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Resumen

El reciente peso dado en la inteligencia artificial a las redes neuronales bayesianas se
explica por su gran aportacion a la hora de capturar la incertidumbre de las
predicciones. Este factor resulta especialmente util en situaciones donde es importante
entender la confianza en las predicciones, situaciones criticas donde se requiere
fiabilidad y seguridad.

En el presente trabajo fin de grado se realizara la implementacién de redes neuronales
bayesianas informadas por la fisica. Para ello se parte de un modelo de red neuronal de
tipo SPNN (Structure-Preserving Neural Networks), que es una red neuronal en la que se
le implementa el formalismo GENERIC por el fin de cumplir por las leyes de la
termodinamica. En el trabajo se estudian sus diferentes prestaciones ante un mismo
problema: el péndulo termo-elastico.

Finalmente, se realiza la implementacién de ambas tipologias de redes en un problema
de monitorizacion estructural donde la herramienta de inteligencia artificial debera ser
capaz de detectar, localizar y dar informacién sobre un posible fallo.

Para ello se generan datos pseudo-experimentales mediante el software ABAQUS
simulando la existencia de sensores repartidos por todo el dominio de una placa. La
herramienta de inteligencia artificial consta inicialmente de un gemelo digital que
aprende la fisica de la placa sin fallos mecanicos. Posteriormente se complementa con
otra red para que asi aprenda las desviaciones entre el gemelo digital y los datos
recogidos por los sensores. Al modelo completo se le denomina gemelo hibrido.

Los resultados pondran de manifiesto no solo la precision de las redes convencionales y
bayesianas en ambos casos, sino su idoneidad en funciéon de la incertidumbre.
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1 Introduccion

El estudio de la construccién no sélo debe estar orientado hacia el cdlculo y la utilidad
de las infraestructuras, sino también a garantizar la seguridad de su uso en el tiempo de
vida de las mismas. Un fallo estructural no siempre es causado por un error de calculo o
una mala ejecucién de la estructura, sino que puede haber muchas otras causas que no
se pueden prever. Por ejemplo, fatiga, deterioro de los materiales, condiciones
ambientales adversas...

El presente TFG tiene la finalidad de predecir la evolucién del comportamiento de
sistemas estructurales en el tiempo o para conocer su estado actual cuando no puede
ser observado directamente. Esto se lograra mediante la aplicacidon de la Inteligencia
Artificial (IA) para predecir estados futuros bajo acciones de cargas. Las redes estaran
apoyadas por la fisica a través de la imposicion del formalismo GENERIC, que garantiza
el cumplimiento de las leyes de la termodindamica. Estas redes se aplicaran a sistemas
estructurales, analizando la deformacién de manera temporal, para asi poder introducir
nociones bdsicas de monitorizaciéon estructural o Structural Health Monitoring (SHM,
por sus siglas en inglés).

Los datos temporales de los desplazamientos de algunos puntos distribuidos en una
gran estructura pueden mostrar alteraciones, globales o locales, que denotan un dafo
en la misma. El SHM se basa en la recopilaciéon de datos de una estructura a través de
sensores. Con los datos recogidos se hace un analisis de éstos para poder detectar
anomalias que predigan un posible dafio en la estructura. Su principal funcion, por
tanto, consiste en detectar los posibles fallos estructurales para prevenir su
agravamiento mediante el mantenimiento para la minimizacién de los costes, la
maximizacion de la seguridad y gestidn del ciclo de vida de la estructura.

1.1 Metodologia

Este proyecto propone una estrategia de SHM basada en un modelo de IA con enfoque
estocastico y fisico. Para ello se propone el uso de una red informada por la fisica.
Especificamente, este proyecto se basa en las llamadas Structure-Preserving Neural
Networks ™M (SPNN, por sus siglas en inglés).

1.1.1 ;jPor qué un modelo estocastico?

