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Resumen 

El reciente peso dado en la inteligencia artificial a las redes neuronales bayesianas se 

explica por su gran aportación a la hora de capturar la incertidumbre de las 

predicciones. Este factor resulta especialmente útil en situaciones donde es importante 

entender la confianza en las predicciones, situaciones críticas donde se requiere 

fiabilidad y seguridad. 

En el presente trabajo fin de grado se realizará la implementación de redes neuronales 

bayesianas informadas por la física. Para ello se parte de un modelo de red neuronal de 

tipo SPNN (Structure-Preserving Neural Networks), que es una red neuronal en la que se 

le implementa el formalismo GENERIC por el fin de cumplir por las leyes de la 

termodinámica. En el trabajo se estudian sus diferentes prestaciones ante un mismo 

problema: el péndulo termo-elástico. 

Finalmente, se realiza la implementación de ambas tipologías de redes en un problema 

de monitorización estructural donde la herramienta de inteligencia artificial deberá ser 

capaz de detectar, localizar y dar información sobre un posible fallo. 

Para ello se generan datos pseudo-experimentales mediante el software ABAQUS 

simulando la existencia de sensores repartidos por todo el dominio de una placa. La 

herramienta de inteligencia artificial consta inicialmente de un gemelo digital que 

aprende la física de la placa sin fallos mecánicos. Posteriormente se complementa con 

otra red para que así aprenda las desviaciones entre el gemelo digital y los datos 

recogidos por los sensores. Al modelo completo se le denomina gemelo híbrido. 

Los resultados pondrán de manifiesto no solo la precisión de las redes convencionales y 

bayesianas en ambos casos, sino su idoneidad en función de la incertidumbre.  
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1 Introducción 

El estudio de la construcción no sólo debe estar orientado hacia el cálculo y la utilidad 

de las infraestructuras, sino también a garantizar la seguridad de su uso en el tiempo de 

vida de las mismas. Un fallo estructural no siempre es causado por un error de cálculo o 

una mala ejecución de la estructura, sino que puede haber muchas otras causas que no 

se pueden prever. Por ejemplo, fatiga, deterioro de los materiales, condiciones 

ambientales adversas… 

El presente TFG tiene la finalidad de predecir la evolución del comportamiento de 

sistemas estructurales en el tiempo o para conocer su estado actual cuando no puede 

ser observado directamente. Esto se logrará mediante la aplicación de la Inteligencia 

Artificial (IA) para predecir estados futuros bajo acciones de cargas. Las redes estarán 

apoyadas por la física a través de la imposición del formalismo GENERIC, que garantiza 

el cumplimiento de las leyes de la termodinámica. Estas redes se aplicarán a sistemas 

estructurales, analizando la deformación de manera temporal, para así poder introducir 

nociones básicas de monitorización estructural o Structural Health Monitoring (SHM, 

por sus siglas en inglés). 

Los datos temporales de los desplazamientos de algunos puntos distribuidos en una 

gran estructura pueden mostrar alteraciones, globales o locales, que denotan un daño 

en la misma. El SHM se basa en la recopilación de datos de una estructura a través de 

sensores. Con los datos recogidos se hace un análisis de éstos para poder detectar 

anomalías que predigan un posible daño en la estructura. Su principal función, por 

tanto, consiste en detectar los posibles fallos estructurales para prevenir su 

agravamiento mediante el mantenimiento para la minimización de los costes, la 

maximización de la seguridad y gestión del ciclo de vida de la estructura. 

1.1 Metodología 

Este proyecto propone una estrategia de SHM basada en un modelo de IA con enfoque 

estocástico y físico. Para ello se propone el uso de una red informada por la física. 

Específicamente, este proyecto se basa en las llamadas Structure-Preserving Neural 

Networks [1] (SPNN, por sus siglas en inglés).  

1.1.1 ¿Por qué un modelo estocástico? 

El uso de sensores conlleva la adquisición de datos en los que puede haber ruido. El 

procesamiento de datos con ruido es complejo, ya que puede inducir inestabilidad en 

las predicciones y errores graves. Existen métodos de limpieza de ruido en los datos, 

como los filtros. Otro enfoque consiste en utilizar modelos estocásticos, que pueden 

sacar conclusiones ante situaciones de incertidumbre, o variabilidad de los datos. 
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Un modelo estocástico es aquel que se basa en la aleatoriedad para poder predecir un 

comportamiento mediante el aprendizaje de las características estocásticas del 

problema. Este tipo de modelos es lo contrario a los modelos deterministas. En un 

modelo determinista, las predicciones resultantes ante una misma entrada de datos 

siempre será la misma. En cambio, para un modelo estocástico, las predicciones no 

serán iguales. Un entrenamiento correcto deberá ser robusto respecto a las entradas y 

salidas de la red.  

El proyecto realiza un desarrollo a partir de redes bayesianas o Bayesian Neural Network 

(BNN por sus siglas en inglés). Éstas son parecidas a las redes neuronales artificiales o 

Artificial Neural Network (ANN por sus siglas en inglés). La principal diferencia reside en 

que las BNN (modelos estocásticos) no aprenden parámetros concretos como las ANN 

(Figura 1.1.a, modelos deterministas), sino que aprenden distribuciones de los 

parámetros de la red (Figura 1.1.b). 

 

Figura 1.1 Parámetros de ANN vs BNN  

Además, en las redes BNN se puede evaluar la incertidumbre de las predicciones. Es 

decir, se puede mostrar un intervalo de confianza de la predicción según los datos de 

entrenamiento utilizados. 

