2. Objetivo
1.3. Alcance
1.4. Estructura del documento

2. Analisis
2.1. Necesidades del sistema
2.2. Requisitos funcionales y no funcionales L.
2.2.1. Recomendaciones para la especificacion de requisitos
2.2.2. Diccionariodedatos

3. Diseiio

3.1. Arquitectura
3.1.1. Arquitectura de Puertos y Adaptadores
3.1.2. Justificaciéon de la eleccién de la Arquitectura de Puertos y Adaptadores . . .
3.1.3. Arquitecturadel sistema L

3.2. Modelodedatos
3.2.1. Proceso de transformaciéon dedatos

3.3. Interfaz e integracién L
3.3.1. |Interfaz del sistema
3.3.2. Integracién con herramientas de gestién L

3.4. Disefo de algoritmos
3.4.1. Procesamiento de lenguaje naturalo

4. Desarrollo

4.1. Aplicacion
4.1.1. Procesamiento de lenguaje natural
4.1.2. Integracién con la herramienta de gestiéon

4.2. Tecnologias utilizadas
42.1. Aplicacion
422 Basededatos
4.2.3. Gestion de contenedores
4.2.4. Visualizacion
425, Otras

5. Pruebas

5.1. Objetivo de las pruebas

5.2. Estrategiadelas pruebas.

5.3. Entornode pruebas

11
12
15
15
16
17
17
19
19

20
20
20
21
22
23
24
24
24
25

6.

54. Resultadodelaspruebas

Conclusion

6.1. Trabajoafuturo

Referencias

A

A

B
C.
D

m

péndices
. Dedicacion
. Instruccion para la deteccion de tareas
Modelo de datos extendido
. Documentacién de la API
Entorno de Pruebas

Casos de Prueba

30
30

35
39
40
41
42
44
45

46

1 Introduccion

La automatizacién desempena un papel crucial durante el ciclo de vida del software, especialmente
en proyectos de microservicios [1, 2], donde debido a la propia naturaleza de la arquitectura, se
requiere la creacidn y gestion de un gran nimero de servicios. Esta automatizacién permite liberar a
los desarrolladores de tareas manuales y repetitivas, permitiéndoles enfocarse en tareas mas técnicas
y estratégicas, acelerando asi el proceso de desarrollo. Esto no solo ahorra tiempo y recursos, sino
que también reduce el riesgo de cometer errores humanos y mejora la calidad general del software.
Por ello, la automatizacién se convierte en un elemento clave para el éxito de los proyectos software.

1.1. Motivacion

Durante este Gltimo afio, como miembro del equipo encargado de la construccién de un nuevo
sistema para una de las grandes empresas del comercio electrénico de Espafia, he podido observar
la importancia de agilizar y automatizar diferentes tareas. Esta nueva solucidén permite a la empresa
realizar una migracién exitosa de su plataforma de comercio, evolucionando desde una arquitectura
monolitica hacia una basada en microservicios.

Dentro del proceso de desarrollo de arquitecturas de microservicios, se identifican una serie de
procesos mecanicos y repetitivos que no aportan valor al producto desde la perspectiva del negocio.
Sin embargo, esas tareas consumen tiempo y esfuerzo. La naturaleza modular y distribuida de los
microservicios son ideales para la automatizacién de diversos aspectos del desarrollo. Algunas de las
tareas candidatas para la automatizacién son:

= Despliegue y gestion de contenedores. Se refiere al proceso de empaquetar y desplegar nuevos
cambios en diferentes entornos.

= Generacion de cédigo base. Partiendo de plantillas predefinidas, es posible generar automati-
camente la estructura basica del cédigo para la creacién de nuevos microservicios.

= Pruebas y compilaciones. Mediante la automatizacién de las pruebas y compilaciones, cada vez
que se realiza un cambio, se puede garantizar la calidad del software a medida que evoluciona.

= Aprovisionamiento de recursos. La automatizacién puede encargarse del aprovisionamiento y
configuracién de los recursos necesarios, como bases de datos o sistemas de mensajeria.

1.2. Objetivo

El objetivo de este Trabajo Fin de Grado es abordar la creaciéon de un sistema de automatizacién
disefado para agilizar determinadas tareas del proceso de desarrollo de software. En particular, se
centra en la automatizacién de las tareas de aprovisionamiento de recursos de infraestructura y

generacion de codigo. Estas tareas especificas han sido seleccionadas debido a su nivel de adopcion
actual, que se encuentra menos avanzada en comparacion a otras, las cuales estan mas consolidadas.

Los potenciales beneficios e impactos derivados de esta solucidon son multiples. Se espera un incre-
mento notable en la eficiencia del equipo de desarrollo, asi como una reduccién significativa de los
errores humanos. Adicionalmente, se prevé una disminucion en los tiempos y demoras causadas por
la dependencia de terceros.

En resumen, el propdsito principal de este proyecto es reducir el tiempo dedicado a la realizacién
de tareas y procesos inherentes al ciclo de vida del software en el contexto del desarrollo de micro-
servicios. Al minimizar la dependencia de terceros y proporcionar al equipo una mayor fluidez, los
desarrolladores podran enfocarse en tareas de mayor complejidad, lo cual tendra un impacto positivo
en el resultado final del software.

1.3. Alcance

El alcance de este trabajo es el desarrollo de un Producto Minimo Viable de una herramienta
destinada a integrarse en el proceso de construccion de software. La meta es la creacién de un
software que permita el aprovisionamiento de recursos y la generacion de cddigo, con el fin de
automatizar y agilizar el proceso de desarrollo de proyectos de gran tamaio.

El producto se crea con las caracteristicas minimas para cumplir su propésito principal. Enfocandose
inicialmente en ofrecer una funcionalidad basica de aprovisionamiento de recursos. En el desarrollo
de microservicios se precisa de una amplia variedad de recursos, que pueden abarcar tanto elementos
de software como de infraestructura.

Este proyecto se enfoca en los recursos mas cominmente empleados, incluyendo la creacién y confi-
guracion de colecciones en bases de datos NoSQL, tanto en MongoDB [3] como en Couchbase [4].
También se contempla la creacién y configuracién de topics en Kafka [5], ademas de la creacién de
repositorios. Por Gltimo, también entra dentro del alcance del sistema la generacién de plantillas de
cédigo base para facilitar nuevos desarrollos.

Hay algunos conceptos y caracteristicas que, aunque se mencionan, por razones de tiempo, no
entran dentro del desarrollo del MVP. Por ejemplo, se menciona la implementacién de un médulo
de inteligencia artificial. Si bien este es un campo prometedor, se ha decidido no llevar a cabo esta
implementacion y apostar por la utilizacién de un modelo ya existente. Tampoco se lleva a cabo la
creacion de una interfaz grafica para el sistema. La elaboracién de estos componentes implica un
esfuerzo significativo que desvia la atencién de la funcionalidad central.

El sistema resultante de este trabajo es un software funcional probado en un entorno de desarrollo.
De acuerdo con la escala Technology Readiness Level (TRL) [6], que es una medida reconocida
para evaluar la madurez de una tecnologia, este sistema se encuentra entre los niveles 4 y 5. Esto
significa, que el software ha demostrado su capacidad para cumplir con los requisitos establecidos
en un entorno de laboratorio, aunque aun requiere pruebas adicionales en un entorno relevante para
alcanzar el nivel 5. Con este nivel de madurez el sistema ha superado las etapas iniciales de desarrollo
y permite extraer las primeras conclusiones.

La idea es poder validar rapidamente la utilidad de la herramienta y, a partir de la informacién
obtenida, mejorar su desarrollo para posibles futuras versiones.

1.4. Estructura del documento

En este documento, se aborda el desarrollo del sistema mencionado, comenzando con un anélisis de
las necesidades y requisitos del mismo. Se describe en detalle el disefio de la arquitectura propuesta,
su interfaz y su modelo de datos. A continuacién, se detalla el proceso de desarrollo del sistema,
incluyendo las tecnologias utilizadas. Posteriormente, se expone la metodologia y el plan de pruebas
realizado. Por Gltimo, se extraen algunas conclusiones y se proponen recomendaciones para futuros
desarrollos.

2 Analisis

Para garantizar el éxito de cualquier aplicacién software, es fundamental contar con una clara com-
prensién de las necesidades del sistema. En este capitulo, se exploran estas necesidades, se discuten
los elementos clave de unos buenos requisitos software y se presenta un listado detallado de requisitos
funcionales y no funcionales sobre los que se construye la herramienta.

Este analisis proporciona una serie de beneficios. En primer lugar, se establece una contrato que
define las funcionalidades y caracteristicas que el software debe tener. Esto evita malentendidos
futuros y asegura que todas las partes estan de acuerdo sobre lo que debe hacer la herramienta.

Ademas, al revisar los requisitos en una etapa temprana, antes de comenzar el disefio, se pueden
identificar y corregir omisiones, malentendidos e incoherencias, lo cual resulta mucho mas facil y
menos costoso que hacerlo en etapas avanzadas del ciclo de desarrollo, donde incluso el cambio mas
minimo puede implicar un rediseno completo.

2.1. Necesidades del sistema

El software debe satisfacer una serie de necesidades fundamentales para lograr los objetivos esta-
blecidos con su desarrollo. En primer lugar, se plantea la necesidad de contar con una interfaz
centralizada que funcione como punto de entrada para el aprovisionamiento de recursos en los
proyectos donde se integre. Esta interfaz tiene la responsabilidad de unificar la administracién de
multiples infraestructuras tecnoldgicas, las cuales son cominmente empleadas en la creacién de mi-
croservicios. Especificamente, la herramienta gestiona tecnologias de bases de datos, de mensajeria
y de colaboracién, lo que posibilita una gestion mas eficiente de estos recursos.

En linea con esto, se contempla la inclusién de bases de datos NoSQL, como MongoDB y Couch-
base, ampliamente utilizadas en arquitecturas de microservicios. La creacién de colecciones es algo
muy comun, ya que para reducir el acoplamiento entre servicios, es habitual seguir enfoques como
Database per service [7].

Ademas, se reconoce la relevancia de las plataformas de streaming, como Kafka, para mantener la
comunicacién entre microservicios. Crear topics en estas plataformas es esencial pero laborioso. Por
esta razén, la herramienta también asume la responsabilidad crear y configurar estos topics.

Los repositorios, como Github, Bitbucket o GitLab, son otros recursos esenciales para la colaboracion
y el desarrollo. Estas plataformas permiten llevar un control de versiones y facilitan la integraciéon y
entrega continua (CI/CD) [8]. La herramienta en cuestion asume, dado el nivel de complejidad en
la creacién y configuracién de repositorios, la responsabilidad de manejar este proceso.

En otro contexto, es esencial que la herramienta ofrezca una funcionalidad de generacién de cédigo
fuente. Esto implica que la herramienta de aprovisionamiento debe tener la capacidad de producir una
plantilla de cédigo base que sirva como punto de partida para el desarrollo de un nuevo microservicio.

Otra necesidad crucial es que el sistema sea de baja complejidad, simple en su disefio y funciona-
miento, que permita una facil adaptacién a cada proyecto. Una vez instalado, se pretende que el
software requiera de un mantenimiento minimo. Dado que se trata de una herramienta auxiliar, se
pretende minimizar el tiempo dedicado a su gestion. Esto permitirad evitar complicaciones y trabajo
adicional.

Por otro lado, se busca que el software sea independiente de la tecnologia y los recursos que
aprovisionara. Esto significa que debe poder integrarse sin problemas en variedad de proyectos que
usen diferentes tecnologias y proveedores. Esta independencia tecnoldgica permitird que el software
sea mas flexible y adaptable, facilitando su integracién en entornos tecnolégicamente heterogéneos.
Para ello, es necesario apostar por un sistema modular, que aisle en la medida de lo posible la légica
de negocio de la infraestructura.

Asimismo, es imprescindible que la herramienta sea intuitiva y accesible para todos los miembros
del proyecto, independientemente de sus conocimientos sobre infraestructura. Al reducir la barrera
de entrada, se fomentara la colaboracién y se podra liberar a parte del personal de algunas de las
tareas rutinarias.

Finalmente, para proporcionar una representacion visual de estas acciones, se presenta el diagrama de
casos de uso de la Figura 2.1. Este diagrama ilustra de manera clara y concisa las diversas funciones
y operaciones que estan a disposicion de los usuarios al utilizar la herramienta de aprovisionamiento.

Sistema de aprovisionamiento

Crear coleccion de
MongoDB

fe <<include==>
Crear coleccion de ..
Couchbase

=<include==

Y
Crear topic de) . .
——————— <<include»=-----3 Registrar operacicn
Kafka g pe
L7
B
<<include>>
Usuario Crear un repositorio

K
==include=>
; B
1
<<gxtend=:>

W

Generar una plantilla
de codigo

Consultar historico
de operaciones

Figura 2.1: Diagrama de Casos de Uso de la aplicacién

2.2. Requisitos funcionales y no funcionales

De acuerdo al IEEE Standard Glossary of Software Engineering Terminology [9], un requisito se
define de la siguiente manera:

1. Una condicién o capacidad que necesita un usuario para resolver un problema o alcanzar un
objetivo.

2. Condicién o capacidad que debe cumplir o poseer un sistema o componente del sistema para
satisfacer un contrato, norma, especificacion u otros documentos impuestos formalmente.

3. Una representacién documentada de una condicién o capacidad como en 1 o 2.

Los requisitos funcionales se enfocan en las funcionalidades y comportamientos especificos que
el sistema debe ofrecer, mientras que los requisitos no funcionales definen caracteristicas y res-
tricciones del sistema relacionadas con la disponibilidad, mantenibilidad, fiabilidad, escalabilidad,
etc.

