«2s Universidad
10l Zaragoza

1542

Trabajo Fin de Grado

Cifrado seguro mediante uso protocolo SRTP para proteger
comunicaciones de voz de una infraestructura de
comunicacion de mision critica (TETRA)

Strong encryption using the SRTP protocol to protect voice
communications from a mission-critical communication
infrastructure (TETRA)

Autor

Javier Garcia Cantarero

Director

José Angel Martinez Luengo

Ponente

Alvaro Alesanco Iglesias

Grado en Ingenieria de Tecnologias y Servicios de Telecomunicacion

2023

Indice

T e [Tol TP PP PPPPPPPPPTTOt 2
1. Lista de acrénimos ¥ Siglas......ccoeviiiiiiiiiii 3
P (314 goTe [¥Tolol o] o FONN N TP PP PPPUPPPPPPRROt 5
2.1. Planteamiento del problemaccccooeeiiiiii 6
3. ANALISIS PrOVIO. wuvuuuueiiiiiiiiiiititit s 8
3.1. Elementos y lenguajes de programacion utilizados.ceeuuiiieeeiiiiiiiiiiiiiee e, 8
3.2, Librerias Utilizadas.coocveeeieiiieeeee e e 9
4. DescripCion de RTP ¥ SRTP. ..o, 11
4.1. Funcionamiento, Definicion y tramas del Protocolo RTP.cuvvviivivivvviviieevveiiieiiennnnnns 11
4.2. Funcionamiento, Definicion y tramas del Protocolo SRTP.cevvvvvvvveiivvveevneenieiiiinnnnns 13
4.3. Comparacion RTP CON SRTPoviiiiiiiiiiiiiiiiiiiieieeeetteeeessesssessesssrsssssssessrsrsrarssrsrsrerrrrarrnre 13
4.4, USO I DTLS....eiieeeeieeee ettt ettt ettt e st e s st e e st e e s s e e e s aanreee s 14
4.5. COIZO d RTP ..ottt ettt et et e st e e s s e e st e e s sanneeeesnanreee s 16
4.6. COIZO SRTP...ciiiiiiieiitiee ettt e st e s s e e s e e s s e e e saaneeee s 18
5. ESCENArios FEAlIZATOS «.....eeieiiiiieiiiiiee ettt s s e e s e e 20
5.1. Implementacién de la libreria PJMedia en un prototipo........cccccceeeviiiiiii, 20
5.2. Migracidn del Line Dispatcher a PJMedia y conexién conlaradio 21
5.3. Implementacién del protocolo SRTP en un prototipo........ccccceeeeiiiiiiiiiii, 22

5.4. Implementacién de Comunicacidn Segura en Red TETRA mediante Simulacidn

SRTP/DTLS ettt ettt ettt ettt sttt e b e s h e st e bt shb e et e s bt e sat e et e e bt e ehb e et e e nheeenteeabeeaeas 23
6. ANALiSIS A 125 TramMaseeiiiiiiiie et s e e 25
6.1. Tramas RTP ..o 25
6.2. Tramas SRTP ... 26
6.3. Tramas DTLS ... 27
6.4. Demostracion de la seguridad de la comunicacion de audiocoeoeeeei 28
7. Problemas resueltos durante el desarrollooooueeriiiiiiiiiiiiiiie e 31
8. CoNClUSION Y [INEAS fULUIAS ...uuueeiiiiiiii s 33
S 11 o1 10T = =1 - 34
10. Anexo 1: Capturas de los paquetes DTLS. ... 35
10.1. COMPOSICION CHENTHEIIO.uuunnnnnee et nan 35
10.2. COMPOSICION SEIVEIHEIIO.uuunnnnnneeee et nan 37
10.3. ComposiCion del tErCer PAQUETE.uueuee e aan 41
10.4. Composicion del CUArto PAQUETE.uuuuuuee e aan 44

1. Lista de acrénimos vy siglas.

ACELP - Algebraic code-excited linear prediction
AEAD - Authenticated Encryption with Associated Data
AES - Advanced Encryption Standard

Codec - Codificador-Decodificador

DDS - Data Distribution Service

DTLS - Datagram Transport Layer Security

ECDHE - Elliptic Curve Diffie-Hellman Ephemeral
ECDSA - Elliptic Curve Digital Signature Algorithm
GCM - Galois/Counter Mode

GVOIP - Global Voice Over Internet Protocol

ICE - Interactive Connectivity Establishment

IETF - Internet Engineering Task Force

IKE - Internet Key Exchange

IP - Internet Protocol

IPSec - Internet Protocol Security

ITU-T - Unidn Internacional de Telecomunicaciones-Telecomunicacion
MAC - Media Access Control

NAT - Network Address Translation

PCMA - Pulse Code Modulation A-law

PTT - Push To Talk

RSA - Rivest, Shamir y Adleman

RTCP - Real-time Transport Control Protocol

RTP - Real-time Transport Protocol

SDP - Session Description Protocol

SHA - Secure Hash Algorithm

SIP - Session Initiation Protocol

SRTCP - Secure Real-time Transport Control Protocol

SRTP
SSL
STUN
TETRA
TFG
TLS
TURN
uDP

VAD

Secure Real-time Transport Protocol
Secure Sockets Layer

Session Traversal Utilities for NAT
TErrestrial Trunked Radio

Trabajo Fin de Grado

Transport Layer Security

Traversal Using Relays around NAT
User Datagram Protocol

Voice Activity Detection

2. Introduccion.

En el dmbito de las comunicaciones, la seguridad y la privacidad de la informacién
desempefian un papel fundamental en el mantenimiento de la integridad y
confidencialidad de los datos. En sistemas de radiocomunicaciéon, donde la transmision
de voz y datos es vital para operaciones criticas, como las redes TETRA (TErrestrial
Trunked Radio) utilizadas por organizaciones de servicios de emergencia y fuerzas de
seguridad, la seguridad adquiere aun mayor relevancia. En este contexto, el presente
Trabajo de Fin de Grado (TFG) se enfoca en abordar un desafio significativo:
implementar un mecanismo de seguridad en la red TETRA que emplea un protocolo
privado que funciona a través de ACELP. Para ello, existe un Gateway que cambia este
protocolo con el RTP y viceversa.

El protocolo RTP es ampliamente utilizado para el transporte de datos en tiempo real,
como voz y video, a través de redes IP. Sin embargo, su disefio original no incluye
medidas de seguridad robustas, lo que lo hace vulnerable a ataques y amenazas de
seguridad. Para mitigar estos riesgos, se propone utilizar el protocolo SRTP (Secure Real-
time Transport Protocol), que proporciona mecanismos de cifrado, autenticaciéon e
integridad de los datos transmitidos, garantizando una comunicacién segura y confiable.

La implementacion de SRTP en el contexto de la red TETRA requiere un proceso de
negociacion seguro para establecer los parametros de seguridad entre los nodos de la
red. Para lograrlo, se propone utilizar el protocolo DTLS (Datagram Transport Layer
Security), que ofrece un mecanismo para establecer una conexidn segura antes de iniciar
la comunicacion mediante SRTP. Esta combinacién de SRTP con DTLS proporciona una
capa adicional de seguridad, asegurando la privacidad de las comunicaciones en un
entorno critico como el de la red TETRA.

El presente Trabajo de Fin de Grado tiene como objetivo implementar una negociacion
segura para el protocolo RTP en la red TETRA, utilizando SRTP con DTLS. Se evaluara la
viabilidad del enfoque mediante un sistema de prueba de concepto que aborde diversos
escenarios para verificar su efectividad y seguridad. Se espera que los resultados de este
trabajo contribuyan significativamente a mejorar la seguridad de las comunicaciones en
la red TETRA, protegiendo la confidencialidad y la integridad de la informacion
transmitida. Asimismo, sentaran las bases para futuras investigaciones y desarrollos con
el objetivo de implantar este protocolo en |la red TETRA en su totalidad, partiendo de
este prototipo.

En resumen, este TFG aborda la importante tarea de implementar una negociacion
segura para el protocolo RTP mediante la integracidn de los protocolos SRTP y DTLS en
la red TETRA. Mediante este enfoque, se busca garantizar la proteccion de las
comunicaciones en un entorno critico donde la seguridad y la privacidad son
primordiales para el buen funcionamiento y la confianza de las operaciones.

2.1. Planteamiento del problema

Se parte del escenario mostrado en la Figura 3.1.a., en el que se encuentran el nodo
central que actia como administrador, distintos sistemas de radio dentro de una red
TETRA y de un Line Dispatcher que se utiliza para comunicarse con estos dispositivos
desde fuera de la red, para ello se necesita un Gateway de VOIP que actia como
intermediario, ya que su funcion es modificar el protocolo RTP/RTCP que se emplea en
la comunicacion del Line Dispatcher a un protocolo privado de la empresa que actua con
ACELP y viceversa. Para establecer una llamada, ambos extremos necesitan registrarse
en el administrador para que asi puedan ser buscados en la red y se encarga también de
proporcionarle la informacion suficiente del otro extremo y de activar o desactivar el
PTT si es modo semi-duplex. Una vez establecida la lamada, si un extremo esta dentro
de la red TETRA y el otro fuera, como puede ser el Line Dispatcher, se comunicaran a
través del Gateway para que este cambie de un protocolo a otro sin dar dificultad a los
extremos.

ACELP RTP/RTCP
<« >« ‘line dispatcher”
‘Gateway

Sistema de radio
TETRA

Administrador

Figura 3.1.a.: Escenario anterior al proyecto.

Este escenario, tal y como se ha explicado, esta desarrollado con el protocolo RTP/RTCP,
lo cual hace que la conversacidn no esté cifrada, por lo que intrusos que tengan acceso
a cualquier red que trasladen estos paquetes pueden decodificarlo con aplicaciones
como Wireshark y descubrir la conversacion, lo que hace que esta no sea segura tal y
como se observa en el capitulo 6. Andlisis de las tramas. Por tanto, se ha planteado
cambiar el protocolo a SRTP/SRTCP, lo que nos lleva al siguiente problema, y es que el
Gateway no esta configurado para cambiar de ACELP a SRTP ni viceversa, por lo que
primero se quiere verificar si la comunicacidon con SRTP es viable en la red de la empresa.

En primer lugar, el protocolo SRTP se puede desarrollar a niveles altos como es PJSIP,
pero para mantener la compatibilidad en sistemas privados con la empresa, se tiene que
desarrollar con PJMedia, para poder asi, trabajar al nivel mas bajo de interfaz de acceso

a la libreria modificando los paquetes a través de la libreria presentada en el capitulo
3.2. Librerias utilizadas.

En segundo lugar, se tiene que comprobar que SRTP si que funcione al nivel mas bajo,
yendo paso por paso por los escenarios realizados en el capitulo 5. Escenarios realizados.
en el que se observa que la comunicacion es eficaz y segura tal y como se planteaba.

El tercer paso es modificar el Gateway para que funcione, aparte de con RTP, con SRTP
y asi poder utilizar este protocolo en los sistemas de radio de la red TETRA para que la
comunicacion entre ellos y el Line Dispatcher sea segura aunque haya intrusos en la red.
Que este paso ya se observard en un futuro, tal y como se explica en el capitulo 8.
Conclusion y lineas futuras.

3. Andlisis previo.

3.1. Elementos y lenguajes de programacion utilizados.

En este apartado, se muestran los diferentes programas y aplicaciones con sus
respectivos lenguajes de programacion (si constan de ello):

Microsoft Visual Studio 2012 y Microsoft Visual Studio Code:

Microsoft Visual Studio es un entorno de desarrollo integrado compatible con multiples
lenguajes de programacion que permite a los desarrolladores crear sitios y aplicaciones
web que se comuniquen entre estaciones de trabajo.