En las siguientes figuras se muestra el ejemplo que se usa para validar las redes 

bayesianas. En la figura 1.2 se aprecia una red neuronal convencional y en la figura 1.3 

se aprecia una red neuronal bayesiana. El modelo ANN realiza una predicción 

determinista. En cambio, en el modelo BNN se distingue una esperanza de los datos 

(línea azul oscura) y una incertidumbre (intervalo azul claro). Es notorio de destacar 

cómo en la zona que está más poblada de datos la incertidumbre del modelo disminuye, 

pero ésta aumenta conforme los datos disminuyen. 
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Figura 1.2 Redes neuronales convencionales. 
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Figura 1.3 Redes neuronales bayesianas.  

1.1.2 ¿Por qué se utilizan redes informadas por la física? 

El formalismo GENERIC (General Equation for Non-Equilibrium Reversible-Irreversible 

Coupling) [4] es la base teórica utilizada en el proyecto propuesto. 

En general, las redes neuronales profundas son suficientes para la predicción de 

modelos físicos sin necesidad de la aportación de ecuaciones que cumplimenten las 

redes. 

El problema es que las redes neuronales están limitadas por los datos de entrenamiento 

de la red. Aunque puedan ser capaces de predecir un modelo físico no aprenden la física 

que hay detrás de éste y con frecuencia proporcionan resultados inesperados cuando se 

evalúan en datos alejados de los empleados en el entrenamiento. Gracias a las redes 

informadas por la física sí que podemos asegurar la consistencia física. A través de estos 

cambios se puede asegurar que: 

• Se aprende la física que hay detrás de los datos. 

• Los resultados cumplirán con las restricciones impuestas. 
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Se necesitarán menos datos, lo cual es una ventaja en situaciones en las que no hay 

régimen de big data (por ejemplo, que sea caro hacer mediciones). Es lo que se llama el 

smart data paradigm, o uso inteligente de los datos. Las restricciones impuestas en el 

entrenamiento, sean físicas o de otra categoría, se llaman sesgos. Se aplican sesgos 

inductivos. Con GENERIC no es necesario conocer las ecuaciones concretas de cada 

modelo ya que se aprenden a partir de los datos por las características del formalismo.  

Además, GENERIC se puede aplicar a una gran variedad de problemas físicos ya que se 

puede usar para analizar casos no conservativos.  

El formalismo GENERIC impone como condiciones el cumplimiento de la primera y 

segunda ley de la termodinámica. Es decir, se cumple con la: 

• Conservación de la energía 

• Desigualdad de la entropía 

1.2 GENERIC 
[1]

 

General Equation for the Non-Equilibrium ReversibleIrreversible Coupling, o más 

conocido por sus siglas como GENERIC, es un formalismo creado por Prof. Miroslav 

Grmela y Prof. Hans Christian Öttinger en 1997[3]. GENERIC se apoya en las leyes de la 

termodinámica y se utiliza para la descripción de sistemas dinámicos. 

1.2.1 Motivación 

El formalismo GENERIC es un sesgo inductivo que permite aplicar preceptos de la física 

sin conocer la ecuación de comportamiento del problema. Además, es válido tanto para 

problemas conservativos como disipativos. 

1.2.2 Bases del formalismo 

Se realiza una aproximación de sistemas dinámicos: la evolución del sistema se estudia a 

partir del análisis de la tasa de cambio de una selección de variables de estado 

impuestas para nuestro sistema. 

(1.1) 𝑑𝒛

𝑑𝑡
= 𝑓(𝒛, 𝑡) 

 

 

(1.2) 
𝒛̇𝑡 = 𝑳 

𝜕𝐸

𝜕𝒛
+ 𝑴 

𝜕𝑆

𝜕𝒛
 

Siendo: 

• 𝒛̇𝑡: Derivada de las variables de estado en el instante t. Las variables de estado en 

GENERIC son las variables físicas que describen el estado del sistema. En el 
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formalismo GENERIC, la selección de variables debe ser una que permita expresar la 

evolución de energía y entropía.  

• 𝑳:  Operador de Poisson en nomenclatura hamiltoniana. Es antisimétrico. 

• 𝑴: Operador de fricción en nomenclatura hamiltoniana. Es simétrico y 

semidefinido-positivo. 

• 𝐸: Energía del sistema 

• 𝑆: Entropía del sistema 

 

La ecuación (1.2) se divide en dos términos: 

• Reversible: 𝑳 
𝜕𝐸

𝜕𝑧
, representa a todos los fenómenos no disipativos. 

• No reversible:  𝑴 
𝜕𝑆

𝜕𝒛
, representa a todos los fenómenos disipativos. 

Además, para completar el cumplimiento de la estructura GENERIC se deben de cumplir 

las condiciones de degeneración. Es decir, que el producto cruzado de los términos 

anteriores sea nulo. 

(1.3) 
𝑳 

𝜕𝑆

𝜕𝒛
= 𝟎 

 

(1.4) 
𝑴 

𝜕𝐸

𝜕𝒛
= 𝟎 

1.2.3 Algoritmo de integración
 [1]

 

Para la implementación del formalismo GENERIC en nuestra red neuronal se discretiza la 

ecuación (1.2): 

(1.5) 𝒛𝑛+1 − 𝒛𝑛

∆𝑡
= 𝑳 

𝐷𝐸

𝐷𝒛
+ 𝑴 

𝐷𝑆

𝐷𝒛
 

 

La derivada temporal de la ecuación (1.5) se discretiza con un esquema forward Euler en 
incrementos de tiempo ∆t donde zn+1 = zn+∆t. Además, las matrices L y M aparecen en 

la versión discretizada. Por último, 
D𝐸

D𝒛
 y 

𝐷𝑆

𝐷𝒛
 representan los gradientes discretizados y se 

pueden aproximar como: 

(1.6) 𝐷𝐸

𝐷𝒛
≈ 𝑨𝒛 

 
 

