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1. Lista de acrónimos y siglas.  

 

ACELP  – Algebraic code-excited linear prediction 

AEAD  – Authenticated Encryption with Associated Data 

AES   – Advanced Encryption Standard 

Códec  – Codificador-Decodificador 

DDS   – Data Distribution Service 

DTLS  – Datagram Transport Layer Security 

ECDHE  – Elliptic Curve Diffie-Hellman Ephemeral 

ECDSA  – Elliptic Curve Digital Signature Algorithm 

GCM  – Galois/Counter Mode 

GVOIP  – Global Voice Over Internet Protocol 

ICE  – Interactive Connectivity Establishment 

IETF  – Internet Engineering Task Force 

IKE   – Internet Key Exchange 

IP  – Internet Protocol 

IPSec  – Internet Protocol Security 

ITU-T   – Unión Internacional de Telecomunicaciones-Telecomunicación 

MAC  – Media Access Control 

NAT  – Network Address Translation 

PCMA   – Pulse Code Modulation A-law 

PTT   – Push To Talk 

RSA  – Rivest, Shamir y Adleman 

RTCP  – Real-time Transport Control Protocol 

RTP   –  Real-time Transport Protocol 

SDP  – Session Description Protocol 

SHA  – Secure Hash Algorithm 

SIP   – Session Initiation Protocol 

SRTCP   –  Secure Real-time Transport Control Protocol 
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SRTP   –  Secure Real-time Transport Protocol 

SSL   – Secure Sockets Layer  

STUN  – Session Traversal Utilities for NAT 

TETRA  – TErrestrial Trunked Radio 

TFG  – Trabajo Fin de Grado 

TLS  – Transport Layer Security 

TURN  – Traversal Using Relays around NAT 

UDP  – User Datagram Protocol 

VAD  – Voice Activity Detection  
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2. Introducción. 

 

En el ámbito de las comunicaciones, la seguridad y la privacidad de la información 

desempeñan un papel fundamental en el mantenimiento de la integridad y 

confidencialidad de los datos. En sistemas de radiocomunicación, donde la transmisión 

de voz y datos es vital para operaciones críticas, como las redes TETRA (TErrestrial 

Trunked Radio) utilizadas por organizaciones de servicios de emergencia y fuerzas de 

seguridad, la seguridad adquiere aún mayor relevancia. En este contexto, el presente 

Trabajo de Fin de Grado (TFG) se enfoca en abordar un desafío significativo: 

implementar un mecanismo de seguridad en la red TETRA que emplea un protocolo 

privado que funciona a través de ACELP. Para ello, existe un Gateway que cambia este 

protocolo con el RTP y viceversa. 

El protocolo RTP es ampliamente utilizado para el transporte de datos en tiempo real, 

como voz y video, a través de redes IP. Sin embargo, su diseño original no incluye 

medidas de seguridad robustas, lo que lo hace vulnerable a ataques y amenazas de 

seguridad. Para mitigar estos riesgos, se propone utilizar el protocolo SRTP (Secure Real-

time Transport Protocol), que proporciona mecanismos de cifrado, autenticación e 

integridad de los datos transmitidos, garantizando una comunicación segura y confiable. 

La implementación de SRTP en el contexto de la red TETRA requiere un proceso de 

negociación seguro para establecer los parámetros de seguridad entre los nodos de la 

red. Para lograrlo, se propone utilizar el protocolo DTLS (Datagram Transport Layer 

Security), que ofrece un mecanismo para establecer una conexión segura antes de iniciar 

la comunicación mediante SRTP. Esta combinación de SRTP con DTLS proporciona una 

capa adicional de seguridad, asegurando la privacidad de las comunicaciones en un 

entorno crítico como el de la red TETRA. 

El presente Trabajo de Fin de Grado tiene como objetivo implementar una negociación 

segura para el protocolo RTP en la red TETRA, utilizando SRTP con DTLS. Se evaluará la 

viabilidad del enfoque mediante un sistema de prueba de concepto que aborde diversos 

escenarios para verificar su efectividad y seguridad. Se espera que los resultados de este 

trabajo contribuyan significativamente a mejorar la seguridad de las comunicaciones en 

la red TETRA, protegiendo la confidencialidad y la integridad de la información 

transmitida. Asimismo, sentarán las bases para futuras investigaciones y desarrollos con 

el objetivo de implantar este protocolo en la red TETRA en su totalidad, partiendo de 

este prototipo. 

En resumen, este TFG aborda la importante tarea de implementar una negociación 

segura para el protocolo RTP mediante la integración de los protocolos SRTP y DTLS en 

la red TETRA. Mediante este enfoque, se busca garantizar la protección de las 

comunicaciones en un entorno crítico donde la seguridad y la privacidad son 

primordiales para el buen funcionamiento y la confianza de las operaciones. 
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2.1. Planteamiento del problema 

Se parte del escenario mostrado en la Figura 3.1.a., en el que se encuentran el nodo 

central que actúa como administrador, distintos sistemas de radio dentro de una red 

TETRA y de un Line Dispatcher que se utiliza para comunicarse con estos dispositivos 

desde fuera de la red, para ello se necesita un Gateway de VOIP que actúa como 

intermediario, ya que su función es modificar el protocolo RTP/RTCP que se emplea en 

la comunicación del Line Dispatcher a un protocolo privado de la empresa que actúa con 

ACELP y viceversa. Para establecer una llamada, ambos extremos necesitan registrarse 

en el administrador para que así puedan ser buscados en la red y se encarga también de 

proporcionarle la información suficiente del otro extremo y de activar o desactivar el 

PTT si es modo semi-dúplex. Una vez establecida la llamada, si un extremo está dentro 

de la red TETRA y el otro fuera, como puede ser el Line Dispatcher, se comunicarán a 

través del Gateway para que este cambie de un protocolo a otro sin dar dificultad a los 

extremos. 

 

 
Figura 3.1.a.: Escenario anterior al proyecto. 

 

Este escenario, tal y como se ha explicado, está desarrollado con el protocolo RTP/RTCP, 

lo cual hace que la conversación no esté cifrada, por lo que intrusos que tengan acceso 

a cualquier red que trasladen estos paquetes pueden decodificarlo con aplicaciones 

como Wireshark y descubrir la conversación, lo que hace que esta no sea segura tal y 

como se observa en el capítulo 6. Análisis de las tramas. Por tanto, se ha planteado 

cambiar el protocolo a SRTP/SRTCP, lo que nos lleva al siguiente problema, y es que el 

Gateway no está configurado para cambiar de ACELP a SRTP ni viceversa, por lo que 

primero se quiere verificar si la comunicación con SRTP es viable en la red de la empresa. 

En primer lugar, el protocolo SRTP se puede desarrollar a niveles altos como es PJSIP, 

pero para mantener la compatibilidad en sistemas privados con la empresa, se tiene que 

desarrollar con PJMedia, para poder así, trabajar al nivel más bajo de interfaz de acceso 
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a la librería modificando los paquetes a través de la librería presentada en el capítulo 

3.2. Librerías utilizadas. 

En segundo lugar, se tiene que comprobar que SRTP sí que funcione al nivel más bajo, 

yendo paso por paso por los escenarios realizados en el capítulo 5. Escenarios realizados. 

en el que se observa que la comunicación es eficaz y segura tal y como se planteaba. 

El tercer paso es modificar el Gateway para que funcione, aparte de con RTP, con SRTP 

y así poder utilizar este protocolo en los sistemas de radio de la red TETRA para que la 

comunicación entre ellos y el Line Dispatcher sea segura aunque haya intrusos en la red. 

Que este paso ya se observará en un futuro, tal y como se explica en el capítulo 8. 

Conclusión y líneas futuras. 
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3. Análisis previo. 