Ambos programas se han utilizado para la edicién de cddigo, que ha sido escrito en el
lenguaje C++. Este primero, aparte, se ha usado para la ejecucién de la aplicacién del
Line Dispatcher que se vera mas adelante en varios capitulos. Han sido los dos
programas mas utilizados a lo largo del proyecto.

Eclipse:

Es un entorno de desarrollo software que soporta varios lenguajes construido alrededor
de un workspace al que pueden incluirse un gran nimero de plugin que proporcionan
funcionalidades concretas relacionadas con lenguajes especificos o con la interaccidon
con otras herramientas implicadas en el desarrollo de una aplicacion.

En este proyecto se ha utilizado en el lenguaje de C++ para la visualizacion y edicién del
codigo del Gateway. Hemos utilizado este programa y no Microsoft Visual Studio debido
a que la aplicacién que controla el Gateway esta en un dispositivo de Linux y no de
Windows.

Wireshark:

Es un Software libre que se utiliza como analizador de protocolos utilizado para realizar
analisis en redes de comunicaciones afiadiendo una interfaz grafica y multiples opciones
como el filtrado de informacion.

En este proyecto, su utiliza para poder investigar las distintas tramas empleadas en las
comunicaciones planteadas en los distintos capitulos y para representar las sefiales del
audio escuchado durante estas.

3.2. Librerias utilizadas.

PJSIP:

[1] Es una libreria SIP (Session Initiation Protocol) desarrollada en Cy C++, que facilita |a
creacién de aplicaciones de comunicacién en tiempo real como llamadas de voz y video,
mensajes instantdneos y videoconferencias a través de la red IP. Gracias a su disefo
modular y APl bien documentada, los desarrolladores pueden seleccionar las
caracteristicas necesarias para sus aplicaciones, lo que la convierte en una opcidn
versatil y facil de usar. Ademas, PJSIP es altamente portatil y puede ejecutarse en
diversas plataformas, brindando flexibilidad para alcanzar una amplia audiencia.

Esta libreria se destaca por su soporte para una amplia variedad de cédecs de audio y
video, lo que permite la interoperabilidad con diferentes sistemas y dispositivos.
Ademds, PJSIP implementa caracteristicas avanzadas como la autenticacién, la
encriptacién y el enrutamiento de llamadas, lo que garantiza una comunicacién segura
y confiable en entornos empresariales y de consumo.

En este proyecto se ha utilizado como apoyo a funciones pertenecientes a la libreria de
PJMedia que se vera mas adelante en este capitulo.

PINATH:

[2] Esta libreria se enfoca en superar los desafios de las redes NAT (Network Address
Translation) y los firewalls en las comunicaciones en tiempo real. Los dispositivos detras
de NAT suelen tener direcciones IP privadas y no son directamente accesibles desde
Internet. Esto puede causar problemas en el establecimiento de conexiones punto a
punto para aplicaciones de VolP y videoconferencias.

PJNATH proporciona métodos para la resolucién de nombres, el descubrimiento de
servidores STUN (Session Traversal Utilities for NAT) e implementacion de ICE
(Interactive Connectivity Establishment). Gracias a STUN, los dispositivos pueden
obtener sus direcciones IP publicas y, con ICE, los dispositivos pueden negociar rutas de
comunicacion éptimas para atravesar NAT vy firewalls. Ademds, PJNATH es compatible
con TURN (Traversal Using Relays around NAT), lo que permite el uso de servidores
TURN como solucién alternativa en situaciones mas complejas donde la comunicacién
punto a punto no es posible.

En este proyecto se ha utilizado como apoyo a funciones pertenecientes a la libreria de
PJMedia que se explica a continuacién.

PJMEDIA:

Es una libreria que se utiliza para el procesamiento de medios en aplicaciones de VolP.
Ofrece funcionalidades para manejar cddecs, procesar flujos de medios, capturar y

reproducir audio y video, y otras caracteristicas avanzadas. Con PJMEDIA, los
desarrolladores pueden implementar aplicaciones de VolP con alta calidad de audio y
video, asi como funciones avanzadas como cancelacién de eco y deteccion de actividad
de voz. Esta libreria optimiza la experiencia del usuario y asegura una comunicacién
fluida.

PJMEDIA es altamente personalizable, lo que permite a los desarrolladores adaptar el
procesamiento de medios a las necesidades especificas de sus aplicaciones. Ademas, es
compatible con una amplia variedad de cédecs y formatos de medios, lo que facilita la
interoperabilidad con otras plataformas y sistemas.

En este proyecto se ha utilizado para usar funciones al nivel mas bajo de tramas para
poder implementar los protocolos RTP y SRTP para el envio y recepcién de tramas junto
con el proceso de inicializacion de las sesiones utilizadas para ello que se pueden
observar durante el capitulo 4. Descripcion de RTP y SRTP.

La eleccion de esta libreria como principal de este proyecto es que en el GVOIP ya se
utiliza esta, pero a niveles mas altos, por lo que simplemente se tendria que cambiar por
otros niveles mas bajos de interfaz de acceso a la libreria.

OpenSSL:

[4] Para garantizar la seguridad en las comunicaciones, OpenSSL es una libreria
criptografica fundamental utilizada ampliamente en aplicaciones de red. Ofrece cifrado
y descifrado, autenticacion y firma digital, y también implementa protocolos de
seguridad como SSL/TLS. Con soporte para diversos algoritmos criptograficos vy
certificados X.509, permite la transmision segura de datos y la autenticacion de extremo
a extremo.

Integrando OpenSSL con las librerias PJSIP, PINATH y PJMEDIA, los desarrolladores
pueden proporcionar una solucién de VolP altamente segura y confiable. La
combinacién de estas librerias ofrece una plataforma completa para el desarrollo de
aplicaciones de comunicacién en tiempo real, garantizando una experiencia de usuario
de alta calidad y protegiendo la privacidad y seguridad de las comunicaciones.

En este proyecto se ha utilizado para ayudar a la negociacion de las claves SRTP
utilizando el protocolo DTLS, que se explica en el capitulo 4.4. Uso del DTLS.

Libreria interna privada:

Debido a temas de privacidad, no se pueden dar detalles especificos de esta libreria. Se
ha utilizado para gestionar el Gateway y el nodo administrador de |la red TETRA para el
establecimiento de llamada y dar direccidn a cada dispositivo de esta red.

10

4. Descripcion de RTP y SRTP.

4.1. Funcionamiento, Definicion y tramas del Protocolo
RTP.

El Real-time Transport Protocol (RTP) y el Real-time Control Protocol (RTCP) son dos
protocolos complementarios utilizados en la transmisiéon de datos multimedia en
tiempo real a través de redes IP. Ambos fueron desarrollados por Internet Engineering
Task Force (IETF) y se rigen por diferentes RFCs. La primera version de RTP fue publicada
en 1996 en el documento RFC 1889 y la final en RFC 3550 en 2003.

El RTP, divide en tramas los datos multimedia y proporciona servicios de transporte,
control de flujo y sincronizacién. Por otro lado, el RTCP desempeiia un papel critico en
el monitoreo y control de la calidad de la transmisién. Aunque utiliza el mismo canal de
transporte que el RTP, el RTCP se encarga de enviar peridédicamente paquetes de control
hacia los participantes de una sesiéon en tiempo real. Estos paquetes contienen
informacion valiosa sobre la calidad de la conexion, estadisticas de los medios
transmitidos y detalles sobre la sincronizacién entre los participantes. Ademas, RTCP,
facilita la identificacion de posibles problemas en la red, como la pérdida de paquetes o
la variacion en los retardos, lo que permite tomar acciones correctivas para mejorar la
calidad de la experiencia de usuario en tiempo real.

La estructura de las tramas RTP consta de una cabecera y una carga util. La cabecera se
divide en varios campos que proporcionan informacién importante sobre la tramay su
contenido. A continuacion, se describen los campos mas relevantes de la cabecera de
una trama RTP:

11

Byte 0 |Byte 1| Byte 2 | Byte 3
ﬂ PIX/|CC|M| PT | N.° de secuencia

Marca de tiempo

Fuente de sincronizacion (SSRC)

Fuente del contenido (CSRC)

Cabecera de extension (EH), opcional

Datos

Figura 4.1.a.: Esquema de la estructura de una trama RTP.

Numero de version (Version): Este campo de 2 bits indica la version del protocolo
RTP utilizado.

Tipo de servicio (Padding, Extension, CSRC Count): Estos campos de 1 bit cada
uno indican la presencia de informacién adicional en la trama, como bits de
relleno (Padding), una seccién de extensidon (Extension) y el numero de
identificadores de fuentes de contribucion (CSRC Count).

Marcador (Marker): Este campo de 1 bit se utiliza para marcar tramas
importantes dentro de una secuencia de datos.

Tipo de carga util (Payload Type): Este campo de 7 bits especifica el tipo de datos
multimedia incluidos en la trama RTP, como audio, video o metadatos.

Numero de secuencia (Sequence Number): Este campo de 16 bits se utiliza para
ordenar y detectar pérdidas de tramas durante la transmision.

Marca de tiempo (Timestamp): Este campo de 32 bits se utiliza para sincronizar
los flujos de audio y video en el receptor.

Numero de identificadores de fuentes de contribucidn (SSRC Count): Este campo
de 4 bits indica la cantidad de identificadores de fuentes de contribucion
presentes en la trama.

Identificadores de fuentes de contribucidn (CSRC List): Estos campos de 32 bits
cada uno identifican las fuentes de contribucidén asociadas con la trama.
Cabecera de extension (EH): Es un campo opcional que proporciona informacion
de capa de red. Se utilizan para la fragmentacion, la seguridad y la movilidad
principalmente, aunque tiene varios usos mas. Tiene un tamano de 32 bits.

La carga util de la trama RTP contiene los datos multimedia en si. El formatoy la
estructura de la carga util dependen del tipo de datos que se transmiten. Por

12

ejemplo, si se trata de audio, la carga util puede contener muestras de audio
codificadas.

4.2. Funcionamiento, Definicion y tramas del Protocolo
SRTP.

El Secure Real-time Transport Protocol (SRTP) y el Secure Real-time Transport Control
Protocol (SRTCP) son extensiones esenciales utilizadas para garantizar la seguridad en la
transmisién de datos multimedia en tiempo real a través de redes IP.

SRTP se rige por el RFC 3711. Incorpora funciones criticas de seguridad, como el cifrado
y la autenticacién, para asegurar la confidencialidad, integridad y autenticidad de las
tramas RTP transmitidas.

En el caso del SRTCP, su funcionamiento se encuentra definido en el RFC 5764. SRTCP se
encarga de brindar seguridad a los paquetes de control enviados mediante RTCP. Tanto
SRTP como SRTCP incorporan técnicas de cifrado, autenticacién e integridad para
proteger los datos de control contra escuchas no autorizadas y modificaciones
malintencionadas. Los parametros de seguridad son acordados previamente entre el
emisory el receptor a través de protocolos de negociacion de claves, como Internet Key
Exchange (IKE), segun lo especificado en el RFC 7296, Internet Protocol Security (IPSec)
referenciado en RFC 6434y el Datagram Transport Layer Security (DTLS) cuya referencia
es RFC 9147. Este ultimo es el protocolo que se utilizara en este proyecto, sin embargo,
también existe la posibilidad de tener las claves ya establecidas en ambos extremos, por
lo gue no se necesitaria la negociacion que se realiza en el DTLS.

La utilizaciéon de SRTP y SRTCP en aplicaciones como telefonia IP, videoconferencias y
transmisiones en vivo por Internet ha demostrado ser crucial en entornos donde la
seguridad de la informacién es prioritaria protegiendo la privacidad de las
comunicaciones y la calidad de esta en tiempo real.

4.3. Comparacion RTP con SRTP.

Existen varias diferencias significativas entre SRTP y RTP. A continuacién, se presentan
algunas de las principales comparaciones:

- Seguridad: La principal diferencia entre SRTP y RTP radica en la seguridad.
Mientras que RTP no proporciona mecanismos de seguridad por si mismo, SRTP
agrega cifrado y autenticacién a las tramas RTP para proteger los datos
multimedia.