(1.7) 𝐷𝑆

𝐷𝒛
≈ 𝑩𝒛 

 

Donde A y B representan las matrices discretizadas de los operadores gradientes. 
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Por lo tanto, si se modifica la ecuación (1.5) y las ecuaciones de degeneración (1.6) y 

(1.7) el formalismo GENERIC quedará como: 

(1.8) 𝒛𝑛+1 = 𝒛𝑛 + ∆𝑡 (𝑳 · 𝑨𝒛𝒏 + 𝑴 · 𝑩𝒛𝒏) 

Sujetas a las condiciones de degeneración: 

(1.9) 𝑳 · 𝑩𝒛𝒏 = 𝟎 

(1.10) 𝑴 · 𝑨𝒛𝑛 = 𝟎 
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1.3 Objetivo 

El objetivo es el análisis y comparación de redes neuronales bayesianas con redes 

neuronales convencionales, ambas guiadas por la física, en su aplicación a sistemas 

dinámicos. Como comprobación final, se aplicarán en un sistema de IA capaz de predecir 

los desplazamientos y tensiones (en el tiempo) de una estructura. Las dos redes 

neuronales estarán basadas en el formalismo GENERIC (General Equation for the 

Nonequilibrium Reversible-Irreversible Coupling). 

Además, se compararán las diferentes ventajas y desventajas de usar un modelo más 

convencional como es el caso de las redes neuronales artificiales o uno más sofisticado 

con las redes neuronales bayesianas. 

1.4 Contenido del proyecto 

El proyecto consta de los siguientes hitos: 

• Estudio de ANN + GENERIC. Péndulo doble termo-elástico [1] [2]: modelo creado y 

diseñado por investigadores de la Universidad de Zaragoza. Se basa en el estudio de 

un doble péndulo termo-elástico en el que a través de datos generados 

sintéticamente se acaba entrenando una red capaz de predecir el avance del 

péndulo dada una posición inicial. 

• Implementación y comparación de BNN + GENERIC en Péndulo doble termo-

elástico: Se implementa una red neuronal bayesiana en el ejemplo anterior para 

poder comparar los resultados y ver las ventajas y desventajas de usar un modelo 

estocástico frente a uno determinista. 

Además, se hace otra comparación de los modelos añadiendo ruido a los datos para 

poder comparar su efecto en los modelos BNN y los ANN. 

• Generación de datos sintéticos para problemas estructurales: Se crea un ejemplo de 

elementos finitos en el programa ABAQUS. Posteriormente de los informes 

generados y extraídos mediante un programa de Python y se vuelve a introducir 

ruido haciendo que parezcan sensores. 

• Diseño del modelo ANN y BNN + GENERIC: Se adaptan las redes usadas 

anteriormente a los nuevos problemas estructurales y se vuelven a comparar las 

diferencias entre ambos modelos. 

• Diseño del segundo modelo: Por último, se crea una segunda red neuronal para 

predecir la desviación entre la salida de la primera red y las nuevas mediciones (en 

un modelo con fallo), y así poder descubrir la localización del fallo en la estructura.   
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2 Implementación 

En este capítulo se realiza la comparación entre las redes neuronales bayesianas y las 

SPNN en el caso dinámico del doble péndulo termo-elástico. Las redes SPNN [1] son una 

estructura neuronal basada en el formalismo GENERIC.  En la figura 2.1 se observa la 

representación del doble péndulo termo-elástico. 

 

Figura 2.1. Esquema del doble péndulo termo-elástico. 

2.1 Base de datos 

Es de gran importancia disponer de una base de datos adecuada para que la red 

aprenda correctamente. En el caso del péndulo doble se parte de una base de datos que 

va a estar definida por un tensor de tres dimensiones: 

 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = (𝐵𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒;  𝑃𝑎𝑠𝑜𝑠 𝑑𝑒 𝑡𝑖𝑒𝑚𝑝𝑜;  𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

Siendo: 

• Batch size: Número de simulaciones diferentes introducidas a la red neuronal 

(figura 2.2.C) 

• Pasos de tiempo (figura 2.2.B) 

• Variables: Número de variables de estado de cada instante (figura 2.2.A). 

Para el ejemplo del péndulo doble en total suman 10 variables de estado: 

o Posición en x 

o Posición en y 

o Velocidad en x 

o Velocidad en y 

o Entropía total del sistema 

o Energía total del sistema 

Tanto las variables de estado posición y velocidad están repetidas para los dos nodos del 

péndulo doble. 



 Redes bayesianas informadas por la física aplicadas a sistemas estructurales 

  7 junio 2023 - Pág 13 

 

Figura 2.2. Esquema conceptual de la base de datos. 

En aprendizaje automático, para poder entrenar la red, no se introduce la base de datos 

completa, sino que se divide una base de aprendizaje y otra de test. El propósito de 

dividirlo en dos partes tiene como objetivo asegurar que el modelo no sólo sea capaz de 

predecir los casos entrenados, sino que también sea capaz de predecir problemas que 

no haya visto previamente. 

 

2.2 Entrenamiento 

Haciendo alusión a la figura 2.3, se describe cada uno de los bloques esenciales del 

entrenamiento de la red. 

• Red: Se realiza una propagación hacia delante de la red neuronal utilizada para 

predecir los operadores de GENERIC necesarios. 

• GENERIC: Una vez predichos los operadores de GENERIC se realiza la integración 

temporal de la parte dinámica. Las matrices L y M suelen ser conocidas, pero 

pueden ser parte del entrenamiento para aquellos casos en los que no se conocen, 

como en modelos de orden reducido, o son complejas. 