El uso de sensores conlleva la adquisicion de datos en los que puede haber ruido. El
procesamiento de datos con ruido es complejo, ya que puede inducir inestabilidad en
las predicciones y errores graves. Existen métodos de limpieza de ruido en los datos,
como los filtros. Otro enfoque consiste en utilizar modelos estocdsticos, que pueden
sacar conclusiones ante situaciones de incertidumbre, o variabilidad de los datos.
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Un modelo estocdstico es aquel que se basa en la aleatoriedad para poder predecir un
comportamiento mediante el aprendizaje de las caracteristicas estocdsticas del
problema. Este tipo de modelos es lo contrario a los modelos deterministas. En un
modelo determinista, las predicciones resultantes ante una misma entrada de datos
siempre serd la misma. En cambio, para un modelo estocastico, las predicciones no
seran iguales. Un entrenamiento correcto debera ser robusto respecto a las entradas y
salidas de la red.

El proyecto realiza un desarrollo a partir de redes bayesianas o Bayesian Neural Network
(BNN por sus siglas en inglés). Estas son parecidas a las redes neuronales artificiales o
Artificial Neural Network (ANN por sus siglas en inglés). La principal diferencia reside en
que las BNN (modelos estocasticos) no aprenden parametros concretos como las ANN
(Figura 1.1.a, modelos deterministas), sino que aprenden distribuciones de los
parametros de la red (Figura 1.1.b).

(a) Artificial Neural Network (b) Bayesian Neural Network

Figura 1.1 Parametros de ANN vs BNN

Ademas, en las redes BNN se puede evaluar la incertidumbre de las predicciones. Es
decir, se puede mostrar un intervalo de confianza de la prediccion segun los datos de
entrenamiento utilizados.

En las siguientes figuras se muestra el ejemplo que se usa para validar las redes
bayesianas. En la figura 1.2 se aprecia una red neuronal convencional y en la figura 1.3
se aprecia una red neuronal bayesiana. EI modelo ANN realiza una prediccién
determinista. En cambio, en el modelo BNN se distingue una esperanza de los datos
(linea azul oscura) y una incertidumbre (intervalo azul claro). Es notorio de destacar
cémo en la zona que estda mas poblada de datos la incertidumbre del modelo disminuye,
pero ésta aumenta conforme los datos disminuyen.
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Figura 1.2 Redes neuronales convencionales.
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Figura 1.3 Redes neuronales bayesianas.

1.1.2 ;Por qué se utilizan redes informadas por la fisica?

El formalismo GENERIC (General Equation for Non-Equilibrium Reversible-Irreversible
Coupling) ™ es |a base tedrica utilizada en el proyecto propuesto.

En general, las redes neuronales profundas son suficientes para la prediccion de
modelos fisicos sin necesidad de la aportacién de ecuaciones que cumplimenten las
redes.

El problema es que las redes neuronales estan limitadas por los datos de entrenamiento
de la red. Aunque puedan ser capaces de predecir un modelo fisico no aprenden la fisica
que hay detras de éste y con frecuencia proporcionan resultados inesperados cuando se
evallan en datos alejados de los empleados en el entrenamiento. Gracias a las redes
informadas por la fisica si que podemos asegurar la consistencia fisica. A través de estos
cambios se puede asegurar que:

e Se aprende la fisica que hay detrds de los datos.
e Los resultados cumpliran con las restricciones impuestas.
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Se necesitaran menos datos, lo cual es una ventaja en situaciones en las que no hay
régimen de big data (por ejemplo, que sea caro hacer mediciones). Es lo que se llama el
smart data paradigm, o uso inteligente de los datos. Las restricciones impuestas en el
entrenamiento, sean fisicas o de otra categoria, se llaman sesgos. Se aplican sesgos
inductivos. Con GENERIC no es necesario conocer las ecuaciones concretas de cada
modelo ya que se aprenden a partir de los datos por las caracteristicas del formalismo.
Ademads, GENERIC se puede aplicar a una gran variedad de problemas fisicos ya que se

puede usar para analizar casos no conservativos.