Con base en la identificacién de necesidades realizada en la Seccién 2.1, se ha elaborado un listado
de los principales requisitos funcionales y no funcionales que serviran como guia para el desarrollo
del sistema. Estos requisitos se presentan en las Tablas 2.1 y 2.2, respectivamente.

2.2.1. Recomendaciones para la especificacion de requisitos

El IEEE Recommended Practice for Software Requirements Specifications [10] establece un conjunto
de practicas recomendadas para redactar especificaciones de requisitos de software. Esta practica
recomendada tiene por objeto describir el contenido y cualidades de una buena especificacién de
requisitos de software (SRS).

Segln estas recomendaciones, una buena SRS debe cumplir lo siguiente:

1. Debe definir correctamente todos los requisitos del software. Un requisito de software puede
existir debido a la naturaleza de la tarea que debe resolverse o debido a una caracteristica
especial del proyecto.

2. No debe describir ningin detalle de disefio o implementacién. Estos deben describirse en la
fase de diseno del proyecto.

3. No debe imponer restricciones que no estén justificadas por los requisitos del software.
Ademas, una SRS debe cumplir con las siguientes caracteristicas:
= Correcta: El software cumple todos los requisitos que en ella se establecen.

= Sin ambigiiedades: Cada requisito debe tener una (nica interpretacion y se deben evitar
términos ambiguos.

= Completa: La SRS debe incluir todos los requisitos significativos, ya sean relativos a la
funcionalidad, el rendimiento o las restricciones de disefio.

= Consistente: No debe haber conflictos entre los requisitos dentro de la SRS.

= Verificable: Debe ser posible verificar si el software cumple con cada requisito. No se pueden
verificar afirmaciones como "funciona bien”, ya que es imposible definir los términos "bueno.°
"bien".

Tabla 2.1: Requisitos funcionales del sistema

Cadigo Descripcion

RF-1 El sistema debe permitir la creacién de colecciones de MongoDB.

RF-2 El sistema debe permitir la creacién de colecciones de Couchbase.

RF-3 El sistema debe permitir la creacién de topics de Kafka.

RF-4 El sistema debe permitir la creacién de repositorios.

RF-5 El sistema debe permitir afadir una plantilla de cédigo a un repositorio.

RF-6 El sistema debe crear un nuevo repositorio cuando el usuario solicita
anadir una plantilla a un repositorio que no existe.

RF-7 El sistema debe crear una rama en el repositorio con el cédigo de la
plantilla al anadirla.

RF-8 El sistema debe permitir al usuario afiadir diferentes plantillas de codi-
go personalizados al sistema.

RF-9 El sistema debe admitir la configuracién por parte del usuario de los
recursos a crear. Se debe proporcionar una interfaz para que el usuario
ingrese y establezca los valores de configuraciéon pertinentes durante
la creacién de los recursos.

RF-10 El sistema debe aplicar valores predeterminados para los parametros no
especificados por parte del usuario durante la creacién de los recursos.

RF-11 El sistema debe almacenar un registro de todas las operaciones realiza-
das, incluyendo informacién como la fecha, hora y detalles especificos
de cada accién. Los registros deben ser almacenados en una base de
datos designada para tal fin.

RF-12 El sistema debe permitir la consulta de las operaciones realizadas.

RF-13 El sistema debe exponer los servicios de creaciéon de recursos a través
de una API REST para facilitar la creacién de una interfaz gréafica.

RF-14 El sistema debe suministrar una documentacién de la API para facilitar
la utilizacion del sistema.

RF-15 El sistema debe ser capaz de interpretar instrucciones en lenguaje na-
tural para crear recursos, identificando los detalles asociados a dichos
recursos.

RF-16 El sistema debe ofrecer una funcionalidad de integracidon que permita a
las aplicaciones de gestion solicitar el aprovisionamiento de un recurso.

Tabla 2.2: Requisitos no funcionales del sistema.

Cadigo Descripcion

RNF-1 La API debe seguir la especificacion y estandares de OpenAPI supe-
riores a la versién 3.0.0

RNF-2 La documentacién de la APl debe proporcionar una descripcién de
todos los endpoints, asi como los formatos de solicitud y de respuesta.

RNF-3 Los registros de operaciones deben conservarse durante al menos 3
meses y ser accesibles para fines de auditoria.

RNF-4 El sistema debe poder ser desplegado en cualquier plataforma que
admita Docker.

RNF-5 El sistema requiere acceso a internet para su funcionamiento normal

y para interactuar con servicios externos.

= Modificable: La estructura y el estilo del SRS deben permitir cambios faciles y consistentes
en los requisitos.

2.2.2. Diccionario de datos

Coleccion Es un grupo de documentos relacionados que comparten una estructura comun. Los
documentos son registros individuales que almacenan datos en un formato semiestructurado. Las
colecciones son anélogas a las tablas de las bases de datos relacionales [11] [12].

Topic Es un canal para almacenar y publicar un flujo de datos, donde los productores envian
mensajes y los consumidores los reciben, permitiendo la transmisién de informacién en tiempo real.

Repositorio Es un espacio centralizado donde se almacena, comparte y gestiona el cédigo fuente
de un proyecto de software.

Plantilla de cédigo Es un conjunto predisefado de componentes de cédigo fuente que sigue un
modelo comin. Proporciona una estructura inicial y predefinida que los desarrolladores pueden seguir
y evitar comenzar desde cero el desarrollo al crear nuevos microservicios.

3 Diseno

En este capitulo, se introduce la arquitectura de Puertos y Adaptadores como enfoque central del
disefio. Posteriormente, se detalla su aplicacién en la creacidon de un sistema adaptable a diferentes
tecnologias y entornos. Asimismo, se proporciona una descripcién del modelo de datos, junto con
el proceso de conversion entre sus mdltiples representaciones. Ademas, se aborda la interfaz del
sistema y su integracion con herramientas de gestion. Por ltimo, se introduce la incorporacion de
un componente de procesamiento de lenguaje natural.

3.1. Arquitectura

3.1.1. Arquitectura de Puertos y Adaptadores

La arquitectura de puertos y adaptadores es un enfoque que destaca por la construccién de sistemas
altamente adaptables a diferentes tecnologias y entornos. Para lograr este propodsito, la solucion
esta en la separacion entre la l6gica de negocio y el cédigo encargado de interactuar con servicios
externos e infraestructura.

Dicha arquitectura (véase Figura 3.1) identifica explicitamente tres bloques fundamentales en un
sistema [13]:

= La interfaz de usuario, que permite la interaccién con el sistema.

= El ndcleo de la aplicacion, que utiliza la interfaz de usuario para ejecutar la légica de negocio
y hacer que las cosas realmente sucedan.

= El cédigo de infraestructura, cuya funcién es conectar el nicleo de la aplicacion con sistemas
externos, como bases de datos, motores de blsqueda o servicios de terceros mediante APls.

El elemento esencial de esta arquitectura es el nicleo de la aplicacién. Es el cédigo que permite
al sistema cumplir con su propésito. Aunque puedan ser utilizadas diferentes interfaces de usuario
(GUI, CLI, API, etc) y diferente infraestructura (SQL, NoSQL, SMS, Email, etc), el cédigo que
realmente realiza las tareas es el mismo y se encuentra en el nicleo de la aplicacion.

Puertos

En una arquitectura de puertos y adaptadores, los puertos son los puntos de entrada y salida que
permiten a la aplicacién comunicarse con sistemas externos. Son las interfaces a través de las cuales
el nicleo de la aplicacion interactia con el exterior. Estos puertos se disefian de manera ajena a la
tecnologia utilizada por los sistemas externos, permitiendo a la aplicacién ser utilizada por dichos
sistemas, sin depender de sus detalles técnicos.

Application Core

User Interface ' Infrastructure

Figura 3.1: Bloques de la arquitectura de puertos y adaptadores

Adaptadores

Los adaptadores son componentes que facilitan la comunicacién entre la aplicacién y los sistemas
externos [14]. Su tarea es adaptar las solicitudes y datos recibidos desde sistemas externos al formato
interno del nicleo, y viceversa, convirtiendo las respuestas generadas por el nicleo de la aplicacion al
formato esperado por los sistemas externos. De esta manera, los adaptadores permiten a la aplicacion
comunicarse de manera transparente con distintos sistemas.

Existen dos tipos de adaptadores: los Adaptadores Primarios, que le dicen a la aplicaciéon que haga
algo, y los Adaptadores Secundarios, que son invocados por la aplicacién para hacer algo.

Los Adaptadores Primarios (ver Figura 3.2) actiian como envoltorios alrededor de un puerto,
utilizando dicho puerto para comunicar al nicleo de la aplicacién qué acciones debe realizar. En
esencia, transforman solicitudes provenientes de mecanismos de entrada en llamadas a métodos del
nicleo de la aplicacion.

Un ejemplo es una aplicaciéon que necesita recibir peticiones externas de dos opciones: mediante
una APl REST y mediante linea de comandos (CLI). Para ambas opciones, se crea un adaptador
especifico para recibir y procesar los datos entrantes.

En el caso de la comunicacién a través de una APl REST, el adaptador sera el encargado de recibir
las solicitudes HT TP provenientes de la API, interpretar los datos y convertirlos en llamadas a los
métodos correspondientes del nicleo de la aplicacién.

Por otro lado, para la conexion mediante CLI, el adaptador sera el responsable de recibir las ins-
trucciones desde la interfaz de linea de comandos, interpretar los datos y pasarlos al ntcleo de la
aplicaciéon mediante llamadas a los métodos adecuados. De esta forma, la aplicacién podra recibir y
procesar tanto solicitudes de la APl REST como de la CLI, permitiendo una comunicacién versatil
con el nicleo de la aplicacion.

En cambio, los Adaptadores Secundarios (ver Figura 3.3) no envuelven un puerto, sino que
implementan una interfaz especifica (puerto) que luego es utilizada por el nicleo de la aplicacién
para interactuar con servicios o tecnologias externas.

Por ejemplo, dada la necesidad de una aplicacién de persistir datos, se crea una interfaz que satisfaga

10

Primary/Driving Adapters

HTFP Command
Query BUS

Queue
(ie. Rabbitn)

f

:

i
- W

i

; SMs
CEsC -

: Web server

i Matling

Server

o

Application Core

PRD

DB
(ie- MySQL)

.
(Ff Y,] —
& H TST
(5)& [)
oy

User Interface ¢ Infrastructure

Understand all of this, H
but use only what you need { www.herbertograca.com

Figura 3.2: Adaptadores Primarios en la arquitectura de puertos y adaptadores

las necesidades. Con métodos, por ejemplo, para guardar y borrar datos. A partir de ahi, siempre
que la aplicacién requiera guardar o eliminar datos, serd necesario un adaptador que implemente la
interfaz de persistencia previamente definida.

Si se quiere persistir los datos en una base de datos PostgreSQL, entonces, habrd que crear un
adaptador especifico para PostgreSQL que implemente la interfaz de persistencia y contenga los
métodos necesarios para guardar y eliminar filas en una tabla.

Por otro lado, si se opta por utilizar otro tipo de sistema de base de datos, como MongoDB (un
sistema NoSQL), bastaria con crear un nuevo adaptador que implemente |a interfaz de persistencia y
esté disenado especificamente para trabajar con MongoDB, incluyendo los métodos necesarios para
guardar y eliminar documentos en una coleccion.

En resumen, los puertos son interfaces que definen la forma en que el ndcleo del sistema interactia
con el exterior, mientras que los adaptadores implementan dichas interfaces para conectarse con
tecnologias concretas. Esta modularidad y desacoplamiento permite al sistema adaptarse a diferentes
tecnologias y servicios sin necesidad de modificar el ndcleo del mismo.

Esta arquitectura resulta especialmente beneficiosa cuando se busca adaptar el sistema a mudltiples
entornos o cuando se prevén cambios frecuentes debido a requisitos cambiantes o nuevas tecnologias.

3.1.2. Justificacion de la eleccion de la Arquitectura de Puertos y Adap-
tadores

La decision de aplicar esta arquitectura estd motivada por las necesidades identificadas en la Sec-
cion 2.1. La arquitectura de puertos y adaptadores ofrece una serie de beneficios que la hacen
especialmente apropiada para el contexto de la herramienta que se busca crear.

En primer lugar, proporciona una interfaz centralizada a través de los puertos, que actiian como
puntos de entrada y salida del sistema. Esto permite gestionar toda la infraestructura tecnoldgica
desde un unico lugar, lo que facilita el control y el aprovisionamiento de recursos.

11

Primary/Driving Adapters f Secondary/Driven Adapters

: s e e | :
i {C/IQBUS @ '—@——1 "0
bty e e | Cndapterf&TL_B Py L Qe B !
5 & Query BUS ® vt
: e : Buoncus | +Adepterd
. iy Adapter
© i d P
i
i I SMS
: ’ Server
: Web server
i 3 H Mailing
© Email | B
II : Adapter |
: Search Engine
l (ie. Elasticsearc! h)
—

cu i

Application Core : Adapter:

@ o : -
2 | o
P : : Adapter :

User Interface i Infrastructure

Understand all of this, [
but use only what you need ! www.herbertograca.com

Figura 3.3: Adaptadores Secundarios en la arquitectura de puertos y adaptadores

Gracias a la separacién de la légica de negocio del resto de componentes, se consigue aislar y
proteger el nlcleo del sistema de las dependencias externas y la infraestructura. De igual manera,
los adaptadores permiten a la aplicacién funcionar con diferentes tecnologias, al tiempo que
se mantienen desacoplados los detalles de implementacién del aprovisionamiento de recursos. Esta
caracteristica permite a la aplicacion integrarse facilmente en diversos proyectos con proveedores y
tecnologias heterogéneas sin requerir cambios significativos en su ntcleo.