(2.1) 𝒛𝑛+1 = 𝒛𝑛 + ∆𝑡(𝑳 · 𝑨𝒛𝑛 + 𝑴 · 𝑩𝒛𝑛) 

• Cálculo del error: Se calcula el error entre la predicción generada por la red 

𝒛𝑛+1(𝑛𝑒𝑡) y el valor esperado recogido del dataset 𝒛𝑛+1(𝐺𝑇) (siendo GT las siglas 

de Ground Truth). Concretamente sería la suma de los errores cuadráticos de cada 

componente del tensor del valor predicho y el valor real. Su salida en la red es 

llamada como Ldata, error de los datos. 

(2.2) 
𝑀𝑆𝐸𝑖  =  ∑(𝒛𝑛,𝑖

𝑛𝑒𝑡 − 𝒛𝑛,𝑖
𝐺𝑇)2

𝑁𝑡

𝑛=0
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Siendo: 

o 𝑀𝑆𝐸: error cuadrático 

o 𝑛: número de step 

o 𝑁𝑡: número total de steps 

o 𝑖: componente individual de los tensores 

• Loss: evaluación de todos los errores. Es la suma de estos tres términos: 

o Ldegen: Error de las condiciones de degeneración. 

o Ldata: Error de los datos. Aparece en la ecuación (2.2) como MSE. 

o Lreg: es un término que se añade a la pérdida global. Tiene como objetivo 

minimizar lo máximo posible los parámetros de la red ya que así se consigue 

que el modelo evite el sobreajuste y aprenda de forma general. 

Matemáticamente se expresa como: 

(2.3) 

𝐿𝑟𝑒𝑔 = ∑ ∑ ∑ 𝑤𝑖,𝑗
[𝑙]

𝑛[𝑙+1]

𝑗

𝑛[𝑙]

𝑖

𝑁

𝑙

 

Siendo: 

o 𝑁: Número total de capas 

o 𝑛[𝑙]: Número de neuronas de la capa l 

o 𝑛[𝑙+1]: Número de neuronas de la capa l+1 

o 𝑤: Parámetro 

• Actualización: Se realiza la propagación hacia atrás, es decir, se calcula el tensor 

gradiente de la función del error global, para cada uno de los parámetros de la red y 

así poder actualizarlos.  

Este procedimiento se realiza con cada una de las simulaciones de entrenamiento.  Una 

vez que se haya realizado la vuelta completa se habrá completado una época o también 

llamado en inglés epoch. 

Se itera el algoritmo sobre un número determinado de iteraciones. Este número 

depende de la dificultad del sistema que se está modelando. 
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Figura 2.3 Esquema general SPNN 

 

2.3 Variaciones de la SPNN 

Respecto al esquema general de la SPNN, como se muestra en la figura 2.4, se realizarán 

dos cambios para adaptarla al problema concreto: 

• Red: Este cambio permite a la red alternar entre: 

o ANN, red neuronal artificial básica: 

- Modelo determinista: siempre realiza la misma predicción ante una misma 

entrada. 

o BNN, red neuronal bayesiana 

- Modelo estocástico: se puede muestrear el modelo para así analizar su 

incertidumbre. 

• Aprendizaje de L y M: El modelo alternará entre suponer las matrices L y M entre 

conocidas y desconocidas. 
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Figura 2.4 Esquema ANN sin aprender matrices L y M 

 

 

Figura 2.5 Esquema ANN sin aprender matrices L y M 

2.3.1 Red neuronal bayesiana 

La pérdida global para minimizar en las redes neuronales bayesianas hay que añadirle el 

error de la divergencia de Kullback Liebler entre la distribución a posteriori y la 

distribución aproximada. 
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Figura 2.6 Esquema BNN sin aprender matrices L y M 

 

Figura 2.7 Esquema BNN aprendiendo matrices L y M 

2.4 Comparación de estructuras 

Para la correcta comprensión de las redes SPNN se comparan los resultados de ambos 

tipos de redes en un ejemplo de validación presentado en el artículo structure-

preserving neural networks [1]. El artículo sólo presenta resultados basados en una red 

neuronal artificial con las matrices L y M definidas. En la comparación se realizan 
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comprobaciones en los dos casos presentados: conociendo L y M, y sin ser conocidas. 

Estas dos casuísticas se evaluarán con redes SPNN- ANN y SPNN- BNN.  

2.4.1 Caso base: aprendizaje de la dinámica del péndulo doble 

En este apartado se harán dos entrenamientos, aprendiendo las matrices L y M y dando 

como entrada de GENERIC las matrices. 

En la tabla 2.1 se muestran los parámetros usados para el entrenamiento de las redes 

neuronales, aunque posteriormente serán modificados para ver cómo reaccionan ante 

cambios llevando las redes al límite. La descripción de los parámetros se puede ver en el 

anexo B. 

Parámetros BNN ANN 

max_epoch 1500 1500 

train_percent 80% 80% 

lr 1e-3 1e-3 

hidden_vec [50, 50, 50, 50, 50] [50, 50, 50, 50, 50] 

miles [500, 700, 1200, 1400] [500, 700, 1200, 1400] 

gamma 5e-1 5e-1 

lambda_r 1e-05 1e-05 

lambda_d 4e5 4e5 

lambda_deg 1 1 

lambda_kl 1e-2 - 

n_samples 5 - 

n_samples_ELBO 3 - 

CI 95% - 

net_init - kaiming_uniform 

Tabla 2.1 Configuración de simulación en condiciones normales 

2.4.1.1 Simulación sin aprender matrices L y M 

Para la comparación de los resultados se muestran los diagramas de caja en la figura 2.8. 
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Figura 2.8 Gráfica de diagramas de caja del error medio de todas las 
variables de estado. No aprenden matrices L y M. 

Si se analizan los errores generados por cada tipo de red las ANN son más precisas ya 

que sus errores son menores que las redes BNN.  

