

Trabajo Fin de Grado

Cifrado seguro mediante uso protocolo SRTP para proteger

comunicaciones de voz de una infraestructura de

comunicación de misión crítica (TETRA)

Strong encryption using the SRTP protocol to protect voice

communications from a mission-critical communication

infrastructure (TETRA)

Autor

Javier García Cantarero

Director

José Ángel Martínez Luengo

Ponente

Álvaro Alesanco Iglesias

Grado en Ingeniería de Tecnologías y Servicios de Telecomunicación

2023

2

Índice

Índice .. 2

1. Lista de acrónimos y siglas... 3

2. Introducción.. 5

2.1. Planteamiento del problema .. 6

3. Análisis previo. .. 8

3.1. Elementos y lenguajes de programación utilizados. .. 8

3.2. Librerías utilizadas. ... 9

4. Descripción de RTP y SRTP... 11

4.1. Funcionamiento, Definición y tramas del Protocolo RTP. .. 11

4.2. Funcionamiento, Definición y tramas del Protocolo SRTP. .. 13

4.3. Comparación RTP con SRTP .. 13

4.4. Uso del DTLS... 14

4.5. Código de RTP .. 16

4.6. Código de SRTP... 18

5. Escenarios realizados .. 20

5.1. Implementación de la librería PJMedia en un prototipo .. 20

5.2. Migración del Line Dispatcher a PJMedia y conexión con la radio 21

5.3. Implementación del protocolo SRTP en un prototipo .. 22

5.4. Implementación de Comunicación Segura en Red TETRA mediante Simulación

SRTP/DTLS... 23

6. Análisis de las tramas .. 25

6.1. Tramas RTP .. 25

6.2. Tramas SRTP ... 26

6.3. Tramas DTLS ... 27

6.4. Demostración de la seguridad de la comunicación de audio ... 28

7. Problemas resueltos durante el desarrollo .. 31

8. Conclusión y líneas futuras .. 33

9. Bibliografía. ... 34

10. Anexo 1: Capturas de los paquetes DTLS. .. 35

10.1. Composición ClientHello. .. 35

10.2. Composición ServerHello. ... 37

10.3. Composición del tercer paquete. .. 41

10.4. Composición del cuarto paquete. ... 44

3

1. Lista de acrónimos y siglas.

ACELP – Algebraic code-excited linear prediction

AEAD – Authenticated Encryption with Associated Data

AES – Advanced Encryption Standard

Códec – Codificador-Decodificador

DDS – Data Distribution Service

DTLS – Datagram Transport Layer Security

ECDHE – Elliptic Curve Diffie-Hellman Ephemeral

ECDSA – Elliptic Curve Digital Signature Algorithm

GCM – Galois/Counter Mode

GVOIP – Global Voice Over Internet Protocol

ICE – Interactive Connectivity Establishment

IETF – Internet Engineering Task Force

IKE – Internet Key Exchange

IP – Internet Protocol

IPSec – Internet Protocol Security

ITU-T – Unión Internacional de Telecomunicaciones-Telecomunicación

MAC – Media Access Control

NAT – Network Address Translation

PCMA – Pulse Code Modulation A-law

PTT – Push To Talk

RSA – Rivest, Shamir y Adleman

RTCP – Real-time Transport Control Protocol

RTP – Real-time Transport Protocol

SDP – Session Description Protocol

SHA – Secure Hash Algorithm

SIP – Session Initiation Protocol

SRTCP – Secure Real-time Transport Control Protocol

4

SRTP – Secure Real-time Transport Protocol

SSL – Secure Sockets Layer

STUN – Session Traversal Utilities for NAT

TETRA – TErrestrial Trunked Radio

TFG – Trabajo Fin de Grado

TLS – Transport Layer Security

TURN – Traversal Using Relays around NAT

UDP – User Datagram Protocol

VAD – Voice Activity Detection

5

2. Introducción.

En el ámbito de las comunicaciones, la seguridad y la privacidad de la información

desempeñan un papel fundamental en el mantenimiento de la integridad y

confidencialidad de los datos. En sistemas de radiocomunicación, donde la transmisión

de voz y datos es vital para operaciones críticas, como las redes TETRA (TErrestrial

Trunked Radio) utilizadas por organizaciones de servicios de emergencia y fuerzas de

seguridad, la seguridad adquiere aún mayor relevancia. En este contexto, el presente

Trabajo de Fin de Grado (TFG) se enfoca en abordar un desafío significativo:

implementar un mecanismo de seguridad en la red TETRA que emplea un protocolo

privado que funciona a través de ACELP. Para ello, existe un Gateway que cambia este

protocolo con el RTP y viceversa.

El protocolo RTP es ampliamente utilizado para el transporte de datos en tiempo real,

como voz y video, a través de redes IP. Sin embargo, su diseño original no incluye

medidas de seguridad robustas, lo que lo hace vulnerable a ataques y amenazas de

seguridad. Para mitigar estos riesgos, se propone utilizar el protocolo SRTP (Secure Real-

time Transport Protocol), que proporciona mecanismos de cifrado, autenticación e

integridad de los datos transmitidos, garantizando una comunicación segura y confiable.

La implementación de SRTP en el contexto de la red TETRA requiere un proceso de

negociación seguro para establecer los parámetros de seguridad entre los nodos de la

red. Para lograrlo, se propone utilizar el protocolo DTLS (Datagram Transport Layer

Security), que ofrece un mecanismo para establecer una conexión segura antes de iniciar

la comunicación mediante SRTP. Esta combinación de SRTP con DTLS proporciona una

capa adicional de seguridad, asegurando la privacidad de las comunicaciones en un

entorno crítico como el de la red TETRA.

El presente Trabajo de Fin de Grado tiene como objetivo implementar una negociación

segura para el protocolo RTP en la red TETRA, utilizando SRTP con DTLS. Se evaluará la

viabilidad del enfoque mediante un sistema de prueba de concepto que aborde diversos

escenarios para verificar su efectividad y seguridad. Se espera que los resultados de este

trabajo contribuyan significativamente a mejorar la seguridad de las comunicaciones en

la red TETRA, protegiendo la confidencialidad y la integridad de la información

transmitida. Asimismo, sentarán las bases para futuras investigaciones y desarrollos con

el objetivo de implantar este protocolo en la red TETRA en su totalidad, partiendo de

este prototipo.

En resumen, este TFG aborda la importante tarea de implementar una negociación

segura para el protocolo RTP mediante la integración de los protocolos SRTP y DTLS en

la red TETRA. Mediante este enfoque, se busca garantizar la protección de las

comunicaciones en un entorno crítico donde la seguridad y la privacidad son

primordiales para el buen funcionamiento y la confianza de las operaciones.

6

2.1. Planteamiento del problema

Se parte del escenario mostrado en la Figura 3.1.a., en el que se encuentran el nodo

central que actúa como administrador, distintos sistemas de radio dentro de una red

TETRA y de un Line Dispatcher que se utiliza para comunicarse con estos dispositivos

desde fuera de la red, para ello se necesita un Gateway de VOIP que actúa como

intermediario, ya que su función es modificar el protocolo RTP/RTCP que se emplea en

la comunicación del Line Dispatcher a un protocolo privado de la empresa que actúa con

ACELP y viceversa. Para establecer una llamada, ambos extremos necesitan registrarse

en el administrador para que así puedan ser buscados en la red y se encarga también de

proporcionarle la información suficiente del otro extremo y de activar o desactivar el

PTT si es modo semi-dúplex. Una vez establecida la llamada, si un extremo está dentro

de la red TETRA y el otro fuera, como puede ser el Line Dispatcher, se comunicarán a

través del Gateway para que este cambie de un protocolo a otro sin dar dificultad a los

extremos.

Figura 3.1.a.: Escenario anterior al proyecto.