Ademas, la arquitectura ayuda a alcanzar el objetivo de desarrollar un sistema mantenible y
extensible. Al dividir el sistema en capas bien definidas y con responsabilidades especificas, y
desacoplarlo de los componentes externos, se facilita la modificaciéon o reemplazo de estos ultimos
sin afectar al ntcleo de la aplicacidn, facilitando el mantenimiento y minimizando el impacto derivado
de futuras modificaciones. Esto también facilita las pruebas del sistema.

En resumen, la arquitectura de puertos y adaptadores responde adecuadamente a las necesidades del
sistema que se pretende desarrollar. Su capacidad para adaptarse a diferentes tecnologias y entornos,
para proporcionar una interfaz centralizada y para dotar a la aplicacién de un facil mantenimiento, la
convierten en una solucién 6ptima para la herramienta de automatizacién de recursos en proyectos
de microservicios.

3.1.3. Arquitectura del sistema

Siguiendo los conceptos y pautas descritas en la seccién anterior, se ha disenado la estructura de la
aplicacién. Este disefno, basado en la arquitectura de puertos y adaptadores, potencia la adaptabilidad
y la independencia tecnoldgica, aspectos fundamentales del sistema.

El diseno y la estructuracion de la arquitectura tienen como objetivo principal cumplir con los
requisitos y las necesidades identificadas del proyecto. La Figura 3.4 ilustra cémo se han materializado
los conceptos en términos de la arquitectura.

A continuacién, se presenta como cada adaptador se relaciona con un puerto de entrada o salida y
facilita la comunicacién entre el ntcleo y el entorno externo.

12

—>| IPersistance P ETTE
Adapter
Mongo IMongoCollection Bitbucket
Controller Service]] (Cobcbas Adapter
Couchbase CouchbaseCollection 3 Kafka
Controller Service 1 s Adapter
Kafka IKafkaCollection ChatGPT
Controller Service M] UEEET Adapter
Repositories IReposi{orfes BUSSINESS LOGIC ICouchbase Couchbase
Controller Service Adapter
OperationQuery |OperationQuery Mongo
Controller Service] itz Adapter
Templates ITemplates | . INotification Jira
Controller Service Adapter
Jira IResourceService] N IEilesystem Filesystem
Controller Factory Y Adapter
— IGit ——— oit
Adapter

Figura 3.4: Diagrama de la arquitectura basada en puertos y adaptadores

Adaptadores primarios y puertos de entrada

Los adaptadores primarios cumplen con la funcién de permitir la interaccion con la interfaz de usuario
y convertir las solicitudes en llamadas al nicleo de la aplicacién definidas por los puertos de entrada.
A continuacién, se presenta la lista de adaptadores primarios junto con sus respectivos puertos de

entrada:

= Adaptadores APl REST: Estos adaptadores reciben las solicitudes provenientes de la API
REST vy las traducen en objetos y llamadas a métodos especificos del niicleo para ejecutar las
operaciones correspondientes.

MongoController: Sirve como punto de entrada para operaciones relacionadas con Mon-
goDB. Actlia como intermediario para la creacién de colecciones, adaptando las opera-
ciones definidas por el puerto IMongoCollectionService.

CouchbaseController: Gestiona solicitudes asociadas a Couchbase. Hace posible la crea-
cién de colecciones, funcionando como enlace a través del puerto de entrada /Couchba-
seCollectionService.

KafkaController: Facilita operaciones en el broker de Kafka. Encapsula la creacién de
topics mediante el uso del puerto de entrada /KafkaTopicService.

RepositoriesController: Maneja solicitudes que implican operaciones en repositorios ex-
ternos, como Bitbucket. Facilita la creacién de repositorios a través del puerto de entrada
IRepositoriesService.

TemplatesController: Transforma las solicitudes para la generacién de cédigo fuente me-
diante el uso del puerto de entrada /TemplatesService.

13

OperationQueryController: Se enfoca en consultas a la base de datos de la aplicacion.
Facilita las acciones de bisqueda de operaciones a través del puerto de entrada /Opera-
tionQueryService.

= Adaptador Webhook: Permite la integracién del sistema con aplicaciones de gestion al
transformar los datos recibidos por Webhooks en acciones entendibles por el nicleo de la
aplicacién. Se explica con mas detalle en la Seccién 3.3.2.

JiraController: Utilizado para la interaccién con Jira. Traduce las peticiones realizadas
por Jira en operaciones que la aplicacién puede procesar. Facilita la creacién de recursos
a través de llamadas a los métodos definidos por el puerto de entrada /ResourceService-
Factory.

Adaptadores secundarios y puertos de salida

Los adaptadores secundarios son responsables de interactuar con la infraestructura y sistemas ex-
ternos. A continuacién, se presentan los adaptadores secundarios y los puertos de salida que imple-

mentan:

= Adaptadores de base de datos:

PersistanceAdapter: Administra la persistencia de los datos de la aplicacion. Transforma
las operaciones definidas por /Persistance en acciones compatibles con la API especifica
del sistema de bases de datos utilizado.

= Adaptadores de sistemas externos:

BitbucketAdapter: Se encarga de la comunicacién con el sistema de control de versiones.
Traduce las operaciones definidas en la aplicacién a llamadas compatibles con la API de
Bitbucket, a través del puerto de salida /Repository.

KafkaAdapter: Posibilita la comunicacién con Kafka. Transforma las operaciones defini-
das en el puerto /Kafka en acciones ejecutables mediante la APl de Kafka.

ChatGPTAdapter: Facilita la comunicacién con ChatGPT. Convierte las solicitudes y
respuestas definidas en el puerto /ChatGPT en llamadas que la APl de OpenAl puede
entender.

CouchbaseAdapter: Encargado de interactuar con Couchbase. Adapta las operaciones
del puerto de salida /Couchbase a la APl de Couchbase.

MongoAdapter: Simplifica la comunicacién con MongoDB. Adapta las operaciones del
puerto IMongo a la APl de MongoDB.

JiraAdapter: Permite la interaccion del sistema con la API de Jira.

FilesystemAdapter: Gestiona el sistema de ficheros, permitiendo a la aplicacién inter-
actuar con él. Traduce las operaciones definidas en /FileSystem a llamadas al sistema
operativo.

GitAdapter: Ajusta las operaciones de /Git para trabajar con el sistema de control de
versiones Git. Traduce las operaciones en comandos comprensibles por Git.

14

Flujo de ejecucion

El proceso de ejecucion de la aplicacién sigue el camino que se detalla en la Seccién 3.1.1. Cuando
un usuario interactia con la interfaz de usuario, esta acciéon genera una solicitud que se dirige al
sistema. Esta solicitud se canaliza a través de un adaptador primario, el cual a su vez llama al nicleo
de la aplicacion. En el nicleo se llevan a cabo las operaciones de aprovisionamiento. Para hacer esto,
el nicleo se comunica con los adaptadores secundarios que a su vez establecen interacciones con la
base de datos de la aplicacién y con diversos componentes de infraestructura externos (MongoDB,
Couchbase, Kafka, etc.). Una vez se completa la operacion, el resultado se devuelve a través de
los mismos adaptadores, pasando nuevamente por el nicleo y finalmente presentandose al usuario a
través de la interfaz de usuario.

3.2. Modelo de datos

El modelo de datos de una aplicacién se refiere a la representacion estructurada de la informa-
cion que maneja y procesa. Para esta aplicacién, como se detalla en el diagrama del Apéndice C, se
opta por continuar con un enfoque modular al dividir el modelo de datos en tres representaciones
distintas: el modelo de datos interno, el modelo de datos de la base de datos y el modelo de datos
de transferencia. Cada uno de estos modelos desempena un papel especifico en el funcionamiento
de la aplicacién.

El modelo de datos interno, se encuentra en el nicleo de la aplicacién. Este modelo define
las entidades clave de la légica de negocio, sus reglas de validacién y otros elementos que rigen
la aplicacion. El modelo de datos interno es independiente de las tecnologias de almacenamiento y
presentacion, lo que garantiza que la légica de negocio no se vea comprometida por cambios externos
al nicleo de la aplicacion.

El modelo de datos de la base de datos representa la estructura para el almacenamiento y
consulta de datos de la aplicacién. Este modelo se basa en el modelo de datos interno, pero esta
disefado y optimizado para satisfacer las necesidades de persistencia y recuperacién en la base de
datos. La separacién entre el modelo de datos de la base de datos y el modelo de datos interno aisla
la 16gica de negocio de la tecnologia de la base de datos (Relacional, NoSQL, Grafo).

El modelo de datos de transferencia, actiia como puente entre los sistemas externos y el nicleo
de la aplicacion. Los DTOs (Data Transfer Objects) encapsulan y transmiten la informacién necesaria
para realizar las operaciones, evitando asi la transferencia innecesaria de datos, ademas de la expo-
sicion directa del modelo interno. La utilizacion de DTOs también facilita la adaptaciéon a cambios
en los requisitos de presentacion sin afectar la légica del negocio en el nicleo de la aplicacion.

3.2.1. Proceso de transformacion de datos

La comunicacién entre distintos bloques se logra mediante el uso de adaptadores y mappers. Cada
adaptador de la aplicacidn, se encarga de convertir los datos del modelo especifico de su tecnologia
al modelo de datos interno del nicleo, y viceversa [15].

El proceso de transformaciéon comienza cuando los datos llegan a la capa de presentacion. Estos
datos se representan utilizando un modelo de datos de transferencia (DTOs). Luego, los adaptadores
de la capa de presentacién, mediante el uso de mappers, transforman los DTOs al modelo de datos
interno. Una vez que los datos son procesados en el nicleo de la aplicacion, los adaptadores realizan
la transformacion inversa: emplean mappers para convertir los datos desde el modelo de datos interno

15

en DTOs de respuesta. De manera similar, los adaptadores de la capa de infraestructura gestionan
la transformacién entre el modelo de datos interno y el modelo requerido para llevar a cabo sus
operaciones.

Por ejemplo, para el caso en el que la aplicacion recibe una solicitud HTTP a través de la APl REST.
Los datos de esta solicitud necesitan ser traducidos de JSON a objetos de dominio comprensibles
para la légica de la aplicacién. Cuando la aplicacién necesita responder a esta solicitud, los objetos
de dominio se convierten nuevamente a formato JSON. De manera anéloga, cuando la aplicacién
necesita almacenar datos en base de datos, los objetos de dominio se transforman en los modelos
adecuados, como colecciones para bases de datos NoSQL o tablas para bases de datos SQL. Esto
también aplica en sentido inverso para las operaciones de consulta en la base de datos.

El siguiente diagrama (Figura 3.5) ilustra como interactdan y se relacionan las tres representaciones
del modelo de datos en la aplicacion.

/ Modelo de datos de transferencia \
Entrada / Modelo de datos interno \

Mongo Karka H
Collectionln Topicin | Mongo .
i ‘ Collection Ratalont:

H One way

i Do —

Repaositoryln ‘ i mapping e D Fenosiion Modelo de datos de
: Collection P 4 la base de datos

JiraWebhook “_;“;: ;\(:; Operation
' ‘ Templateln ‘ ‘ travveohoo ‘ | Document
: Event '

i / Template

| i : One way
| OperationOut OperationUri * [mapping \ /

Figura 3.5: Modelo de datos: Interaccién entre modelo interno, de la base de datos y de transferencia

Couchbase
Collectionln

3.3. Interfaz e integracion

En cualquier aplicacion software, la interfaz desempeiia un papel fundamental al ser el medio a
través del cual los usuarios y otros sistemas se comunican con ella. La funcién de las interfaces es
facilitar la interaccion del usuario, mejorar su experiencia y permitir la conexién con otros sistemas.
En definitiva, potenciar la utilizacion del sistema.

Existen diversos tipos de interfaces, cada uno con un propésito especifico. Dentro de este proyecto,
se distinguen dos tipos de interfaces: la interfaz del sistema y la interfaz de usuario.

La interfaz del sistema es el canal a partir del cual la aplicacién permite a otros sistemas comu-
nicarse y colaborar con ella. Para este proyecto, la interfaz del sistema se presenta como una API

REST.

Por otro lado, la interfaz de usuario permite a los usuarios finales interactuar con el software de
manera visual e intuitiva. En este caso, en lugar de desarrollar una interfaz grafica propia, se ha
decidido apostar por la integraciéon con herramientas ya existentes.

16

3.3.1. Interfaz del sistema

La APl REST permite la ejecucién de operaciones a través de una serie de endpoints. Cada uno
de estos endpoint se corresponde con una funcionalidad especifica del sistema y esta disenado para
recibir y enviar datos en formato JSON.

Cumpliendo con el requisito RF-14, para facilitar la comprensién, se provee una documentacion
técnica junto con la APl REST. Esta documentacién se encuentra en formato OpenAPI e incluye
la descripcién de todos los endpoints, asi como los formatos de solicitud y de respuesta. Ademas,
mediante el uso de tecnologias como Swagger, es posible generar una interfaz web que permite
visualizar e incluso probar la APl REST (véase Apéndice D).