Para este primer caso se mostrarán las gráficas de test de las dos redes para comparar 

visualmente los resultados. 
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Figura 2.9 Trayectoria del test. Red ANN 

 

Figura 2.10 Trayectoria del test. Red BNN. 

Intervalo de confianza: 95% 

Lo más importante de esta gráfica, y que también ocurrirá en las siguientes, es el 

ensanchamiento del intervalo de confianza conforme avanza la simulación. Esto es 

debido a que cuanto mayor sea el tiempo de simulación, mayor es el error acumulado, y 

aumentará así la probabilidad de un desvío de la predicción con el problema real.  
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2.4.1.2 Simulación aprendiendo también matrices L y M 

Se utilizan los mismos parámetros que para el caso anterior, pero ahora ya no es 

necesario estudiar el sistema para obtener las ecuaciones que lo rigen. Esta ventaja es 

notoria debido a que solo se necesitan datos, aunque hay que predecir más operadores. 

La pregunta es: 

¿Se deteriora la solución? 

Si la respuesta a la anterior pregunta es, sí ¿Cuál es la magnitud del error? ¿Justifica la 

deducción de todas las restricciones del sistema? 

Los resultados de esta simulación se muestran en la figura 2.11. 

 

Figura 2.11 Gráfica de diagramas de caja del error medio de todas las 
variables de estado. Se aprenden matrices L y M. 1500 epoch. 

Como se aprecia en la figura 2.11 el diagrama de caja de la red ANN en la etapa de 

entrenamiento no aparece. Esto es debido a que con estos parámetros la red ANN no es 

capaz de predecir todo el dataset de entrenamiento. Los resultados van acumulando 

demasiado error hasta que llega un punto en el que el resultado de la red es infinito. Sin 

embargo, la red BNN es más estable.  
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Antes de realizar otra simulación cambiando los parámetros para poder tener una 

comparación entre redes ANN y BNN, se hace una comparación de las redes que no 

estaban aprendiendo las matrices L y M (figura 2.8) con las que sí que aprenden (figura 

2.11).  

No se deteriora la solución para las redes BNN, aunque L y M no sea conocido. 

En cambio, para las redes ANN sí que hay empeoramiento notable ya que la precisión 

desciende a razón de un orden de magnitud. 

Para poder comparar las dos redes se decide realizar otro caso aumentando las épocas 

de entrenamiento hasta que las ANN arrojen un resultado en la etapa de 

entrenamiento. La red ANN a partir de las 4000 épocas predice adecuadamente todos 

los casos de simulación. Después se simula la red BNN con 4000 épocas y así se puede 

comparar en igualdad de condiciones tal y como se aprecia en la figura 2.14.  

 

Figura 2.14 Gráfica de diagramas de caja del error medio de todas las 
variables de estado. Se aprenden matrices L y M. 4000 epoch. 

Analizando los resultados se ve como las ANN ya no llegan a tanta precisión como en el 

caso de que L y M sean conocidos. Sin embargo, las BNN no mejoran, aunque se 

aumenten las iteraciones de entrenamiento. 

2.4.2 Base de datos reducida 

Se espera que, si la red es forzada a ser entrenada con los mínimos datos posibles, las 

redes bayesianas presenten mejores resultados gracias a su enfoque probabilístico. 
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Los parámetros utilizados serán los mismos que en la tabla 2.1, pero se entrenará con 

menos datos. Ésto implica que ahora se eliminarán varias trayectorias del dataset de 

entrenamiento y se pasarán a la fase de test, por lo que evaluarán muchas más 

trayectorias que no se han visto antes. 

Parámetros ANN BNN 

train_percent 40% 40% 

Tabla 2.2 Configuración de simulación con dataset reducido 

2.4.2.1 Simulación sin aprender matrices L y M 

Para la comparación de los resultados se muestran los diagramas de caja en la figura 

2.15. En este caso sólo se incluyen los diagramas de caja de la BNN porque las ANN no 

han sido capaces de extraer un resultado.  

La mayor parte de las trayectorias de entrenamiento tienden a infinito, por lo que se 

puede concluir que las redes BNN cuando tienen menos datos se comportan mucho 

mejor. 

 

Figura 2.15 Gráfica de diagramas de caja del error medio de todas las 
variables de estado. Dataset reducido. 40% del dataset de entrenamiento 

En la figura 2.16 se muestra la precisión de las redes BNN en el caso de reducirse el 

porcentaje de entrenamiento al 30%. Comparando la figura 2.16 con la 2.15 sí que se 

aprecia una disminución de precisión. 
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Figura 2.16 Gráfica de diagramas de caja del error medio de todas las 
variables de estado. Dataset reducido. 30% del dataset de entrenamiento 
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3 Aplicación de redes neuronales a SHM 

Una vez se comprueba el funcionamiento de las redes neuronales bayesianas en el 

ejemplo del péndulo doble se procede a la aplicación de monitorización estructural a un 

ejemplo típico en el campo de la mecánica de medios continuos. 

3.1 Metodología 

Con el fin de poder adaptar el ejemplo estructural a la red se decide eliminar el término 

entropía del formalismo GENERIC. Esto es debido a que el problema es elástico lineal, no 

hay fenómenos disipativos. Es decir, ya no existen irreversibilidades que deba aprender 

la red neuronal. 

Otra consecuencia de no tener término disipativo es que no es necesario aplicar las 

condiciones de degeneración. Las únicas dos condiciones son la aplicación del esquema 

GENERIC, y asegurar que L es semidefinida positiva. Por lo tanto, el formalismo se va a 

cumplir por construcción. En consecuencia, la ecuación (1.8) se transforma en la 

ecuación (3.1): 

(3.1) 𝒛𝑛+1 = 𝒛𝑛 + ∆𝑡 (𝑳 · 𝑨𝒛𝑛) 

3.1.1 Creación de la base de datos 

La base de datos se crea mediante simulación computacional en un software comercial 

de elementos finitos para obtener datos pseudo-experimentales. Se define una única 

geometría con unas condiciones de contorno concretas y un único caso de carga. El 

objetivo es caracterizar el problema bajo estas condiciones para que, al cambiar las 

propiedades del material, se pueda detectar los fallos de la estructura. 