Este escenario, tal y como se ha explicado, está desarrollado con el protocolo RTP/RTCP,

lo cual hace que la conversación no esté cifrada, por lo que intrusos que tengan acceso

a cualquier red que trasladen estos paquetes pueden decodificarlo con aplicaciones

como Wireshark y descubrir la conversación, lo que hace que esta no sea segura tal y

como se observa en el capítulo 6. Análisis de las tramas. Por tanto, se ha planteado

cambiar el protocolo a SRTP/SRTCP, lo que nos lleva al siguiente problema, y es que el

Gateway no está configurado para cambiar de ACELP a SRTP ni viceversa, por lo que

primero se quiere verificar si la comunicación con SRTP es viable en la red de la empresa.

En primer lugar, el protocolo SRTP se puede desarrollar a niveles altos como es PJSIP,

pero para mantener la compatibilidad en sistemas privados con la empresa, se tiene que

desarrollar con PJMedia, para poder así, trabajar al nivel más bajo de interfaz de acceso

7

a la librería modificando los paquetes a través de la librería presentada en el capítulo

3.2. Librerías utilizadas.

En segundo lugar, se tiene que comprobar que SRTP sí que funcione al nivel más bajo,

yendo paso por paso por los escenarios realizados en el capítulo 5. Escenarios realizados.

en el que se observa que la comunicación es eficaz y segura tal y como se planteaba.

El tercer paso es modificar el Gateway para que funcione, aparte de con RTP, con SRTP

y así poder utilizar este protocolo en los sistemas de radio de la red TETRA para que la

comunicación entre ellos y el Line Dispatcher sea segura aunque haya intrusos en la red.

Que este paso ya se observará en un futuro, tal y como se explica en el capítulo 8.

Conclusión y líneas futuras.

8

3. Análisis previo.

3.1. Elementos y lenguajes de programación utilizados.

En este apartado, se muestran los diferentes programas y aplicaciones con sus

respectivos lenguajes de programación (si constan de ello):

Microsoft Visual Studio 2012 y Microsoft Visual Studio Code:

Microsoft Visual Studio es un entorno de desarrollo integrado compatible con múltiples

lenguajes de programación que permite a los desarrolladores crear sitios y aplicaciones

web que se comuniquen entre estaciones de trabajo.

Ambos programas se han utilizado para la edición de código, que ha sido escrito en el

lenguaje C++. Este primero, aparte, se ha usado para la ejecución de la aplicación del

Line Dispatcher que se verá más adelante en varios capítulos. Han sido los dos

programas más utilizados a lo largo del proyecto.

Eclipse:

Es un entorno de desarrollo software que soporta varios lenguajes construido alrededor

de un workspace al que pueden incluirse un gran número de plugin que proporcionan

funcionalidades concretas relacionadas con lenguajes específicos o con la interacción

con otras herramientas implicadas en el desarrollo de una aplicación.

En este proyecto se ha utilizado en el lenguaje de C++ para la visualización y edición del

código del Gateway. Hemos utilizado este programa y no Microsoft Visual Studio debido

a que la aplicación que controla el Gateway está en un dispositivo de Linux y no de

Windows.

Wireshark:

Es un Software libre que se utiliza como analizador de protocolos utilizado para realizar

análisis en redes de comunicaciones añadiendo una interfaz gráfica y múltiples opciones

como el filtrado de información.

En este proyecto, su utiliza para poder investigar las distintas tramas empleadas en las

comunicaciones planteadas en los distintos capítulos y para representar las señales del

audio escuchado durante estas.

9

3.2. Librerías utilizadas.

PJSIP:

[1] Es una librería SIP (Session Initiation Protocol) desarrollada en C y C++, que facilita la

creación de aplicaciones de comunicación en tiempo real como llamadas de voz y video,

mensajes instantáneos y videoconferencias a través de la red IP. Gracias a su diseño

modular y API bien documentada, los desarrolladores pueden seleccionar las

características necesarias para sus aplicaciones, lo que la convierte en una opción

versátil y fácil de usar. Además, PJSIP es altamente portátil y puede ejecutarse en

diversas plataformas, brindando flexibilidad para alcanzar una amplia audiencia.

Esta librería se destaca por su soporte para una amplia variedad de códecs de audio y

video, lo que permite la interoperabilidad con diferentes sistemas y dispositivos.

Además, PJSIP implementa características avanzadas como la autenticación, la

encriptación y el enrutamiento de llamadas, lo que garantiza una comunicación segura

y confiable en entornos empresariales y de consumo.

En este proyecto se ha utilizado como apoyo a funciones pertenecientes a la librería de

PJMedia que se verá más adelante en este capítulo.

PJNATH:

[2] Esta librería se enfoca en superar los desafíos de las redes NAT (Network Address

Translation) y los firewalls en las comunicaciones en tiempo real. Los dispositivos detrás

de NAT suelen tener direcciones IP privadas y no son directamente accesibles desde

Internet. Esto puede causar problemas en el establecimiento de conexiones punto a

punto para aplicaciones de VoIP y videoconferencias.

PJNATH proporciona métodos para la resolución de nombres, el descubrimiento de

servidores STUN (Session Traversal Utilities for NAT) e implementación de ICE

(Interactive Connectivity Establishment). Gracias a STUN, los dispositivos pueden

obtener sus direcciones IP públicas y, con ICE, los dispositivos pueden negociar rutas de

comunicación óptimas para atravesar NAT y firewalls. Además, PJNATH es compatible

con TURN (Traversal Using Relays around NAT), lo que permite el uso de servidores

TURN como solución alternativa en situaciones más complejas donde la comunicación

punto a punto no es posible.

En este proyecto se ha utilizado como apoyo a funciones pertenecientes a la librería de

PJMedia que se explica a continuación.

PJMEDIA:

Es una librería que se utiliza para el procesamiento de medios en aplicaciones de VoIP.

Ofrece funcionalidades para manejar códecs, procesar flujos de medios, capturar y

10

reproducir audio y video, y otras características avanzadas. Con PJMEDIA, los

desarrolladores pueden implementar aplicaciones de VoIP con alta calidad de audio y

video, así como funciones avanzadas como cancelación de eco y detección de actividad

de voz. Esta librería optimiza la experiencia del usuario y asegura una comunicación

fluida.

PJMEDIA es altamente personalizable, lo que permite a los desarrolladores adaptar el

procesamiento de medios a las necesidades específicas de sus aplicaciones. Además, es

compatible con una amplia variedad de códecs y formatos de medios, lo que facilita la

interoperabilidad con otras plataformas y sistemas.

En este proyecto se ha utilizado para usar funciones al nivel más bajo de tramas para

poder implementar los protocolos RTP y SRTP para el envío y recepción de tramas junto

con el proceso de inicialización de las sesiones utilizadas para ello que se pueden

observar durante el capítulo 4. Descripción de RTP y SRTP.

La elección de esta librería como principal de este proyecto es que en el GVOIP ya se

utiliza esta, pero a niveles más altos, por lo que simplemente se tendría que cambiar por

otros niveles más bajos de interfaz de acceso a la librería.

OpenSSL:

[4] Para garantizar la seguridad en las comunicaciones, OpenSSL es una librería

criptográfica fundamental utilizada ampliamente en aplicaciones de red. Ofrece cifrado

y descifrado, autenticación y firma digital, y también implementa protocolos de

seguridad como SSL/TLS. Con soporte para diversos algoritmos criptográficos y

certificados X.509, permite la transmisión segura de datos y la autenticación de extremo

a extremo.

Integrando OpenSSL con las librerías PJSIP, PJNATH y PJMEDIA, los desarrolladores

pueden proporcionar una solución de VoIP altamente segura y confiable. La

combinación de estas librerías ofrece una plataforma completa para el desarrollo de

aplicaciones de comunicación en tiempo real, garantizando una experiencia de usuario

de alta calidad y protegiendo la privacidad y seguridad de las comunicaciones.