- Integridad: SRTP asegura la integridad de los datos multimedia mediante Ia
adicion de una etiqueta de autenticacion de mensaje (MAC) a cada trama, lo que

13

permite detectar modificaciones malintencionadas. RTP no tiene mecanismos
incorporados para verificar la integridad.

- Autenticidad: SRTP proporciona mecanismos para garantizar la autenticidad de
las tramas, asegurando que provienen de la fuente esperada y no han sido
manipuladas. RTP no tiene estas capacidades.

- Sobrecarga: Debido a los procesos de cifrado y autenticacién adicionales, SRTP
tiene una sobrecarga computacional y de ancho de banda mayor en comparacion
con RTP sin seguridad. Esto puede afectar el rendimiento en entornos con
recursos limitados.

En este caso, contemplando la codificaciéon con G711, la cabecera tanto de RTP, como
SRTP es de 12 bytes y de carga util de 64 bytes, haciendo un total de 76 bytes, sin
embargo, en SRTP se le afiaden 10 bytes de autenticacién y cifrado del algoritmo
AES_CM que se podra observar con mas detalle en el capitulo 4.4. Uso del DTLS. Todo
esto, provoca una sobrecarga del 15,79%, sin embargo, a la hora del envio de tramas, se
envian 3 paquetes en una trama, por lo que los bytes por trama son 192 a lo que se le
anaden a SRTP los 10 bytes mencionados anteriormente dando como resultado 202
bytes, lo que hace una sobrecarga del 4'95%.

Por lo que teniendo Unicamente como desventaja para el uso de SRTP esta sobrecarga
gue es pequefia, compensa su uso frente al RTP sin seguridad.

4.4. Uso del DTLS.

DTLS [5], acrénimo de Datagram Transport Layer Security, es un protocolo de seguridad
gue proporciona una capa de cifrado y autenticacion para la transmision de datos en
tiempo real a través de redes de datagramas, como UDP. DTLS es una version adaptada
de TLS (Transport Layer Security), disefiado para adaptarse a las caracteristicas y
exigencias de las aplicaciones que requieren una conexion segura y fiable en entornos
de red propensos a la pérdida de paquetes, como lo son las comunicaciones en tiempo
real.

DTLS se basa en una combinacién de algoritmos criptograficos para proporcionar
cifrado, autenticacién e integridad de los datos transmitidos, asegurando que la
informacién sensible no pueda ser interceptada o modificada por atacantes.

El uso principal de DTLS es la negociacion para el intercambio de claves que enviard a
SRTP para asegurar su proteccién. Cuando dos extremos (por ejemplo, un cliente y un
servidor) desean establecer una comunicacion segura mediante SRTP, primero utilizan
DTLS para establecer una conexidn segura. Durante este proceso, DTLS negocia los
algoritmos criptograficos y las claves de cifrado que se utilizaran para proteger la
informacién en tiempo real. Una vez que la conexion DTLS se ha establecido con éxito,
SRTP utiliza las claves acordadas para cifrar y autenticar las tramas de datos multimedia
gue se transmiten entre los extremos. Esta negociacidon se realiza a través de un

14

handshake, que consiste en las siguientes etapas que se ven representadas en la Figura

4.4.q..

Cliente : Servidor :

"Client Hello"
1
"Server Hello"
2
Envio del "certificate"
3
"ClientKeyExchange" 5
"Finished"
.l 7
"Finished"

Figura 4.4.a: Esquema de la negociacion para obtener las claves de SRTP a través de

DTLS.

Inicio: El cliente inicia el proceso enviando un mensaje ClientHello al servidor. En
este mensaje, el cliente incluye su lista de Cipher Suites (combinaciones de
algoritmos criptograficos) y otras capacidades de seguridad compatibles.
También genera un valor de nonce (nimero usado solo una vez) y otros
parametros necesarios para el proceso.

Respuesta del servidor: El servidor responde al mensaje del cliente con un
mensaje ServerHello. En este mensaje, el servidor selecciona una de las Cipher
Suites propuestas por el cliente que sea compatible y segura para ambos
extremos. El servidor también genera su propio valor de nonce y otros
parametros necesarios para el proceso.

Intercambio de certificados: El servidor envia su certificado digital al cliente en
el mensaje Certificate. El certificado contiene la clave publica del servidor, que el
cliente usard mas adelante para cifrar mensajes durante la comunicacién.
Autenticacién y verificacion del certificado: El cliente verifica la autenticidad del
certificado del servidor utilizando su lista de autoridades de certificacion de
confianza. Si el certificado es valido y confiable, el cliente continda con el
proceso.

Intercambio de claves: El cliente genera un valor de premaster secret (secreto
previo a la clave) y lo cifra utilizando la clave publica del servidor. El cliente envia
el secreto cifrado al servidor en el mensaje ClientKeyExchange. El servidor
descifra el secreto utilizando su clave privada y obtiene el mismo valor.

15

6. Generacion de claves de sesidn: Tanto el cliente como el servidor utilizan el
premaster secret y los valores de nonce intercambiados para generar claves de
sesidn para la comunicacién segura. Estas claves de sesidon son utilizadas por los
algoritmos criptograficos seleccionados para cifrar y autenticar los datos durante
la transmision.

7. Intercambio de mensajes de finalizacion: Tanto el cliente como el servidor envian
un mensaje Finished al otro extremo para confirmar que el handshake se ha
realizado correctamente y que ambas partes estadn listas para comenzar la
transmisidén segura.

4.5. Cadigo de RTP.

Los pasos que se han seguido para poder utilizar el protocolo RTP con la libreria PJMedia
referenciada en el capitulo 3.2. Librerias utilizadas. ha sido:

1. Inicializacion de la libreria a través de la funcion pj_init().

2. Creacidneinicializacion de la memoria cachéy de la direccién a los codificadores:

a. Caching pool: Grupo de almacenamiento en la memoria caché. Para ello
se debe emplear la funcién pj caching _pool _init(), afiadiéndole como
parametros de entrada el propio Caching pool, |a politica por defectoy la
capacidad maxima que queremos que almacene nuestra caché. Para
poder crearse este espacio, se necesita la funcidon pj_pool create() cuyo
parametro de salida se guarda en una variable y de entrada se mandan
los valores del caching pool, el nombre y el tamano inicial y adicional del
blogue de la memoria.

b. Creacion de un administrador de eventos a través de la funcidn
pjmedia_event_mgr_create(), su parametro de entrada es la variable
obtenida con la funcién anterior.

c. Endpoint: Sirve para administrar posteriormente los codificadores del
sistema. Se usa la funcion pjmedia_endpt_create() y como pardmetros de
entrada: los valores de caching pool, el numero de hilos necesarios (1 en
este caso) y el endpoint vacio para poder crearse.

3. Registro del cédec en un endpoint: Se deben efectuar estas dos funciones:
pjmedia_codec_register_audio_codecs() y pjmedia_endpt_get codec_mgr(),
pasandole como parametro de entrada a ambas funciones su endpoint. Se
utilizard pjmedia_codec_mgr_find_codecs_by id() para buscar los cédecs que
tengan el nombre enviado.

4. Creacion del socket RTP y RTCP vy vinculacién a su puerto de entrada:
pjmedia_transport_udp_create(), para ello, se necesita el endpoint utilizado para
registrar los sockets, un nombre (opcional), el nimero del puerto necesario para
RTP (para RTCP sera uno mayor) y un transporte pjmedia_transport recién
iniciado.

5. Se establece el cddec: Para ello se deben seguir los siguientes pasos:

16

6.

7.

10.

11.

a. Se obtiene el administrador del codec a partir del endpoint con la funcion
pjmedia_endpt_get _codec_mgr().

b. Se reciben los parametros por defecto a partir de la funcion
pjmedia_codec_mgr_get _default_param(), pero se deshabilita el VAD
porque estd por defecto.

c. Se solicita al administrador una instancia del cddec con una informacién
que se pide por entrada con la funcion
pjmedia_codec_mgr_alloc_codec().

d. Inicializamos y abrimos el cédec a partir de pjmedia_codec init() y de
pjmedia_codec_open().

Establecemos las sesiones RTP:

a. En primer lugar, se inicializa el socket RTP y el RTCP a partir de la funcién
pj_sockaddr_in_init().

b. Seguidamente, se activan las sesiones de entrada y salida con el puerto e
informacidn correspondiente con pjmedia_rtp_session_init().

c. Por ultimo se configura la sesién RTCP, para ello, se necesita el puerto
RTCP, el reloj del cddec y la funcion pjmedia_rtcp_init().

Se activan los call-backs on_rx_rtp() y on_rx_rtcp(), que se activan al recibir los
paquetes RTP y RTCP correspondientemente, para ello, se necesita el transporte
que se ha modificado durante los anteriores apartados, la informacion, los
puertos RTP y RTCP vy la longitud del socket para enviarlos a la funcién
pjmedia_transport_attach().

Se inicializa la sesion de transporte con la configuracion en el SDP local y remoto,
cuando se trabaja con SRTP, esto activara el cifrado y descifrado de los paquetes.
La funcidn que se utiliza para ello es pjmedia_transport_media_start().

Para el lanzamiento de paquetes se necesita invocar el hilo send _RTP_thread.
El call-back on_rx_rtcp() se utiliza para recoger los paquetes RTCP que llegan en
la comunicaciodn, es decir, los paquetes de control. Una vez recogida cada trama,
se actualiza la sesidn pjmedia_rtcp_rx_rtcp().

El siguiente call-back es on_rx_rtp():

a. Serecogen los paquetes RTP recibidos, estos contienen la informacién de
la sefal de audio codificada, en este caso en G711. Lo primero que se
hace al recibir la trama es decodificar con pjmedia_rtp_decode_rtp().

b. Se actualizan las sesiones RTP y RTCP a través de pjmedia_rtcp_rx_rtp()y
de pjmedia_rtp_session_update().

c. El cédec inspecciona el paquete y lo divide en tramas individuales, para
ello, como parametros de entrada a la funcién pjmedia_codec_parse(),
necesitamos el cédec, el paquete recibido y su longitud, la marca de
tiempo de la primera muestra del paquete (timestamp), el puntero en el
que se indica el nimero de frames en el vector y la variable que devuelve
las tramas que se han detectado en el paquete.

d. Para decodificar cada frame obtenido en la funcidn anterior, se utiliza la
siguiente: pjmedia_codec_decode() y asi se obtiene cada trama que se
necesita para obtener la sefial de audio.

17

12. Para el envio de los paquetes, como se ha dicho anteriormente, se utiliza el hilo

send_RTP_thread se han utilizado para desarrollarlo los siguientes pasos:

a. Lo primero que hay que hacer, es crear la cabecera que se necesita para
el protocolo RTP y se codifica con pjmedia_rtp_encode_rtp(), para ello se
necesita la sesion de salida, la informacidon del cddec y la cabecera.

b. Se obtienen los bytes que se quieren enviar y se acoplan a la cabecera
creada anteriormente.

c. Por ultimo, se envia directamente el paguete completo a través de la
funcién pjmedia_transport_send_rtp(), la que necesita como parametro
de entrada Unicamente el transporte (con toda su informacién
almacenada anteriormente) y el paquete. Esta funcién entregara dicho
paquete directamente a la direccion destino especificadas en el
pjmedia_transport_attach().

4.6. Codigo de SRTP.

Para implementar la seguridad con protocolo SRTP, se han tenido que afiadir funciones,
tanto de PJMedia como de openssl:

1.

En primer lugar hay que cambiar el tipo de transporte a
PJMEDIA_TRANSPORT_TYPE_SRTP.