El formalismo GENERIC impone como condiciones el cumplimiento de la primera y
segunda ley de la termodindmica. Es decir, se cumple con la:

e Conservacion de la energia

e Desigualdad de la entropia

1.2 GENERIC!"™

General Equation for the Non-Equilibrium Reversiblelrreversible Coupling, o mas
conocido por sus siglas como GENERIC, es un formalismo creado por Prof. Miroslav
Grmela y Prof. Hans Christian Ottinger en 199781, GENERIC se apoya en las leyes de la
termodinamica y se utiliza para la descripcién de sistemas dindmicos.

1.2.1 Motivacion

El formalismo GENERIC es un sesgo inductivo que permite aplicar preceptos de la fisica
sin conocer la ecuacién de comportamiento del problema. Ademas, es vélido tanto para
problemas conservativos como disipativos.

1.2.2 Bases del formalismo

Se realiza una aproximacion de sistemas dindmicos: la evolucidn del sistema se estudia a
partir del analisis de la tasa de cambio de una seleccién de variables de estado
impuestas para nuestro sistema.

(1.1) dz _
= =f@0
(1.2) _ _ OE S
z; =1L £ + M EP
Siendo:

e 7,: Derivada de las variables de estado en el instante t. Las variables de estado en
GENERIC son las variables fisicas que describen el estado del sistema. En el
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formalismo GENERIC, la seleccidn de variables debe ser una que permita expresar la
evolucidn de energia y entropia.

e L: Operador de Poisson en nomenclatura hamiltoniana. Es antisimétrico.

e M: Operador de friccion en nomenclatura hamiltoniana. Es simétrico y
semidefinido-positivo.

e [E:Energia del sistema

e S:Entropia del sistema

La ecuacioén (1.2) se divide en dos términos:
. OE . .
e Reversible: L PP representa a todos los fendmenos no disipativos.
. as . .
e Noreversible: M Py representa a todos los fendmenos disipativos.

Ademas, para completar el cumplimiento de la estructura GENERIC se deben de cumplir
las condiciones de degeneracion. Es decir, que el producto cruzado de los términos
anteriores sea nulo.

(1.3) 6_5 B
L Frie 0
0E
(1.4) o
0z

1.2.3 Algoritmo de integracion™

Para la implementacién del formalismo GENERIC en nuestra red neuronal se discretiza la
ecuacion (1.2):

(15) Zn+1 - Zn DE DS
—_ =L — 4+ M —
At Dz + Dz

La derivada temporal de la ecuacién (1.5) se discretiza con un esquema forward Euler en
incrementos de tiempo At donde z,,,; = Z,4+at- Ademas, las matrices Ly M aparecen en

S . - DE DS . . .
la versidn discretizada. Por ultimo, .Y oa representan los gradientes discretizados y se
z z
pueden aproximar como:

(1.6) DE
— =~ A
Dz z
(1.7) DS
Dz z

Donde Ay B representan las matrices discretizadas de los operadores gradientes.
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Por lo tanto, si se modifica la ecuacién (1.5) y las ecuaciones de degeneracion (1.6) y
(1.7) el formalismo GENERIC quedara como:

(1.8) Zpy1 =Z, +At (L-Az, + M - Bz,)
Sujetas a las condiciones de degeneracidn:

(1.9) L-Bz,=0

(1.10) M-Az, =0
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1.3 Objetivo

El objetivo es el analisis y comparacién de redes neuronales bayesianas con redes
neuronales convencionales, ambas guiadas por la fisica, en su aplicaciéon a sistemas
dindmicos. Como comprobacion final, se aplicaran en un sistema de |A capaz de predecir
los desplazamientos y tensiones (en el tiempo) de una estructura. Las dos redes
neuronales estaran basadas en el formalismo GENERIC (General Equation for the
Noneaquilibrium Reversible-Irreversible Coupling).

Ademads, se compararan las diferentes ventajas y desventajas de usar un modelo mas
convencional como es el caso de las redes neuronales artificiales o uno mas sofisticado
con las redes neuronales bayesianas.