 

3.1. Elementos y lenguajes de programación utilizados. 

En este apartado, se muestran los diferentes programas y aplicaciones con sus 

respectivos lenguajes de programación (si constan de ello): 

Microsoft Visual Studio 2012 y Microsoft Visual Studio Code: 

Microsoft Visual Studio es un entorno de desarrollo integrado compatible con múltiples 

lenguajes de programación que permite a los desarrolladores crear sitios y aplicaciones 

web que se comuniquen entre estaciones de trabajo. 

Ambos programas se han utilizado para la edición de código, que ha sido escrito en el 

lenguaje C++. Este primero, aparte, se ha usado para la ejecución de la aplicación del 

Line Dispatcher que se verá más adelante en varios capítulos. Han sido los dos 

programas más utilizados a lo largo del proyecto. 

 

Eclipse: 

Es un entorno de desarrollo software que soporta varios lenguajes construido alrededor 

de un workspace al que pueden incluirse un gran número de plugin que proporcionan 

funcionalidades concretas relacionadas con lenguajes específicos o con la interacción 

con otras herramientas implicadas en el desarrollo de una aplicación. 

En este proyecto se ha utilizado en el lenguaje de C++ para la visualización y edición del 

código del Gateway. Hemos utilizado este programa y no Microsoft Visual Studio debido 

a que la aplicación que controla el Gateway está en un dispositivo de Linux y no de 

Windows. 

 

Wireshark: 

Es un Software libre que se utiliza como analizador de protocolos utilizado para realizar 

análisis en redes de comunicaciones añadiendo una interfaz gráfica y múltiples opciones 

como el filtrado de información. 

En este proyecto, su utiliza para poder investigar las distintas tramas empleadas en las 

comunicaciones planteadas en los distintos capítulos y para representar las señales del 

audio escuchado durante estas. 
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3.2. Librerías utilizadas. 

PJSIP: 

[1] Es una librería SIP (Session Initiation Protocol) desarrollada en C y C++, que facilita la 

creación de aplicaciones de comunicación en tiempo real como llamadas de voz y video, 

mensajes instantáneos y videoconferencias a través de la red IP. Gracias a su diseño 

modular y API bien documentada, los desarrolladores pueden seleccionar las 

características necesarias para sus aplicaciones, lo que la convierte en una opción 

versátil y fácil de usar. Además, PJSIP es altamente portátil y puede ejecutarse en 

diversas plataformas, brindando flexibilidad para alcanzar una amplia audiencia. 

Esta librería se destaca por su soporte para una amplia variedad de códecs de audio y 

video, lo que permite la interoperabilidad con diferentes sistemas y dispositivos. 

Además, PJSIP implementa características avanzadas como la autenticación, la 

encriptación y el enrutamiento de llamadas, lo que garantiza una comunicación segura 

y confiable en entornos empresariales y de consumo. 

En este proyecto se ha utilizado como apoyo a funciones pertenecientes a la librería de 

PJMedia que se verá más adelante en este capítulo. 

 

PJNATH: 

[2] Esta librería se enfoca en superar los desafíos de las redes NAT (Network Address 

Translation) y los firewalls en las comunicaciones en tiempo real. Los dispositivos detrás 

de NAT suelen tener direcciones IP privadas y no son directamente accesibles desde 

Internet. Esto puede causar problemas en el establecimiento de conexiones punto a 

punto para aplicaciones de VoIP y videoconferencias. 

PJNATH proporciona métodos para la resolución de nombres, el descubrimiento de 

servidores STUN (Session Traversal Utilities for NAT) e implementación de ICE 

(Interactive Connectivity Establishment). Gracias a STUN, los dispositivos pueden 

obtener sus direcciones IP públicas y, con ICE, los dispositivos pueden negociar rutas de 

comunicación óptimas para atravesar NAT y firewalls. Además, PJNATH es compatible 

con TURN (Traversal Using Relays around NAT), lo que permite el uso de servidores 

TURN como solución alternativa en situaciones más complejas donde la comunicación 

punto a punto no es posible. 

En este proyecto se ha utilizado como apoyo a funciones pertenecientes a la librería de 

PJMedia que se explica a continuación. 

 

PJMEDIA: 

Es una librería que se utiliza para el procesamiento de medios en aplicaciones de VoIP. 

Ofrece funcionalidades para manejar códecs, procesar flujos de medios, capturar y 



10 
 

reproducir audio y video, y otras características avanzadas. Con PJMEDIA, los 

desarrolladores pueden implementar aplicaciones de VoIP con alta calidad de audio y 

video, así como funciones avanzadas como cancelación de eco y detección de actividad 

de voz. Esta librería optimiza la experiencia del usuario y asegura una comunicación 

fluida. 

PJMEDIA es altamente personalizable, lo que permite a los desarrolladores adaptar el 

procesamiento de medios a las necesidades específicas de sus aplicaciones. Además, es 

compatible con una amplia variedad de códecs y formatos de medios, lo que facilita la 

interoperabilidad con otras plataformas y sistemas. 

En este proyecto se ha utilizado para usar funciones al nivel más bajo de tramas para 

poder implementar los protocolos RTP y SRTP para el envío y recepción de tramas junto 

con el proceso de inicialización de las sesiones utilizadas para ello que se pueden 

observar durante el capítulo 4. Descripción de RTP y SRTP. 

La elección de esta librería como principal de este proyecto es que en el GVOIP ya se 

utiliza esta, pero a niveles más altos, por lo que simplemente se tendría que cambiar por 

otros niveles más bajos de interfaz de acceso a la librería. 

 

OpenSSL: 

[4] Para garantizar la seguridad en las comunicaciones, OpenSSL es una librería 

criptográfica fundamental utilizada ampliamente en aplicaciones de red. Ofrece cifrado 

y descifrado, autenticación y firma digital, y también implementa protocolos de 

seguridad como SSL/TLS. Con soporte para diversos algoritmos criptográficos y 

certificados X.509, permite la transmisión segura de datos y la autenticación de extremo 

a extremo. 

Integrando OpenSSL con las librerías PJSIP, PJNATH y PJMEDIA, los desarrolladores 

pueden proporcionar una solución de VoIP altamente segura y confiable. La 

combinación de estas librerías ofrece una plataforma completa para el desarrollo de 

aplicaciones de comunicación en tiempo real, garantizando una experiencia de usuario 

de alta calidad y protegiendo la privacidad y seguridad de las comunicaciones. 

En este proyecto se ha utilizado para ayudar a la negociación de las claves SRTP 

utilizando el protocolo DTLS, que se explica en el capítulo 4.4. Uso del DTLS. 

 

Librería interna privada: 

Debido a temas de privacidad, no se pueden dar detalles específicos de esta librería. Se 

ha utilizado para gestionar el Gateway y el nodo administrador de la red TETRA para el 

establecimiento de llamada y dar dirección a cada dispositivo de esta red. 
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4. Descripción de RTP y SRTP. 

 

4.1. Funcionamiento, Definición y tramas del Protocolo 

RTP. 

El Real-time Transport Protocol (RTP) y el Real-time Control Protocol (RTCP) son dos 

protocolos complementarios utilizados en la transmisión de datos multimedia en 

tiempo real a través de redes IP. Ambos fueron desarrollados por Internet Engineering 

Task Force (IETF) y se rigen por diferentes RFCs. La primera versión de RTP fue publicada 

en 1996 en el documento RFC 1889 y la final en RFC 3550 en 2003. 