Después de crear las sesiones RTP (apartado 6 del capitulo 4.5. Cddigo de RTP),
agregamos las opciones por defecto de SRTP con la funcidon
pjmedia_srtp_setting default(). Y creamos esta sesidon gracias a
pjmedia_transport_srtp_create() afiadiéndole el transporte, el endpoint del
codec y las opciones que se acaban de crear.

Una vez empezada la sesiéon de transporte (apartado 8 del capitulo 4.5. Cddigo
de RTP), existen dos opciones:

a. La primera es tener las claves anteriormente de cada extremo de la
comunicacion y crear el transporte SRTP enviando dichas claves a la
funcién pjmedia_transport_srtp_start(), por lo que se tendrian que saber
antes de empezar la comunicacidn si solo utilizamos este protocolo.

b. La segunda consiste en hacer una negociacién, se utilizara el protocolo
DTLS, para ello hay que seguir los siguientes pasos:

i. Crear el hilo on_srtp_nego_complete para saber el momento en
el que acaba este proceso.

ii. A continuacidon, inicializar la informacién que tienen los
parametros de DTLS con pj_bzero() y copiamos los sockets con la
direccion y los puertos RTP y RTCP con pj_sockaddr_cp().

iii. Asignamos un cliente y un servidor activando el flag is_role_active
a este primero. El servidor estd en espera hasta que recibe el
saludo del cliente que inicia la conversacion y envia el handshake
cada cierto tiempo hasta que recibe respuesta activando asi el

18

hiloon_srtp_nego_complete. El inicio de la negociacidn se efectia
con pjmedia_transport_srtp_dtls_start_nego(). A esta funcion se
le aflade un fingerprint que se usa como certificado remoto, en
este proyecto no se hace esta verificacion, por lo que no hay una
autentificacion fiable. Se ha optado a esta opcién, debido a que
los mecanismos para pasar dicho fingerprint entre los dos
extremos aun no estan perfilados, se ha preferido centrarse en el
resto de los aspectos de SRTP.

Una vez se completa la negociacion, se activa directamente la
comunicacion mediante el protocolo SRTP sin tener que Ilamar
ninguna otra funcion, a parte del hilo de envio.

19

5. Escenarios realizados.

El escenario general del proyecto estd reflejado en la Figura 5.a., en los siguientes
apartados se ird viendo el escenario de cada uno de ellos para ser explicados de una
manera mas clara.

s 4

Q
Sistema de radio &J\\‘Q

TETRA

Prototipo 1 ¢ \\%\l Prototipo 2
2

@ “line dispatcher”

‘Gateway’
de VOIP

&

Administrador

Figura 5.a.: Escenario general del proyecto.

Este escenario general estd compuesto por 2 redes, la primera es un sistema de radio
TETRA en la que estdan sus dispositivos, y en la segunda estan los dos prototipos que se
utilizaradn a lo largo de los siguientes apartados y el Line Dispatcher. Para establecer una
lamada entre dos extremos, tanto cualquier dispositivo de radio como el Line
Dispatcher, se utiliza el nodo central que se utiliza como administrador y es el encargado,
a través de un protocolo privado interno, de proporcionar la direccion, los puertos, el
PTT, etc.. Una vez se establece la llamada, si uno de ellos estd dentro de la red TETRA y
el otro fuera, se comunican traspasando el Gateway, cuya funcién es convertir el trafico
ACELP empleado en la red TETRA a RTP/RTCP utilizado en el exterior y viceversa, por lo
gue actua como intermediario entre el dispositivo de radio y el Line Dispatcher para que
la conversacion pueda realizarse.

5.1. Implementacion de la libreria PJMedia en un
prototipo.

Este primer escenario es propuesto para verificar la compatibilidad del protocolo RTP
dado a través de PJMedia con las librerias internas de la empresa, para poder asi
asegurarse de su correcto funcionamiento.

Para ello, se ha realizado un prototipo cuya funcionalidad es enviar y recibir un mismo
archivo de audio guardado en el ordenador a través de RTP utilizando un puerto para el
envio y otro para la recepcion.

20

b

RTP/RTCP L\J
D

o
-
""'-\.#(Y

Prototipo 1 Prototipo 2

Figura 5.1.a.: Esquema del escenario 1. Envio de archivo de audio entre dos consolas.

Para lograr este objetivo, se requiere la operacion simultdnea de dos consolas con
sistema operativo Windows, ambas envian el fichero por paquetes codificados con RTP,
reciben las tramas del otro con un puerto distinto y crean otro archivo de audio para
poder reproducirse una vez se haya terminado la conexion.

Ahora, con el conocimiento adquirido en este escenario con el uso de la libreria de
PJMedia, se dard paso al siguiente, donde se llevara a cabo una demostracién practica
en tiempo real para ilustrar mejor el funcionamiento de este sistema.

5.2. Migracion del Line Dispatcher a PJMedia y conexidn
con la radio.

Este segundo escenario es propuesto para verificar que la libreria de PJMedia con RTP
sin seguridad funcione con un sistema real de radio para posteriormente afiadirsela.

Partimos de la aplicacion del Line Dispatcher ya proporcionada. Los cambios que se han
realizado con respecto al original, ha sido la migracion a PJMedia, ya que antes, la
creacidn de sesiones y los envios se realizaban a través de una libreria interna que no
soporta SRTP, por lo que se necesita esta migracion a PJMedia planteada. Los pasos que
se han desarrollado para ello han sido explicados en el apartado 4.5. Cédigo RTP del
Capitulo 4., tal y como se ha hecho en el apartado 5.1. Implementacidn de la libreria
PJMedia en un prototipo.

Administrador

g,

“"l ACELP RTP/RTCP
: < >R line dispatcher”
& g :
Gateway
Dispositivo
de radio

Figura 5.2.a.: Esquema escenario 2. La aplicacion de Line Dispatcher se comunica con el
sistema de radio atravesando el Gateway.

La radio se encuentra en una red de infraestructura TETRA, por lo que la aplicacién del
Line Dispatcher se debe conectar a esta a través de un Gateway que Unicamente soporta
RTP, por lo que en este escenario seguiria funcionando, ya que se utiliza este protocolo.

En esta conexidn se pueden realizar llamadas individuales (duplex y semi-duplex) y de
grupo a tiempo real. La sefial se envia a través de UDP de los paquetes RTP codificada
por G711.

Ambos extremos pueden iniciar la llamada de ambos tipos mencionados anteriormente
y el otro extremo es el encargado de aceptarla o rechazarla. Al aceptarla,
automaticamente se puede comunicar hablando directamente (modo duplex) o
activando y desactivando el PTT de ambos extremos conforme el turno de habla (modo
semi-duplex), quien tiene el permiso inicial depende de si la llamada es directa o hook
(con descuelgue).

La funcién de este escenario es comprender cdmo funciona esta aplicacién de Line
Dispatcher y tener un contacto con lo que seria el producto final que es la comunicacién
por sistema de radio.

5.3. Implementacion del protocolo SRTP en un prototipo.

Este tercer escenario, comprueba el cifrado de SRTP con PJMedia en modo de trabajo
compatible con sistemas actuales.

Para ello, se implementan los cambios propuestos en el capitulo 4.6. Codigo SRTP en el
primer escenario mostrado en 5.1. Implementacion de la libreria PJMedia en un
prototipo. Con ayuda de los protocolos SRTP y DTLS, se intentard que la sefial se cifre
con claves después de negociarlas para asi no estar expuestas las conversaciones para
cualquier intruso que se infiltre en la red o que pertenezca a ella.

.

SRTF/SRTCP | ™
' ‘ g \J
532 B2
Prototipo 1 Prototipo 2

Figura 5.3.a.: Esquema del escenario 3. Envio de archivo de audio entre dos consolas.

Tras comprobar que este cifrado ha funcionado y no puede ser descifrado por
Wireshark, tal y como se observara en el capitulo 6.4. Demostracion de la seguridad de
la comunicacion de audio.

En el proximo escenario, se podra observar el escenario final de este proyecto, donde
se apreciaran los resultados y beneficios de la aplicacidn de estos cambios en términos
de seguridad y confidencialidad en la comunicacion por sistema de radio. La
incorporacion de cifrado mejora significativamente la integridad de las transmisiones,

22

protegiendo la informacién sensible y asegurando una comunicacion mas segura y
confiable en este entorno.

5.4. Implementacion de Comunicacion Segura en Red
TETRA mediante Simulacion SRTP/DTLS.

Este escenario es el mas cercano al objetivo final, debido a que el Gateway no soporta
los protocolos SRTP y DTLS que necesitan convertirse en ACELP para que funcionen en
la red interna de TETRA a la que pertenecen los dispositivos de radio. Para ello, se
establece la llamada accediendo al administrador por ambos extremos, pero se engafia
al sistema para que el Gateway utilice un puerto falso. Al final del establecimiento, el
trafico de audio real del dispositivo de radio se sustituye una vez establecida la llamada
por el del prototipo, de forma que no es necesario modificar el Gateway.

Este escenario se puede observar en la Figura 5.4.a. en la que “Prototipo 1” y “line
Dispatcher” pertenecen a una red privada, mientras que el “Dispositivo de radio” esta
en la red TETRA, cuyo tréfico es sustituido por el del prototipo una vez es iniciada la
llamada tras establecerse con el “Administrador”.

Administrador

—y
/ 'line dispatcher

I SRTP/SRTCP

DTLS

Dispositivo ‘
de radio :

S
)

Prototipo 1

Figura 5.4.a.: Escenario final. El prototipo simula el sistema de radio para enviar el
audio SRTP/SRTCP/DTLS.

Para ello, se siguen los pasos de este esquema:

1. En primer lugar, se ejecuta en la ventana de comandos el cédigo del prototipo,
que actuara como servidor para la negociacion de DTLS para que esté en espera
hasta que el Line Dispatcher empiece la negociacidn para obtener las claves de
SRTP y comenzar la conversacion. Se establece esta disposicion de cliente y
servidor, debido a que en la negociacion DTLS, el cliente es el que empieza la
negociacion mientras que el servidor espera el mensaje de ClientHello.

23

2. A continuacion se llama a través de alguno de los dos extremos, ya sea desde la
aplicacion como desde la radio, en cualquier modo y desde el otro, se acepta la
llamada.

3. Posteriormente, empieza la negociacién de DTLS del Line Dispatcher con el
prototipo.

4. Una vez completada la negociacién, si es modo duplex se puede oir a través de
la aplicacién de Line Dispatcher el archivo de audio en bucle, en cambio, si es en
modo semi-duplex se necesita desactivar el PTT de la aplicacidn y activarlo en el
dispositivo de radio para que este se escuche.

Este escenario se ha disefiado para que se pueda realizar también por RTP, es decir, sin
seguridad. Para ello se tiene que activar esta funcién desde el cédigo de la aplicacién del
Line Dispatcher y con los comandos desde el prototipo para poder comunicarse ambos
con RTP. En este caso, la negociacidn no se realiza, por lo que el prototipo directamente
envia en bucle el dispositivo de audio una vez se inicie con la ventana de comandos,
independientemente de si se ha realizado o no el establecimiento de llamada.

Una vez se cierra el prototipo, se puede escuchar también a través de un archivo de
audio la parte de la comunicacion del Line Dispatcher hacia el prototipo, por lo que la
conversacion funciona en ambos sentidos, es decir, SRTP funciona tanto como para
transmisién como para recepcion.

Gracias a este escenario, se puede confirmar que esta comunicacion es viable y se puede
utilizar en el sistema de radio, pero para ello se necesitaria modificar el Gateway, ya que
actualmente no soporta el SRTP ni el DTLS. Por lo que en unos meses, cuando se
modifique el Gateway pueda admitir ambos protocolos.