En este proyecto se ha utilizado para ayudar a la negociación de las claves SRTP

utilizando el protocolo DTLS, que se explica en el capítulo 4.4. Uso del DTLS.

Librería interna privada:

Debido a temas de privacidad, no se pueden dar detalles específicos de esta librería. Se

ha utilizado para gestionar el Gateway y el nodo administrador de la red TETRA para el

establecimiento de llamada y dar dirección a cada dispositivo de esta red.

11

4. Descripción de RTP y SRTP.

4.1. Funcionamiento, Definición y tramas del Protocolo

RTP.

El Real-time Transport Protocol (RTP) y el Real-time Control Protocol (RTCP) son dos

protocolos complementarios utilizados en la transmisión de datos multimedia en

tiempo real a través de redes IP. Ambos fueron desarrollados por Internet Engineering

Task Force (IETF) y se rigen por diferentes RFCs. La primera versión de RTP fue publicada

en 1996 en el documento RFC 1889 y la final en RFC 3550 en 2003.

El RTP, divide en tramas los datos multimedia y proporciona servicios de transporte,

control de flujo y sincronización. Por otro lado, el RTCP desempeña un papel crítico en

el monitoreo y control de la calidad de la transmisión. Aunque utiliza el mismo canal de

transporte que el RTP, el RTCP se encarga de enviar periódicamente paquetes de control

hacia los participantes de una sesión en tiempo real. Estos paquetes contienen

información valiosa sobre la calidad de la conexión, estadísticas de los medios

transmitidos y detalles sobre la sincronización entre los participantes. Además, RTCP,

facilita la identificación de posibles problemas en la red, como la pérdida de paquetes o

la variación en los retardos, lo que permite tomar acciones correctivas para mejorar la

calidad de la experiencia de usuario en tiempo real.

La estructura de las tramas RTP consta de una cabecera y una carga útil. La cabecera se

divide en varios campos que proporcionan información importante sobre la trama y su

contenido. A continuación, se describen los campos más relevantes de la cabecera de

una trama RTP:

12

Figura 4.1.a.: Esquema de la estructura de una trama RTP.

- Número de versión (Version): Este campo de 2 bits indica la versión del protocolo

RTP utilizado.

- Tipo de servicio (Padding, Extension, CSRC Count): Estos campos de 1 bit cada

uno indican la presencia de información adicional en la trama, como bits de

relleno (Padding), una sección de extensión (Extension) y el número de

identificadores de fuentes de contribución (CSRC Count).

- Marcador (Marker): Este campo de 1 bit se utiliza para marcar tramas

importantes dentro de una secuencia de datos.

- Tipo de carga útil (Payload Type): Este campo de 7 bits especifica el tipo de datos

multimedia incluidos en la trama RTP, como audio, video o metadatos.

- Número de secuencia (Sequence Number): Este campo de 16 bits se utiliza para

ordenar y detectar pérdidas de tramas durante la transmisión.

- Marca de tiempo (Timestamp): Este campo de 32 bits se utiliza para sincronizar

los flujos de audio y video en el receptor.

- Número de identificadores de fuentes de contribución (SSRC Count): Este campo

de 4 bits indica la cantidad de identificadores de fuentes de contribución

presentes en la trama.

- Identificadores de fuentes de contribución (CSRC List): Estos campos de 32 bits

cada uno identifican las fuentes de contribución asociadas con la trama.

- Cabecera de extensión (EH): Es un campo opcional que proporciona información

de capa de red. Se utilizan para la fragmentación, la seguridad y la movilidad

principalmente, aunque tiene varios usos más. Tiene un tamaño de 32 bits.

- La carga útil de la trama RTP contiene los datos multimedia en sí. El formato y la

estructura de la carga útil dependen del tipo de datos que se transmiten. Por

13

ejemplo, si se trata de audio, la carga útil puede contener muestras de audio

codificadas.

4.2. Funcionamiento, Definición y tramas del Protocolo

SRTP.

El Secure Real-time Transport Protocol (SRTP) y el Secure Real-time Transport Control

Protocol (SRTCP) son extensiones esenciales utilizadas para garantizar la seguridad en la

transmisión de datos multimedia en tiempo real a través de redes IP.

SRTP se rige por el RFC 3711. Incorpora funciones críticas de seguridad, como el cifrado

y la autenticación, para asegurar la confidencialidad, integridad y autenticidad de las

tramas RTP transmitidas.

En el caso del SRTCP, su funcionamiento se encuentra definido en el RFC 5764. SRTCP se

encarga de brindar seguridad a los paquetes de control enviados mediante RTCP. Tanto

SRTP como SRTCP incorporan técnicas de cifrado, autenticación e integridad para

proteger los datos de control contra escuchas no autorizadas y modificaciones

malintencionadas. Los parámetros de seguridad son acordados previamente entre el

emisor y el receptor a través de protocolos de negociación de claves, como Internet Key

Exchange (IKE), según lo especificado en el RFC 7296, Internet Protocol Security (IPSec)

referenciado en RFC 6434 y el Datagram Transport Layer Security (DTLS) cuya referencia

es RFC 9147. Este último es el protocolo que se utilizará en este proyecto, sin embargo,

también existe la posibilidad de tener las claves ya establecidas en ambos extremos, por

lo que no se necesitaría la negociación que se realiza en el DTLS.

La utilización de SRTP y SRTCP en aplicaciones como telefonía IP, videoconferencias y

transmisiones en vivo por Internet ha demostrado ser crucial en entornos donde la

seguridad de la información es prioritaria protegiendo la privacidad de las

comunicaciones y la calidad de esta en tiempo real.

4.3. Comparación RTP con SRTP.

Existen varias diferencias significativas entre SRTP y RTP. A continuación, se presentan

algunas de las principales comparaciones:

- Seguridad: La principal diferencia entre SRTP y RTP radica en la seguridad.

Mientras que RTP no proporciona mecanismos de seguridad por sí mismo, SRTP

agrega cifrado y autenticación a las tramas RTP para proteger los datos

multimedia.

- Integridad: SRTP asegura la integridad de los datos multimedia mediante la

adición de una etiqueta de autenticación de mensaje (MAC) a cada trama, lo que

14

permite detectar modificaciones malintencionadas. RTP no tiene mecanismos

incorporados para verificar la integridad.

- Autenticidad: SRTP proporciona mecanismos para garantizar la autenticidad de

las tramas, asegurando que provienen de la fuente esperada y no han sido

manipuladas. RTP no tiene estas capacidades.

- Sobrecarga: Debido a los procesos de cifrado y autenticación adicionales, SRTP

tiene una sobrecarga computacional y de ancho de banda mayor en comparación

con RTP sin seguridad. Esto puede afectar el rendimiento en entornos con

recursos limitados.

En este caso, contemplando la codificación con G711, la cabecera tanto de RTP, como

SRTP es de 12 bytes y de carga útil de 64 bytes, haciendo un total de 76 bytes, sin

embargo, en SRTP se le añaden 10 bytes de autenticación y cifrado del algoritmo

AES_CM que se podrá observar con más detalle en el capítulo 4.4. Uso del DTLS. Todo

esto, provoca una sobrecarga del 15,79%, sin embargo, a la hora del envío de tramas, se

envían 3 paquetes en una trama, por lo que los bytes por trama son 192 a lo que se le

añaden a SRTP los 10 bytes mencionados anteriormente dando como resultado 202

bytes, lo que hace una sobrecarga del 4’95%.

Por lo que teniendo únicamente como desventaja para el uso de SRTP esta sobrecarga

que es pequeña, compensa su uso frente al RTP sin seguridad.