Es importante destacar que se crean dos modelos de elementos finitos: 

• Modelo con mismo módulo de Young: modelo que representa una estructura sin 

fallos. 

• Modelo con dos regiones con módulo de Young diferente: Misma estructura que la 

anterior, pero se le añade una región con un módulo de Young diferente. 

3.1.2 Entrenamiento del modelo. Gemelo digital 

El entrenamiento del modelo estructural es similar al del péndulo doble. 

Primero se entrena el modelo con la base de datos que posee un mismo módulo de 

Young. En este caso, el modelo ya sería capaz de predecir la evolución de las variables 

de estado y módulo de Young en cualquier punto de la estructura, incluyendo los que no 

están presentes en el entrenamiento. 



 Redes bayesianas informadas por la física aplicadas a sistemas estructurales 

  7 junio 2023 - Pág 26 

Esto constituye el gemelo digital de la estructura, es decir, un modelo virtual capaz de 

replicar el comportamiento físico de la estructura. 

En cambio, si ahora se introduce la base de datos del modelo con el fallo estructural se 

observa cómo no predice correctamente su comportamiento, por lo que el gemelo 

requiere una actualización que permitirá analizar a que se debe el cambio detectado. En 

caso de aplicarlo prácticamente se requiere conocer la ubicación del fallo ya que en 

base a los resultados ya se intuye que el fallo existe. 

3.1.3 Desarrollo del gemelo híbrido  

El cambio de comportamiento se asocia a un posible fallo en la estructura. Para poder 

establecer la localización del fallo se introducirá el concepto de gemelo híbrido. El 

gemelo híbrido es una evolución del gemelo digital. Este es capaz de adaptarse a los 

cambios del sistema real cuando detecta una anomalía. La clave está en la conexión del 

gemelo híbrido en tiempo real con las fluctuaciones de la estructura que permiten 

ajustar su comportamiento y enriquecer la aproximación existente. 

En términos matemáticos el gemelo híbrido consistiría en sumar al gemelo digital el 

error que está cometiendo. Por lo tanto, para poder crear este gemelo híbrido se debe 

de crear otra red que solo se encargue de aprender sobre el error cometido por el 

gemelo digital. 

(3.2) 𝒁𝐺𝐻 = 𝒁𝐺𝐷 + 𝒁𝐸  

Siendo: 

• 𝒁𝐺𝐻: Datos predichos por el gemelo híbrido. 

• 𝒁𝐺𝐷: Salida de la primera red neuronal (Gemelo Digital). 

• 𝒁𝐸: Salida de la segunda red neuronal que solo predice el error. 

Para poder seguir con el desarrollo del gemelo híbrido solo se estudian unos pocos 

nodos repartidos uniformemente en la estructura como si fueran sensores reales. 

Estos sensores sirven para hacer un seguimiento del comportamiento de la estructura. 

Primero se compara la predicción de la primera red con las medidas de los sensores. En 

este punto se verá una desviación entre las mediciones y las predicciones, dando lugar a 

una base de datos de errores que se empleará para entrenar la segunda red. 

Posteriormente se trata de crear una segunda red que consiga aprender el error de cada 

variable para poder sumárselo a la predicción de la primera red y así conseguir una 

predicción correcta. 

(3.3) 𝒁̇𝐸 = 𝒁̇𝐺𝑇 − 𝒁̇𝐺𝐷 

(3.4) 𝒁̇𝐸 = 𝑳∇𝑬(𝒁𝐸) 

(3.5) 𝒁̇𝐺𝑇 = 𝑳∇𝑬(𝒁𝐺𝐷) + 𝑳∇𝑬(𝒁𝐸) 
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(3.6) 𝒁𝐸,𝑛+1 − 𝒁𝐸,𝑛

∆𝑡
= 𝑳𝐷𝑬(𝒁𝐸) 

 

 

Figura 3.1 Esquema gemelo digital/híbrido 

3.2 Implementación: Placa apoyada-empotrada 

El ejemplo elegido para poder desarrollar la técnica del SHM va a ser un problema típico 

de la mecánica del sólido deformable, una placa apoyada - empotrada. Se trata de una 

placa cuadrada 2D apoyada en los laterales y empotrada en su base, ilustrada en la 

figura 3.2. 

Tal y como se ha comentado se crean dos modelos. En la figura 3.2 se observa el modelo 

sin fallo y en la figura 3.3 se aprecia en gris la zona con el fallo. 

Se le ha asignado un módulo de Young de 200.000 MPa. En cambio, para la zona 

afectada por el fallo se le ha reducido a un módulo de Young de 100.000 MPa. Se 

entiende como un modelo ideal. 
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Figura 3.2 Esquema placa apoyada-empotrada sin fallo. 

 

Figura 3.3 Esquema placa apoyada-empotrada con fallo. 
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3.2.1 Módulo de Young 

Para poder determinar el fallo se debe de conocer el módulo de Young y este debe ser 

despejado de las ecuaciones de comportamiento.  

Para describir el estado de deformaciones y tensiones se parte de: 

(3.7) 

𝝈 = (

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

)            𝜺 = (

𝜀𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧

𝜀𝑥𝑦 𝜀𝑦 𝜀𝑦𝑧

𝜀𝑥𝑧 𝜀𝑦𝑧 𝜀𝑧

) 

Debido a que se trata de una placa en 2D y que las caras perpendiculares son libres se 

está trabajando con un problema de tensión plana. 