24

6. Analisis de las tramas.

En este capitulo se comparan las tramas capturadas en cada escenario gracias a
Wireshark. Como ya hemos visto en el Capitulo 5. Escenarios realizados, en los dos
primeros escenarios se obtienen tramas TCP con el protocolo RTP y en los dos siguientes,
se muestran tanto SRTP para la comunicaciéon como DTLS para la negociacion de las
claves. Posteriormente se compararan las sefiales de audio capturadas para asi verificar
si se han cifrado correctamente y si son vulnerables a ataques.

En un inicio, todos estos paquetes se capturan como UDP tal y como se observa en la
Figura 6.a., por lo que se decodifican a través de una funcién de la propia aplicacién de
Wireshark, Decode As..., para poder poner el tipo RTP (tanto para las tramas RTP como
para las tramas SRTP).

33 @.548635 172.16.32.243 172.16.32.243 unp 284 TeBs - 4885 Len=172
34 8.548636 172.16.32.243 172.16.32.243 unpP 284 4885 = 7885 Len=172
35 @.572623 172.16.32.243 172.16.32.243 uDp 284 4885 - 7885 Len=172
36 @.572624 172.16.32.243 172.16.32.243 UDpP 284 JeBs - 4885 Len=172
37 8.604637 172.16.32.243 172.16.32.243 uDP 284 4985 = 7885 Len=172
38 @.684639 172.16.32.243 172.16.32.243 unp 284 TeBs - 4885 Len=172
39 8.636575 172.16.32.243 172.16.32.243 unpP 284 7885 - 4885 Len=172

Figura 6.a.: Captura paquetes UDP sin decodificar a RTP.

Se puede observar Unicamente la direccién fuente y destino con sus respectivos puertos
y la longitud de los datos y de la cabecera, por lo que asi no se obtendria suficiente
informacidn, por lo que habria que decodificarlo como se ve en el siguiente apartado.

6.1. Tramas RTP.

Una vez decodificados los paquetes de la Figura 6.a., se observan los de la Figura 6.1.a.
Se puede observar mas informacion como “P=ITU-T G. 711 PCMA”, esto significa que es
un protocolo de la Unién Internacional de Telecomunicaciones-Telecomunicacién (ITU-
T) que utiliza como cédec tanto G711 como PCMA (Pulse Code Modulation A-law), en
este caso, para la descomprension se utiliza G711. A continuacidn aparece el campo de
“Fuente de sincronizacidon”, que como se puede observar en el apartado 4.1.
Funcionamiento, Definicion y tramas del Protocolo RTP. este campo indica la posicidn de
la fuente de sincronizacién en la memoria, esto va seguido del nimero de secuencia del
paquete para tenerlo asi localizado, y por ultimo, aparece el Timestamp en el que se
deduce que entre cada paquete hay un valor de 160 de diferencia entre cada una que
sirve para sincronizar los flujos de audio y video en el receptor.

25

33
34
35
36
37
38
39

2R e e e ®

oo o~ ovown

. 348635
. 348636
.372623
.572624
. 6B4637
. bB4639
.B36575

172.
172.
172.
172.
172.
172.
172.

16.
16.
16.
16.
16.
16.
16.

33.
33.
32.
32.
32.
32.
32.

243
243
243
243
243
243
243

172.
172.
172.
172.
172.
172.
172.

16.
16.
16.
16.
16.
16.
16.

32.
32.
32.
32.
32.
32.
32.

243
243
243
243
243
243
243

RTP
RTP
RTP
RTP
RTP
RTP
RTP

284
284
284
284
284
284
284

PT=ITU-T
PT=ITU-T
PT=ITU-T
PT=ITU-T
PT=ITU-T
PT=ITU-T
PT=ITU-T

-711
-711
-711
-711
-711
-711
-711

ch 6 G G G Y GY

PCMA, S5RC=8x294823,
PCMA, S5RC=8x294823,
PCMA, S5RC=8x294823,
PCMA, SS5RC=8x294823,
PCMA, SSRC=8x294823,
PCMA, S55RC=8x294823,
PCMA, S5RC=8x294823,

5eq=26518, Time=2338
Seq=26583, Time=438
Seq=26584, Time=R48
Seq=26519, Time=3848
Seq=26585, Time=388
S5eq=26528, Time=3280
S5eq=26521, Time=3368

Figura 6.1.a.: Captura de tramas RTP decodificados.

Tras obtener estas tramas, se accede en la misma aplicacidon de Wireshark al menu de
Telephony -> RTP -> RTP Streams, se selecciona cualquiera de los dos flujos de la
conversacion o escuchar ambos a la vez que también es posible, y se accede a observar
la sefial en Analyze -> Play Streams. Llegado a este punto, aparece la sefal de la Figura
5.1.a., que no esta cifrada y puede ser escuchada por cualquier persona que tenga
acceso a cualquiera de las dos redes de este escenario o de las redes que separan a
ambos extremos en cualquier otro proyecto simplemente accediendo a esté menu y
cambiando la opcién de Playback Timing a RTP Timestamp y reproduciendo la sefial de
audio resultante.

6.2. Tramas SRTP.

Al igual que en el apartado anterior, se decodifica la Figura6.a. a RTP, y en un principio,
como se puede observar en la Figura 6.2.a. en comparacion con la Figura 6.1.a. no existe
ninguna diferencia, el Timestamp, la fuente de sincronizacién y la codificacién tienen los
mismos valores, por lo que no se va a entrar en detalles de esta captura, sin embargo,
la longitud de la trama es de 10 bytes mayor, tal y como se adelanté en el capitulo 4.3.
Comparacion RTP con SRTP., sin embargo, en ese mismo apartado, se comunico que las
tramas tenian un valor de 192 y 202 bytes y en las capturas de Figura 6.1.a y Figura
6.2.a., aparecen 12 bytes mayor. Esto es debido a que en Wireshark, al capturar los
paquetes, aflade 12 bytes a cada uno, pero el estudio se ha realizado con la longitud de
los paquetes reales que circulan por la red y no por los capturados.

. 700622
. 721009
.741947
. 758081
. 762947

[I o I v I v B)

172.
172.
172.
172.
172.

16.
16.
16.
16.
16.

32.243
32.243
32.243
32.243
32.243

RTP
RTP
RTP
RTP
RTP

214
214
214
214
214

PT=ITU-T G.711
PT=ITU-T G.711
PT=ITU-T G.711
PT=ITU-T G.711
PT=ITU-T G.711

PCMA,
PCMA,
PCMA,
PCMA,
PCMA,

SSRC=0x294823,
SSRC=0x294823,
SSRC=0x294823,
SSRC=0x294823,
SSRC=0x294823,

Seq=26501,
Seq=26502,
Seq=26503,
Seq=26501,
Seq=26504,

Time=160
Time=320
Time=480
Time=160
Time=640

Figura 6.2.a.: Captura de tramas SRTP decodificados.

Reproducimos la sefial que aparece en la Figura 6.3.a., y se escucha ruido blanco de
fondo, es decir, que se ha conseguido codificar la sefial durante el trayecto de la red
entre ambos extremos, y debido a que en ambos extremos también se escucha el audio
a la perfeccién, se verifica que este cifrado es valido y funcional para poder seguir
adelante en este proyecto.

26

Bow N e

6.3. Tramas DTLS.

En este apartado, se analiza la negociacién de las claves de SRTP a través del protocolo
DTLS, la captura de estos paquetes se puede observar en la Figura 6.3.a., se veran en
profundidad los 4 paquetes que componen las 7 fases de la negociacién vistas en el
capitulo 4.4. Uso del DTLS. Siendo el primer paquete correspondiente a la fase 1, el
segundo a las fases 2 y 3, el tercero corresponde a las fases 4,5, 6y 7 y el cuarto a las
fases 5,6y 7.

©.000000 172.16.32.243 DTLSv1.2 254 Client Hello

©.498082 172.16.32.243 DTLSv1.2 1404 Server Hello, Certificate (Fragment), Certificate (Fragment)
9.508169 172.16.32.243 DTLSv1.2 1277 Certificate (Fragment), Certificate (Fragment), Certificate
9.510164 172.16.32.243 DTLSv1.2 1077 New Session Ticket (Fragment), New Session Ticket (Fragment)

Figura 6.3.a.: Paquetes capturados de la negociacion DTLS.

Los 4 paquetes representados, estan divididos por campos que se pueden observar en
el 10. Anexo 1: Capturas de los paquetes DTLS.

El primer paquete corresponde al ClientHello. Esta compuesto por 242 bytes, ya que hay
gue restar los bytes afiadidos por la captura de Wireshark. En el primer campo se define
el tipo ClientHello y en el siguiente se afiade un nimero Random que corresponde al
nonce. Seguidamente aparece la lista de 28 Cipher Suites que soporta durante la
negociacion el cliente, que es el Line Dispatcher, y define el método de compresion por
defecto. Se envian también 3 formatos de ec_point (curvas elipticas) que sirven para la
elaboracion de la clave, acompafiado de 5 supported groups que se utilizan para acordar
gue ec_point se utiliza en la comunicacion y cuales son compatibles. Por ultimo aparece
la inclusion del protocolo SRTP con los dos Cipher Suites soportados en la comunicacién
y una lista de 23 firmas Hash que aseguran la autentificacion del mensaje. Se han
enviado listas con todas las opciones posibles que tiene el cliente, para que en la
respuesta ServerHello, el servidor elija cual de todas las opciones quiere utilizar.

El segundo paquete, corresponde al ServerHello, que en este caso, tiene una longitud de
1392 bytes que se compone de los distintos campos.

En el primer campo se define el tipo ServerHello del Handshake, a continuacidn se envia
el numero nonce diferente al del cliente y se establece el Cipher Suite que se emplea en
la negociacion: TLS_ECDHE_RSA_WITH_AES 256 _GCM_SHA384 (0xc030), que suite
utiliza el intercambio de claves ECDHE (Elliptic Curve Diffie-Hellman Ephemeral) con
curvas elipticas, autenticacion del servidor mediante RSA (), cifrado simétrico AES con
una clave de 256 bits y el modo de operacién GCM (Galois/Counter Mode) para
proporcionar cifrado y autenticacién de integridad. La funcidn de hash SHA-384 (Secure
Hash Algorithm 384) se utiliza para garantizar la integridad de los datos. A continuacion
se indica el protocolo SRTP, a la vez que se escoge el Cipher Suite de la conversacién:
SRTP_AES128 CM_HMAC_SHA1 80 (0x0001) explicado en el capitulo 4.4. Uso del
DTLS., posteriormente, indica el id del certificado perteneciente a PJMedia y algunos
campos como la fecha de validez, el nUmero de secuencia, la id del algoritmo y su clave

27

publica. Se envian también 3 tipos de certificados de los tipos RSA, DDS y ECDSA y la
misma lista de 23 algoritmos Hash que habia enviado el cliente.

El tercer paquete se compone de 1265 bytes que envia el cliente al servidor. En el primer
campo se define el tipo de Handshake, mas adelante envia el certificado a nombre de
PJSIP y de PJMedia con su firma, id, nombre, nimero de secuencia, tiempo de validez y
clave publica. Envia también la clave publica de Diffie-Hellman y posteriormente el Hash
para la verificacidon del paquete.

Por ultimo, en el cuarto paquete, el servidor envia 1065 bytes al cliente.

Tras verificar los datos enviados por el cliente, el servidor inicializa una nueva sesién con
un tiempo de vida de 2 horas, tal y como se especifica en el campo TLS Session Ticket.
Completando con este paquete asi la negociacién de DTLS y obteniendo las claves para
el cifrado SRTP.

6.4. Demostracion de la seguridad de la comunicacidn de
audio.

En primer lugar, observamos la sefial obtenida en el primer escenario planteado en el
capitulo 5.1. Implementacion de la libreria PJMedia en un prototipo., a través del uso de
la aplicacion Wireshark, se realiza un analisis mediante una captura de la conversacion
através de RTP, lo que permite observar el proceso de envio de los paquetes codificados
(pero no cifrados) utilizando el protocolo G711 a través de UDP. Este analisis se visualiza
en la Figura 6.4.a.