A continuacién, se presenta un breve resumen de los endpoints de la aplicacién para el aprovisiona-
miento de recursos:

= POST /resources/mongo/databases/{database_name}: Crea una coleccién en una base
de datos MongoDB.

» POST /resources/kafka/topics/: Crea un topic en un broker de Apache Kafka.

= POST /resources/couchbase/buckets/{bucket_name}: Crea una coleccién en un bucket
de Couchbase.

= POST /resources/repositories/projects/{project_key}: Crea un repositorio remoto en
un proyecto especifico.

= POST /resources/templates/{template_type}: Genera una plantilla especifica y/o la car-
ga en un repositorio remoto.

» GET /operations/: Obtiene una lista de operaciones realizadas por el sistema
» GET /operations/{operation_id}: Obtiene los detalles de una operacién concreta.

En resumen, la APl REST permite a otras aplicaciones y servicios aprovechar las capacidades del
sistema desarrollado, permitiendo la creacién de soluciones personalizadas que se adapten a las
necesidades especificas de los proyectos y organizaciones.

3.3.2. Integracion con herramientas de gestion

En el ambito de los proyectos de software, especialmente en aquellos de envergadura considerable,
surge un gran desafio: su gestion. Para asegurar el éxito de estos proyectos, es una practica comin
recurrir a herramientas de gestion especializadas. Estas herramientas facilitan la planificacién de
tareas, el seguimiento de los avances y la gestion de incidencias en todas las etapas del ciclo de
desarrollo.

Conforme al requisito funcional RF-16, resulta esencial que el sistema de aprovisionamiento de
recursos pueda integrarse con estas herramientas de gestién. En la linea con esto, en lugar de crear
una interfaz grafica de cero, se opta por la integracién con herramientas ampliamente reconocidas
en el ambito de proyectos de software, como GitHub Projects, GitLab Projects, Trello o Jira. Esta
decision se fundamenta en la idea de que los equipos de desarrollo ya estan familiarizados con estas
plataformas y las utilizan de manera regular para gestionar sus proyectos.

El propdsito de esta integracion es simplificar la experiencia de los usuarios finales. De esta manera,
se evita que los equipos de desarrollo tengan que aprender a usar una nueva herramienta, ya que
el sistema se convierte en una extensiéon del entorno de trabajo que usan habitualmente. Esta

17

estrategia no solo reduce la curva de aprendizaje, sino que también elimina la necesidad de alternar
entre diferentes interfaces, lo cual mejora la eficiencia y la productividad.

Aunque existen diversas herramientas disponibles en el mercado, todas comparten similitudes en
cuanto a su integracion con servicios externos. Estas herramientas principalmente ofrecen dos méto-
dos de comunicacién y colaboracién con otros sistemas:

1. REST APIs: Permiten la interaccién con la plataforma de manera programatica. A través
de estas APls, es posible consultar, crear, actualizar y administrar tareas. Esto habilita a
aplicaciones externas a comunicarse con la aplicacién de gestion.

2. Webhooks: Son notificaciones autométicas enviadas desde la plataforma de gestion a una
URL especifica en respuesta a eventos predefinidos, como la creacién o modificacién de una
tarea. Los Webhooks permiten a aplicaciones externas recibir informacioén en tiempo real desde
la plataforma de gestion.

Estos dos mecanismos posibilitan una comunicacién bidireccional entre la plataforma de gestién y el
sistema de aprovisionamiento de recursos, garantizando que ambos sistemas puedan colaborar para
cumplir con el objetivo.

El diagrama de secuencia de la Figura 3.6 ilustra como este enfoque permite que la aplicacién de
gestién active notificaciones ante eventos especificos, desencadenando las acciones correspondientes
en el sistema de aprovisionamiento. Luego, el sistema informa sobre los resultados de la operacién,
manteniendo una trazabilidad de las operaciones.

Aplicacion de Sistema de
gestidn aprovisionamiento

Crea una tarea de
tipo 'Resource’

Cambia el estado de la

tarea a "En Progreso” Notifica al sistema y envia

la informacion de la tarea

e L Procesa la informacion y
aprovisiona el recurso

alt

. Informa con un comentario
[if exito] del éxito

A

Informa con un comentario

[else]
del error

F ¥

Figura 3.6: Diagrama de Secuencia: Creacion y aprovisionamiento de un recurso a través de una
aplicacién de gestion

18

3.4. Diseino de algoritmos

3.4.1. Procesamiento de lenguaje natural

En la fase de andlisis se identifica una necesidad relacionada con la accesibilidad de la herramienta.
Con el propésito de reducir su complejidad y fomentar su uso por todo tipo de usuarios, se refleja el
requisito funcional RF-15 (ver Tabla 2.1), que establece la capacidad del sistema para interpretar
instrucciones en lenguaje natural.

Para abordar el desafio de hacer la comunicacidon con la aplicacion mas sencilla, y accesible, se
opta por incorporar inteligencia artificial a la solucién. La funcién de esta IA es agregar una capa
adicional al sistema, transformando instrucciones en lenguaje natural (sin estructura) en un formato
estructurado (JSON), que la aplicacién pudiera comprender y procesar de manera efectiva.

ChatGPT

Instruccion en lenguaje
natural

4
.| Instruccién en lenguaje Procesamiento de la Aprovisionamiento del
> - X

estructurado (JSON) informacion recurso

Figura 3.7: Proceso de transformacién de instrucciones

Dado que el desarrollo completo de un sistema de inteligencia artificial esta fuera del alcance de
este proyecto, se decide utilizar un modelo existente: GPT-3.5-Turbo de OpenAl. Esta tecnologia
ha demostrado ser una opcién sélida para tareas de inferencia, extraccién de informacién y transfor-
macién de texto. Su propésito es lograr la conversién de instrucciones en lenguaje natural a JSON,
permitiendo asi que la aplicacién comprenda y ejecute las solicitudes de los usuarios.

En resumen, la utilizacién de inteligencia artificial permite la transformacién del lenguaje natural a
un formato estructurado comprensible por la aplicacién. Esto permite satisfacer el requisito funcional
de interpretar instrucciones en lenguaje natural y crear recursos, facilitando la accesibilidad de la
herramienta a todos los miembros del proyecto.

19

4 Desarrollo

En este capitulo, se detalla el proceso de desarrollo del sistema, abarcando alguno de sus aspectos mas
caracteristicos, y su integracion con una herramienta de gestiéon. En primer lugar, se explora cémo se
implementa la transformacién de instrucciones en lenguaje natural a JSON, mediante tecnologias de
inteligencia artificial. Ademas, se presenta la integracién con Jira, una de las herramientas de gestién
mas utilizadas, mostrando cémo se configura un Webhook. Después, se analizan las tecnologias
empleadas para llevar a cabo con éxito la creacién de la aplicacion. Desde la eleccién del lenguaje
de programacién hasta la eleccion de la base de datos.

4.1. Aplicacion

4.1.1. Procesamiento de lenguaje natural

Como se indicd en la Seccién 3.4.1, el sistema debe ser capaz de convertir instrucciones redactadas
en lenguaje natural en datos con formato JSON. Para lograr esta transformacién, se ha utilizado la
tecnologia GPT, reconocida por su habilidad para comprender y procesar textos.

El proceso de desarrollo ha consistido en la integracién del sistema con la APl de OpenAl y, en mayor
medida, en la elaboracién de una instruccién optimizada para la tarea en cuestion, cuyo resultado
final se presenta en el Apéndice B. La finalidad de la instruccién es orientar al modelo de inteligencia
artificial para capturar con precisién el propésito de la tarea, extraer la informaciéon necesaria y
convertirla a un formato adecuado para su procesado por la aplicacién. Esta interaccion se realiza
de manera sencilla: el usuario proporciona instrucciones en lenguaje natural, la aplicacién las envia a
procesar y el modelo, entrenado con una amplia variedad de datos, produce respuestas en el formato
adecuado. Finalmente, la aplicacion recibe estas respuestas y las utiliza para su propésito.

Para visualizar el proceso, se presenta un ejemplo en la Figura 4.1, que demuestra cémo una ins-
truccion en lenguaje natural se transforma en un objeto JSON empleando inteligencia artificial.

En la figura, se observa como se introduce una instruccion en lenguaje natural para la creacién de un
topic de Kafka, especificando ciertos aspectos técnicos de configuracion. A través de la interaccién
con el servicio de inteligencia artificial, el sistema interpreta la instruccién y genera el objeto JSON
correspondiente.

Este ejemplo demuestra la capacidad del sistema para reconocer las intenciones del usuario, identifi-
cando la operaciéon que desea llevar a cabo e inferir la informacién relacionada con la configuracion
del recurso que el usuario quiere crear. Ademas, ilustra su precisién en la conversion del texto en
una estructura de datos especifica.

20

lo de la tarea: Cr

(a) Especificacién de la tarea (b) Resultado del procesamiento

Figura 4.1: Procesamiento de lenguaje natural para la deteccién de tareas de aprovisionamiento

4.1.2. Integracion con la herramienta de gestion

El proceso de desarrollo ha consistido en la configuracién y creacién de una serie de elementos en
Jira para su integracién con la aplicacién desarrollada. La integracion se lleva a cabo mediante la
configuracién de un Webhook, que, cuando una tarea de tipo especifico se inicia, realiza una llamada
a un endpoint expuesto por la APl de la aplicacion. A continuacion, se presenta una descripcién
detallada del proceso, acompaifiada de una serie de imagenes ilustrativas.

Creacion de un tipo de incidencia

En primer lugar, se disefié un nuevo tipo de tarea en Jira, denominado 'Resource’. Este tipo de tarea
se cred para distinguir las tareas relacionadas con el aprovisionamiento de recursos de otras tareas
que se llevan a cabo durante el desarrollo.

Editar tipo de incidencia subtarea: Resource

Nombre* Resource
Descripcién Un recurso que debe ser creado

Avatar de tipo de* [seleccionar imagen
incidencia

Actualizar Cancelar

Figura 4.2: Configuracién del tipo de incidencia 'Resource’ en Jira

Definicion del flujo de trabajo
Se definié un flujo de trabajo especifico para el tipo de tarea 'Resource’ en Jira. El flujo de trabajo

comprende una serie de estados que representan el progreso del proceso de aprovisionamiento de
recursos. Estos estados incluyen 'Por hacer’, 'En progreso’, 'Error’ y '"Hecho'

21

End Error ERROR
Create

Reopen

Start Progress IN PROGRESS

Done

Figura 4.3: Flujo de trabajo para el tipo de incidencia 'Resource’

Configuracion del Webhook

Para lograr la integracién, se configuré un Webhook en Jira. Este Webhook esta vinculado al tipo de
tarea 'Resource’ y se activa cuando la tarea cambia a un estado especifico, en concreto, cuando se
encuentra en el estado 'En progreso’. Para garantizar que el Webhook solo se activa en las situaciones
deseadas, se anaden una serie de filtros. Ademas, se proporciona la URL del endpoint de la APl de
la aplicacion, que debe ser invocado cuando se cumplen las condiciones del Webhook.

Aprovisionamiento de recursos
HABILITADO actualizado por Gltima vez 12/ago,/23 10:58 AM por Administrator

URL http://app:8000/webhooks/jira/resources/

Eventos Eventos relacionados con una instancia

JQLiissuetype = "Resource” AND status = "In Progress

Incidencia: actualizado

Excluir el cuerpe No

Transiciones No hay transiciones asociadas.

Editar Eliminar

Figura 4.4: Configuracién del Webhook de Jira para notificaciones en tiempo real

4.2. Tecnologias utilizadas

La industria del software es un sector en constante evolucién, impulsado por una continua aparicién de
tecnologias que fomentan la creacién de nuevos soluciones informaticas. Este rapido progreso genera
un amplio abanico de tecnologias disponibles para utilizar en el desarrollo de software. El propésito
de este apartado es detallar, entre la extensa gama de posibilidades, las tecnologias empleadas en el

22

desarrollo de la herramienta. Estas abarcan desde el lenguaje de programacién y el framework web
empleados para construir la aplicacién, hasta aspectos relevantes como la persistencia de datos, la
gestion de contenedores, el control de versiones o herramientas de visualizacién

Control de versiones Documentacion

Editor de texto

o

Visual Studio Code

Github

= &

Python FastAPI Pydantic ChatGPT MongoDB

Swagger

Gestion de Contenedores Pruebas API

Docker Docker Compose Postman Redpanda Console MongoDB Compass

Figura 4.5: Diagrama de las tecnologias utilizadas en el desarrollo de la aplicacién

4.2.1. Aplicacién

Una decisién clave en el desarrollo de cualquier aplicacion es seleccionar el lenguaje de programacién
adecuado. Para esta herramienta, se ha optado por Python debido a sus numerosas ventajas. Esta
eleccién se basa principalmente en la facilidad de desarrollo y flexibilidad que proporciona el lenguaje,
aspectos necesarios para la creaciéon de un MVP.

Python es conocido por su sintaxis simple, que facilita y acelera el proceso de desarrollo. Ademas,
la amplia comunidad con la que cuenta detras ofrece y mantiene una gran cantidad de bibliotecas
y médulos, que pueden aprovecharse para implementar soluciones de todo tipo.

En cuanto al framework para construir la API, se ha escogido FastAPI debido a sus caracteristicas
y facilidad de uso. FastAPI es un framework moderno que permite construir una API potente al
mismo tiempo que se mantienen todas las ventajas del lenguaje.

Aunque existen otras opciones mas completas en el desarrollo web con Python, como Django, ideales
para el desarrollo de aplicaciones mas complejas, en el caso de un MVP, resultan innecesarias, ya
que se valoran otras caracteristicas, como la agilidad para adaptar rapidamente el producto a nuevas
necesidades o requisitos cambiantes.