4.4. Uso del DTLS.

DTLS [5], acrónimo de Datagram Transport Layer Security, es un protocolo de seguridad

que proporciona una capa de cifrado y autenticación para la transmisión de datos en

tiempo real a través de redes de datagramas, como UDP. DTLS es una versión adaptada

de TLS (Transport Layer Security), diseñado para adaptarse a las características y

exigencias de las aplicaciones que requieren una conexión segura y fiable en entornos

de red propensos a la pérdida de paquetes, como lo son las comunicaciones en tiempo

real.

DTLS se basa en una combinación de algoritmos criptográficos para proporcionar

cifrado, autenticación e integridad de los datos transmitidos, asegurando que la

información sensible no pueda ser interceptada o modificada por atacantes.

El uso principal de DTLS es la negociación para el intercambio de claves que enviará a

SRTP para asegurar su protección. Cuando dos extremos (por ejemplo, un cliente y un

servidor) desean establecer una comunicación segura mediante SRTP, primero utilizan

DTLS para establecer una conexión segura. Durante este proceso, DTLS negocia los

algoritmos criptográficos y las claves de cifrado que se utilizarán para proteger la

información en tiempo real. Una vez que la conexión DTLS se ha establecido con éxito,

SRTP utiliza las claves acordadas para cifrar y autenticar las tramas de datos multimedia

que se transmiten entre los extremos. Esta negociación se realiza a través de un

15

handshake, que consiste en las siguientes etapas que se ven representadas en la Figura

4.4.a..

Figura 4.4.a: Esquema de la negociación para obtener las claves de SRTP a través de

DTLS.

1. Inicio: El cliente inicia el proceso enviando un mensaje ClientHello al servidor. En

este mensaje, el cliente incluye su lista de Cipher Suites (combinaciones de

algoritmos criptográficos) y otras capacidades de seguridad compatibles.

También genera un valor de nonce (número usado solo una vez) y otros

parámetros necesarios para el proceso.

2. Respuesta del servidor: El servidor responde al mensaje del cliente con un

mensaje ServerHello. En este mensaje, el servidor selecciona una de las Cipher

Suites propuestas por el cliente que sea compatible y segura para ambos

extremos. El servidor también genera su propio valor de nonce y otros

parámetros necesarios para el proceso.

3. Intercambio de certificados: El servidor envía su certificado digital al cliente en

el mensaje Certificate. El certificado contiene la clave pública del servidor, que el

cliente usará más adelante para cifrar mensajes durante la comunicación.

4. Autenticación y verificación del certificado: El cliente verifica la autenticidad del

certificado del servidor utilizando su lista de autoridades de certificación de

confianza. Si el certificado es válido y confiable, el cliente continúa con el

proceso.

5. Intercambio de claves: El cliente genera un valor de premaster secret (secreto

previo a la clave) y lo cifra utilizando la clave pública del servidor. El cliente envía

el secreto cifrado al servidor en el mensaje ClientKeyExchange. El servidor

descifra el secreto utilizando su clave privada y obtiene el mismo valor.

16

6. Generación de claves de sesión: Tanto el cliente como el servidor utilizan el

premaster secret y los valores de nonce intercambiados para generar claves de

sesión para la comunicación segura. Estas claves de sesión son utilizadas por los

algoritmos criptográficos seleccionados para cifrar y autenticar los datos durante

la transmisión.

7. Intercambio de mensajes de finalización: Tanto el cliente como el servidor envían

un mensaje Finished al otro extremo para confirmar que el handshake se ha

realizado correctamente y que ambas partes están listas para comenzar la

transmisión segura.

4.5. Código de RTP.

Los pasos que se han seguido para poder utilizar el protocolo RTP con la librería PJMedia

referenciada en el capítulo 3.2. Librerías utilizadas. ha sido:

1. Inicialización de la librería a través de la función pj_init().

2. Creación e inicialización de la memoria caché y de la dirección a los codificadores:

a. Caching pool: Grupo de almacenamiento en la memoria caché. Para ello

se debe emplear la función pj_caching_pool_init(), añadiéndole como

parámetros de entrada el propio Caching pool, la política por defecto y la

capacidad máxima que queremos que almacene nuestra caché. Para

poder crearse este espacio, se necesita la función pj_pool_create() cuyo

parámetro de salida se guarda en una variable y de entrada se mandan

los valores del caching pool, el nombre y el tamaño inicial y adicional del

bloque de la memoria.

b. Creación de un administrador de eventos a través de la función

pjmedia_event_mgr_create(), su parámetro de entrada es la variable

obtenida con la función anterior.

c. Endpoint: Sirve para administrar posteriormente los codificadores del

sistema. Se usa la función pjmedia_endpt_create() y como parámetros de

entrada: los valores de caching pool, el número de hilos necesarios (1 en

este caso) y el endpoint vacío para poder crearse.

3. Registro del códec en un endpoint: Se deben efectuar estas dos funciones:

pjmedia_codec_register_audio_codecs() y pjmedia_endpt_get_codec_mgr(),

pasándole como parámetro de entrada a ambas funciones su endpoint. Se

utilizará pjmedia_codec_mgr_find_codecs_by_id() para buscar los códecs que

tengan el nombre enviado.

4. Creación del socket RTP y RTCP y vinculación a su puerto de entrada:

pjmedia_transport_udp_create(), para ello, se necesita el endpoint utilizado para

registrar los sockets, un nombre (opcional), el número del puerto necesario para

RTP (para RTCP será uno mayor) y un transporte pjmedia_transport recién

iniciado.

5. Se establece el códec: Para ello se deben seguir los siguientes pasos:

17

a. Se obtiene el administrador del códec a partir del endpoint con la función

pjmedia_endpt_get_codec_mgr().

b. Se reciben los parámetros por defecto a partir de la función

pjmedia_codec_mgr_get_default_param(), pero se deshabilita el VAD

porque está por defecto.

c. Se solicita al administrador una instancia del códec con una información

que se pide por entrada con la función

pjmedia_codec_mgr_alloc_codec().

d. Inicializamos y abrimos el códec a partir de pjmedia_codec_init() y de

pjmedia_codec_open().

6. Establecemos las sesiones RTP:

a. En primer lugar, se inicializa el socket RTP y el RTCP a partir de la función

pj_sockaddr_in_init().

b. Seguidamente, se activan las sesiones de entrada y salida con el puerto e

información correspondiente con pjmedia_rtp_session_init().

c. Por último se configura la sesión RTCP, para ello, se necesita el puerto

RTCP, el reloj del códec y la función pjmedia_rtcp_init().

7. Se activan los call-backs on_rx_rtp() y on_rx_rtcp(), que se activan al recibir los

paquetes RTP y RTCP correspondientemente, para ello, se necesita el transporte

que se ha modificado durante los anteriores apartados, la información, los

puertos RTP y RTCP y la longitud del socket para enviarlos a la función

pjmedia_transport_attach().

8. Se inicializa la sesión de transporte con la configuración en el SDP local y remoto,

cuando se trabaja con SRTP, esto activará el cifrado y descifrado de los paquetes.

La función que se utiliza para ello es pjmedia_transport_media_start().

9. Para el lanzamiento de paquetes se necesita invocar el hilo send_RTP_thread.

10. El call-back on_rx_rtcp() se utiliza para recoger los paquetes RTCP que llegan en

la comunicación, es decir, los paquetes de control. Una vez recogida cada trama,

se actualiza la sesión pjmedia_rtcp_rx_rtcp().