=

"

TRTR———

Figura 6.4.a.: Sefial de audio codificada por RTP sin cifrado hallada por la aplicacion
Wireshark de la trama del apartado 6.1. Tramas RTP.

Es importante destacar que, debido a la ausencia de cifrado en la sefial de audio
transmitida, esta puede ser escuchada al decodificarla. Aunque el protocolo utilizado ha
demostrado ser funcional en este caso, su falta de seguridad es una preocupacién clave.
Debido a que intrusos que tengan acceso a la red en la que existe la comunicacion,

28

pueden escucharla utilizando programas como Wireshark de una manera muy sencilla,
tal y como se acaba de demostrar.

Se puede averiguar esto, debido a que la sefial de la Figura 6.4.a. tiene una forma en la
gue se diferencian varias intensidades, siendo que en la primera parte es mds intensay
en la ultima es menos intensa, pero en ningin momento llega a haber silencio. Al
reproducirla, tal y como se explica en el apartado 6.1. Tramas RTP., la hipodtesis
planteada es cierta.

En el siguiente ejemplo mostrado en la Figura 6.4.b. se puede observar una sefal de
conversacion mas realista, debido a que para ello se ha capturado unos segundos de la
conversacion realizada en el segundo escenario explicado en el capitulo 5.2. Migracion
del Line Dispatcher a P/JMedia y conexion con la radio., en el que es una conversacion a
tiempo real cuyos extremos son el Line Dispatcher y el sistema de radio. Se pueden
observar los tiempos de silencio y los tiempos en el que se habla.

S A e u—

6.4.b.: Conversacion a tiempo real entre dos usuarios situados en el Line Dispatcher y
en el sistema de radio.

Por ultimo, se observa en la Figura 6.4.c., que los tiempos de silencio han desaparecido,
y que incluso la sefal tiene siempre la misma intensidad. Esto es debido a que esta sefal
estd cifrada debido a que pertenece al escenario del capitulo 5.3. Implementacion del
protocolo SRTP en el prototipo., por lo que simula un ruido blanco que al escucharlo, se
puede apreciar Unicamente ruido, por lo que la finalidad estaria realizada, ya que nadie
gue tenga acceso a cualquiera de las redes implicadas en la conversacion que no tenga
la red privada de cada uno, no podra descifrar la sefal, por lo que evitamos asi posibles
intrusos que comprometen la seguridad de la llamada.

29

i | | f | I i
Lo ’/A‘({(((<(<(<(((<<<<<<<<<<(<(<(<(<(<(<<<<<‘<(<(<(<(0.' '/A‘«<<<<(((<(((<(<(<(<<<<(<(((((((((((((({({({(((‘f’IK((<<<<<<(<((((<((<(<<<(<<<<<<((<<<<(<(<(<<<<<<<01’/A’<(((««<(<<((((<(<((<(<<<<<<<<<<<((<<<(<(<(<<<0f’/A’(((«(«««(

Figura 6.4.c.: Seial de audio codificada por RTP y cifrada por SRTP.

Gracias a este capitulo se ha observado que la comunicacién, aparte de ser funcional tal
y como se habia asegurado en el capitulo 5. Escenarios realizados., que los dos ultimos
apartados funcionan correctamente con SRTP lo que hace que la senal esté cifrada que
era el objetivo principal de este proyecto.

30

7. Problemas resueltos durante el desarrollo.

A lo largo de este capitulo se describiran los problemas que han surgido a lo largo de
todo el proceso del proyecto.

En primer lugar, se queria resolver la falta de seguridad en el protocolo RTP cambiandolo
a SRTP afiadiendo también DTLS para la negociacién de las claves, tal y como se ha
explicado durante los capitulos anteriores.

Para Implementar estos dos protocolos, se han tenido que buscar distintas librerias que
fuesen compatibles con las que ya se utilizan privadamente en la empresa en la que se
ha desarrollado el proyecto. La primera libreria que se ha pensado es PJSIP, ya que
engloba el protocolo SRTP, pero daba problemas de compatibilidad con la red y otras
librerias de la empresa, por lo que se tuvo que llevar al nivel mas bajo para evitar estos
problemas, asi que se decidid utilizar la libreria PJMedia apoyada con PJSIP y PJNATH
para poder trabajar en esos niveles de acceso de la libreria.

Se tuvieron que resolver algunos problemas internos también para dar compatibilidad
a estas librerias.

Una vez resueltos los temas de compatibilidad con la libreria interna, se podia utilizar el
protocolo RTP, lo Unico que solo habia un par de ejemplos por internet de cdmo utilizar
estas librerias a través del tipo Stream, pero este tipo es de un nivel demasiado alto y
no se podia utilizar, por lo que se ha desarrollado tal y como se explica en el capitulo
4.5. Codigo de RTP. en el que se ha investigado lo que hace el tipo Stream internamente
y se ha modificado para poder adaptarse a lo que se necesita en el proyecto que es del
tipo Transport (que se usa para el nivel mds bajo que es el necesario).

Asi se ha podido desarrollar el primer escenario descrito en el capitulo 5.1.
Implementacion de la libreria PJMedia en un prototipo.

Posteriormente para desarrollar el escenario 5.2. Migracion del Line Dispatcher a
PJMedia y conexidn con la radio. se ha modificado una aplicacién ya existente que
maneja el Line Dispatcher para comunicarse con el sistema de radio real introducida en
la red TETRA. No han aparecido problemas de compatibilidad ya que se resolvieron para
el anterior escenario.

Para implementar SRTP para el tercer escenario explicado en el capitulo 5.3.
Implementacion del protocolo SRTP en el prototipo. se ha estudiado la utilidad de cada
funcién PJMedia que conlleva este protocolo en la pagina oficial de la libreria, ya que al
igual que ocurrié con RTP, tampoco habia ejemplos a nivel tan bajo de acceso a la
libreria. A la hora de implementar las claves, se queria utilizar la negociacién, para que
asi si se averiguase una clave, no se pudiese descifrar las demas conversaciones de esta,
y que en cada comunicacién hubiera claves distintas. Para ello se utilizé el protocolo
DTLS por lo que la libreria OpenSSL fue necesaria para ello.

31

Se volvieron a tener problemas de compatibilidad al implementar esta ultima libreria
pero se resolvieron al modificar temas internos de la empresa.

Para desarrollar el ultimo escenario desarrollado en el capitulo 5.4. Implementacion de
Comunicacion Segura en Red TETRA mediante Simulacion SRTP/DTLS., en un principio,
la idea era probarlo directamente con la radio de la red TETRA, pero debido a que el
Gateway no aceptaba los protocolos DTLS y SRTP, no se pudo hacer, ya que se estimaba
gue seria mas sencillo modificarlo pero llevaba mucho mas tiempo del esperado, por lo
gue se prefirid hacer una simulacién y asi poder demostrar que las combinaciones
creadas fuesen funcionales y seguras antes de modificar la aplicacién del Gateway.

32

8. Conclusidn y lineas futuras.

En este capitulo, se presenta el resultado final del proyecto y se explora su potencial
para futuros desarrollos. A lo largo del desarrollo de este TFG, se ha logrado demostrar
la viabilidad de una comunicaciéon en tiempo real funcional. Ademas, mediante la
implementacién de los protocolos SRTP y DTLS, se ha demostrado la posibilidad de
establecer una conexion segura, integra y auténtica en una red TETRA de comunicacién
de radio, tal como se ilustra en el segundo escenario detallado en el capitulo 5.2.
Migracion del Line Dispatcher a PJMedia y Conexion con la Radio.

El enfoque de desarrollo se ha mantenido al nivel mas bajo de acceso a la libreria para
asegurar la compatibilidad con diversas librerias y redes, tanto de la empresa como de
los clientes que podrian emplear esta tecnologia en sus propios proyectos.

La linea futura de este proyecto se basa en la adaptacion del Gateway, como se ha
mencionado en distintas secciones de este informe. La modificacion del Gateway es
esencial para facilitar la efectiva incorporacién de esta tecnologia en la red.
Actualmente, el nodo no es compatible con los protocolos SRTP y DTLS, lo que limita su
capacidad para transformar tramas entre los formatos ACELP y los protocolos
mencionados. La adaptacion del Gateway para que soporte estos protocolos representa
un paso esencial para lograr la integraciéon completa y funcionalidad éptima de la
solucion dentro del sistema de radio en la red TETRA.

33

9. Bibliografia.

[1]: Libreria PJSIP: https://www.pjsip.org/

[2]: Libreria PINATH: https://www.pjsip.org/pjnath/docs/html/

[3]: Libreria PJMedia: https://www.pjsip.org/pjmedia/docs/html/index.htm

[4]: Libreria de OpenSSL: https://www.openssl.org/

[5]: Protocolo DTLS RFC 9147: https://datatracker.ietf.org/doc/rfc9147/

34

https://www.pjsip.org/
https://www.pjsip.org/pjnath/docs/html/
https://www.pjsip.org/pjmedia/docs/html/index.htm
https://www.openssl.org/
https://datatracker.ietf.org/doc/rfc9147/

10. Anexo 1: Capturas de los paquetes DTLS.

10.1. Composicion ClientHello.

¥ Datagram Transport Layer Security
¥ DTLSv1.2 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
version: DTLS 1.0 (exfeff)
Epoch: @
Sequence Number: @
Length: 209
v Handshake Protocol: client Hello
Handshake Type: Client Hello (1)
Length: 197
Message Sequence: @
Fragment Offset: o
Fragment Length: 197
version: DTLS 1.2 (exfefd)
v Random: bobs5793541c52addaaf9o2c6cd3lecte7ea4df53c51512238¢..
GMT Unix Time: Sep 24, 2068 04:06:45.000000000 Hora de verano romance
Random Bytes: 41c52addaaf92c6cd30ct@7044df53c51512238cedbaffa0..
session ID Length: @
Cookie Length: @
Cipher Suites Length: 56
v Cipher Suites (28 suites)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (@xc@2c)
Cipher Suite: TLS_ECDHE_RSA WITH_AES_256_GCM_SHA384 (@xc@3e)
Cipher Suite: TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (0x009f)
Cipher Suite: TLS_ECDHE_ECDSA WITH_CHACHA28 POLY1305 SHA256 (@xcca9)
Cipher Suite: TLS_ECDHE_RSA_WITH_CHACHA20_POLY13®85_SHA256 (@xccag)
Cipher Suite: TLS_DHE_RSA_WITH_CHACHA20 POLY1385_SHA256 (@xccaa)
Cipher Suite: TLS_ECDHE_ECDSA WITH_AES_128_GCM_SHA256 (@xc@2b)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES 128 GCM_SHA256 (@xc@2f)

Figura 10.1.a.: Composicion ClientHello (1).

Cipher Suite: TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 (08x809e)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 (@xc024)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xC028)
cipher Suite: TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (@x006b)
Cipher Suite: TLS_ECDHE_ECDSA_WITH AES 128 CBC_SHA256 (@xc@23)
Cipher Suite: TLS_ECDHE_RSA WITH_AES_128 CBC_SHA256 (@xc027)
Cipher Suite: TLS_DHE_RSA_WITH_AES_ 128 CBC_SHA256 (0x8067)
Cipher Suite: TLS_ECDHE_ECDSA_WITH AES_256_CBC_SHA (@xc@0a)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (@xcoid)
cipher Suite: TLS_DHE_RSA_WITH_AES_256_CBC_SHA (@x@039)
Cipher Suite: TLS_ECDHE_ECDSA WITH AES_128 CBC_SHA (@xc@e9)
Cipher Suite: TLS_ECDHE_RSA WITH AES_128 CBC_SHA (@xc@13)
Cipher Suite: TLS_DHE_RSA WITH_AES_128 CBC_SHA (@x8@33)
Cipher Suite: TLS_RSA_WITH_AES_256_GCM_SHA384 (8x089d)
Cipher Suite: TLS_RSA _WITH_AES_128 GCM_SHA256 (@x089c)
Cipher Suite: TLS_RSA_WITH_AES_256_CBC_SHA256 (0x003d)
cipher suite: TLS_RSA WITH_AES 128 CBC_SHA256 (@x0@3c)
Cipher Suite: TLS_RSA WITH_AES_256_CBC_SHA (@x0835)
Cipher Suite: TLS_RSA WITH_AES_128 CBC_SHA (@x@02f)
Cipher Suite: TLS_EMPTY_RENEGOTTATION_INFO_SCSV (@x@0ff)
Compression Methods Length: 1

Vv Compression Methods (1 method)

compression Methed: null (@)
Extensions Length: 99

v Extension: ec_point_formats (len=4)
Type: ec_point_formats (11)
Length: 4
EC point formats Length: 3

Figura 10.1.b.: Composicion ClientHello (2).