(3.8) 𝜎𝑧 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0 

Además, en la dirección x no se puede estirar el sólido debido a que se encuentra entre 

dos apoyos. 

(3.9) 𝜀𝑥 = 0 

Escribiendo la ecuación de Hooke de un sólido de 3 dimensiones y un material isótropo 

para las direcciones principales: 

(3.10) 
𝜀𝑥 =

𝜎𝑥 − 𝜈(𝜎𝑦 + 𝜎𝑧)

𝐸
 

(3.11) 
𝜀𝑦 =

𝜎𝑦 − 𝜈(𝜎𝑥 + 𝜎𝑧)

𝐸
 

(3.12) 
𝜀𝑧 =

𝜎𝑧 − 𝜈(𝜎𝑥 + 𝜎𝑦)

𝐸
 

Simplificando la ecuación (3.10): 

(3.13) 
0 =

𝜎𝑥 − 𝜈 · 𝜎𝑦

𝐸
 

 𝜈 =
𝜎𝑥

𝜎𝑦
 

 

Por último, simplificando la ecuación (3.11) se obtiene el módulo de Young: 

(3.14) 

𝐸 =

𝜎𝑦 −
𝜎𝑥

2

𝜎𝑦

𝜀𝑦
 

Siendo: 

• 𝜀𝑦: Deformación vertical de la placa 
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• 𝜎𝑦: Tensión vertical de la placa, en el caso de no haber ningún fallo será constante y 

equivaldrá a la presión impuesta en el problema, 𝜎𝑦 = −𝑃 

• 𝜎𝑥: Deformación horizontal de la placa 

3.3 Resultados 

En primer lugar, se mostrarán los resultados de la placa entrenada con la red ANN y 

posteriormente se estudiará la red BNN. Por último, se compararán los resultados en 

forma de diagramas de caja. 

3.3.1 Red ANN 

Primero se entrena el modelo capaz de simular la placa sin ningún fallo. La red se define 

con los siguientes parámetros: 

 

Parámetros ANN 

max_epoch 2300 

train_percent 80% 

lr 1e-2 

hidden_vec [60, 60, 60, 60]  

miles [700, 1000, 1200, 1600, 

1900, 2100]  

gamma 0.35 

lambda_r 1e-05 

net_init kaiming_uniform 

Tabla 2.1 Configuración del modelo de la red ANN 
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Resultados de la placa sin fallos: 

 

Figura 3.3 Mapa del módulo de Young de la placa sin fallo. Gemelo digital. 

  

 

Figura 3.4 Mapa del error relativo del módulo de Young de la placa sin fallo. 
Gemelo digital. 

Como se puede comprobar en los mapas, la red es capaz de predecir el módulo de 

Young de la placa con una precisión adecuada. El resto de los resultados respecto a las 

otras variables de estado pueden encontrase en el anexo C. 
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Figura 3.5 Mapa del módulo de Young de la placa con fallo. Gemelo digital. 

En la figura 3.5 se observa cómo la red entrenada para la placa sin fallo no es capaz de 

predecir correctamente el comportamiento de la placa con el fallo. 

En el caso de que se estuviera aplicando a una estructura real para poder conocer la 

existencia de un fallo no se dispondría de la gráfica con los datos reales (Figura 3.5, 

Abaqus) por lo que no se podría comparar. Sin embargo, sí que es conocido cuál es el 

módulo de Young del material así que sería fácilmente identificable la existencia de un 

fallo ya que devuelve valores extremadamente altos del módulo de Young para el 

material estudiado. 

Ahora se conoce la existencia de un fallo en la placa, pero no se sabe el lugar del mismo. 

Se parte de las mediciones en la nueva placa que se supone han sido realizadas 

mediante sensores. Las mediciones se realizan en 40 puntos distribuidos de manera 

uniforme como se muestra en la figura 3.6. 

Para este caso en concreto se dispondrá de una malla de 40 nodos distribuidos 

uniformemente, figura 3.6. Se va a entrenar con el 100 % de los nodos y después se 

comprobará la precisión del gemelo híbrido con otra base de datos más amplia. 
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Figura 3.6 Mapa de puntos entrenados para completar el gemelo híbrido. 

Después del entrenamiento de la segunda red se obtienen los siguientes resultados. 

Para hacer el cálculo del módulo de Young anteriormente se suman las variables de 

estado de la red del gemelo digital y la red que predice errores de la red. Siguiendo la 

ecuación (3.2). 

 

 

Figura 3.7 Mapa del módulo de Young de la placa con fallo. Gemelo híbrido. 
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Figura 3.8 Mapa del error relativo del módulo de Young de la placa con 
fallo. Gemelo híbrido. 

Observando los resultados se obtienen unas buenas tolerancias de error. A 

continuación, se analiza el comportamiento del gemelo híbrido en una malla con mayor 

discretización, compuesta por 827 nodos dispuestos como se muestran en la figura 3.9. 

 

Figura 3.9 Mapa de puntos para testear el gemelo híbrido. 
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Figura 3.10 Mapa del módulo de Young de la placa con fallo. Gemelo 
híbrido. Test. 

  

Figura 3.11 Mapa del error relativo del módulo de Young de la placa con 
fallo. Gemelo híbrido. Test. 

El error queda perfectamente localizado, y la predicción del módulo de Young es precisa 

en la mayor parte de la placa, estando el error entorno a un +/- 3%. Sin embargo, se 

aprecia un error mayor de manera puntual en la transición entre la zona de fallo y el 

resto de la placa. 