11. El siguiente call-back es on_rx_rtp():

a. Se recogen los paquetes RTP recibidos, estos contienen la información de

la señal de audio codificada, en este caso en G711. Lo primero que se

hace al recibir la trama es decodificar con pjmedia_rtp_decode_rtp().

b. Se actualizan las sesiones RTP y RTCP a través de pjmedia_rtcp_rx_rtp() y

de pjmedia_rtp_session_update().

c. El códec inspecciona el paquete y lo divide en tramas individuales, para

ello, como parámetros de entrada a la función pjmedia_codec_parse(),

necesitamos el códec, el paquete recibido y su longitud, la marca de

tiempo de la primera muestra del paquete (timestamp), el puntero en el

que se indica el número de frames en el vector y la variable que devuelve

las tramas que se han detectado en el paquete.

d. Para decodificar cada frame obtenido en la función anterior, se utiliza la

siguiente: pjmedia_codec_decode() y así se obtiene cada trama que se

necesita para obtener la señal de audio.

18

12. Para el envío de los paquetes, como se ha dicho anteriormente, se utiliza el hilo

send_RTP_thread se han utilizado para desarrollarlo los siguientes pasos:

a. Lo primero que hay que hacer, es crear la cabecera que se necesita para

el protocolo RTP y se codifica con pjmedia_rtp_encode_rtp(), para ello se

necesita la sesión de salida, la información del códec y la cabecera.

b. Se obtienen los bytes que se quieren enviar y se acoplan a la cabecera

creada anteriormente.

c. Por último, se envía directamente el paquete completo a través de la

función pjmedia_transport_send_rtp(), la que necesita como parámetro

de entrada únicamente el transporte (con toda su información

almacenada anteriormente) y el paquete. Esta función entregará dicho

paquete directamente a la dirección destino especificadas en el

pjmedia_transport_attach().

4.6. Código de SRTP.

Para implementar la seguridad con protocolo SRTP, se han tenido que añadir funciones,

tanto de PJMedia como de openssl:

1. En primer lugar hay que cambiar el tipo de transporte a

PJMEDIA_TRANSPORT_TYPE_SRTP.

2. Después de crear las sesiones RTP (apartado 6 del capítulo 4.5. Código de RTP),

agregamos las opciones por defecto de SRTP con la función

pjmedia_srtp_setting_default(). Y creamos esta sesión gracias a

pjmedia_transport_srtp_create() añadiéndole el transporte, el endpoint del

códec y las opciones que se acaban de crear.

3. Una vez empezada la sesión de transporte (apartado 8 del capítulo 4.5. Código

de RTP), existen dos opciones:

a. La primera es tener las claves anteriormente de cada extremo de la

comunicación y crear el transporte SRTP enviando dichas claves a la

función pjmedia_transport_srtp_start(), por lo que se tendrían que saber

antes de empezar la comunicación si solo utilizamos este protocolo.

b. La segunda consiste en hacer una negociación, se utilizará el protocolo

DTLS, para ello hay que seguir los siguientes pasos:

i. Crear el hilo on_srtp_nego_complete para saber el momento en

el que acaba este proceso.

ii. A continuación, inicializar la información que tienen los

parámetros de DTLS con pj_bzero() y copiamos los sockets con la

dirección y los puertos RTP y RTCP con pj_sockaddr_cp().

iii. Asignamos un cliente y un servidor activando el flag is_role_active

a este primero. El servidor está en espera hasta que recibe el

saludo del cliente que inicia la conversación y envía el handshake

cada cierto tiempo hasta que recibe respuesta activando así el

19

hilo on_srtp_nego_complete. El inicio de la negociación se efectúa

con pjmedia_transport_srtp_dtls_start_nego(). A esta función se

le añade un fingerprint que se usa como certificado remoto, en

este proyecto no se hace esta verificación, por lo que no hay una

autentificación fiable. Se ha optado a esta opción, debido a que

los mecanismos para pasar dicho fingerprint entre los dos

extremos aún no están perfilados, se ha preferido centrarse en el

resto de los aspectos de SRTP.

iv. Una vez se completa la negociación, se activa directamente la

comunicación mediante el protocolo SRTP sin tener que llamar

ninguna otra función, a parte del hilo de envío.

20

5. Escenarios realizados.

El escenario general del proyecto está reflejado en la Figura 5.a., en los siguientes

apartados se irá viendo el escenario de cada uno de ellos para ser explicados de una

manera más clara.

Figura 5.a.: Escenario general del proyecto.

Este escenario general está compuesto por 2 redes, la primera es un sistema de radio

TETRA en la que están sus dispositivos, y en la segunda están los dos prototipos que se

utilizarán a lo largo de los siguientes apartados y el Line Dispatcher. Para establecer una

llamada entre dos extremos, tanto cualquier dispositivo de radio como el Line

Dispatcher, se utiliza el nodo central que se utiliza como administrador y es el encargado,

a través de un protocolo privado interno, de proporcionar la dirección, los puertos, el

PTT, etc.. Una vez se establece la llamada, si uno de ellos está dentro de la red TETRA y

el otro fuera, se comunican traspasando el Gateway, cuya función es convertir el tráfico

ACELP empleado en la red TETRA a RTP/RTCP utilizado en el exterior y viceversa, por lo

que actúa como intermediario entre el dispositivo de radio y el Line Dispatcher para que

la conversación pueda realizarse.

5.1. Implementación de la librería PJMedia en un

prototipo.

Este primer escenario es propuesto para verificar la compatibilidad del protocolo RTP

dado a través de PJMedia con las librerías internas de la empresa, para poder así

asegurarse de su correcto funcionamiento.

Para ello, se ha realizado un prototipo cuya funcionalidad es enviar y recibir un mismo

archivo de audio guardado en el ordenador a través de RTP utilizando un puerto para el

envío y otro para la recepción.

21

Figura 5.1.a.: Esquema del escenario 1. Envío de archivo de audio entre dos consolas.

Para lograr este objetivo, se requiere la operación simultánea de dos consolas con

sistema operativo Windows, ambas envían el fichero por paquetes codificados con RTP,

reciben las tramas del otro con un puerto distinto y crean otro archivo de audio para

poder reproducirse una vez se haya terminado la conexión.

Ahora, con el conocimiento adquirido en este escenario con el uso de la librería de

PJMedia, se dará paso al siguiente, donde se llevará a cabo una demostración práctica

en tiempo real para ilustrar mejor el funcionamiento de este sistema.

5.2. Migración del Line Dispatcher a PJMedia y conexión

con la radio.

Este segundo escenario es propuesto para verificar que la librería de PJMedia con RTP

sin seguridad funcione con un sistema real de radio para posteriormente añadirsela.

Partimos de la aplicación del Line Dispatcher ya proporcionada. Los cambios que se han

realizado con respecto al original, ha sido la migración a PJMedia, ya que antes, la

creación de sesiones y los envíos se realizaban a través de una librería interna que no

soporta SRTP, por lo que se necesita esta migración a PJMedia planteada. Los pasos que

se han desarrollado para ello han sido explicados en el apartado 4.5. Código RTP del

Capítulo 4., tal y como se ha hecho en el apartado 5.1. Implementación de la librería

PJMedia en un prototipo.

Figura 5.2.a.: Esquema escenario 2. La aplicación de Line Dispatcher se comunica con el

sistema de radio atravesando el Gateway.

22

La radio se encuentra en una red de infraestructura TETRA, por lo que la aplicación del

Line Dispatcher se debe conectar a esta a través de un Gateway que únicamente soporta

RTP, por lo que en este escenario seguiría funcionando, ya que se utiliza este protocolo.

En esta conexión se pueden realizar llamadas individuales (dúplex y semi-dúplex) y de

grupo a tiempo real. La señal se envía a través de UDP de los paquetes RTP codificada

por G711.

Ambos extremos pueden iniciar la llamada de ambos tipos mencionados anteriormente

y el otro extremo es el encargado de aceptarla o rechazarla. Al aceptarla,

automáticamente se puede comunicar hablando directamente (modo dúplex) o

activando y desactivando el PTT de ambos extremos conforme el turno de habla (modo

semi-dúplex), quien tiene el permiso inicial depende de si la llamada es directa o hook

(con descuelgue).