Otro factor clave que ha ayudado a la eleccién de FastAPI es su uso de Pydantic para definir el
modelo de datos, y asegurar que los datos enviados a la APl y utilizados por la aplicacién son validos,
reduciendo asi el niimero de errores y mejorando la calidad general del cédigo.

Ademas, FastAPI incorpora la generacién automatica de documentacién basada en OpenAPlI, lo que
facilita el uso de la API tanto a usuarios que quieran hacer uso de ella, como para terceros que
deseen integrarse.

23

En resumen, la eleccién de Python y FastAPI proporciona una combinacién de agilidad y simplicidad
en el desarrollo, ideal para sentar las bases de la herramienta y comenzar el desarrollo.

4.2.2. Base de datos

Para gestionar y almacenar los datos de manera eficiente, la aplicacién se apoya en MongoDB
como sistema de almacenamiento. Esta eleccion se fundamenta principalmente en su flexibilidad y
capacidad de adaptacién a datos heterogéneos. MongoDB, como base de datos no relacional, permite
almacenar documentos JSON sin un esquema rigido y predefinido, lo que resulta especialmente
relevante en el contexto de la herramienta, donde los datos no siempre tienen la misma forma o
estructura.

Ademas, al permitir realizar cambios en el esquema de datos sin afectar a operaciones existentes,
MongoDB facilita la implementaciéon de nuevas funcionalidades y modificaciones futuras del MVP,
sin requerir migraciones de datos. Esta ventaja resulta crucial para garantizar la adaptabilidad y man-
tenimiento eficiente de la aplicacion a medida que evoluciona y se ajusta a las diferentes necesidades
de los distintos proyectos.

4.2.3. Gestion de contenedores

La gestion de contenedores desempeiia un papel fundamental en el despliegue de la aplicacién y sus
servicios. Docker se ha elegido como la herramienta principal para empaquetar la aplicacién debido
a las numerosas ventajas y facilidades que proporciona en el proceso de despliegue y la gestion de
infraestructura.

Al encapsular la aplicacién junto a sus dependencias en contenedores, Docker proporciona un entorno
de ejecucién aislado, asegurando que la aplicacién se ejecuta de la misma manera, sin requerir
configuraciones especificas, en cualquier entorno, ya sea local, de pruebas o en produccién.

Ademas, se utiliza Docker Compose para desplegar los multiples contenedores que forman el sistema,
incluyendo la aplicacién, la base de datos y los demas servicios. Docker Compose permite definir y
gestionar toda infraestructura en un anico archivo de configuraciéon. Al ejecutar un solo comando,
es capaz de iniciar y coordinar la creacién de todos los contenedores necesarios.

En resumen, la eleccién de Docker para empaquetar la aplicaciéon y Docker Compose para gestionar
posteriormente el despliegue de los contenedores permite una gestiéon y un mantenimiento eficiente
de la infraestructura, facilitando asi el proceso de desarrollo y despliegue del sistema completo.

4.2.4. \Visualizacion

Durante el desarrollo de la aplicacién, se han empleado diversas herramientas para visualizar la
infraestructura, como Redpanda Console y MongoDB Compass, para los topics y colecciones de
MongoDB respectivamente. Ademas, se han aprovechado las herramientas de visualizacion nativas
proporcionadas por Couchbase y Bitbucket para obtener informacién detallada sobre las colecciones
y los repositorios de codigo, facilitando asi el desarrollo y monitorizaciéon de la aplicacién.

24

4.2.5. Otras

Para el desarrollo del cédigo, se ha utilizado el editor de texto Visual Studio. Asimismo, para el
versionado del cédigo se ha utilizado Git, y Github para el almacenamiento del mismo. Ademas, se
ha empleado Postman, una herramienta que ha permitido probar y validar manualmente las distintas
funcionalidades de la aplicacién, de forma rapida y precisa.

25

5 Pruebas

En el desarrollo de software, las pruebas automaticas desempefian un papel fundamental al detectar
errores y garantizar la calidad y fiabilidad del producto final. Estas pruebas permiten verificar de
manera rapida el funcionamiento del software en diferentes escenarios, asegurando el cumplimiento
de los requisitos establecidos.

5.1. Objetivo de las pruebas

El desarrollo de pruebas automaticas se ha convertido en una practica ampliamente adoptada debido
a sus numerosas ventajas. En primer lugar, las pruebas permiten identificar y corregir errores en el
software antes de que afecten a los usuarios finales. Esto permite garantizar la calidad y fiabilidad
del producto, evitando problemas que puedan afectar al resultado final. Las pruebas contribuyen a la
deteccion de errores en el cédigo y problemas de integracion entre componentes, lo que contribuye
a la estabilidad y la confianza del software.

En segundo lugar, las pruebas en el desarrollo de software son un elemento clave para asegurar el
cumplimiento de los requisitos. A través de las pruebas, se verifica si el software funciona segun lo
acordado y si cumple con los criterios de aceptacién establecidos.

Ademads, a medida que se realizan cambios en el cddigo o se anaden nuevas funcionalidades, las
pruebas automaticas aseguran que las modificaciones no introduzcan nuevos errores sobre las fun-
cionalidades previamente desarrolladas. Esto brinda confianza en el producto y proporciona a los
desarrolladores la seguridad de que todo contintia funcionando.

Por ultimo, también mejoran la eficiencia y la productividad del equipo de desarrollo. Al detectar
errores en etapas tempranas, se evita tener que rehacer trabajo y los costes asociados. Y adicio-
nalmente, por el hecho de estar automatizadas, los desarrolladores pueden ejecutar conjuntos de
pruebas completos, de manera mas repetitiva, rapida y segura, lo que ahorra tiempo y recursos a
largo plazo. En resumen, las pruebas en el desarrollo de software son esenciales para garantizar la
calidad, cumplir con los requisitos del cliente y mejorar la eficiencia del proceso de desarrollo.

5.2. Estrategia de las pruebas

En el ambito del software, existen numerosas técnicas de pruebas que permiten asegurarse del correc-
to funcionamiento del producto. Se distinguen fundamentalmente dos tipos de pruebas: las pruebas
manuales y las pruebas automaticas. Las pruebas manuales se realizan en persona, interactuando con
el software, haciendo clic y navegando por la aplicacién. Por otro lado, las pruebas automaticas son
realizadas por una maquina que ejecuta un conjunto de escenarios o casos de prueba previamente
definidos.

26

En el contexto de este proyecto, para abordar la necesidad de crear un producto con bajo coste
de mantenimiento, se ha optado por la implementacién de pruebas automaticas. Las pruebas au-
tomaticas presentan una mayor consistencia y reducen las posibilidades de errores humanos, lo que
las convierte en la opcién preferida para asegurar la calidad del software en un entorno de desarrollo
en constante evolucion.

Dentro del espectro de pruebas automaticas, se han considerado diversos tipos, tales como pruebas
unitarias, pruebas de integracién y pruebas funcionales. Sin embargo, debido a las limitaciones de
tiempo y a la naturaleza especifica de la aplicacién, se ha decidido enfocar los esfuerzos en las
pruebas funcionales.

Las pruebas funcionales se centran en validar el correcto funcionamiento de los requisitos
del sistema, incluyendo la interaccién con todos los componentes involucrados en cada caso de
uso. Estas pruebas aseguran que la aplicacién cumpla con los requisitos establecidos y se comporte
de acuerdo con las expectativas del usuario final.

Esta eleccién estd fundamentada en la naturaleza de la aplicacién, que se basa principalmente
en la integracion de diversos servicios externos, y no tanto en una légica de negocio compleja.
Las pruebas funcionales permiten abordar de manera exhaustiva todas las funcionalidades de la
aplicacién, garantizando la correcta integracién de los servicios externos y la respuesta adecuada del
software ante diversos escenarios.

Ademas, la automatizacion de las pruebas funcionales agiliza el proceso de verificacién, permitiendo
obtener resultados precisos en un tiempo reducido. De esta forma, se logra una mayor eficiencia en
el proceso de pruebas y se asegura que el software cumpla con los estandares de calidad requeridos,
sentando las bases para un desarrollo de bajo coste de mantenimiento.

En el Apéndice F se detallan los casos de prueba realizados.

5.3. Entorno de pruebas

Durante la etapa de pruebas de un software, es crucial disponer de un entorno de pruebas que
permita asegurar la calidad del producto antes de su despliegue en produccién. Este entorno debe
tratarse de un ambiente aislado y controlado, que permita realizar experimentos y ejecutar pruebas
sin correr riesgos ni afectar a sistemas criticos.

En el marco de este trabajo, se ha optado por el uso de Docker para la construccién del entorno de
laboratorio (véase Apéndice E). Docker es una solucién ligera y portable, especialmente adecuada
para la creacién de entornos de pruebas controlados, que encapsula la aplicacién y sus dependencias
en un contenedor. Ademas, permite implementar facilmente redes internas para la comunicacién entre
diferentes componentes, simulando, a menor escala, la infraestructura de un entorno de produccion.

Este tipo de entornos asegura una ejecucién mas fiable y precisa de las pruebas, facilitando la limpieza
inmediata tras cada ejecucion. Esta solucion permite realizar cada prueba de manera independiente
y aislada, evitando cualquier posible interferencia con residuos de ejecuciones previas. Ademas,
simplifica el proceso de pruebas, ya que los desarrolladores no necesitan preocuparse del estado del
entorno.

Otra ventaja significativa radica en la rapidez de despliegue que Docker proporciona. Los contene-
dores pueden ser creados y destruidos rapidamente, lo que acelera el ciclo de pruebas y facilita la
adaptacién del entorno de laboratorio a diferentes configuraciones.

27

Vi A Y
. - .
L1 LT L1
Couchbase Zookeeper Kafka docker‘
"

- P
L1 W
Database Web App
MongoDB Python

. .
L] L1
Bitbucket MongoDB

- o e mm mm mm mm wm wm wm mm wm w
o o o o e Ew m Ew mm mm

Figura 5.1: Diagrama del entorno de pruebas implementado para garantizar la funcionalidad de la
aplicacién

5.4. Resultado de las pruebas

Los resultados obtenidos en las pruebas han sido positivos y satisfactorios (véase Figura 5.2), demues-
tran la calidad del software realizado y contribuyen a la validacién temprana de la herramienta. Este
logro refleja el enfoque acertado en las pruebas automaticas, permitiendo obtener resultados rapidos
y precisos, proporcionando una base sélida para su mejora continua en el futuro y garantizando un
producto robusto y de bajo mantenimiento.

Pese a que se demuestra la capacidad de la herramienta para cumplir con los requisitos en un entorno
de laboratorio con datos de muestra, se reconoce la necesidad de realizar pruebas adicionales en un
entorno relevante y con datos reales para alcanzar el nivel de madurez superior.

28

Figura 5.2: Resultado de ejecucién de las pruebas. Todos los tests han sido superados, validando el
correcto funcionamiento del software.

29

6 Conclusidon

A lo largo de este documento, se han detallado las fases de creacién de un Producto Minimo Viable
(MVP), explorando todas sus etapas de desarrollo, desde la idea inicial hasta la obtencién de un
software totalmente funcional.

El resultado, representado en este Trabajo de Fin de Grado, se ha materializado en un sistema
destinado a integrarse como herramienta auxiliar en el ciclo de desarrollo de software, ofreciendo
una funcionalidad basica en un area clave: el aprovisionamiento de recursos.

Esta herramienta demuestra su valia especialmente en la construcciéon de sistemas a gran escala, con
un enfoque particular en aquellos basados en arquitecturas de microservicios. Dentro de este contexto
es donde se espera que la herramienta alcance su maximo potencial, ya que estas arquitecturas
requieren de la gestiéon una gran cantidad de recursos.

Los objetivos planteados al comienzo de este trabajo se han cumplido con éxito en su totalidad,
desarrollando el producto acordado y probandolo en un entorno de laboratorio. A medida que se iba
avanzando en el desarrollo, la aparicién de algunos problemas ha impulsado la blsqueda de soluciones
innovadoras. En particular, la incorporacién de inteligencia artificial ha enriquecido la herramienta,
dotandola de un valor adicional.

Este proyecto no solamente ha supuesto la construccién de un sistema software, sino que también ha
sentado las bases para futuros desarrollos en el campo de la automatizacion. Los logros alcanzados
ofrecen una contribucién significativa en el ambito del aprovisionamiento de recursos.

6.1. Trabajo a futuro

A pesar de haber logrado un Producto Minimo Viable (MVP) funcional que cumple con el propésito
principal de automatizar y agilizar el proceso de desarrollo mediante el aprovisionamiento de recur-
sos y generacion de cédigo, existen diversos aspectos que pueden hacer evolucionar y mejorar la
herramienta. A continuacién, se presentan algunos de los elementos que tienen potencial para ser
considerados en trabajos futuros:

1. Ampliacion de recursos: El alcance del MVP se centra en los recursos mas utilizados,
como las bases de datos NoSQL o topics de Kafka. Para futuros desarrollos, seria conveniente
expandir al abanico de recursos soportados. Esta expansién podria incluir otras bases de datos,
sistemas de mensajeria e incluso el aprovisionamiento de recursos en proveedores en la nube,
como AWS, Google Cloud o Microsoft Azure.

2. Interfaz Grafica de Usuario (GUI): Conforme el producto evoluciona, seria beneficioso
incorporar una interfaz grafica de administracién. Dicha interfaz podria mejorar significativa-
mente el sistema en términos de monitorizacién y visualizacién, facilitando el control de todas
las operaciones que se llevan a cabo.