El RTP, divide en tramas los datos multimedia y proporciona servicios de transporte, 

control de flujo y sincronización. Por otro lado, el RTCP desempeña un papel crítico en 

el monitoreo y control de la calidad de la transmisión. Aunque utiliza el mismo canal de 

transporte que el RTP, el RTCP se encarga de enviar periódicamente paquetes de control 

hacia los participantes de una sesión en tiempo real. Estos paquetes contienen 

información valiosa sobre la calidad de la conexión, estadísticas de los medios 

transmitidos y detalles sobre la sincronización entre los participantes. Además, RTCP, 

facilita la identificación de posibles problemas en la red, como la pérdida de paquetes o 

la variación en los retardos, lo que permite tomar acciones correctivas para mejorar la 

calidad de la experiencia de usuario en tiempo real. 

La estructura de las tramas RTP consta de una cabecera y una carga útil. La cabecera se 

divide en varios campos que proporcionan información importante sobre la trama y su 

contenido. A continuación, se describen los campos más relevantes de la cabecera de 

una trama RTP: 
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Figura 4.1.a.: Esquema de la estructura de una trama RTP. 

 

- Número de versión (Version): Este campo de 2 bits indica la versión del protocolo 

RTP utilizado. 

- Tipo de servicio (Padding, Extension, CSRC Count): Estos campos de 1 bit cada 

uno indican la presencia de información adicional en la trama, como bits de 

relleno (Padding), una sección de extensión (Extension) y el número de 

identificadores de fuentes de contribución (CSRC Count). 

- Marcador (Marker): Este campo de 1 bit se utiliza para marcar tramas 

importantes dentro de una secuencia de datos. 

- Tipo de carga útil (Payload Type): Este campo de 7 bits especifica el tipo de datos 

multimedia incluidos en la trama RTP, como audio, video o metadatos. 

- Número de secuencia (Sequence Number): Este campo de 16 bits se utiliza para 

ordenar y detectar pérdidas de tramas durante la transmisión. 

- Marca de tiempo (Timestamp): Este campo de 32 bits se utiliza para sincronizar 

los flujos de audio y video en el receptor. 

- Número de identificadores de fuentes de contribución (SSRC Count): Este campo 

de 4 bits indica la cantidad de identificadores de fuentes de contribución 

presentes en la trama. 

- Identificadores de fuentes de contribución (CSRC List): Estos campos de 32 bits 

cada uno identifican las fuentes de contribución asociadas con la trama. 

- Cabecera de extensión (EH): Es un campo opcional que proporciona información 

de capa de red. Se utilizan para la fragmentación, la seguridad y la movilidad 

principalmente, aunque tiene varios usos más. Tiene un tamaño de 32 bits. 

- La carga útil de la trama RTP contiene los datos multimedia en sí. El formato y la 

estructura de la carga útil dependen del tipo de datos que se transmiten. Por 
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ejemplo, si se trata de audio, la carga útil puede contener muestras de audio 

codificadas. 

 

4.2. Funcionamiento, Definición y tramas del Protocolo 

SRTP. 

El Secure Real-time Transport Protocol (SRTP) y el Secure Real-time Transport Control 

Protocol (SRTCP) son extensiones esenciales utilizadas para garantizar la seguridad en la 

transmisión de datos multimedia en tiempo real a través de redes IP. 

SRTP se rige por el RFC 3711. Incorpora funciones críticas de seguridad, como el cifrado 

y la autenticación, para asegurar la confidencialidad, integridad y autenticidad de las 

tramas RTP transmitidas. 

En el caso del SRTCP, su funcionamiento se encuentra definido en el RFC 5764. SRTCP se 

encarga de brindar seguridad a los paquetes de control enviados mediante RTCP. Tanto 

SRTP como SRTCP incorporan técnicas de cifrado, autenticación e integridad para 

proteger los datos de control contra escuchas no autorizadas y modificaciones 

malintencionadas. Los parámetros de seguridad son acordados previamente entre el 

emisor y el receptor a través de protocolos de negociación de claves, como Internet Key 

Exchange (IKE), según lo especificado en el RFC 7296, Internet Protocol Security (IPSec) 

referenciado en RFC 6434 y el Datagram Transport Layer Security (DTLS) cuya referencia 

es RFC 9147. Este último es el protocolo que se utilizará en este proyecto, sin embargo, 

también existe la posibilidad de tener las claves ya establecidas en ambos extremos, por 

lo que no se necesitaría la negociación que se realiza en el DTLS. 

La utilización de SRTP y SRTCP en aplicaciones como telefonía IP, videoconferencias y 

transmisiones en vivo por Internet ha demostrado ser crucial en entornos donde la 

seguridad de la información es prioritaria protegiendo la privacidad de las 

comunicaciones y la calidad de esta en tiempo real. 

 

4.3. Comparación RTP con SRTP. 

Existen varias diferencias significativas entre SRTP y RTP. A continuación, se presentan 

algunas de las principales comparaciones: 

- Seguridad: La principal diferencia entre SRTP y RTP radica en la seguridad. 

Mientras que RTP no proporciona mecanismos de seguridad por sí mismo, SRTP 

agrega cifrado y autenticación a las tramas RTP para proteger los datos 

multimedia. 

- Integridad: SRTP asegura la integridad de los datos multimedia mediante la 

adición de una etiqueta de autenticación de mensaje (MAC) a cada trama, lo que 
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permite detectar modificaciones malintencionadas. RTP no tiene mecanismos 

incorporados para verificar la integridad. 

- Autenticidad: SRTP proporciona mecanismos para garantizar la autenticidad de 

las tramas, asegurando que provienen de la fuente esperada y no han sido 

manipuladas. RTP no tiene estas capacidades. 

- Sobrecarga: Debido a los procesos de cifrado y autenticación adicionales, SRTP 

tiene una sobrecarga computacional y de ancho de banda mayor en comparación 

con RTP sin seguridad. Esto puede afectar el rendimiento en entornos con 

recursos limitados. 

En este caso, contemplando la codificación con G711, la cabecera tanto de RTP, como 

SRTP es de 12 bytes y de carga útil de 64 bytes, haciendo un total de 76 bytes, sin 

embargo, en SRTP se le añaden 10 bytes de autenticación y cifrado del algoritmo 

AES_CM que se podrá observar con más detalle en el capítulo 4.4. Uso del DTLS. Todo 

esto, provoca una sobrecarga del 15,79%, sin embargo, a la hora del envío de tramas, se 

envían 3 paquetes en una trama, por lo que los bytes por trama son 192 a lo que se le 

añaden a SRTP los 10 bytes mencionados anteriormente dando como resultado 202 

bytes, lo que hace una sobrecarga del 4’95%. 

Por lo que teniendo únicamente como desventaja para el uso de SRTP esta sobrecarga 

que es pequeña, compensa su uso frente al RTP sin seguridad. 

 

4.4. Uso del DTLS. 

DTLS [5], acrónimo de Datagram Transport Layer Security, es un protocolo de seguridad 

que proporciona una capa de cifrado y autenticación para la transmisión de datos en 

tiempo real a través de redes de datagramas, como UDP. DTLS es una versión adaptada 

de TLS (Transport Layer Security), diseñado para adaptarse a las características y 

exigencias de las aplicaciones que requieren una conexión segura y fiable en entornos 

de red propensos a la pérdida de paquetes, como lo son las comunicaciones en tiempo 

real. 

DTLS se basa en una combinación de algoritmos criptográficos para proporcionar 

cifrado, autenticación e integridad de los datos transmitidos, asegurando que la 

información sensible no pueda ser interceptada o modificada por atacantes. 