La función de este escenario es comprender cómo funciona esta aplicación de Line

Dispatcher y tener un contacto con lo que sería el producto final que es la comunicación

por sistema de radio.

5.3. Implementación del protocolo SRTP en un prototipo.

Este tercer escenario, comprueba el cifrado de SRTP con PJMedia en modo de trabajo

compatible con sistemas actuales.

Para ello, se implementan los cambios propuestos en el capítulo 4.6. Código SRTP en el

primer escenario mostrado en 5.1. Implementación de la librería PJMedia en un

prototipo. Con ayuda de los protocolos SRTP y DTLS, se intentará que la señal se cifre

con claves después de negociarlas para así no estar expuestas las conversaciones para

cualquier intruso que se infiltre en la red o que pertenezca a ella.

Figura 5.3.a.: Esquema del escenario 3. Envío de archivo de audio entre dos consolas.

Tras comprobar que este cifrado ha funcionado y no puede ser descifrado por

Wireshark, tal y como se observará en el capítulo 6.4. Demostración de la seguridad de

la comunicación de audio.

En el próximo escenario, se podrá observar el escenario final de este proyecto, donde

se apreciarán los resultados y beneficios de la aplicación de estos cambios en términos

de seguridad y confidencialidad en la comunicación por sistema de radio. La

incorporación de cifrado mejora significativamente la integridad de las transmisiones,

23

protegiendo la información sensible y asegurando una comunicación más segura y

confiable en este entorno.

5.4. Implementación de Comunicación Segura en Red

TETRA mediante Simulación SRTP/DTLS.

Este escenario es el más cercano al objetivo final, debido a que el Gateway no soporta

los protocolos SRTP y DTLS que necesitan convertirse en ACELP para que funcionen en

la red interna de TETRA a la que pertenecen los dispositivos de radio. Para ello, se

establece la llamada accediendo al administrador por ambos extremos, pero se engaña

al sistema para que el Gateway utilice un puerto falso. Al final del establecimiento, el

tráfico de audio real del dispositivo de radio se sustituye una vez establecida la llamada

por el del prototipo, de forma que no es necesario modificar el Gateway.

Este escenario se puede observar en la Figura 5.4.a. en la que “Prototipo 1” y “line

Dispatcher” pertenecen a una red privada, mientras que el “Dispositivo de radio” está

en la red TETRA, cuyo tráfico es sustituido por el del prototipo una vez es iniciada la

llamada tras establecerse con el “Administrador”.

Figura 5.4.a.: Escenario final. El prototipo simula el sistema de radio para enviar el

audio SRTP/SRTCP/DTLS.

Para ello, se siguen los pasos de este esquema:

1. En primer lugar, se ejecuta en la ventana de comandos el código del prototipo,

que actuará como servidor para la negociación de DTLS para que esté en espera

hasta que el Line Dispatcher empiece la negociación para obtener las claves de

SRTP y comenzar la conversación. Se establece esta disposición de cliente y

servidor, debido a que en la negociación DTLS, el cliente es el que empieza la

negociación mientras que el servidor espera el mensaje de ClientHello.

24

2. A continuación se llama a través de alguno de los dos extremos, ya sea desde la

aplicación como desde la radio, en cualquier modo y desde el otro, se acepta la

llamada.

3. Posteriormente, empieza la negociación de DTLS del Line Dispatcher con el

prototipo.

4. Una vez completada la negociación, si es modo dúplex se puede oír a través de

la aplicación de Line Dispatcher el archivo de audio en bucle, en cambio, si es en

modo semi-dúplex se necesita desactivar el PTT de la aplicación y activarlo en el

dispositivo de radio para que este se escuche.

Este escenario se ha diseñado para que se pueda realizar también por RTP, es decir, sin

seguridad. Para ello se tiene que activar esta función desde el código de la aplicación del

Line Dispatcher y con los comandos desde el prototipo para poder comunicarse ambos

con RTP. En este caso, la negociación no se realiza, por lo que el prototipo directamente

envía en bucle el dispositivo de audio una vez se inicie con la ventana de comandos,

independientemente de si se ha realizado o no el establecimiento de llamada.

Una vez se cierra el prototipo, se puede escuchar también a través de un archivo de

audio la parte de la comunicación del Line Dispatcher hacia el prototipo, por lo que la

conversación funciona en ambos sentidos, es decir, SRTP funciona tanto como para

transmisión como para recepción.

Gracias a este escenario, se puede confirmar que esta comunicación es viable y se puede

utilizar en el sistema de radio, pero para ello se necesitaría modificar el Gateway, ya que

actualmente no soporta el SRTP ni el DTLS. Por lo que en unos meses, cuando se

modifique el Gateway pueda admitir ambos protocolos.

25

6. Análisis de las tramas.

En este capítulo se comparan las tramas capturadas en cada escenario gracias a

Wireshark. Como ya hemos visto en el Capítulo 5. Escenarios realizados, en los dos

primeros escenarios se obtienen tramas TCP con el protocolo RTP y en los dos siguientes,

se muestran tanto SRTP para la comunicación como DTLS para la negociación de las

claves. Posteriormente se compararán las señales de audio capturadas para así verificar

si se han cifrado correctamente y si son vulnerables a ataques.

En un inicio, todos estos paquetes se capturan como UDP tal y como se observa en la

Figura 6.a., por lo que se decodifican a través de una función de la propia aplicación de

Wireshark, Decode As…, para poder poner el tipo RTP (tanto para las tramas RTP como

para las tramas SRTP).

Figura 6.a.: Captura paquetes UDP sin decodificar a RTP.

Se puede observar únicamente la dirección fuente y destino con sus respectivos puertos

y la longitud de los datos y de la cabecera, por lo que así no se obtendría suficiente

información, por lo que habría que decodificarlo como se ve en el siguiente apartado.

6.1. Tramas RTP.

Una vez decodificados los paquetes de la Figura 6.a., se observan los de la Figura 6.1.a.

Se puede observar más información como “P=ITU-T G. 711 PCMA”, esto significa que es

un protocolo de la Unión Internacional de Telecomunicaciones-Telecomunicación (ITU-

T) que utiliza como códec tanto G711 como PCMA (Pulse Code Modulation A-law), en

este caso, para la descomprensión se utiliza G711. A continuación aparece el campo de

“Fuente de sincronización”, que como se puede observar en el apartado 4.1.

Funcionamiento, Definición y tramas del Protocolo RTP. este campo indica la posición de

la fuente de sincronización en la memoria, esto va seguido del número de secuencia del

paquete para tenerlo así localizado, y por último, aparece el Timestamp en el que se

deduce que entre cada paquete hay un valor de 160 de diferencia entre cada una que

sirve para sincronizar los flujos de audio y video en el receptor.

26

Figura 6.1.a.: Captura de tramas RTP decodificados.

Tras obtener estas tramas, se accede en la misma aplicación de Wireshark al menú de

Telephony -> RTP -> RTP Streams, se selecciona cualquiera de los dos flujos de la

conversación o escuchar ambos a la vez que también es posible, y se accede a observar

la señal en Analyze -> Play Streams. Llegado a este punto, aparece la señal de la Figura

5.1.a., que no está cifrada y puede ser escuchada por cualquier persona que tenga

acceso a cualquiera de las dos redes de este escenario o de las redes que separan a

ambos extremos en cualquier otro proyecto simplemente accediendo a esté menú y

cambiando la opción de Playback Timing a RTP Timestamp y reproduciendo la señal de

audio resultante.