35

v Elliptic curves point formats (3)
EC point format: uncompressed (@)
EC point format: ansiX962_compressed_prime (1)
EC point format: ansix962_compressed_char2 (2)
Extension: supported_groups (len=12)
Type: supported_groups (10)

Length: 12

supported Groups List Length: 10
v Supported Groups (5 groups)

Supported Group:
Supported Group:
Supported Group:
Supported Group:
Supported Group:

x25519 (@xeeld)
secp256rl (0xee17)
x448 (6xe0le)
secp521rl (0x8019)
secp384arl (0x0018)

Extension: session_ticket (len=@)
Type: session_ticket (35)

Length: ©
Data (@ bytes)

Extension: use_srtp (len=7)
Type: use_srtp (14)

Length: 7

SRTP Protection Profiles
SRTP Protection Profile:
SRTP Protection Profile:

MKI Length: @

Extension: encrypt_then_mac

Type: encrypt_then_mac (22)

Length: @

Length: 4
SRTP_AES128 CM_HMAC_SHA1 80 (©x0001)
SRTP_AES128 CM_HMAC_SHA1 32 (©x0002)

(len=0)

Figura 10.1.c.: Composicion ClientHello (3).

v Extension: extended_master_secret (len=8)
Type: extended master_secret (23)

Length: ©

¥ Extension: signature_algorithms (len=48)
Type: signature_algorithms (13)

Length: 48

Signature Hash Algorithms Length: 46
¥ Signature Hash Algorithms (23 algorithms)

Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature
Signature

Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:
Algorithm:

ecdsa_secp256ri_sha2se (0xe4e3)
ecdsa_secp384rl_sha384 (@x0503)
ecdsa_secp521ril_sha512 (0x@603)
ed25519 (@xese7)

ed448 (0x0808)
rsa_pss_pss_sha256 (0x@809)
rsa_pss_pss_sha384 (ox080a)
rsa_pss_pss_sha512 (exeseb)
rsa_pss_rsae_sha256 (0x0804)
rsa_pss_rsae_sha3g84 (0x0805)
rsa_pss_rsae_sha512 (0x0806)
rsa_pkcs1_sha256 (oxe401)
rsa_pkcsl _sha384 (exe501)
rsa_pkcs1_sha512 (0x0601)
SHA224 ECDSA (©x8303)
ecdsa_shal (ex0203)

SHA224 RSA (@xe3el)
rsa_pkcsl_shal (exe201)

SHA224 DSA (@x0302)

SHA1 DSA (Px0202)

SHA256 DSA (@x0402)

Figura 10.1.d: Composicion ClientHello (4).

Signature Algorithm: SHA384 DSA (0x8582)
Signature Algorithm: SHA512 DSA (0x@602)

Figura 10.1.e.: Composicion ClientHello (5).

36

10.2. Composicion ServerHello.

v Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)
Length: 7@
Message Sequence: @
Fragment offset: @
Fragment Length: 7@
Version: DTLS 1.2 (@xfefd)
¥ Random: 23c53cfeab63e3e490bfc7514bgo6bafs5eat1475c99d61f6..
GMT Unix Time: Jan 6, 1989 23:26:06.000000000 Hora estandar romance
Random Bytes: ab63e3e49@bfc7514bgeebats50af1475c¢99d6116634744F5..
Session ID Length: @
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (@xc@30)
Compression Method: null (@)
Extensions Length: 30
v Extension: renegotiation_info (len=1)
Type: renegotiation_info (65281)
Length: 1
¥ Renegotiation Info extension
Renegotiation info extension length: @
v Extension: ec_point_formats (len=4)
Type: ec_point_formats (11)
Length: 4
EC point formats Length: 3

Figura 10.2.a.: Composicion ServerHello (1).

v Elliptic curves point formats (3)
EC point format: uncompressed (@)
EC point format: ansiX962_compressed_prime (1)
EC point format: ansix962_ compressed_char2 (2)
v Extension: session_ticket (len=e)
Type: session_ticket (35)
Length: @
Data (@ bytes)
v Extension: use_srtp (len=5)
Type: use_srtp (14)
Length: 5
SRTP Protection Profiles Length: 2
SRTP Protection Profile: SRTP_AES128_CM _HMAC_SHA1_8@ (@x0801)
MKI Length: @
v Extension: extended _master_secret (len=e)
Type: extended_master_secret (23)
Length: @
¥ DTLSv1.2 Record Layer: Handshake Protocol: Certificate (Fragment)
Content Type: Handshake (22)
Version: DTLS 1.2 (exfefd)
Epoch: @
Sequence Number: 1
Length: 148

Figura 10.2.b.: Composicion ServerHello (2).

37

¥ Handshake Protocol: certificate (Fragment)
Handshake Type: Certificate (11)
Length: 702
Message Sequence: 1
Fragment Offset: @
Fragment Length: 136
¥ DTLSv1.2 Record Layer: Handshake Protocol: Certificate (Fragment)

Content Type: Handshake (22)

Version: DTLS 1.2 (@xfefd)

Epoch: @

Sequence Number: 2

Length: 243

v Handshake Protocol: Certificate (Fragment)
Handshake Type: Certificate (11)
Length: 702
Message Sequence: 1
Fragment Offset: 136
Fragment Length: 231
¥ DTLSv1.2 Record Layer: Handshake Protocol: Certificate (Fragment)

Content Type: Handshake (22)

Version: DTLS 1.2 (@xfefd)

Epoch: @

Sequence Number: 3

Length: 243

Figura 10.2.c.: Composicion ServerHello (3).

¥ Handshake Protocol: Certificate (Fragment)
Handshake Type: Certificate (11)
Length: 702
Message Sequence: 1
Fragment offset: 367
Fragment Length: 231
% DTLSv1.2 Record Layer: Handshake Protocol: Certificate (Reassembled)
Content Type: Handshake (22)
Version: DTLS 1.2 (exfefd)
Epoch: @
Sequence Number: 4
Length: 116
v Handshake Protocol: Certificate (Reassembled)
Handshake Type: Certificate (11)
Length: 702
Message Sequence: 1
Fragment Offset: 598
Fragment Length: 184
Certificates Length: 699
v Certificates (699 bytes)
Certificate Length: 696
¥ Certificate: 308202b43082019cad03020102020448805113300d06092a.. (id-at-commonName=pjmedia.pjsip.org)
v signedCertificate
version: v3 (2)
serialNumber: 1216368915

Figura 10.2.d.: Composicion ServerHello (4).

v signature (shalwWithRSAEncryption)
Algorithm Id: 1.2.84@.113549.1.1.5 (shalwithRSAEncryption)
v issuer: rdnSequence (0)
v rdnSequence: 1 item (id-at-commonName=pjmedia.pjsip.org)
¥ RDNSequence item: 1 item (id-at-commonName=pjmedia.pjsip.org)
v RelativeDistinguishedName item (id-at-commonName=pjmedia.pjsip.org)
Id: 2.5.4.3 (id-at-commonname)
¥ DirectoryString: uTF8String (4)
uTF8String: pjmedia.pjsip.org
v validity
v notBefore: utcTime (@)
utcTime: 23-07-20 10:44:58 (UTC)
v notafter: utcTime (@)
utcTime: 24-07-20 10:44:58 (UTC)
v subject: rdnSequence (@)
¥ rdnSequence: 1 item (id-at-commonName=pjmedia.pjsip.org)
v RDNSequence item: 1 item (id-at-commonName=pjmedia.pjsip.org)
v RelativeDistinguishedName item (id-at-commonName=pjmedia.pjsip.org)
Id: 2.5.4.3 (id-at-commonName)
v DirectoryString: uTF8String (4)
uTF8string: pjmedia.pjsip.org
v subjectPublicKeyInfo
v algorithm (rsakEncryption)
Algorithm Id: 1.2.840.113549.1.1.1 (rsaEncryption)

Figura 10.2.e.: Composicion ServerHello (5).

38

v subjectPublicKey: 3082010a0282010100cfd24720c379c786cecf66c44bagse..
modulus: @xeecfd2472@c379c786cecf66c44bad5e70c95752dc309522...
publicExponent: 65537
v algorithmIdentifier (shailWithRSAEncryption)
Algorithm Id: 1.2.840.113549.1.1.5 (shalwWwithRSAEncryption)
Padding:
encrypted: 21df8b5152b581513287cdffb479f47a3d3d914ac1693adl..
v [4 Message fragments (702 bytes): #2(136), #2(231), #2(231), #2(104)]
Frame: 2, payload: 8-135 (136 bytes)]
Frame: 2, payload: 136-366 (231 bytes)]
Frame: 2, payload: 367-597 (231 bytes)]
Frame: 2, payload: 598-7@1 (184 bytes)]
[Message fragment count: 4]
[Reassembled DTLS length: 702]
¥ DTLSv1.2 Record Layer: Handshake Protocol: Server Key Exchange (Fragment)
Content Type: Handshake (22)
Version: DTLS 1.2 (exfefd)
Epoch: @
Sequence Number: 5
Length: 114
v Handshake Protocol: Server Key Exchange (Fragment)
Handshake Type: Server Key Exchange (12)
Length: 296
Message Sequence: 2
Fragment Offset: o
Fragment Length: 162

Figura 10.2.f.: Composicion ServerHello (6).

¥ DTLSv1.2 Record Layer: Handshake Protocol: Server Key Exchange (Reassembled)
Content Type: Handshake (22)
Version: DTLS 1.2 (@xfefd)
Epoch: @
Sequence MNumber: 6
Length: 206
¥ Handshake Protocol: Server Key Exchange (Reassembled)
Handshake Type: Server Key Exchange (12)
Length: 296
Message Sequence: 2
Fragment Offset: 102
Fragment Length: 194
¥ EC Diffie-Hellman Server Params
Curve Type: named_curve (@x@3)
Named Curve: x25519 (@xeeld)
Pubkey Length: 32
Pubkey: 9bdag97299883f5387a20443545c050d6T3T398c06481035...
v Signature Algorithm: rsa_pss_rsae_sha256 (@x@8e4)
Signature Hash Algorithm Hash: Unknown (8)
Signature Hash Algorithm Signature: Unknown (4)
Signature Length: 256
Signature: 3be4a75f5c675c75c47b9b57aae22a7df87b2fed2f3157268...

Figura 10.2.g9.: Composicion ServerHello (7).