El uso principal de DTLS es la negociación para el intercambio de claves que enviará a 

SRTP para asegurar su protección. Cuando dos extremos (por ejemplo, un cliente y un 

servidor) desean establecer una comunicación segura mediante SRTP, primero utilizan 

DTLS para establecer una conexión segura. Durante este proceso, DTLS negocia los 

algoritmos criptográficos y las claves de cifrado que se utilizarán para proteger la 

información en tiempo real. Una vez que la conexión DTLS se ha establecido con éxito, 

SRTP utiliza las claves acordadas para cifrar y autenticar las tramas de datos multimedia 

que se transmiten entre los extremos. Esta negociación se realiza a través de un 
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handshake, que consiste en las siguientes etapas que se ven representadas en la Figura 

4.4.a.. 

 

 

Figura 4.4.a: Esquema de la negociación para obtener las claves de SRTP a través de 

DTLS. 

 

1. Inicio: El cliente inicia el proceso enviando un mensaje ClientHello al servidor. En 

este mensaje, el cliente incluye su lista de Cipher Suites (combinaciones de 

algoritmos criptográficos) y otras capacidades de seguridad compatibles. 

También genera un valor de nonce (número usado solo una vez) y otros 

parámetros necesarios para el proceso. 

2. Respuesta del servidor: El servidor responde al mensaje del cliente con un 

mensaje ServerHello. En este mensaje, el servidor selecciona una de las Cipher 

Suites propuestas por el cliente que sea compatible y segura para ambos 

extremos. El servidor también genera su propio valor de nonce y otros 

parámetros necesarios para el proceso. 

3. Intercambio de certificados: El servidor envía su certificado digital al cliente en 

el mensaje Certificate. El certificado contiene la clave pública del servidor, que el 

cliente usará más adelante para cifrar mensajes durante la comunicación. 

4. Autenticación y verificación del certificado: El cliente verifica la autenticidad del 

certificado del servidor utilizando su lista de autoridades de certificación de 

confianza. Si el certificado es válido y confiable, el cliente continúa con el 

proceso. 

5. Intercambio de claves: El cliente genera un valor de premaster secret (secreto 

previo a la clave) y lo cifra utilizando la clave pública del servidor. El cliente envía 

el secreto cifrado al servidor en el mensaje ClientKeyExchange. El servidor 

descifra el secreto utilizando su clave privada y obtiene el mismo valor. 
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6. Generación de claves de sesión: Tanto el cliente como el servidor utilizan el 

premaster secret y los valores de nonce intercambiados para generar claves de 

sesión para la comunicación segura. Estas claves de sesión son utilizadas por los 

algoritmos criptográficos seleccionados para cifrar y autenticar los datos durante 

la transmisión. 

7. Intercambio de mensajes de finalización: Tanto el cliente como el servidor envían 

un mensaje Finished al otro extremo para confirmar que el handshake se ha 

realizado correctamente y que ambas partes están listas para comenzar la 

transmisión segura. 

 

4.5. Código de RTP. 

Los pasos que se han seguido para poder utilizar el protocolo RTP con la librería PJMedia 

referenciada en el capítulo 3.2. Librerías utilizadas. ha sido: 

1. Inicialización de la librería a través de la función pj_init(). 

2. Creación e inicialización de la memoria caché y de la dirección a los codificadores: 

a. Caching pool: Grupo de almacenamiento en la memoria caché. Para ello 

se debe emplear la función pj_caching_pool_init(), añadiéndole como 

parámetros de entrada el propio Caching pool, la política por defecto y la 

capacidad máxima que queremos que almacene nuestra caché. Para 

poder crearse este espacio, se necesita la función pj_pool_create() cuyo 

parámetro de salida se guarda en una variable y de entrada se mandan 

los valores del caching pool, el nombre y el tamaño inicial y adicional del 

bloque de la memoria. 

b. Creación de un administrador de eventos a través de la función 

pjmedia_event_mgr_create(), su parámetro de entrada es la variable 

obtenida con la función anterior. 

c. Endpoint: Sirve para administrar posteriormente los codificadores del 

sistema. Se usa la función pjmedia_endpt_create() y como parámetros de 

entrada: los valores de caching pool, el número de hilos necesarios (1 en 

este caso) y el endpoint vacío para poder crearse.  

3. Registro del códec en un endpoint: Se deben efectuar estas dos funciones: 

pjmedia_codec_register_audio_codecs() y pjmedia_endpt_get_codec_mgr(), 

pasándole como parámetro de entrada a ambas funciones su endpoint. Se 

utilizará pjmedia_codec_mgr_find_codecs_by_id() para buscar los códecs que 

tengan el nombre enviado. 

4. Creación del socket RTP y RTCP y vinculación a su puerto de entrada: 

pjmedia_transport_udp_create(), para ello, se necesita el endpoint utilizado para 

registrar los sockets, un nombre (opcional), el número del puerto necesario para 

RTP (para RTCP será uno mayor) y un transporte pjmedia_transport recién 

iniciado. 

5. Se establece el códec: Para ello se deben seguir los siguientes pasos: 
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a. Se obtiene el administrador del códec a partir del endpoint con la función 

pjmedia_endpt_get_codec_mgr(). 

b. Se reciben los parámetros por defecto a partir de la función 

pjmedia_codec_mgr_get_default_param(), pero se deshabilita el VAD 

porque está por defecto. 

c. Se solicita al administrador una instancia del códec con una información 

que se pide por entrada con la función 

pjmedia_codec_mgr_alloc_codec(). 

d. Inicializamos y abrimos el códec a partir de pjmedia_codec_init() y de 

pjmedia_codec_open(). 

6. Establecemos las sesiones RTP: 

a. En primer lugar, se inicializa el socket RTP y el RTCP a partir de la función 

pj_sockaddr_in_init(). 

b. Seguidamente, se activan las sesiones de entrada y salida con el puerto e 

información correspondiente con pjmedia_rtp_session_init().  

c. Por último se configura la sesión RTCP, para ello, se necesita el puerto 

RTCP, el reloj del códec y la función pjmedia_rtcp_init(). 

7. Se activan los call-backs on_rx_rtp() y on_rx_rtcp(), que se activan al recibir los 

paquetes RTP y RTCP correspondientemente, para ello, se necesita el transporte 

que se ha modificado durante los anteriores apartados, la información, los 

puertos RTP y RTCP y la longitud del socket para enviarlos a la función 

pjmedia_transport_attach(). 

8. Se inicializa la sesión de transporte con la configuración en el SDP local y remoto, 

cuando se trabaja con SRTP, esto activará el cifrado y descifrado de los paquetes. 

La función que se utiliza para ello es pjmedia_transport_media_start(). 

9. Para el lanzamiento de paquetes se necesita invocar el hilo send_RTP_thread. 

10. El call-back on_rx_rtcp() se utiliza para recoger los paquetes RTCP que llegan en 

la comunicación, es decir, los paquetes de control. Una vez recogida cada trama, 

se actualiza la sesión pjmedia_rtcp_rx_rtcp(). 

11. El siguiente call-back es on_rx_rtp(): 

a. Se recogen los paquetes RTP recibidos, estos contienen la información de 

la señal de audio codificada, en este caso en G711. Lo primero que se 

hace al recibir la trama es decodificar con pjmedia_rtp_decode_rtp().  

b. Se actualizan las sesiones RTP y RTCP a través de pjmedia_rtcp_rx_rtp() y 

de pjmedia_rtp_session_update(). 

c. El códec inspecciona el paquete y lo divide en tramas individuales, para 

ello, como parámetros de entrada a la función pjmedia_codec_parse(), 

necesitamos el códec, el paquete recibido y su longitud, la marca de 

tiempo de la primera muestra del paquete (timestamp), el puntero en el 

que se indica el número de frames en el vector y la variable que devuelve 

las tramas que se han detectado en el paquete. 

d. Para decodificar cada frame obtenido en la función anterior, se utiliza la 

siguiente: pjmedia_codec_decode() y así se obtiene cada trama que se 

necesita para obtener la señal de audio. 
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12. Para el envío de los paquetes, como se ha dicho anteriormente, se utiliza el hilo 

send_RTP_thread se han utilizado para desarrollarlo los siguientes pasos: 

a. Lo primero que hay que hacer, es crear la cabecera que se necesita para 

el protocolo RTP y se codifica con pjmedia_rtp_encode_rtp(), para ello se 

necesita la sesión de salida, la información del códec y la cabecera. 

b. Se obtienen los bytes que se quieren enviar y se acoplan a la cabecera 

creada anteriormente. 

c. Por último, se envía directamente el paquete completo a través de la 

función pjmedia_transport_send_rtp(), la que necesita como parámetro 

de entrada únicamente el transporte (con toda su información 

almacenada anteriormente) y el paquete. Esta función entregará dicho 

paquete directamente a la dirección destino especificadas en el 

pjmedia_transport_attach(). 