6.2. Tramas SRTP.

Al igual que en el apartado anterior, se decodifica la Figura6.a. a RTP, y en un principio,

como se puede observar en la Figura 6.2.a. en comparación con la Figura 6.1.a. no existe

ninguna diferencia, el Timestamp, la fuente de sincronización y la codificación tienen los

mismos valores, por lo que no se va a entrar en detalles de esta captura, sin embargo,

la longitud de la trama es de 10 bytes mayor, tal y como se adelantó en el capítulo 4.3.

Comparación RTP con SRTP., sin embargo, en ese mismo apartado, se comunicó que las

tramas tenían un valor de 192 y 202 bytes y en las capturas de Figura 6.1.a y Figura

6.2.a., aparecen 12 bytes mayor. Esto es debido a que en Wireshark, al capturar los

paquetes, añade 12 bytes a cada uno, pero el estudio se ha realizado con la longitud de

los paquetes reales que circulan por la red y no por los capturados.

Figura 6.2.a.: Captura de tramas SRTP decodificados.

Reproducimos la señal que aparece en la Figura 6.3.a., y se escucha ruido blanco de

fondo, es decir, que se ha conseguido codificar la señal durante el trayecto de la red

entre ambos extremos, y debido a que en ambos extremos también se escucha el audio

a la perfección, se verifica que este cifrado es válido y funcional para poder seguir

adelante en este proyecto.

27

6.3. Tramas DTLS.

En este apartado, se analiza la negociación de las claves de SRTP a través del protocolo

DTLS, la captura de estos paquetes se puede observar en la Figura 6.3.a., se verán en

profundidad los 4 paquetes que componen las 7 fases de la negociación vistas en el

capítulo 4.4. Uso del DTLS. Siendo el primer paquete correspondiente a la fase 1, el

segundo a las fases 2 y 3, el tercero corresponde a las fases 4, 5, 6 y 7 y el cuarto a las

fases 5, 6 y 7.

Figura 6.3.a.: Paquetes capturados de la negociación DTLS.

Los 4 paquetes representados, están divididos por campos que se pueden observar en

el 10. Anexo 1: Capturas de los paquetes DTLS.

El primer paquete corresponde al ClientHello. Está compuesto por 242 bytes, ya que hay

que restar los bytes añadidos por la captura de Wireshark. En el primer campo se define

el tipo ClientHello y en el siguiente se añade un número Random que corresponde al

nonce. Seguidamente aparece la lista de 28 Cipher Suites que soporta durante la

negociación el cliente, que es el Line Dispatcher, y define el método de compresión por

defecto. Se envían también 3 formatos de ec_point (curvas elípticas) que sirven para la

elaboración de la clave, acompañado de 5 supported groups que se utilizan para acordar

que ec_point se utiliza en la comunicación y cuales son compatibles. Por último aparece

la inclusión del protocolo SRTP con los dos Cipher Suites soportados en la comunicación

y una lista de 23 firmas Hash que aseguran la autentificación del mensaje. Se han

enviado listas con todas las opciones posibles que tiene el cliente, para que en la

respuesta ServerHello, el servidor elija cuál de todas las opciones quiere utilizar.

El segundo paquete, corresponde al ServerHello, que en este caso, tiene una longitud de

1392 bytes que se compone de los distintos campos.

En el primer campo se define el tipo ServerHello del Handshake, a continuación se envía

el número nonce diferente al del cliente y se establece el Cipher Suite que se emplea en

la negociación: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030), que suite

utiliza el intercambio de claves ECDHE (Elliptic Curve Diffie-Hellman Ephemeral) con

curvas elípticas, autenticación del servidor mediante RSA (), cifrado simétrico AES con

una clave de 256 bits y el modo de operación GCM (Galois/Counter Mode) para

proporcionar cifrado y autenticación de integridad. La función de hash SHA-384 (Secure

Hash Algorithm 384) se utiliza para garantizar la integridad de los datos. A continuación

se indica el protocolo SRTP, a la vez que se escoge el Cipher Suite de la conversación:

SRTP_AES128_CM_HMAC_SHA1_80 (0x0001) explicado en el capítulo 4.4. Uso del

DTLS., posteriormente, indica el id del certificado perteneciente a PJMedia y algunos

campos como la fecha de validez, el número de secuencia, la id del algoritmo y su clave

28

pública. Se envían también 3 tipos de certificados de los tipos RSA, DDS y ECDSA y la

misma lista de 23 algoritmos Hash que había enviado el cliente.

El tercer paquete se compone de 1265 bytes que envía el cliente al servidor. En el primer

campo se define el tipo de Handshake, más adelante envía el certificado a nombre de

PJSIP y de PJMedia con su firma, id, nombre, número de secuencia, tiempo de validez y

clave pública. Envía también la clave pública de Diffie-Hellman y posteriormente el Hash

para la verificación del paquete.

Por último, en el cuarto paquete, el servidor envía 1065 bytes al cliente.

Tras verificar los datos enviados por el cliente, el servidor inicializa una nueva sesión con

un tiempo de vida de 2 horas, tal y como se especifica en el campo TLS Session Ticket.

Completando con este paquete así la negociación de DTLS y obteniendo las claves para

el cifrado SRTP.

6.4. Demostración de la seguridad de la comunicación de

audio.

En primer lugar, observamos la señal obtenida en el primer escenario planteado en el

capítulo 5.1. Implementación de la librería PJMedia en un prototipo., a través del uso de

la aplicación Wireshark, se realiza un análisis mediante una captura de la conversación

a través de RTP, lo que permite observar el proceso de envío de los paquetes codificados

(pero no cifrados) utilizando el protocolo G711 a través de UDP. Este análisis se visualiza

en la Figura 6.4.a.

Figura 6.4.a.: Señal de audio codificada por RTP sin cifrado hallada por la aplicación

Wireshark de la trama del apartado 6.1. Tramas RTP.

Es importante destacar que, debido a la ausencia de cifrado en la señal de audio

transmitida, esta puede ser escuchada al decodificarla. Aunque el protocolo utilizado ha

demostrado ser funcional en este caso, su falta de seguridad es una preocupación clave.

Debido a que intrusos que tengan acceso a la red en la que existe la comunicación,

29

pueden escucharla utilizando programas como Wireshark de una manera muy sencilla,

tal y como se acaba de demostrar.

Se puede averiguar esto, debido a que la señal de la Figura 6.4.a. tiene una forma en la

que se diferencian varias intensidades, siendo que en la primera parte es más intensa y

en la última es menos intensa, pero en ningún momento llega a haber silencio. Al

reproducirla, tal y como se explica en el apartado 6.1. Tramas RTP., la hipótesis

planteada es cierta.

En el siguiente ejemplo mostrado en la Figura 6.4.b. se puede observar una señal de

conversación más realista, debido a que para ello se ha capturado unos segundos de la

conversación realizada en el segundo escenario explicado en el capítulo 5.2. Migración

del Line Dispatcher a PJMedia y conexión con la radio., en el que es una conversación a

tiempo real cuyos extremos son el Line Dispatcher y el sistema de radio. Se pueden

observar los tiempos de silencio y los tiempos en el que se habla.

6.4.b.: Conversación a tiempo real entre dos usuarios situados en el Line Dispatcher y

en el sistema de radio.

Por último, se observa en la Figura 6.4.c., que los tiempos de silencio han desaparecido,

y que incluso la señal tiene siempre la misma intensidad. Esto es debido a que esta señal

está cifrada debido a que pertenece al escenario del capítulo 5.3. Implementación del

protocolo SRTP en el prototipo., por lo que simula un ruido blanco que al escucharlo, se

puede apreciar únicamente ruido, por lo que la finalidad estaría realizada, ya que nadie

que tenga acceso a cualquiera de las redes implicadas en la conversación que no tenga

la red privada de cada uno, no podrá descifrar la señal, por lo que evitamos así posibles

intrusos que comprometen la seguridad de la llamada.