30

3. Inteligencia Artificial Avanzada: Aunque se ha decidido no implementar un médulo de
inteligencia artificial propio, seria interesante explorar si incorporar una inteligencia artificial
especificamente entrenada para esta tarea podria optimizar alin mas el proceso de aprovisiona-
miento. Se podria ir mas alla, permitiendo que la IA no solamente transforme las descripciones
de los recursos a crear en un formato adecuado para la aplicacién. Sino que el usuario ni si-
quiera tuviera que indicar qué recursos deben crearse. En su lugar, la propia |A, basandose en
patrones y conocimiento previo, seria capaz de identificar cuales son los recursos que deben
generarse para cada labor.

31

Acronimos

API1 Application Programming Interface.
CLI Command Line Interface.
DTO Data Transfer Object.

GPT Generative Pretrained Transformer.

GUI Graphical User Interface.

IA Inteligencia Artificial.

JSON JavaScript Object Notation.
MVP Minimum Viable Product.
REST REpresentational State Transfer.

SRS Software Requirements Specifications.

32

33

Glosario

Caso de Prueba (1) Conjunto de entradas de prueba, condiciones de ejecucién y resultados espera-
dos desarrollados para un objetivo concreto, como ejercitar una determinada ruta de programa
o verificar el cumplimiento de un requisito especifico.
(2) Documentacién que especifica las entradas, los resultados previstos y un conjunto de
condiciones de ejecuciéon para un elemento de prueba.

Entorno software Conjunto especifico de configuraciones, recursos y condiciones bajo las cuales
una aplicacién o sistema opera.

Herramienta software Software utilizado en el desarrollo, comprobacién, anélisis o mantenimiento
de un programa o su documentacion.

Microservicios Los microservicios son un enfoque arquitecténico y organizativo para el desarrollo
de software donde el software estd compuesto por pequenos servicios independientes que se
comunican a través de API bien definidas. Los propietarios de estos servicios son equipos
pequefios independientes [2].

Producto Minimo Viable Estrategia de desarrollo de software que consiste en crear un producto
con un conjunto minimo de caracteristicas necesarias para satisfacer a los primeros usuarios y
recopilar informacién valiosa para el desarrollo posterior.

Prompt Conjunto de palabras que desencadenan la generacién de contenidos a través de un software
de inteligencia artificial.

Pruebas funcionales (1) Pruebas que ignoran el mecanismo interno de un sistema o componente
y se centran Gnicamente en los resultados generados en respuesta a entradas y condiciones de
ejecucién seleccionadas.

(2) Pruebas realizadas para evaluar la conformidad de un sistema o componente con los
requisitos funcionales especificados.

Requisito funcional Requisito que especifica una funcién que un sistema o componente de un
sistema debe ser capaz de realizar.

Webhook Funcién que permite a una aplicaciéon o servicio recibir notificaciones automaticas y
en tiempo real de eventos o cambios ocurridos en otro sistema externo. Es una forma de
comunicacién unidireccional en la que el sistema externo envia datos estructurados a una URL
especifica (endpoint) previamente configurada en la aplicacién receptora.

34

Referencias

[1]
2]
8]
[4]
[5]
[6]
[7]
8]
9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

S. Newman, Building Microservices. O'Reilly Media, 2021, 1SBN: 9781492033998. direccién:
https://books.google.es/books?id=aPM5EAAAQBAJ.

AWS. «What are Microservices?» (), direccién: https://aws.amazon.com / microservices/
(visitado 28-08-2023).

MongoDB. «;Qué Es MongoDB?7» (), direccién: https://www.mongodb.com /es/what-is-
mongodb (visitado 28-08-2023).

Couchbase. «Couchbase: The Modern Database for Enterprise Applications.» (), direccién:
https://www.couchbase.com/ (visitado 28-08-2023).

Confluentinc. «What is Apache Kafka?» (), direccién: https://www.confluent.io /what-is-
apache-kafka/ (visitado 28-08-2023).

NASA. «Technology Readiness Levels - NASA Earth Science and Technology Office.» (19 de
mar. de 2020), direccién: https://esto.nasa.gov/trl/ (visitado 11-07-2023).

C. Richardso. «Microservices Pattern: Database per service.» (), direccidn: https://microservices.
io/patterns/data/database-per-service.html (visitado 26-08-2023).

GitLab. «What is ClI/CD?» (), direccién: https://about.gitlab.com /topics/ci-cd/ (visitado
27-08-2023).

«|EEE Standard Glossary of Software Engineering Terminology,» IEEE Std 610.12-1990, pags. 1-84,
dic. de 1990. por: 10.1109/IEEESTD.1990.101064.

«|EEE Recommended Practice for Software Requirements Specifications,» IEEE Std 830-1998,
pags. 1-40, 1998. por: 10.1109/IEEESTD.1998.88286.

Macrometa. «What Are Collections in Databases?» (), direccion: https://www.macrometa.
com/articles/what-are-collections-in-databases.

MongoDB. «Databases and Collections; MongoDB Manual.» (), direccién: https://www.
mongodb.com/docs/manual/core/databases-and-collections/ (visitado 24-08-2023).

H. Graga. «DDD, Hexagonal, Onion, Clean, CQRS, ... How | put it all together.» (16 de
nov. de 2017), direccién: https://herbertograca.com/2017/11/16 /explicit-architecture-01-
ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/ (visitado 05-08-2023).

S. Woltmann. «Hexagonal Architecture - What Is 1t? Why Should You Use It?» (18 de
ene. de 2013), direccién: https://www.happycoders.eu /software-craftsmanship / hexagonal-
architecture/ (visitado 26-08-2023).

THECODEST. «The Power of Hexagonal Architecture.» (13 de jun. de 2023), direccion: https:
//thecodest.co/blog/t-strong-he-power-of-hexagonal-architecture/ (visitado 17-08-2023).

I. Fulford y A. Ng. «ChatGPT Prompt Engineering for Developers.» (30 de abr. de 2023),
direccién: https:/ /www.deeplearning.ai/short- courses / chatgpt- prompt- engineering- for-
developers/ (visitado 23-06-2023).

OMG. «Unified Modeling Language, v2.5.1.» (12 de abr. de 2019), direccién: https://www.
omg.org/spec/UML/2.5.1/PDF (visitado 16-08-2023).

35

https://books.google.es/books?id=aPM5EAAAQBAJ
https://aws.amazon.com/microservices/
https://www.mongodb.com/es/what-is-mongodb
https://www.mongodb.com/es/what-is-mongodb
https://www.couchbase.com/
https://www.confluent.io/what-is-apache-kafka/
https://www.confluent.io/what-is-apache-kafka/
https://esto.nasa.gov/trl/
https://microservices.io/patterns/data/database-per-service.html
https://microservices.io/patterns/data/database-per-service.html
https://about.gitlab.com/topics/ci-cd/
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/IEEESTD.1998.88286
https://www.macrometa.com/articles/what-are-collections-in-databases
https://www.macrometa.com/articles/what-are-collections-in-databases
https://www.mongodb.com/docs/manual/core/databases-and-collections/
https://www.mongodb.com/docs/manual/core/databases-and-collections/
https://herbertograca.com/2017/11/16/explicit-architecture-01-ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/
https://herbertograca.com/2017/11/16/explicit-architecture-01-ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/
https://www.happycoders.eu/software-craftsmanship/hexagonal-architecture/
https://www.happycoders.eu/software-craftsmanship/hexagonal-architecture/
https://thecodest.co/blog/t-strong-he-power-of-hexagonal-architecture/
https://thecodest.co/blog/t-strong-he-power-of-hexagonal-architecture/
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

Lista de Tablas

2.1.
2.2.

A.l.
E.1.

F.1.
F.2.
F.3.

F.4.
F.5.
F.6.
F.7.
F.8.

F.9.
F.10

F.11.
F.12.
F.13.
F.14.
F.15.

F.16.
F.17.

F.18
F.19
F.20
F.21
F.22
F.23
F.24

Requisitos funcionales del sistema
Requisitos no funcionales del sistema.

Horas dedicadas a la elaboracion del trabajo
Imagenes de Docker empleadas para cada componente del sistema

Caso de prueba para la creaciéon de una colecciéon de MongoDB
Caso de prueba para la creacién de miltiples colecciones de MongoDB
Caso de prueba para el manejo del error al intentar crear una coleccién de mongo
quevyaexiste . . . L
Caso de prueba para la creacién de una colecciéon de Couchbase
Caso de prueba para la creacion de miultiples colecciones de Couchbase
Caso de prueba para la creacidén de una coleccién de Couchbase en un scope perso-
nalizado L
Caso de prueba para el manejo del error al intentar crear una coleccién de Couchbase
quevyaexiste L e
Caso de prueba para el manejo del error al intentar crear una coleccién de Couchbase
€N un SCope qUe NO EXIStE e
Caso de prueba para la creacion de un topicde Kaftka
. Caso de prueba para la creacién de muiiltiples topics de Kaftka
Caso de prueba para el manejo del error al intentar crear un topic de Kafka que ya
eXISte . . . L e
Caso de prueba para el manejo del error al intentar crear un topic de Kafka con una
cleanup_policy invalida
Caso de prueba para el manejo del error al intentar crear un topic de Kafka con un
message_timestamp_type invalido
Caso de prueba para la creaciéon de un repositorio.
Caso de prueba para la creaciéon de multiples repositorios
Caso de prueba para el manejo del error al intentar crear un repositorio que ya existe
Caso de prueba para el manejo del error al intentar crear un repositorio en un proyecto
que No eXiSte L L e
. Caso de prueba para la creacién de una plantilla en un nuevo repositorio
. Caso de prueba para la creacién de una plantilla en un repositorio existente
. Caso de prueba para el manejo del error al intentar crear una plantilla no disponible
. Caso de prueba para la persistencia de los detalles cuando se realiza una operaciéon .
. Caso de prueba para la consulta de operaciones por identificador
. Caso de prueba para consultar las Gltimas operaciones realizadas
. Caso de prueba para la creacién de un recurso a partir de una incidencia

36

47
47
47

47
48
48
48
48
49
49
49
49

50
50

F.25.

F.26.

F.27.

F.28.
F.29.
F.30.
F.31.
F.32.
F.33.

Caso de prueba para el manejo del error al intentar crear un recurso a partir de una
incidencia sin la informacién necesaria
Caso de prueba para el manejo del error al intentar crear un recurso desconocido a
partir de unaincidencia
Caso de prueba para comprobar que el aprovisionamiento no se inicia si la incidencia
NO €StA €N Progreso e
Caso de prueba para la deteccién de un creado de coleccion de MongoDB
Caso de prueba para la deteccién de un creado de coleccion de Couchbase
Caso de prueba para la deteccién de un creado de repositorio
Caso de prueba para la deteccién de un creado de topic de Kafka
Caso de prueba para la generacién de una plantilla
Caso de prueba para el manejo del error al detectar la creacién de un recurso que no
EXISte . . . e e e

37

Lista de Figuras

2.1.

3.1.
3.2.
3.3.
3.4.
3.5.

3.6.

3.7.

4.1.
4.2.
4.3.
4.4.
4.5.

5.1.

5.2.

A.l.
B.1.

C.1.
D.1.

Diagrama de Casos de Uso de la aplicacion

Bloques de la arquitectura de puertos y adaptadores
Adaptadores Primarios en la arquitectura de puertos y adaptadores
Adaptadores Secundarios en la arquitectura de puertos y adaptadores
Diagrama de la arquitectura basada en puertos y adaptadores
Modelo de datos: Interaccién entre modelo interno, de la base de datos y de trans-

ferencia
Diagrama de Secuencia: Creacién y aprovisionamiento de un recurso a través de una

aplicacion de gestion L
Proceso de transformacién de instrucciones

Procesamiento de lenguaje natural para la deteccién de tareas de aprovisionamiento
Configuracion del tipo de incidencia 'Resource’ en Jira
Flujo de trabajo para el tipo de incidencia 'Resource’
Configuraciéon del Webhook de Jira para notificaciones en tiempo real
Diagrama de las tecnologias utilizadas en el desarrollo de la aplicacién

Diagrama del entorno de pruebas implementado para garantizar la funcionalidad de
la aplicacion
Resultado de ejecuciéon de las pruebas. Todos los tests han sido superados, validando
el correcto funcionamiento del software. L.

Desglose de horas dedicadas a cada tarea: Distribucion visual del esfuerzo

Instruccion utilizada para solicitar la clasificacion de tareas al modelo de inteligencia
artificial

Modelo de datos extendido: Modelo interno, de la base de datos y de transferencia .

Interfaz generada con Swagger Ul para documentar los endpoints de la APl

38

43

Apéndices

39

A Dedicacion

A continuacién se proporciona un desglose del tiempo dedicado a cada una de las diferentes etapas
del proyecto. Estos datos ilustran una la dedicacion cercana a la estimacioén planteada inicialmente
para la realizacién del Trabajo Fin de Grado (=~ 300 horas).