 

4.6. Código de SRTP. 

Para implementar la seguridad con protocolo SRTP, se han tenido que añadir funciones, 

tanto de PJMedia como de openssl: 

1. En primer lugar hay que cambiar el tipo de transporte a 

PJMEDIA_TRANSPORT_TYPE_SRTP. 

2. Después de crear las sesiones RTP (apartado 6 del capítulo 4.5. Código de RTP), 

agregamos las opciones por defecto de SRTP con la función 

pjmedia_srtp_setting_default(). Y creamos esta sesión gracias a 

pjmedia_transport_srtp_create() añadiéndole el transporte, el endpoint del 

códec y las opciones que se acaban de crear. 

3. Una vez empezada la sesión de transporte (apartado 8 del capítulo 4.5. Código 

de RTP), existen dos opciones: 

a. La primera es tener las claves anteriormente de cada extremo de la 

comunicación y crear el transporte SRTP enviando dichas claves a la 

función pjmedia_transport_srtp_start(), por lo que se tendrían que saber 

antes de empezar la comunicación si solo utilizamos este protocolo. 

b. La segunda consiste en hacer una negociación, se utilizará el protocolo 

DTLS, para ello hay que seguir los siguientes pasos: 

i. Crear el hilo on_srtp_nego_complete para saber el momento en 

el que acaba este proceso. 

ii. A continuación, inicializar la información que tienen los 

parámetros de DTLS con pj_bzero() y copiamos los sockets con la 

dirección y los puertos RTP y RTCP con pj_sockaddr_cp(). 

iii. Asignamos un cliente y un servidor activando el flag is_role_active 

a este primero. El servidor está en espera hasta que recibe el 

saludo del cliente que inicia la conversación y envía el handshake 

cada cierto tiempo hasta que recibe respuesta activando así el 
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hilo on_srtp_nego_complete. El inicio de la negociación se efectúa 

con pjmedia_transport_srtp_dtls_start_nego(). A esta función se 

le añade un fingerprint que se usa como certificado remoto, en 

este proyecto no se hace esta verificación, por lo que no hay una 

autentificación fiable. Se ha optado a esta opción, debido a que 

los mecanismos para pasar dicho fingerprint entre los dos 

extremos aún no están perfilados, se ha preferido centrarse en el 

resto de los aspectos de SRTP. 

iv. Una vez se completa la negociación, se activa directamente la 

comunicación mediante el protocolo SRTP sin tener que llamar 

ninguna otra función, a parte del hilo de envío. 
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5. Escenarios realizados. 

 

El escenario general del proyecto está reflejado en la Figura 5.a., en los siguientes 

apartados se irá viendo el escenario de cada uno de ellos para ser explicados de una 

manera más clara. 

 
Figura 5.a.: Escenario general del proyecto. 

Este escenario general está compuesto por 2 redes, la primera es un sistema de radio 

TETRA en la que están sus dispositivos, y en la segunda están los dos prototipos que se 

utilizarán a lo largo de los siguientes apartados y el Line Dispatcher. Para establecer una 

llamada entre dos extremos, tanto cualquier dispositivo de radio como el Line 

Dispatcher, se utiliza el nodo central que se utiliza como administrador y es el encargado, 

a través de un protocolo privado interno, de proporcionar la dirección, los puertos, el 

PTT, etc.. Una vez se establece la llamada, si uno de ellos está dentro de la red TETRA y 

el otro fuera, se comunican traspasando el Gateway, cuya función es convertir el tráfico 

ACELP empleado en la red TETRA a RTP/RTCP utilizado en el exterior y viceversa, por lo 

que actúa como intermediario entre el dispositivo de radio y el Line Dispatcher para que 

la conversación pueda realizarse. 

 

5.1. Implementación de la librería PJMedia en un 

prototipo. 

Este primer escenario es propuesto para verificar la compatibilidad del protocolo RTP 

dado a través de PJMedia con las librerías internas de la empresa, para poder así 

asegurarse de su correcto funcionamiento. 

Para ello, se ha realizado un prototipo cuya funcionalidad es enviar y recibir un mismo 

archivo de audio guardado en el ordenador a través de RTP utilizando un puerto para el 

envío y otro para la recepción. 
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Figura 5.1.a.: Esquema del escenario 1. Envío de archivo de audio entre dos consolas. 

Para lograr este objetivo, se requiere la operación simultánea de dos consolas con 

sistema operativo Windows, ambas envían el fichero por paquetes codificados con RTP, 

reciben las tramas del otro con un puerto distinto y crean otro archivo de audio para 

poder reproducirse una vez se haya terminado la conexión. 

Ahora, con el conocimiento adquirido en este escenario con el uso de la librería de 

PJMedia, se dará paso al siguiente, donde se llevará a cabo una demostración práctica 

en tiempo real para ilustrar mejor el funcionamiento de este sistema. 

 

5.2. Migración del Line Dispatcher a PJMedia y conexión 

con la radio. 

Este segundo escenario es propuesto para verificar que la librería de PJMedia con RTP 

sin seguridad funcione con un sistema real de radio para posteriormente añadirsela. 

Partimos de la aplicación del Line Dispatcher ya proporcionada. Los cambios que se han 

realizado con respecto al original, ha sido la migración a PJMedia, ya que antes, la 

creación de sesiones y los envíos se realizaban a través de una librería interna que no 

soporta SRTP, por lo que se necesita esta migración a PJMedia planteada. Los pasos que 

se han desarrollado para ello han sido explicados en el apartado 4.5. Código RTP del 

Capítulo 4., tal y como se ha hecho en el apartado 5.1. Implementación de la librería 

PJMedia en un prototipo. 

 

Figura 5.2.a.: Esquema escenario 2. La aplicación de Line Dispatcher se comunica con el 

sistema de radio atravesando el Gateway. 
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La radio se encuentra en una red de infraestructura TETRA, por lo que la aplicación del 

Line Dispatcher se debe conectar a esta a través de un Gateway que únicamente soporta 

RTP, por lo que en este escenario seguiría funcionando, ya que se utiliza este protocolo. 

En esta conexión se pueden realizar llamadas individuales (dúplex y semi-dúplex) y de 

grupo a tiempo real. La señal se envía a través de UDP de los paquetes RTP codificada 

por G711. 

Ambos extremos pueden iniciar la llamada de ambos tipos mencionados anteriormente 

y el otro extremo es el encargado de aceptarla o rechazarla. Al aceptarla, 

automáticamente se puede comunicar hablando directamente (modo dúplex) o 

activando y desactivando el PTT de ambos extremos conforme el turno de habla (modo 

semi-dúplex), quien tiene el permiso inicial depende de si la llamada es directa o hook 

(con descuelgue). 

La función de este escenario es comprender cómo funciona esta aplicación de Line 

Dispatcher y tener un contacto con lo que sería el producto final que es la comunicación 

por sistema de radio. 