30

Figura 6.4.c.: Señal de audio codificada por RTP y cifrada por SRTP.

Gracias a este capítulo se ha observado que la comunicación, aparte de ser funcional tal

y como se había asegurado en el capítulo 5. Escenarios realizados., que los dos últimos

apartados funcionan correctamente con SRTP lo que hace que la señal esté cifrada que

era el objetivo principal de este proyecto.

31

7. Problemas resueltos durante el desarrollo.

A lo largo de este capítulo se describirán los problemas que han surgido a lo largo de

todo el proceso del proyecto.

En primer lugar, se quería resolver la falta de seguridad en el protocolo RTP cambiándolo

a SRTP añadiendo también DTLS para la negociación de las claves, tal y como se ha

explicado durante los capítulos anteriores.

Para Implementar estos dos protocolos, se han tenido que buscar distintas librerías que

fuesen compatibles con las que ya se utilizan privadamente en la empresa en la que se

ha desarrollado el proyecto. La primera librería que se ha pensado es PJSIP, ya que

engloba el protocolo SRTP, pero daba problemas de compatibilidad con la red y otras

librerías de la empresa, por lo que se tuvo que llevar al nivel más bajo para evitar estos

problemas, así que se decidió utilizar la librería PJMedia apoyada con PJSIP y PJNATH

para poder trabajar en esos niveles de acceso de la librería.

Se tuvieron que resolver algunos problemas internos también para dar compatibilidad

a estas librerías.

Una vez resueltos los temas de compatibilidad con la librería interna, se podía utilizar el

protocolo RTP, lo único que solo había un par de ejemplos por internet de cómo utilizar

estas librerías a través del tipo Stream, pero este tipo es de un nivel demasiado alto y

no se podía utilizar, por lo que se ha desarrollado tal y como se explica en el capítulo

4.5. Código de RTP. en el que se ha investigado lo que hace el tipo Stream internamente

y se ha modificado para poder adaptarse a lo que se necesita en el proyecto que es del

tipo Transport (que se usa para el nivel más bajo que es el necesario).

Así se ha podido desarrollar el primer escenario descrito en el capítulo 5.1.

Implementación de la librería PJMedia en un prototipo.

Posteriormente para desarrollar el escenario 5.2. Migración del Line Dispatcher a

PJMedia y conexión con la radio. se ha modificado una aplicación ya existente que

maneja el Line Dispatcher para comunicarse con el sistema de radio real introducida en

la red TETRA. No han aparecido problemas de compatibilidad ya que se resolvieron para

el anterior escenario.

Para implementar SRTP para el tercer escenario explicado en el capítulo 5.3.

Implementación del protocolo SRTP en el prototipo. se ha estudiado la utilidad de cada

función PJMedia que conlleva este protocolo en la página oficial de la librería, ya que al

igual que ocurrió con RTP, tampoco había ejemplos a nivel tan bajo de acceso a la

librería. A la hora de implementar las claves, se quería utilizar la negociación, para que

así si se averiguase una clave, no se pudiese descifrar las demás conversaciones de esta,

y que en cada comunicación hubiera claves distintas. Para ello se utilizó el protocolo

DTLS por lo que la librería OpenSSL fue necesaria para ello.

32

Se volvieron a tener problemas de compatibilidad al implementar esta última librería

pero se resolvieron al modificar temas internos de la empresa.

Para desarrollar el último escenario desarrollado en el capítulo 5.4. Implementación de

Comunicación Segura en Red TETRA mediante Simulación SRTP/DTLS., en un principio,

la idea era probarlo directamente con la radio de la red TETRA, pero debido a que el

Gateway no aceptaba los protocolos DTLS y SRTP, no se pudo hacer, ya que se estimaba

que sería más sencillo modificarlo pero llevaba mucho más tiempo del esperado, por lo

que se prefirió hacer una simulación y así poder demostrar que las combinaciones

creadas fuesen funcionales y seguras antes de modificar la aplicación del Gateway.

33

8. Conclusión y líneas futuras.

En este capítulo, se presenta el resultado final del proyecto y se explora su potencial

para futuros desarrollos. A lo largo del desarrollo de este TFG, se ha logrado demostrar

la viabilidad de una comunicación en tiempo real funcional. Además, mediante la

implementación de los protocolos SRTP y DTLS, se ha demostrado la posibilidad de

establecer una conexión segura, íntegra y auténtica en una red TETRA de comunicación

de radio, tal como se ilustra en el segundo escenario detallado en el capítulo 5.2.

Migración del Line Dispatcher a PJMedia y Conexión con la Radio.

El enfoque de desarrollo se ha mantenido al nivel más bajo de acceso a la librería para

asegurar la compatibilidad con diversas librerías y redes, tanto de la empresa como de

los clientes que podrían emplear esta tecnología en sus propios proyectos.

La línea futura de este proyecto se basa en la adaptación del Gateway, como se ha

mencionado en distintas secciones de este informe. La modificación del Gateway es

esencial para facilitar la efectiva incorporación de esta tecnología en la red.

Actualmente, el nodo no es compatible con los protocolos SRTP y DTLS, lo que limita su

capacidad para transformar tramas entre los formatos ACELP y los protocolos

mencionados. La adaptación del Gateway para que soporte estos protocolos representa

un paso esencial para lograr la integración completa y funcionalidad óptima de la

solución dentro del sistema de radio en la red TETRA.

34

9. Bibliografía.

[1]: Librería PJSIP: https://www.pjsip.org/

[2]: Librería PJNATH: https://www.pjsip.org/pjnath/docs/html/

[3]: Librería PJMedia: https://www.pjsip.org/pjmedia/docs/html/index.htm

[4]: Librería de OpenSSL: https://www.openssl.org/

[5]: Protocolo DTLS RFC 9147: https://datatracker.ietf.org/doc/rfc9147/

https://www.pjsip.org/
https://www.pjsip.org/pjnath/docs/html/
https://www.pjsip.org/pjmedia/docs/html/index.htm
https://www.openssl.org/
https://datatracker.ietf.org/doc/rfc9147/

35

10. Anexo 1: Capturas de los paquetes DTLS.

10.1. Composición ClientHello.

Figura 10.1.a.: Composición ClientHello (1).

Figura 10.1.b.: Composición ClientHello (2).

36

Figura 10.1.c.: Composición ClientHello (3).

Figura 10.1.d: Composición ClientHello (4).

Figura 10.1.e.: Composición ClientHello (5).

37

10.2. Composición ServerHello.

Figura 10.2.a.: Composición ServerHello (1).

Figura 10.2.b.: Composición ServerHello (2).

38

Figura 10.2.c.: Composición ServerHello (3).

Figura 10.2.d.: Composición ServerHello (4).

Figura 10.2.e.: Composición ServerHello (5).

39

Figura 10.2.f.: Composición ServerHello (6).

Figura 10.2.g.: Composición ServerHello (7).

40

Figura 10.2.h.: Composición ServerHello (8).

Figura 10.2.i.: Composición ServerHello (9).

Figura 10.2.j.: Composición ServerHello (10).

41

10.3. Composición del tercer paquete.

Figura 10.3.a.: Composición tercer paquete (1).

Figura 10.3.b.: Composición tercer paquete (2).

42

Figura 10.3.c.: Composición tercer paquete (3).

Figura 10.3.d.: Composición tercer paquete (4).

43

Figura 10.3.e.: Composición tercer paquete (5).

Figura 10.3.f.: Composición tercer paquete (6).

44

10.4. Composición del cuarto paquete.

Figura 10.4.a.: Composición cuarto paquete (1).

Figura 10.4.b.: Composición cuarto paquete (2).

45

Figura 10.4.c.: Composición cuarto paquete (3).