Tabla A.1: Horas dedicadas a la elaboracién del trabajo

Tarea Tiempo dedicado
Anélisis 10.5
Diseno 22
Desarrollo 155
Pruebas 42
Memoria 1115
Reuniones 55
| Total | 346.5 horas |

Tiempo dedicado

Reuniones Analisis
1,6% 3.0%
Disefio
Memoria 6,3%
32,2%
Desarrollo
44.7%
Pruebas
12,1%

Figura A.1: Desglose de horas dedicadas a cada tarea: Distribucién visual del esfuerzo

40

B Instruccion para la deteccion de tareas

En la siguiente imagen, se presenta la instruccion (prompt) disefiada para la deteccién de tareas
de aprovisionamiento de recursos. Esta instruccién ha sido disenada con la finalidad de guiar a un
modelo de inteligencia artificial en la identificacién y extraccién de informacién vinculada al proceso
de aprovisionamiento de recursos.

En este prompt, se puede observar cémo, en primer lugar, se provee un listado de todas las opciones
disponibles para su clasificacion. Posteriormente, se solicita inferir los parametros asociados a cada
una de estas alternativas. Finalmente, se indica el formato en el cual deben ser presentados los
resultados obtenidos.

wun

Identifica que operacién se solicita realizar a partir del t{tulo y descripcién de una tarea. Responde con
una de las siguientes opciones:

- Create MongoDB collection: (database_name, name)

- Create Couchbase collection: (bucket_name, scope_name, name)

- Create Kafka topic: (num_partitions, replication_factor, name, cleanup_policy, max_message_bytes,
min_cleanable_dirty_ratio, message_timestamp_type)

- Create repository: (project_key, name)

- Generate source code template: (project_key, repository_name, type[agr, mixbi, pcs])

E1l t{tulo y la descripcidn estan delimitados por triple comillas. Formatea la respuesta como un objeto JSON
con "operation_type" como clave. Si la descripcidén no hace referencia a ninguna de las opciones
proporcionadas, usa "null" como valor para "operation_type".

Completa el objeto JSON con la clave "details" especificando los pardmetros de la solicitud. Los parametros
necesarios para cada operacidn se encuentran delimitados por paréntesis. Para alguno de estos parametros,
se especifica sus posibles valores en una lista delimitada por corchetes. Para todos los parametros no
especificados, utiliza "null" como valor.

Titulo: '''{}"'
Descripcion: '''{}"'

TR

Figura B.1: Instruccién utilizada para solicitar la clasificaciéon de tareas al modelo de inteligencia
artificial

41

C Modelo de datos extendido

Este apéndice presenta una version mas detallada del modelo de datos previamente introducido en
la Seccién 3.2. En este apartado, ademas de exponer los diversos modelos de datos que constituyen
la aplicacién, se proporciona una visién de los atributos que conforman cada objeto. La Figura C.1
muestra las tres representaciones distintas de estos modelos.

Los modelos de datos de transferencia desempenan la funcién de recopilar la informacién procedente
de la interfaz, ya sea esta la interfaz del sistema o la interfaz de usuario. Este proceso implica su
posterior transformacién al modelo interno de la aplicacion, previa validacién exhaustiva de cada
uno de los parametros. Esta validacion se logra a través de comprobaciones numéricas y mediante
el uso de enumeraciones para limitar ciertos valores.

Finalmente, se presenta el modelo de datos correspondiente a la base de datos. Dicho modelo consiste
en un objeto que representa un documento dentro de una base de datos NoSQL, especificamente
MongoDB, la cual es utilizada en este sistema.

42

194

Modelo de datos de transferencia

KafkaTopicln

+ name: str

+ num_partitions: int

+ replication_factor: str

+ cleanup_policy: list[str]
+max_message_hytes: int

+ min_cleanable_dirty_ratio: float

Repaository

+ project_key: str
+ name: str

Modelo de datos interno

MongoCaollection

+ database_name: str

+ name: sir

+ message_timestamp_type: str

MongoCollectionin Repositoryin
+ name: str + name: str
CouchbaseCaollectionln Templateln
+ name: str + project_key: str
+ SCope_name: str + repository_name: str

OperationOut JiraWebhookEvent
+id: int + key: str
+ timestamp: str + status: str

+ operation: str
+ details: dict

+ summary: str
+ description: str

KafkaTopic

+ name: str
+ num_partitions: int
+ replication_factor: str

L

+ cleanup_policy: list{CleanupPolicy]

+ max_message_byles: int

+ min_cleanable_dirty_ratio: float

+ message_timestamp_type: MessageTimestampType

Modelo de datos de
la base de datos

OperationDocument

+id: int

+ timestamp: datetime
+ operation: sir

+ details: dict

OperationUri

+ uri:

str

Figura C.1: Modelo de datos extendido: Modelo interno, de la base de datos y de transferencia

[EEEE SoenbasaEollecion <<enumeration>> <<enumeration>>

+ project_key: str + bucket_name: sir MessageTimestampType CleanupPolicy

+ repository_name: str +Scope_name: str Createtime J—

+ type: TemplateType + name: str LogAppendTime delete

+ branch_name:str

<<enumeration>> <<enumeration>>
TemplateType OperationType Operation

agr CreateMongoCollection *id: int

pcs CreateCouchbaseCollection + timestamp: datetime

mixbi CreateKafkaTopic + operation: OperationType
CreateRepository I
GenerateTemplate + details: dict

D Documentacion de la API

En este apéndice, se expone la documentacién generada en formato de pagina web correspondiente
a la API de este proyecto. Para su desarrollo, se ha empleado la especificacion OpenAPI generada
de manera automatica por el framework FastAPI, a partir del cédigo fuente de la aplicacién. Esta
documentacién permite visualizar de manera cémoda e intuitiva los diferentes endpoints y modelos
de datos asociados a las tareas de aprovisionamiento de recursos. Ademas, ofrece la funcionalidad
de efectuar pruebas mediante el envio interactivo de peticiones directamente a la aplicacion.

i cation €2
TFG Application
MongoDB ~
/resources/mongo/databases/{database_name} Creat MongoDE Collection v
Apache Kafka ~
/resources/kafka/topics/ Create Kafka Topic -
Couchbase ~
/fresources/couchbase/buckets/{bucket_name} Create Couchbase Callection i
Repositories ~
/resources/repositories/projects/{project _key} Creat=Reposiory v
Templates ~
/resources/templates/{template_type} Generte Code Template (3
Operations ~
foperations/{operation_id} Getoperation ~
Joperations/ List Operations N
Schemas ~

CouchbaseCollectionin >
HTTPValidationError >
KafkaTopicin 3
MongoCollectionin »
OperationOut 3
Repositoryln >
Templateln 3

ValidationError >

Figura D.1: Interfaz generada con Swagger Ul para documentar los endpoints de la API

44

E Entorno de Pruebas

El entorno esta formado por varios componentes, cada uno de los cuales se despliega en un contenedor
Docker. Para facilitar su gestién se ha creado un archivo Docker Compose. A continuacion, se
muestran las imagenes de Docker utilizadas para cada uno de los componentes:

Tabla E.1: Imagenes de Docker empleadas para cada componente del sistema

Componente | Descripcién de la imagen Imagen de Docker
Web App Construida a partir de una imagen de Python con el | python:3.10.11%
cédigo de la aplicacién

Database Imagen oficial de MongoDB mongo:latest?

MongoDB Imagen oficial de MongoDB mongo:latest®

Couchbase Imagen oficial de Couchbase couchbase:latest*

Zookeeper Imagen de Zookeeper proporcionada por Confluent Inc | confluentinc/cp-
zookeeper:latest®

Kafka Imagen de Kafka proporcionada por Confluent Inc confluentinc/cp-kafka:latest®

Jira Imagen de Jira Core de Atlassian atlassian /jira-core:latest’

Bitbucket Imagen de Bitbucket de Atlassian. atlassian/bitbucket:latest®

https://hub.docker.com/_/python
2https://hub.docker.com/_/mongo
3https://hub.docker.com/_/mongo
“*https://hub.docker.com/_/couchbase
Shttps://hub.docker.com/r/confluentinc/cp-zookeeper
Shttps://hub.docker.com /r/confluentinc/cp-kafka
"https://hub.docker.com/r/atlassian /jira-core/
8https://hub.docker.com /r/atlassian /bitbucket

45

https://hub.docker.com/_/python
https://hub.docker.com/_/mongo
https://hub.docker.com/_/mongo
https://hub.docker.com/_/couchbase
https://hub.docker.com/r/confluentinc/cp-zookeeper
https://hub.docker.com/r/confluentinc/cp-kafka
https://hub.docker.com/r/atlassian/jira-core/
https://hub.docker.com/r/atlassian/bitbucket

F Casos de Prueba

Con el fin de asegurar el correcto funcionamiento de la aplicacién, se ha disefiado un conjunto
de casos de prueba. Estos abarcan una amplia gama de situaciones, destinadas a evaluar cémo
la aplicacién responde al aprovisionar recursos en distintos estados de la infraestructura. Con este
objetivo, se han considerado especialmente los siguientes escenarios:

= No hay recursos previos en la infraestructura. Se procede a validar la correcta creacién de un
recurso.

= Ya se han creado recursos previamente. Se procede a validar la creacién de otro recurso
adicional.

= Existe un recurso previamente creado. Se verifica el manejo de errores al intentar crear un
recurso idéntico al ya existente.

= Se verifican los posibles errores que pueden surgir al intentar crear recursos con configuraciones
invalidas.

A continuacién, se detallan todos los escenarios creados para poner a prueba el sistema:

Tabla F.1: Caso de prueba para la creacién de una colecciéon de MongoDB

Caso de Prueba 1

Nombre Crear una colecciéon de MongoDB
database_name: mydatabase

Entrada data: {'name’: 'mycollection’}

Pre-condicién La base de datos no contiene ninguna coleccién

Respuesta con cédigo de estado HTTP 201
Resultado Esperado | El cuerpo de la respuesta contiene la informacién de la coleccién creada
La coleccién se ha creado en la base de datos

Tabla F.2: Caso de prueba para la creaciéon de miltiples colecciones de MongoDB

Caso de Prueba 2
Nombre Crear miltiples colecciones de MongoDB
database_name: mydatabase
Entrada data: {'name’: 'new_collection'}
Pre-condicién Existe una coleccién previamente creada en la base de datos

Respuesta con cédigo de estado HTTP 201
Resultado Esperado | El cuerpo de la respuesta contiene la informacién de la coleccién creada
Ambas colecciones estan creadas en la base de datos

46

Tabla F.3: Caso de prueba para el manejo del error al intentar crear una coleccién de mongo que ya
existe

Caso de Prueba

3

Nombre

Crear una coleccién de MongoDB repetida

Entrada

database_name: mydatabase

data: {'name’: 'mycollection’}

Pre-condicion

Existe una coleccién previamente creada en la base de datos con el
mismo nombre

Resultado Esperado

Respuesta con cédigo de estado HTTP 409

El cuerpo de la respuesta contiene un mensaje de error indicando que
la coleccion ya existe

No se ha creado una nueva coleccién

Tabla F.4: Caso de prueba para la creaciéon de una colecciéon de Couchbase

Caso de Prueba

4

Nombre

Crear una coleccién de Couchbase

Entrada

bucket_name: testbucket

data: {'name’: 'mycollection’}

Pre-condicion

El bucket no contiene ninguna coleccion

Resultado Esperado

Respuesta con cédigo de estado HTTP 201

El cuerpo de la respuesta contiene la informacién de la coleccién creada

La coleccién se ha creado en el bucket

Tabla F.5: Caso de prueba para la creacion de miultiples colecciones de Couchbase

Caso de Prueba

5

Nombre

Crear mdltiples colecciones de Couchbase

Entrada

bucket_name: testbucket

data: {'name’: 'previous_collection’}

Pre-condicion

Existe una coleccién previamente creada en el bucket

Resultado Esperado

Respuesta con cédigo de estado HTTP 201

El cuerpo de la respuesta contiene la informacién de la coleccién creada

Ambas colecciones estan creadas en el bucket

Tabla F.6: Caso de prueba para la creaciéon de una coleccién de Couchbase en un scope personalizado

Caso de Prueba

6

Nombre

Crear una coleccién de Couchbase en un scope personalizado

Entrada

bucket_name: testbucket

data: {'name’: 'previous_collection’, 'scope_name’: 'non_default’}

Pre-condicion

Existe un scope distinto a '_default’

Resultado Esperado

Respuesta con cédigo de estado HTTP 201

El cuerpo de la respuesta contiene la informacién de la coleccién creada

La coleccién se ha creado en el scope personalizado

47

Tabla F.7: Caso de prueba para el manejo del error al intentar crear una colecciéon de Couchbase
que ya existe

Caso de Prueba 7

Nombre Crear una coleccién de Couchbase repetida
bucket_name: testbucket

Entrada data: {'name’: 'mycollection’}

Pre-condicién Existe una coleccién previamente creada en el bucket con el mismo
nombre

Respuesta con cédigo de estado HTTP 409

Resultado Esperado | El cuerpo de la respuesta contiene un mensaje de error indicando que
la coleccion ya existe

No se ha creado una nueva coleccién

Tabla F.8: Caso de prueba para el manejo del error al intentar crear una coleccién de Couchbase en
un scope que no existe

Caso de Prueba 8

Nombre Crear una coleccién de Couchbase en un scope que no existe
bucket_name: testbucket

Entrada data: {'name’: 'previous_collection’, 'scope_name’: 'non_existing'}

Pre-condicién No existe el scope en el bucket

Respuesta con cédigo de estado HTTP 404

Resultado Esperado | El cuerpo de la respuesta contiene un mensaje de error indicando que
el scope no existe

No se ha creado el scope ni la coleccién

Tabla F.9: Caso de prueba para la creaciéon de un topic de Kafka

Caso de Prueba 9

Nombre Crear un topic de Kafka
Entrada data: {topic_name: mytopic}
Pre-condicién El broker no tiene ningln topic