 

5.3. Implementación del protocolo SRTP en un prototipo. 

Este tercer escenario, comprueba el cifrado de SRTP con PJMedia en modo de trabajo 

compatible con sistemas actuales. 

Para ello, se implementan los cambios propuestos en el capítulo 4.6. Código SRTP en el 

primer escenario mostrado en 5.1. Implementación de la librería PJMedia en un 

prototipo. Con ayuda de los protocolos SRTP y DTLS, se intentará que la señal se cifre 

con claves después de negociarlas para así no estar expuestas las conversaciones para 

cualquier intruso que se infiltre en la red o que pertenezca a ella. 

 

Figura 5.3.a.: Esquema del escenario 3. Envío de archivo de audio entre dos consolas. 

Tras comprobar que este cifrado ha funcionado y no puede ser descifrado por 

Wireshark, tal y como se observará en el capítulo 6.4. Demostración de la seguridad de 

la comunicación de audio. 

En el próximo escenario, se podrá observar el escenario final de este proyecto, donde 

se apreciarán los resultados y beneficios de la aplicación de estos cambios en términos 

de seguridad y confidencialidad en la comunicación por sistema de radio. La 

incorporación de cifrado mejora significativamente la integridad de las transmisiones, 
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protegiendo la información sensible y asegurando una comunicación más segura y 

confiable en este entorno. 

 

5.4. Implementación de Comunicación Segura en Red 

TETRA mediante Simulación SRTP/DTLS. 

Este escenario es el más cercano al objetivo final, debido a que el Gateway no soporta 

los protocolos SRTP y DTLS que necesitan convertirse en ACELP para que funcionen en 

la red interna de TETRA a la que pertenecen los dispositivos de radio. Para ello, se 

establece la llamada accediendo al administrador por ambos extremos, pero se engaña 

al sistema para que el Gateway utilice un puerto falso. Al final del establecimiento, el 

tráfico de audio real del dispositivo de radio se sustituye una vez establecida la llamada 

por el del prototipo, de forma que no es necesario modificar el Gateway. 

Este escenario se puede observar en la Figura 5.4.a. en la que “Prototipo 1” y “line 

Dispatcher” pertenecen a una red privada, mientras que el “Dispositivo de radio” está 

en la red TETRA, cuyo tráfico es sustituido por el del prototipo una vez es iniciada la 

llamada tras establecerse con el “Administrador”. 

 

Figura 5.4.a.: Escenario final. El prototipo simula el sistema de radio para enviar el 

audio SRTP/SRTCP/DTLS. 

 

Para ello, se siguen los pasos de este esquema: 

1. En primer lugar, se ejecuta en la ventana de comandos el código del prototipo, 

que actuará como servidor para la negociación de DTLS para que esté en espera 

hasta que el Line Dispatcher empiece la negociación para obtener las claves de 

SRTP y comenzar la conversación. Se establece esta disposición de cliente y 

servidor, debido a que en la negociación DTLS, el cliente es el que empieza la 

negociación mientras que el servidor espera el mensaje de ClientHello. 
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2. A continuación se llama a través de alguno de los dos extremos, ya sea desde la 

aplicación como desde la radio, en cualquier modo y desde el otro, se acepta la 

llamada. 

3. Posteriormente, empieza la negociación de DTLS del Line Dispatcher con el 

prototipo. 

4. Una vez completada la negociación, si es modo dúplex se puede oír a través de 

la aplicación de Line Dispatcher el archivo de audio en bucle, en cambio, si es en 

modo semi-dúplex se necesita desactivar el PTT de la aplicación y activarlo en el 

dispositivo de radio para que este se escuche. 

Este escenario se ha diseñado para que se pueda realizar también por RTP, es decir, sin 

seguridad. Para ello se tiene que activar esta función desde el código de la aplicación del 

Line Dispatcher y con los comandos desde el prototipo para poder comunicarse ambos 

con RTP. En este caso, la negociación no se realiza, por lo que el prototipo directamente 

envía en bucle el dispositivo de audio una vez se inicie con la ventana de comandos, 

independientemente de si se ha realizado o no el establecimiento de llamada. 

Una vez se cierra el prototipo, se puede escuchar también a través de un archivo de 

audio la parte de la comunicación del Line Dispatcher hacia el prototipo, por lo que la 

conversación funciona en ambos sentidos, es decir, SRTP funciona tanto como para 

transmisión como para recepción. 

Gracias a este escenario, se puede confirmar que esta comunicación es viable y se puede 

utilizar en el sistema de radio, pero para ello se necesitaría modificar el Gateway, ya que 

actualmente no soporta el SRTP ni el DTLS. Por lo que en unos meses, cuando se 

modifique el Gateway pueda admitir ambos protocolos. 
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6. Análisis de las tramas. 

 

En este capítulo se comparan las tramas capturadas en cada escenario gracias a 

Wireshark. Como ya hemos visto en el Capítulo 5. Escenarios realizados, en los dos 

primeros escenarios se obtienen tramas TCP con el protocolo RTP y en los dos siguientes, 

se muestran tanto SRTP para la comunicación como DTLS para la negociación de las 

claves. Posteriormente se compararán las señales de audio capturadas para así verificar 

si se han cifrado correctamente y si son vulnerables a ataques. 

En un inicio, todos estos paquetes se capturan como UDP tal y como se observa en la 

Figura 6.a., por lo que se decodifican a través de una función de la propia aplicación de 

Wireshark, Decode As…, para poder poner el tipo RTP (tanto para las tramas RTP como 

para las tramas SRTP). 

 

Figura 6.a.: Captura paquetes UDP sin decodificar a RTP. 

Se puede observar únicamente la dirección fuente y destino con sus respectivos puertos 

y la longitud de los datos y de la cabecera, por lo que así no se obtendría suficiente 

información, por lo que habría que decodificarlo como se ve en el siguiente apartado. 

 

6.1. Tramas RTP. 

Una vez decodificados los paquetes de la Figura 6.a., se observan los de la Figura 6.1.a. 

Se puede observar más información como “P=ITU-T G. 711 PCMA”, esto significa que es 

un protocolo de la Unión Internacional de Telecomunicaciones-Telecomunicación (ITU-

T) que utiliza como códec tanto G711 como PCMA (Pulse Code Modulation A-law), en 

este caso, para la descomprensión se utiliza G711. A continuación aparece el campo de 

“Fuente de sincronización”, que como se puede observar en el apartado 4.1. 

Funcionamiento, Definición y tramas del Protocolo RTP. este campo indica la posición de 

la fuente de sincronización en la memoria, esto va seguido del número de secuencia del 

paquete para tenerlo así localizado, y por último, aparece el Timestamp en el que se 

deduce que entre cada paquete hay un valor de 160 de diferencia entre cada una que 

sirve para sincronizar los flujos de audio y video en el receptor. 
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Figura 6.1.a.: Captura de tramas RTP decodificados. 

Tras obtener estas tramas, se accede en la misma aplicación de Wireshark al menú de 

Telephony -> RTP -> RTP Streams, se selecciona cualquiera de los dos flujos de la 

conversación o escuchar ambos a la vez que también es posible, y se accede a observar 

la señal en Analyze -> Play Streams. Llegado a este punto, aparece la señal de la Figura 

5.1.a., que no está cifrada y puede ser escuchada por cualquier persona que tenga 

acceso a cualquiera de las dos redes de este escenario o de las redes que separan a 

ambos extremos en cualquier otro proyecto simplemente accediendo a esté menú y 

cambiando la opción de Playback Timing a RTP Timestamp y reproduciendo la señal de 

audio resultante. 