Esto puede deberse al cambio brusco del módulo de Young. Las redes neuronales son 

capaces de generalizar para que cuando se presenten datos que no han visto todavía 

puedan adaptarse a ellos. En este caso hay una discontinuidad muy evidente por lo que 

en la parte de la frontera genera un cambio gradual en vez de una discontinuidad. 
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3.3.2 Red BNN 

Los hiperparámetros de la red que modela la placa sin fallos en la red neuronal 

bayesiana son: 

Parámetros BNN 

max_epoch 1300 

train_percent 80% 

lr 1e-2 

hidden_vec [30, 30, 30]  

miles [200, 400, 600, 750, 

900, 1000, 1100, 1200]  

gamma 0.5 

lambda_r 1e-05 

lambda_d 1e09 

lambda_kl 1e-2 

n_samples 5 

n_samples_ELBO 3 

CI 95% 

Tabla 2.2 Configuración del modelo de la red BNN 

 

A continuación, se muestran los resultados de la red bayesiana para la placa sin fallos: 

 

Figura 3.12 Mapa del módulo de Young de la placa sin fallo. Gemelo digital. 
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Sin embargo, como se trata de una red bayesiana se puede conocer los valores del 

módulo de Young en un intervalo de confianza. A continuación, se muestran los 

resultados para un intervalo de confianza del 95%: 

 

Figura 3.13 Mapa del módulo de Young de la placa sin fallo. Intervalo de 
confianza al 95%. Gemelo digital. 
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Figura 3.14 Mapa del error del módulo de Young de la placa sin fallo. 
Gemelo digital. 
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Figura 3.15 Mapa del módulo de Young de la placa sin fallo. Intervalo de 
confianza al 95%. Gemelo digital. 
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El error cometido en el módulo de Young por la red bayesiana es un poco mayor, pero a 

cambio también se obtiene un intervalo de confianza y así se puede vincular al grado de 

certeza de cada valor predicho. 

Tras numerosos intentos para que la red bayesiana aprenda el segundo modelo y así 

pueda completar el gemelo híbrido no se consigue entrenar un modelo estable. Para 

ninguna configuración de los parámetros de la red. Esto se puede deber a dos factores: 

• Error excesivamente pequeño para el segundo modelo del gemelo híbrido. 

• Poca información para que así pueda generalizar y así poder encontrar un gradiente 

adecuado. 

En la figura 3.16 se observa una zona en la esquina derecha superior con un módulo de 

Young más bajo por lo que sí que se podría localizar el fallo. Pero el error relativo 

cuando se compara con los datos esperados es muy grande, figura 3.17. 

 

Figura 3.16 Mapa del módulo de Young de la placa con fallo. Gemelo 
híbrido. 
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Figura 3.17 Mapa del error relativo del módulo de Young de la placa con 
fallo. Gemelo híbrido. 

3.3.3 Comparación gemelo digital en ANN y BNN 

Para poder hacer una comparación directa entre las dos redes se generan los diagramas 

de caja del error cometido por las redes en el entrenamiento y en la prueba. 
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Figura 3.18 Diagrama de cajas de la red ANN y BNN para la placa sin fallo. 

Las redes bayesianas son ligeramente más precisas en cuanto a las variables que 

predicen. 
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4 Conclusiones 

Para todos los modelos generados en el presente trabajo de fin de grado se puede 

confirmar que las redes neuronales convencionales son más precisas que las redes 

neuronales bayesianas. La diferencia entre ambas es mínima así que no se considera 

una gran ventaja a favor de las redes convencionales. 

En cambio, las redes bayesianas a costa de la pérdida precisión sí que traen ciertas 

ventajas muy notables: 

• Robustez frente a bases de datos ruidosos: Se demuestra cómo las redes 

convencionales son menos precisas cuando se trabaja con ruido. Además, en un 

sistema como GENERIC se acentúa la acumulación de error porque cada iteración 

depende de la anterior, lo que provoca que en muchos casos la red ANN prediga 

valores inestables. En cambio, para las BNN, aunque se reduce la precisión siempre 

sigue la tendencia general de cada variable de estado. 

• Cuantificación de la incertidumbre: Poder cuantificar la incertidumbre permite 

valorar la confianza en el modelo, y, aunque la red realice una predicción adecuada, 

si la incertidumbre es grande es posible que se descarte por no ser lo 

suficientemente fiable. 

4.1 Futuras líneas de trabajo 

Algunas líneas futuras de investigación son: 

• Progresión a problemas 3D: Un problema con una dinámica más rica, además de 

suponer un avance en la simulación, experimentaría mayores variaciones que quizá, 

por las limitaciones numéricas de precisión, sería más fácil captar de cara al 

aprendizaje con una red neuronal bayesiana.  

• Módulo de Young menos acusado: Sustituyendo esta discontinuidad por una mucho 

más suave podría ayudar a aprender de forma más eficiente los parámetros de la 

red. 

• Ante variaciones pequeñas, se deberá explorar la normalización o tratamiento de 

datos necesario para poder aprender este tipo de problemas. 

• Introducción de ruido en los problemas de SHM: La introducción de ruido en 

problemas de SHM permite asemejarse a problemas reales.  
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5 Glosario de abreviaturas 

• TFG: Trabajo de Fin de Grado 

• SPNN: Structure-Preserving Neural Networks 

•  IA: Inteligencia Artificial 

• SHM: Structural Health Monitoring 

• BNN: Bayesian Neural Network 

• ANN: Artificial Neural Network 

• KL: Kullback-Leibler 

• lr: Learning Rate o tasa de aprendizaje 

• GENERIC: General Equation for the Non-Equilibrium ReversibleIrreversible Coupling 

• ELBO: Evidence Lower BOund 

• ReLU: Rectified Linear Unit 

• GT: Ground Truth 

• MSE: Mean squared Error 

• GD: Gemelo Digital 

• GH: Gemelo Híbrido 
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