1.4 Contenido del proyecto

El proyecto consta de los siguientes hitos:

e Estudio de ANN + GENERIC. Péndulo doble termo-eldstico ™ 2l: modelo creado y
disefiado por investigadores de la Universidad de Zaragoza. Se basa en el estudio de

un doble péndulo termo-eldstico en el que a través de datos generados
sintéticamente se acaba entrenando una red capaz de predecir el avance del
péndulo dada una posicion inicial.

e |Implementacién y comparacién de BNN + GENERIC en Péndulo doble termo-

elastico: Se implementa una red neuronal bayesiana en el ejemplo anterior para
poder comparar los resultados y ver las ventajas y desventajas de usar un modelo
estocastico frente a uno determinista.
Ademas, se hace otra comparacién de los modelos afiadiendo ruido a los datos para
poder comparar su efecto en los modelos BNN y los ANN.

e Generacidn de datos sintéticos para problemas estructurales: Se crea un ejemplo de

elementos finitos en el programa ABAQUS. Posteriormente de los informes
generados y extraidos mediante un programa de Python y se vuelve a introducir
ruido haciendo que parezcan sensores.

e Disefio del modelo ANN y BNN + GENERIC: Se adaptan las redes usadas
anteriormente a los nuevos problemas estructurales y se vuelven a comparar las

diferencias entre ambos modelos.
e Disefio del segundo modelo: Por ultimo, se crea una segunda red neuronal para

predecir la desviacion entre la salida de la primera red y las nuevas mediciones (en
un modelo con fallo), y asi poder descubrir la localizacién del fallo en la estructura.
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2 Implementacion

En este capitulo se realiza la comparacion entre las redes neuronales bayesianas y las
SPNN en el caso dindmico del doble péndulo termo-elastico. Las redes SPNN ! son una
estructura neuronal basada en el formalismo GENERIC. En la figura 2.1 se observa la
representacion del doble péndulo termo-elastico.

7

my Az, Co

Figura 2.1. Esquema del doble péndulo termo-elastico.

2.1 Base de datos

Es de gran importancia disponer de una base de datos adecuada para que la red
aprenda correctamente. En el caso del péndulo doble se parte de una base de datos que
va a estar definida por un tensor de tres dimensiones:

Dataset = (Batch size; Pasos de tiempo; Variables)
Siendo:

e Batch size: Numero de simulaciones diferentes introducidas a la red neuronal
(figura 2.2.C)

e Pasos de tiempo (figura 2.2.B)

e Variables: Numero de variables de estado de cada instante (figura 2.2.A).

Para el ejemplo del péndulo doble en total suman 10 variables de estado:
Posicion en x

Posicién eny

Velocidad en x

Velocidad eny

Entropia total del sistema

o O O O O

Energia total del sistema

Tanto las variables de estado posicidn y velocidad estan repetidas para los dos nodos del
péndulo doble.
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Figura 2.2. Esquema conceptual de la base de datos.

En aprendizaje automatico, para poder entrenar la red, no se introduce la base de datos

completa, sino que se divide una base de aprendizaje y otra de test. El propdsito de

dividirlo en dos partes tiene como objetivo asegurar que el modelo no sélo sea capaz de

predecir los casos entrenados, sino que también sea capaz de predecir problemas que

no haya visto previamente.

2.2 Entrenamiento

Haciendo alusion a la figura 2.3, se describe cada uno de los bloques esenciales del

entrenamiento de la red.

e Red: Se realiza una propagacién hacia delante de la red neuronal utilizada para

predecir los operadores de GENERIC necesarios.

e GENERIC: Una vez predichos los operadores de GENERIC se realiza la integracion

temporal de la parte dindmica. Las matrices L y M suelen ser conocidas, pero

pueden ser parte del entrenamiento para aquellos casos en los que no se conocen,

como en modelos de orden reducido, o son complejas.

(2.1)

Zpi =2z, +At(L-Az, + M -Bz,)

e Cdlculo del error: Se calcula el error entre la prediccién generada por la red

Z,.1(net) y el valor esperado recogido del dataset z,,,,(GT) (siendo GT las siglas

de Ground Truth). Concretamente seria la suma de los errores cuadraticos de cada

componente del tensor del valor predicho y el valor real. Su salida en la red es

llamada como Ldata, error de los datos.