 

6.2. Tramas SRTP. 

Al igual que en el apartado anterior, se decodifica la Figura6.a. a RTP, y en un principio, 

como se puede observar en la Figura 6.2.a. en comparación con la Figura 6.1.a. no existe 

ninguna diferencia, el Timestamp, la fuente de sincronización y la codificación tienen los 

mismos valores, por lo que no se va a entrar en detalles de esta captura, sin embargo, 

la longitud de la trama es de 10 bytes mayor, tal y como se adelantó en el capítulo 4.3. 

Comparación RTP con SRTP., sin embargo, en ese mismo apartado, se comunicó que las 

tramas tenían un valor de 192 y 202 bytes y en las capturas de Figura 6.1.a y Figura 

6.2.a., aparecen 12 bytes mayor. Esto es debido a que en Wireshark, al capturar los 

paquetes, añade 12 bytes a cada uno, pero el estudio se ha realizado con la longitud de 

los paquetes reales que circulan por la red y no por los capturados. 

 

Figura 6.2.a.: Captura de tramas SRTP decodificados. 

Reproducimos la señal que aparece en la Figura 6.3.a., y se escucha ruido blanco de 

fondo, es decir, que se ha conseguido codificar la señal durante el trayecto de la red 

entre ambos extremos, y debido a que en ambos extremos también se escucha el audio 

a la perfección, se verifica que este cifrado es válido y funcional para poder seguir 

adelante en este proyecto. 
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6.3. Tramas DTLS. 

En este apartado, se analiza la negociación de las claves de SRTP a través del protocolo 

DTLS, la captura de estos paquetes se puede observar en la Figura 6.3.a., se verán en 

profundidad los 4 paquetes que componen las 7 fases de la negociación vistas en el 

capítulo 4.4. Uso del DTLS. Siendo el primer paquete correspondiente a la fase 1, el 

segundo a las fases 2 y 3, el tercero corresponde a las fases 4, 5, 6 y 7 y el cuarto a las 

fases 5, 6 y 7. 

Figura 6.3.a.: Paquetes capturados de la negociación DTLS. 

Los 4 paquetes representados, están divididos por campos que se pueden observar en 

el 10. Anexo 1: Capturas de los paquetes DTLS. 

El primer paquete corresponde al ClientHello. Está compuesto por 242 bytes, ya que hay 

que restar los bytes añadidos por la captura de Wireshark. En el primer campo se define 

el tipo ClientHello y en el siguiente se añade un número Random que corresponde al 

nonce. Seguidamente aparece la lista de 28 Cipher Suites que soporta durante la 

negociación el cliente, que es el Line Dispatcher, y define el método de compresión por 

defecto. Se envían también 3 formatos de ec_point (curvas elípticas) que sirven para la 

elaboración de la clave, acompañado de 5 supported groups que se utilizan para acordar 

que ec_point se utiliza en la comunicación y cuales son compatibles. Por último aparece 

la inclusión del protocolo SRTP con los dos Cipher Suites soportados en la comunicación 

y una lista de 23 firmas Hash que aseguran la autentificación del mensaje. Se han 

enviado listas con todas las opciones posibles que tiene el cliente, para que en la 

respuesta ServerHello, el servidor elija cuál de todas las opciones quiere utilizar. 

El segundo paquete, corresponde al ServerHello, que en este caso, tiene una longitud de 

1392 bytes que se compone de los distintos campos. 

En el primer campo se define el tipo ServerHello del Handshake, a continuación se envía 

el número nonce diferente al del cliente y se establece el Cipher Suite que se emplea en 

la negociación: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030), que suite 

utiliza el intercambio de claves ECDHE (Elliptic Curve Diffie-Hellman Ephemeral) con 

curvas elípticas, autenticación del servidor mediante RSA (), cifrado simétrico AES con 

una clave de 256 bits y el modo de operación GCM (Galois/Counter Mode) para 

proporcionar cifrado y autenticación de integridad. La función de hash SHA-384 (Secure 

Hash Algorithm 384) se utiliza para garantizar la integridad de los datos. A continuación 

se indica el protocolo SRTP, a la vez que se escoge el Cipher Suite de la conversación: 

SRTP_AES128_CM_HMAC_SHA1_80 (0x0001) explicado en el capítulo 4.4. Uso del 

DTLS., posteriormente, indica el id del certificado perteneciente a PJMedia y algunos 

campos como la fecha de validez, el número de secuencia, la id del algoritmo y su clave 
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pública. Se envían también 3 tipos de certificados de los tipos RSA, DDS y ECDSA y la 

misma lista de 23 algoritmos Hash que había enviado el cliente. 

El tercer paquete se compone de 1265 bytes que envía el cliente al servidor. En el primer 

campo se define el tipo de Handshake, más adelante envía el certificado a nombre de 

PJSIP y de PJMedia con su firma, id, nombre, número de secuencia, tiempo de validez y 

clave pública. Envía también la clave pública de Diffie-Hellman y posteriormente el Hash 

para la verificación del paquete. 

Por último, en el cuarto paquete, el servidor envía 1065 bytes al cliente. 

Tras verificar los datos enviados por el cliente, el servidor inicializa una nueva sesión con 

un tiempo de vida de 2 horas, tal y como se especifica en el campo TLS Session Ticket. 

Completando con este paquete así la negociación de DTLS y obteniendo las claves para 

el cifrado SRTP. 

 

6.4. Demostración de la seguridad de la comunicación de 

audio. 

En primer lugar, observamos la señal obtenida en el primer escenario planteado en el 

capítulo 5.1. Implementación de la librería PJMedia en un prototipo., a través del uso de 

la aplicación Wireshark, se realiza un análisis mediante una captura de la conversación 

a través de RTP, lo que permite observar el proceso de envío de los paquetes codificados 

(pero no cifrados) utilizando el protocolo G711 a través de UDP. Este análisis se visualiza 

en la Figura 6.4.a. 

 

Figura 6.4.a.: Señal de audio codificada por RTP sin cifrado hallada por la aplicación 

Wireshark de la trama del apartado 6.1. Tramas RTP. 

Es importante destacar que, debido a la ausencia de cifrado en la señal de audio 

transmitida, esta puede ser escuchada al decodificarla. Aunque el protocolo utilizado ha 

demostrado ser funcional en este caso, su falta de seguridad es una preocupación clave. 

Debido a que intrusos que tengan acceso a la red en la que existe la comunicación, 
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pueden escucharla utilizando programas como Wireshark de una manera muy sencilla, 

tal y como se acaba de demostrar. 

Se puede averiguar esto, debido a que la señal de la Figura 6.4.a. tiene una forma en la 

que se diferencian varias intensidades, siendo que en la primera parte es más intensa y 

en la última es menos intensa, pero en ningún momento llega a haber silencio. Al 

reproducirla, tal y como se explica en el apartado 6.1. Tramas RTP., la hipótesis 

planteada es cierta. 

En el siguiente ejemplo mostrado en la Figura 6.4.b. se puede observar una señal de 

conversación más realista, debido a que para ello se ha capturado unos segundos de la 

conversación realizada en el segundo escenario explicado en el capítulo 5.2. Migración 

del Line Dispatcher a PJMedia y conexión con la radio., en el que es una conversación a 

tiempo real cuyos extremos son el Line Dispatcher y el sistema de radio. Se pueden 

observar los tiempos de silencio y los tiempos en el que se habla. 

 

6.4.b.: Conversación a tiempo real entre dos usuarios situados en el Line Dispatcher y 

en el sistema de radio. 