Respuesta con cédigo de estado HT TP 201
Resultado Esperado | El cuerpo de la respuesta contiene la informacién del topic creado
El topic se ha creado en el broker

Tabla F.10: Caso de prueba para la creaciéon de miltiples topics de Kafka

Caso de Prueba 10

Nombre Crear mdltiples topics de Kafka
Entrada data: {topic_name: new_topic}
Pre-condicién Existe un topic previamente creado en el broker

Respuesta con cédigo de estado HTTP 201
Resultado Esperado | El cuerpo de la respuesta contiene la informacién del topic creado
Ambos topics estan creadas en el broker

48

Tabla F.11: Caso de prueba para el manejo del error al intentar crear un topic de Kafka que ya existe

Caso de Prueba 11

Nombre Crear un topic de Kafka repetido

Entrada data: {topic_name: existing_topic}

Pre-condicién Existe un topic previamente creado en el broker con el mismo nombre

Respuesta con cédigo de estado HTTP 409

Resultado Esperado | El cuerpo de la respuesta contiene un mensaje de error indicando que
el topic ya existe

No se ha creado un nuevo topic

Tabla F.12: Caso de prueba para el manejo del error al intentar crear un topic de Kafka con una
cleanup_policy invalida

Caso de Prueba 12

Nombre Crear un topic de Kafka con una cleanup_policy invalida
Entrada data: {topic_name: invalid_topic, cleanup_policy: ['invalid']}
Pre-condicién El broker no tiene ningtn topic

Respuesta con cédigo de estado HTTP 400

Resultado Esperado | El cuerpo de la respuesta contiene un mensaje de error indicando que
la cleanup_policy es invalida

No se ha creado el topic

Tabla F.13: Caso de prueba para el manejo del error al intentar crear un topic de Kafka con un
message_timestamp_type invalido

Caso de Prueba 13

Nombre Crear un topic de Kafka con un message_timestamp_type invalido
Entrada data: {topic_name: invalid_topic, message_timestamp_type: 'invalid'}
Pre-condicién El broker no tiene ningln topic

Respuesta con cédigo de estado HT TP 400

Resultado Esperado | El cuerpo de la respuesta contiene un mensaje de error indicando que
el message_timestamp_type el invalido

No se ha creado el topic

Tabla F.14: Caso de prueba para la creacién de un repositorio

Caso de Prueba 14
Nombre Crear un repositorio
project_key: testproj
Entrada data: {'name’: 'myrepository'}
Pre-condicién El proyecto no tiene ningln repositorio

Respuesta con cédigo de estado HTTP 201
Resultado Esperado | El cuerpo de la respuesta contiene la informacién del repositorio creado
El repositorio se ha creado en el proyecto

49

Tabla F.15: Caso de prueba para la creaciéon de miltiples repositorios

Caso de Prueba 15
Nombre Crear mdltiples repositorios
project_key: testproj
Entrada data: {'name’: 'new_repository'}
Pre-condicién Existe un repositorio previamente creado en el proyecto

Respuesta con cédigo de estado HTTP 201

Resultado Esperado | El cuerpo de la respuesta contiene la informacién del nuevo repositorio
creado

Ambos repositorios estan creados en el proyecto

Tabla F.16: Caso de prueba para el manejo del error al intentar crear un repositorio que ya existe

Caso de Prueba 16

Nombre Crear un repositorio repetido
project_key: testproj

Entrada data: {'name’: 'previous_repository’}

Pre-condicién Existe un repositorio previamente creado en el proyecto con el mismo
nombre

Respuesta con cédigo de estado HTTP 409

Resultado Esperado | El cuerpo de la respuesta contiene un mensaje de error indicando que
el repositorio ya existe

No se ha creado un nuevo repositorio

Tabla F.17: Caso de prueba para el manejo del error al intentar crear un repositorio en un proyecto
que no existe

Caso de Prueba 17

Nombre Crear un repositorio en un proyecto que no existe
project_key: non_existing

Entrada data: {'name’: 'my_repository'}

Pre-condicién No existe el proyecto

Respuesta con cédigo de estado HT TP 404

Resultado Esperado | El cuerpo de la respuesta contiene un mensaje de error indicando que
el proyecto no existe

No se ha creado el proyecto ni el repositorio

50

Tabla F.18: Caso de prueba para la creacién de una plantilla en un nuevo repositorio

Caso de Prueba 18

Nombre Crear una plantilla en un nuevo repositorio
template_type: agr

Entrada data: {'project_key': 'testproj’, 'name’: 'myrepository'}

Pre-condicién No existe ningln repositorio

Respuesta con cédigo de estado HTTP 201

Resultado Esperado | El cuerpo de la respuesta contiene la informacién de la plantilla creada
El repositorio se ha creado en el proyecto

La plantilla se ha subido a una rama del repositorio

Tabla F.19: Caso de prueba para la creacién de una plantilla en un repositorio existente

Caso de Prueba 19
Nombre Crear una plantilla en un repositorio existente
template_type: agr
Entrada data: {'project_key': 'testproj’, 'name’: 'previous_repository'}
Pre-condicién No existe ningln repositorio
Respuesta con cédigo de estado HTTP 201
Resultado Esperado | El cuerpo de la respuesta contiene la informacién de la plantilla creada
La plantilla se ha subido a una rama del repositorio

Tabla F.20: Caso de prueba para el manejo del error al intentar crear una plantilla no disponible

Caso de Prueba 20

Nombre Crear una platilla no disponible

template_type: 'no_existing’
Entrada data: {'project_key': 'testproj’, 'name’: 'myrepository’}
Pre-condicién No existe el proyecto

Respuesta con cédigo de estado HTTP 400

Resultado Esperado | El cuerpo de la respuesta contiene un mensaje de error indicando que
la plantilla no existe

La plantilla no se ha subido a una rama del repositorio

Tabla F.21: Caso de prueba para la persistencia de los detalles cuando se realiza una operacién

Caso de Prueba 21

Nombre Persistir la informacién cuando se realiza una operacién
Entrada topic_name: 'random’

Pre-condicién Una base de datos sin ninguna operacién

La operacion queda persistida en base de datos
Resultado Esperado | El campo 'details’ del documento contiene la informacién del recurso
creado

51

Tabla F.22: Caso de prueba para la consulta de operaciones por identificador

Caso de Prueba

22

Nombre

Consultar la informacién de una operaciéon a partir de su identificador

Entrada

id: 1

Pre-condicion

Una base de datos con una operaciéon de identificador 1

Resultado Esperado

La operacion es devuelta

El campo 'details’ del documento contiene la informacién del recurso
creado en la operacion 1

Tabla F.23: Caso de prueba para consultar las Gltimas operaciones realizadas

Caso de Prueba

23

Nombre

Consultar la informacién de las tltimas operaciones realizadas

Entrada

id: 1

Pre-condicién

Una base de datos con dos operaciones

Resultado Esperado

Devuelve dos operaciones

El campo 'details’ de ambas operaciones contiene la informacién de
su recurso correspondiente

Tabla F.24: Caso de prueba para la creacién de un recurso a partir de una incidencia

Caso de Prueba

24

Nombre

Crea un recurso mediante lenguaje natural

Entrada

Titulo: 'Crear colecciéon de mongo’

Descripcion: 'Se solicita la creacion de la coleccion testcollection en
mydatabase’

Estado: 'En progreso’

Pre-condicion

Un sistema sin recursos previamente creados

Resultado Esperado

Respuesta con codigo de estado HT TP 204

Se ha escrito un comentario en la incidencia informando de que la
operacion ha sido realizada con éxito

La coleccién se ha creado correctamente

Tabla F.25: Caso de prueba para el manejo del error al intentar crear un recurso a partir de una
incidencia sin la informacién necesaria

Caso de Prueba

25

Nombre

Crear un recurso mediante lenguaje natural sin la informacién necesaria

Entrada

Titulo: 'Crear colecciéon de mongo'’

Descripcion: 'Se solicita la creacién de la coleccidn testcollection’

Estado: 'En progreso’

Pre-condicién

Un sistema sin recursos previamente creados

Resultado Esperado

Respuesta con cédigo de estado HTTP 400

El cuerpo de la respuesta contiene un mensaje de error indicando que
la informacién que falta

Se ha escrito un comentario en la incidencia informando de que la
operacion no ha sido realizada

52

Tabla F.26: Caso de prueba para el manejo del error al intentar crear un recurso desconocido a partir
de una incidencia

Caso de Prueba 26

Nombre Crear un recurso desconocido mediante lenguaje natural
Titulo: 'Crear una tabla en postgresql’
Entrada Descripcion: 'Se solicita la creacion de la tabla testtable en la base de

datos mydatabase’

Estado: 'En progreso’

Pre-condicién Un sistema sin recursos previamente creados

Respuesta con cédigo de estado HT TP 404

Resultado Esperado | El cuerpo de la respuesta contiene un mensaje de error indicando que
el recurso solicitado no existe

Se ha escrito un comentario en la incidencia informando que la ope-
racion no ha sido realizada

Tabla F.27: Caso de prueba para comprobar que el aprovisionamiento no se inicia si la incidencia no
esta en progreso

Caso de Prueba 27
Nombre Crear un recurso con una incidencia que no estad en progreso
Titulo: 'Crear colecciéon de mongo’
Entrada Descripcion: 'Se solicita la creacion de la coleccion testcollection en
mydatabase’
Estado: "To Do’
Pre-condicién Un sistema sin recursos previamente creados
Respuesta con cédigo de estado HTTP 204
Resultado Esperado | No se ha realizado ninguna operacién de aprovisionamiento

Tabla F.28: Caso de prueba para la deteccién de un creado de coleccién de MongoDB

Caso de Prueba 29

Nombre Infiere de una incidencia en lenguaje natural la creacién de una colec-
ciéon de MongoDB

Titulo: 'Crear una coleccién de mongo'

Entrada Descripcion: 'Crea la coleccion testcollection en mytestdatabase’
Pre-condicién

Infiere la creacién de una coleccién de MongoDB
Resultado Esperado | Detecta todos los parametros proporcionados

53

Tabla F.29: Caso de prueba para la deteccién de un creado de coleccién de Couchbase

Caso de Prueba

29

Nombre

Infiere de una incidencia en lenguaje natural la creacién de una colec-
ciéon de Couchbase

Entrada

Titulo: 'Crear una coleccién de couchbase’

Descripcion: 'Crea la coleccion testcollection en mytestbucket’

Pre-condicién

Resultado Esperado

Infiere la creacién de una coleccién de Couchbase

Detecta todos los parametros proporcionados

Tabla F.30: Caso de prueba para la deteccién de un creado de repositorio

Caso de Prueba

30

Nombre

Infiere de una incidencia en lenguaje natural la creacién de un reposi-
torio

Entrada

Titulo: 'Crear repositorio’

Descripcion: 'Crea el repositorio testrepository en testproj’

Pre-condicion

Resultado Esperado

Infiere la creacién de un repositorio

Detecta todos los parametros proporcionados

Tabla F.31: Caso de prueba para la detecciéon de un creado de topic de Kafka

Caso de Prueba

31

Nombre

Infiere de una incidencia en lenguaje natural la creacién de un topic
de Kafka

Entrada

Titulo: 'Crear topic’

Descripcion: 'Crea el topic testtopic de 12 particiones y politica delete’

Pre-condicion

Resultado Esperado

Infiere la creacién de un topic de Kafka

Detecta todos los parametros proporcionados

Tabla F.32: Caso de prueba para la generacién de una plantilla

Caso de Prueba

32

Nombre

Infiere de una incidencia en lenguaje natural la generaciéon de una
plantilla

Entrada

Titulo: 'Crear microservicio testservice-agr’

Descripcion: 'Genera la plantilla en testproj’

Resultado Esperado

Infiere la generacion de una plantilla

Detecta todos los parametros proporcionados

54

Tabla F.33: Caso de prueba para el manejo del error al detectar la creacién de un recurso que no
existe

Caso de Prueba 33

Nombre Infiere de una incidencia en lenguaje natural que el recurso solicitado
no existe
Titulo: 'Crear tabla de postgreSQL'

Entrada Descripcion: 'Crea la tabla testtable en mydatabase’

Pre-condicién
Resultado Esperado | Detecta que el recurso solicitado no existe

55

	Introducción
	Motivación
	Objetivo
	Alcance
	Estructura del documento

	Análisis
	Necesidades del sistema
	Requisitos funcionales y no funcionales
	Recomendaciones para la especificación de requisitos
	Diccionario de datos

	Diseño
	Arquitectura
	Arquitectura de Puertos y Adaptadores
	Justificación de la elección de la Arquitectura de Puertos y Adaptadores
	Arquitectura del sistema

	Modelo de datos
	Proceso de transformación de datos

	Interfaz e integración
	Interfaz del sistema
	Integración con herramientas de gestión

	Diseño de algoritmos
	Procesamiento de lenguaje natural

	Desarrollo
	Aplicación
	Procesamiento de lenguaje natural
	Integración con la herramienta de gestión

	Tecnologías utilizadas
	Aplicación
	Base de datos
	Gestión de contenedores
	Visualización
	Otras

	Pruebas
	Objetivo de las pruebas
	Estrategia de las pruebas
	Entorno de pruebas
	Resultado de las pruebas

	Conclusión
	Trabajo a futuro

	Referencias
	Apéndices
	Dedicación
	Instrucción para la detección de tareas
	Modelo de datos extendido
	Documentación de la API
	Entorno de Pruebas
	Casos de Prueba