39

¥ [2 Message fragments (296 bytes): #2(102), #2(194)]
Frame: 2, payload: @-101 (102 bytes)]
Frame: 2, payload: 102-295 (194 bytes)]
[Message fragment count: 2]
[Reassembled DTLS length: 296]
v DTLSv1.2 Record Layer: Handshake Protocol: Certificate Request (Fragment)

Content Type: Handshake (22)

Version: DTLS 1.2 (exfefd)

Epoch: @

Sequence Number: 7

Length: 24

v Handshake Protocol: Certificate Request (Fragment)
Handshake Type: Certificate Request (13)
Length: 54
Message Sequence: 3
Fragment Offset: @
Fragment Length: 12
¥ DTLSv1.2 Record Layer: Handshake Protocol: Certificate Request (Reassembled)

Content Type: Handshake (22)

Version: DTLS 1.2 (exfefd)

Epoch: @

Sequence Number: 8

Length: 54

Figura 10.2.h.: Composicion ServerHello (8).

v Handshake Protocol: Certificate Request (Reassembled)
Handshake Type: Certificate Request (13)
Length: 54
Message Sequence: 3
Fragment Offset: 12
Fragment Length: 42
Certificate types count: 3

v Certificate types (3 types)
Certificate type: RSA Sign (1)
Certificate type: DSS sign (2)
Certificate type: ECDSA Sign (64)
Signature Hash Algorithms Length: 46
v Signature Hash Algorithms (23 algorithms)

Figura 10.2.i.: Composicion ServerHello (9).

v [2 Message fragments (54 bytes): #2(12), #2(42)]
Frame: 2, payload: ©-11 (12 bytes)]
Frame: 2, payload: 12-53 (42 bytes)]
[Message fragment count: 2]
[Reassembled DTLS length: 54]
¥ DTLSv1.2 Record Layer: Handshake Protocol: Server Hello Done

Content Type: Handshake (22)

Version: DTLS 1.2 (exfefd)

Epoch: @

Sequence Number: 9
Length: 12
v Handshake Protocol: Server Hello Done

Handshake Type: Server Hello Done (14)
Length: @
Message Sequence: 4
Fragment Offset: @
Fragment Length: @

Figura 10.2.j.: Composicion ServerHello (10).

40

10.3. Composicion del tercer paquete.

v Datagram Transport Layer Security
¥ DTLSv1.2 Record Layer: Handshake Protocol: Certificate (Fragment)

Content Type: Handshake (22)

version: DTLS 1.2 (@xfefd)

Epoch: @

Sequence Number: 1

Length: 243

v Handshake Protocol: Certificate (Fragment)
Handshake Type: Certificate (11)
Length: 7@2
Message Sequence: 1
Fragment offset: @
Fragment Length: 231
v DTLSv1.2 Record Layer: Handshake Protocol: Certificate (Fragment)

Content Type: Handshake (22)

Version: DTLS 1.2 (exfefd)

Epoch: @

Sequence Number: 2

Length: 243

v Handshake Protocol: Certificate (Fragment)

Handshake Type: Certificate (11)
Length: 7@2
Message Sequence: 1
Fragment Offset: 231
Fragment Length: 231

Figura 10.3.a.: Composicion tercer paquete (1).

¥ DTLSv1.2 Record Layer: Handshake Protocol: Certificate (Fragment)
Content Type: Handshake (22)
Version: DTLS 1.2 (@xfefd)
Epoch: @
Sequence Number: 3
Length: 243
V¥ Handshake Protocol: Certificate (Fragment)
Handshake Type: Certificate (11)
Length: 702
Message Sequence: 1
Fragment Offset: 462
Fragment Length: 231
v DTLSv1.2 Record Layer: Handshake Protocol: Certificate (Reassembled)
Content Type: Handshake (22)
Version: DTLS 1.2 (exfefd)
Epoch: o
Sequence Number: 4
Length: 21
¥ Handshake Protocol: Certificate (Reassembled)
Handshake Type: Certificate (11)
Length: 702
Message Sequence: 1
Fragment offset: 693
Fragment Length: 9
Certificates Length: 699
¥ Certificates (699 bytes)
Certificate Length: 696

Figura 10.3.b.: Composicion tercer paquete (2).

41

v Certificate: 308202b43082019ca003020102020448805113300d06092a... (id-at-commonName=pjmedia.pjsip.org)
v signedCertificate
version: v3 (2)
serialNumber: 1216368915
v signature (shalwithRSAEncryption)
Algorithm Id: 1.2.840.113549.1.1.5 (shalWithRSAEncryption)
v issuer: rdnSequence (0)
¥ rdnSequence: 1 item (id-at-commonName=pjmedia.pjsip.org)
¥ RDNSequence item: 1 item (id-at-commonName=pjmedia.pjsip.org)
v RelativeDistinguishedName item (id-at-commonhName=pjmedia.pjsip.org)
Id: 2.5.4.3 (id-at-commonName)
v DirectoryString: uTF8string (4)
uTF8string: pjmedia.pjsip.org
v validity
¥ notBefore: utcTime (@)
utcTime: 23-07-20 10:44:58 (UTC)
¥ notAfter: utcTime (@)
utcTime: 24-97-20 10:44:58 (UTC)
¥ subject: rdnSequence (@)
¥ rdnSequence: 1 item (id-at-commonName=pjmedia.pjsip.org)
¥ RDNSequence item: 1 item (id-at-commonName=pjmedia.pjsip.org)
v RelativebistinguishedName item (id-at-commonname=pjmedia.pjsip.org)
Id: 2.5.4.3 (id-at-commonName)
v DirectoryString: uTF8string (4)
uTF8String: pjmedia.pjsip.org
v subjectpublicKeyInfo
v algorithm (rsakncryption)
Algorithm Id: 1.2.840.113549.1.1.1 (rsaEncryption)

Figura 10.3.c.: Composicion tercer paquete (3).

v subjectPublicKey: 3082010a0282010100df21361aaec3e31f58f6d5aed98aaz..
modulus: ©xeedf2136laaec3e31f58f6d5aed98aa28411d6b284e68b0s..
publicExponent: 65537
v algorithmIdentifier (shalWithRSAEncryption)
Algorithm Id: 1,2.840.113549,1.1.5 (shalWithRSAEncryption)
Padding: e
encrypted: cc19f16f9bb101de7ae18770c5d75009ed8cag213eeefad2...
v [4 Message fragments (702 bytes): #3(231), #3(231), #3(231), #3(9)]
Frame: 3, payload: @-23@ (231 bytes)]
Frame: 3, payload: 231-461 (231 bytes)]
[Frame: 3, payload: 462-692 (231 bytes)]
Frame: 3, payload: 693-701 (9 bytes)]
[Message fragment count: 4]
[Reassembled DTLS length: 7@2]
¥ DTLSv1.2 Record Layer: Handshake Protocol: Client Key Exchange
Content Type: Handshake (22)
Version: DTLS 1.2 (exfefd)
Epoch: ©
Sequence Number: 5
Length: 45
¥ Handshake Protocol: Client Key Exchange
Handshake Type: Client Key Exchange (16)
Length: 33
Message Sequence: 2
Fragment Offset: @
Fragment Length: 33

Figura 10.3.d.: Composicion tercer paquete (4).

42

¥ EC Diffie-Hellman Client Params
Pubkey Length: 32
Pubkey: 56a60b5f4be@d6c3flaca6ed125@bb27a9tbaz2ct33cpad4as..
¥ DTLSv1.2 Record Layer: Handshake Protocol: Certificate verify (Fragment)
Content Type: Handshake (22)
Version: DTLS 1.2 (exfefd)
Epoch: @
Sequence Number: 6
Length: 151
v Handshake Protocol: Certificate verify (Fragment)
Handshake Type: Certificate verify (15)
Length: 260
Message Sequence: 3
Fragment Offset: @
Fragment Length: 139
v DTLSv1.2 Record Layer: Handshake Protocol: Certificate Verify (Reassembled)
Content Type: Handshake (22)
Version: DTLS 1.2 (exfefd)
Epoch: @
Sequence Number: 7
Length: 133
v Handshake Protocol: Certificate verify (Reassembled)
Handshake Type: Certificate verify (15)
Length: 260
Message Sequence: 3
Fragment Offset: 139
Fragment Length: 121
Signature Algorithm: rsa_pss rsae sha256 (0x0804)

Figura 10.3.e.: Composicion tercer paquete (5).

v Signature Algorithm: rsa pss_rsae_sha256 (0x0804)
Signature Hash Algorithm Hash: Unknown (8)
Signature Hash Algorithm Signature: Unknown (4)

Signature length: 256

Signature: 4bilfabl2aab916670815408427f68ad3eddb3012084f8ecfo..

v [2 Message fragments (260 bytes): #3(139), #3(121)]

Frame: 3, payload: ©-138 (139 bytes)]

Frame: 3, payload: 139-259 (121 bytes)]

[Message fragment count: 2]

[Reassembled DTLS length: 260]

¥ DTLSv1.2 Record Layer: Change Cipher Spec Protocol: change Cipher Spec

Content Type: Change Cipher Spec (20)

Version: DTLS 1.2 (exfefd)

Epoch: @

Sequence Number: 8

Length: 1

Change Cipher Spec Message

¥ Record Layer

Content Type: Handshake (22)

Version: DTLS 1.2 (exfefd)

Epoch: 1

Sequence Number: @

Length: 48

Handshake Protocol

Figura 10.3.f.: Composicion tercer paquete (6).

43

10.4. Composicion del cuarto paquete.

v Datagram Transport Layer Security
v DTLSv1.2 Record Layer: Handshake Protocol: New Session Ticket (Fragment)

Content Type: Handshake (22)

Version: DTLS 1.2 (@xfefd)

Epoch: @

Sequence Number: 1@

Length: 243

¥ Handshake Protocol: New Session Ticket (Fragment)
Handshake Type: New Session Ticket (4)
Length: 870
Message Sequence: 5
Fragment Offset: @
Fragment Length: 231
¥ DTLSv1.2 Record Layer: Handshake Protocol: New Session Ticket (Fragment)

Content Type: Handshake (22)

Version: DTLS 1.2 (@xfefd)

Epoch: @

Sequence Number: 11

Length: 243

v Handshake Protocol: New Session Ticket (Fragment)

Handshake Type: New Session Ticket (4)
Length: 870
Message Sequence: 5
Fragment Offset: 231
Fragment Length: 231

Figura 10.4.a.: Composicion cuarto paquete (1).

v DTLSv1.2 Record Layer: Handshake Protocol: New Session Ticket (Fragment)
Content Type: Handshake (22)
Version: DTLS 1.2 (exfefd)
Epoch: @
Sequence Number: 12
Length: 243
¥ Handshake Protocol: New Session Ticket (Fragment)
Handshake Type: New Session Ticket (4)
Length: 87@
Message Sequence: 5
Fragment Offset: 462
Fragment Length: 231
V¥ DTLSv1.2 Record Layer: Handshake Protocol: New Session Ticket (Reassembled)
Content Type: Handshake (22)
Version: DTLS 1.2 (exfefd)
Epoch: @
Sequence Number: 13
Length: 189
¥ Handshake Protocol: New Session Ticket (Reassembled)
Handshake Type: New Session Ticket (4)
Length: 870
Message Sequence: 5
Fragment Offset: 693
Fragment Length: 177
¥ TLS Session Ticket
Session Ticket Lifetime Hint: 72@@ seconds (2 hours)
Session Ticket Length: 864
Session Ticket: a®577a9ca579ed97b9423a622d159cfed1681671a5a9a78f..

Figura 10.4.b.: Composicion cuarto paquete (2).

44

¥ [4 Message fragments (87@ bytes): #4(231), #4(231), #4(231), #4(177)]
Frame: 4, payload: ©-230 (231 bytes)]
Frame: 4, payload: 231-461 (231 bytes)]
Frame: 4, payload: 462-692 (231 bytes)]
Frame: 4, payload: 693-869 (177 bytes)]
[Message fragment count: 4]
[Reassembled DTLS length: 87@]

v DTLSv1.2 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec
Content Type: Change Cipher Spec (28@)
Version: DTLS 1.2 (exfefd)

Epoch: @

Sequence Number: 14
Length: 1

Change Cipher Spec Message

v Record Layer

Content Type: Handshake (22)
Version: DTLS 1.2 (exfefd)
Epoch: 1

Sequence Number: @
Length: 48
Handshake Protocol

Figura 10.4.c.: Composicion cuarto paquete (3).

45