Por último, se observa en la Figura 6.4.c., que los tiempos de silencio han desaparecido, 

y que incluso la señal tiene siempre la misma intensidad. Esto es debido a que esta señal 

está cifrada debido a que pertenece al escenario del capítulo 5.3. Implementación del 

protocolo SRTP en el prototipo., por lo que simula un ruido blanco que al escucharlo, se 

puede apreciar únicamente ruido, por lo que la finalidad estaría realizada, ya que nadie 

que tenga acceso a cualquiera de las redes implicadas en la conversación que no tenga 

la red privada de cada uno, no podrá descifrar la señal, por lo que evitamos así posibles 

intrusos que comprometen la seguridad de la llamada. 
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Figura 6.4.c.: Señal de audio codificada por RTP y cifrada por SRTP. 

Gracias a este capítulo se ha observado que la comunicación, aparte de ser funcional tal 

y como se había asegurado en el capítulo 5. Escenarios realizados., que los dos últimos 

apartados funcionan correctamente con SRTP lo que hace que la señal esté cifrada que 

era el objetivo principal de este proyecto. 
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7. Problemas resueltos durante el desarrollo. 

 

A lo largo de este capítulo se describirán los problemas que han surgido a lo largo de 

todo el proceso del proyecto. 

En primer lugar, se quería resolver la falta de seguridad en el protocolo RTP cambiándolo 

a SRTP añadiendo también DTLS para la negociación de las claves, tal y como se ha 

explicado durante los capítulos anteriores. 

Para Implementar estos dos protocolos, se han tenido que buscar distintas librerías que 

fuesen compatibles con las que ya se utilizan privadamente en la empresa en la que se 

ha desarrollado el proyecto. La primera librería que se ha pensado es PJSIP, ya que 

engloba el protocolo SRTP, pero daba problemas de compatibilidad con la red y otras 

librerías de la empresa, por lo que se tuvo que llevar al nivel más bajo para evitar estos 

problemas, así que se decidió utilizar la librería PJMedia apoyada con PJSIP y PJNATH 

para poder trabajar en esos niveles de acceso de la librería. 

Se tuvieron que resolver algunos problemas internos también para dar compatibilidad 

a estas librerías. 

Una vez resueltos los temas de compatibilidad con la librería interna, se podía utilizar el 

protocolo RTP, lo único que solo había un par de ejemplos por internet de cómo utilizar 

estas librerías a través del tipo Stream, pero este tipo es de un nivel demasiado alto y 

no se podía utilizar, por lo que se ha desarrollado tal y como se explica en el capítulo 

4.5. Código de RTP. en el que se ha investigado lo que hace el tipo Stream internamente 

y se ha modificado para poder adaptarse a lo que se necesita en el proyecto que es del 

tipo Transport (que se usa para el nivel más bajo que es el necesario). 

Así se ha podido desarrollar el primer escenario descrito en el capítulo 5.1. 

Implementación de la librería PJMedia en un prototipo. 

Posteriormente para desarrollar el escenario 5.2. Migración del Line Dispatcher a 

PJMedia y conexión con la radio. se ha modificado una aplicación ya existente que 

maneja el Line Dispatcher para comunicarse con el sistema de radio real introducida en 

la red TETRA. No han aparecido problemas de compatibilidad ya que se resolvieron para 

el anterior escenario. 

Para implementar SRTP para el tercer escenario explicado en el capítulo 5.3. 

Implementación del protocolo SRTP en el prototipo. se ha estudiado la utilidad de cada 

función PJMedia que conlleva este protocolo en la página oficial de la librería, ya que al 

igual que ocurrió con RTP, tampoco había ejemplos a nivel tan bajo de acceso a la 

librería. A la hora de implementar las claves, se quería utilizar la negociación, para que 

así si se averiguase una clave, no se pudiese descifrar las demás conversaciones de esta, 

y que en cada comunicación hubiera claves distintas. Para ello se utilizó el protocolo 

DTLS por lo que la librería OpenSSL fue necesaria para ello. 
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Se volvieron a tener problemas de compatibilidad al implementar esta última librería 

pero se resolvieron al modificar temas internos de la empresa. 

Para desarrollar el último escenario desarrollado en el capítulo 5.4. Implementación de 

Comunicación Segura en Red TETRA mediante Simulación SRTP/DTLS., en un principio, 

la idea era probarlo directamente con la radio de la red TETRA, pero debido a que el 

Gateway no aceptaba los protocolos DTLS y SRTP, no se pudo hacer, ya que se estimaba 

que sería más sencillo modificarlo pero llevaba mucho más tiempo del esperado, por lo 

que se prefirió hacer una simulación y así poder demostrar que las combinaciones 

creadas fuesen funcionales y seguras antes de modificar la aplicación del Gateway. 
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8. Conclusión y líneas futuras. 

 

En este capítulo, se presenta el resultado final del proyecto y se explora su potencial 

para futuros desarrollos. A lo largo del desarrollo de este TFG, se ha logrado demostrar 

la viabilidad de una comunicación en tiempo real funcional. Además, mediante la 

implementación de los protocolos SRTP y DTLS, se ha demostrado la posibilidad de 

establecer una conexión segura, íntegra y auténtica en una red TETRA de comunicación 

de radio, tal como se ilustra en el segundo escenario detallado en el capítulo 5.2. 

Migración del Line Dispatcher a PJMedia y Conexión con la Radio. 

El enfoque de desarrollo se ha mantenido al nivel más bajo de acceso a la librería para 

asegurar la compatibilidad con diversas librerías y redes, tanto de la empresa como de 

los clientes que podrían emplear esta tecnología en sus propios proyectos. 

La línea futura de este proyecto se basa en la adaptación del Gateway, como se ha 

mencionado en distintas secciones de este informe. La modificación del Gateway es 

esencial para facilitar la efectiva incorporación de esta tecnología en la red. 

Actualmente, el nodo no es compatible con los protocolos SRTP y DTLS, lo que limita su 

capacidad para transformar tramas entre los formatos ACELP y los protocolos 

mencionados. La adaptación del Gateway para que soporte estos protocolos representa 

un paso esencial para lograr la integración completa y funcionalidad óptima de la 

solución dentro del sistema de radio en la red TETRA. 
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10. Anexo 1: Capturas de los paquetes DTLS. 

 

10.1. Composición ClientHello. 

 

Figura 10.1.a.: Composición ClientHello (1). 

 

Figura 10.1.b.: Composición ClientHello (2). 
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Figura 10.1.c.: Composición ClientHello (3). 

 

Figura 10.1.d: Composición ClientHello (4). 

 

Figura 10.1.e.: Composición ClientHello (5). 
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10.2. Composición ServerHello. 

 

 

 

Figura 10.2.a.: Composición ServerHello (1). 

 

Figura 10.2.b.: Composición ServerHello (2). 
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Figura 10.2.c.: Composición ServerHello (3). 

 

Figura 10.2.d.: Composición ServerHello (4). 

 

Figura 10.2.e.: Composición ServerHello (5). 
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Figura 10.2.f.: Composición ServerHello (6). 

 

 

Figura 10.2.g.: Composición ServerHello (7). 
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Figura 10.2.h.: Composición ServerHello (8). 

 

 

Figura 10.2.i.: Composición ServerHello (9). 

 

 

Figura 10.2.j.: Composición ServerHello (10). 
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10.3. Composición del tercer paquete. 

 

 

Figura 10.3.a.: Composición tercer paquete (1). 

 

Figura 10.3.b.: Composición tercer paquete (2). 
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Figura 10.3.c.: Composición tercer paquete (3). 

 

 

Figura 10.3.d.: Composición tercer paquete (4). 

 



43 
 

 

Figura 10.3.e.: Composición tercer paquete (5). 

 

 

Figura 10.3.f.: Composición tercer paquete (6). 
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10.4. Composición del cuarto paquete. 

 

 

Figura 10.4.a.: Composición cuarto paquete (1). 

 

 

Figura 10.4.b.: Composición cuarto paquete (2). 
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Figura 10.4.c.: Composición cuarto paquete (3). 

 