(2.2)

Nt
MSEL = Z(Z
n=0

net _
n,i

GTN\2
Zni
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Siendo:

MSE: error cuadratico

n: nimero de step

Nt: nimero total de steps

i: componente individual de los tensores

(@]

(@]

(@]

e Loss: evaluacion de todos los errores. Es la suma de estos tres términos:

O Ldegen: Error de las condiciones de degeneracion.

O Ldata: Error de los datos. Aparece en la ecuacién (2.2) como MSE.

O Lreg: s un término que se afiade a la pérdida global. Tiene como objetivo
minimizar lo maximo posible los pardmetros de la red ya que asi se consigue
que el modelo evite el sobreajuste y aprenda de forma general.
Matemadticamente se expresa como:

(2.3) N nll pli+1]
— [
NPT
]
Siendo:

o N:Numero total de capas

o nll: Nimero de neuronas de la capa |

o nl*1l: Ndmero de neuronas de la capa 1+1
o w: Pardmetro

e Actualizacidon: Se realiza la propagaciéon hacia atras, es decir, se calcula el tensor
gradiente de la funcién del error global, para cada uno de los pardmetros de la red y
asi poder actualizarlos.

Este procedimiento se realiza con cada una de las simulaciones de entrenamiento. Una
vez que se haya realizado la vuelta completa se habra completado una época o también
llamado en inglés epoch.

Se itera el algoritmo sobre un nimero determinado de iteraciones. Este numero
depende de la dificultad del sistema que se estd modelando.
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Zn Anet, Bnel Zn+i(net) I_data
> Net »| GENERIC p| Compute Loss
error
e = W, b At’ L’ M Zn+1(GT) Lreg
6 - Ir(3L/30)

Figura 2.3 Esquema general SPNN

2.3 Variaciones de la SPNN

Respecto al esquema general de la SPNN, como se muestra en la figura 2.4, se realizaran

dos cambios para adaptarla al problema concreto:

e Red: Este cambio permite a la red alternar entre:
o ANN, red neuronal artificial basica:
- Modelo determinista: siempre realiza la misma prediccién ante una misma
entrada.
o BNN, red neuronal bayesiana
- Modelo estocastico: se puede muestrear el modelo para asi analizar su
incertidumbre.

e Aprendizaje de L y M: El modelo alternard entre suponer las matrices L y M entre
conocidas y desconocidas.
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Ldegen
Zn Anel, Bne1 Zn+1(net) Lda|a
»1 ANN »] GENERIC »l SSE Loss
ea A‘t, L, M Znﬂ(GT) Lreg
8’ =0-Irhs
Se actualizan los parametros de la red
Figura 2.4 Esquema ANN sin aprender matrices Ly M
Ldegen
Zn Anet, Bnel, Lnet, Mnet Zrm(net) Ldata
»| ANN > GENERIC »| SSE Loss
8: A‘t Zn+1 (GT) Lreg
0’ =8-Ir"Ae

Se actualizan los parametros de la red

Figura 2.5 Esquema ANN sin aprender matrices Ly M

2.3.1 Red neuronal bayesiana

La pérdida global para minimizar en las redes neuronales bayesianas hay que afiadirle el
error de la divergencia de Kullback Liebler entre la distribucién a posteriori y la
distribucién aproximada.
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P, D)
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Se actualizan los parametros de la red

Figura 2.6 Esquema BNN sin aprender matrices Ly M

P@®, D)

l

Y

KL divergence
Legen
Distribucién aproximada de q(6)
la distribucion posterior siendo 8 = N(p, )
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Figura 2.7 Esquema BNN aprendiendo matrices Ly M

2.4 Comparacion de estructuras

Para la correcta comprensién de las redes SPNN se comparan los resultados de ambos
tipos de redes en un ejemplo de validacién presentado en el articulo structure-
preserving neural networks ™. E| articulo sélo presenta resultados basados en una red
neuronal artificial con las matrices L y M definidas. En la comparaciéon se realizan
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comprobaciones en los dos casos presentados: conociendo L y M, y sin ser conocidas.
Estas dos casuisticas se evaluaran con redes SPNN- ANN y SPNN- BNN.

2.4.1 Caso base: aprendizaje de la dinamica del péndulo doble

En este apartado se hardn dos entrenamientos, aprendiendo las matrices Ly M y dando
como entrada de GENERIC las matrices.

En la tabla 2.1 se muestran los parametros usados para el entrenamiento de las redes

neuronales, aunque posteriormente seran modificados para ver como reaccionan ante
cambios llevando las redes al limite. La descripcién de los pardmetros se puede ver en el

anexo B.
Parametros BNN ANN
max_epoch 1500 1500
train_percent 80% 80%
Ir le-3 le-3
hidden_vec [50, 50, 50, 50, 50] [50, 50, 50, 50, 50]
miles [500, 700, 1200, 1400] | [500, 700, 1200, 1400]
gamma 5e-1 5e-1
lambda_r 1le-05 1le-05
lambda_d 4e5 4e5
lambda_deg 1 1
lambda_kl le-2 -
n_samples 5 -
n_samples_ELBO 3 -
Cl 95% -
net_init - kaiming_uniform

Tabla 2.1 Configuracidn de simulacién en condiciones normales

2.4.1.1 Simulacion sin aprender matrices Ly M

Para la comparacidn de los resultados se muestran los diagramas de caja en la figura 2.8.
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Figura 2.8 Grafica de diagramas de caja del error medio de todas las
variables de estado. No aprenden matrices Ly M.

Si se analizan los errores generados por cada tipo de red las ANN son mas precisas ya
gue sus errores son menores que las redes BNN.

Para este primer caso se mostrardn las graficas de test de las dos redes para comparar
visualmente los resultados.
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Figura 2.10 Trayectoria del test. Red BNN.

Intervalo de confianza: 95%

Lo mas importante de esta grafica, y que también ocurrird en las siguientes, es el

ensanchamiento del intervalo de confianza conforme avanza la simulacion. Esto es

debido a que cuanto mayor sea el tiempo de simulacidén, mayor es el error acumulado, y

aumentara asi la probabilidad de un desvio de la prediccidon con el problema real.
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2.4.1.2 Simulacion aprendiendo también matrices Ly M

Se utilizan los mismos parametros que para el caso anterior, pero ahora ya no es
necesario estudiar el sistema para obtener las ecuaciones que lo rigen. Esta ventaja es
notoria debido a que solo se necesitan datos, aunque hay que predecir mas operadores.
La pregunta es:

¢Se deteriora la soluciéon?

Si la respuesta a la anterior pregunta es, si ¢Cudl es la magnitud del error? ¢Justifica la
deduccidn de todas las restricciones del sistema?

Los resultados de esta simulacidn se muestran en la figura 2.11.

10°

101

102

Error MSE

103

104

T T T T
ANN_Train ANN_Test BNMN_Train BNMN_Test

Figura 2.11 Grafica de diagramas de caja del error medio de todas las
variables de estado. Se aprenden matrices L y M. 1500 epoch.

Como se aprecia en la figura 2.11 el diagrama de caja de la red ANN en la etapa de
entrenamiento no aparece. Esto es debido a que con estos pardmetros la red ANN no es
capaz de predecir todo el dataset de entrenamiento. Los resultados van acumulando
demasiado error hasta que llega un punto en el que el resultado de la red es infinito. Sin
embargo, la red BNN es mas estable.
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Antes de realizar otra simulacién cambiando los pardmetros para poder tener una
comparacion entre redes ANN y BNN, se hace una comparacion de las redes que no

estaban aprendiendo las matrices L y M (figura 2.8) con las que si que aprenden (figura
2.11).

No se deteriora la solucién para las redes BNN, aunque Ly M no sea conocido.

En cambio, para las redes ANN si que hay empeoramiento notable ya que la precision
desciende a razén de un orden de magnitud.

Para poder comparar las dos redes se decide realizar otro caso aumentando las épocas
de entrenamiento hasta que las ANN arrojen un resultado en la etapa de
entrenamiento. La red ANN a partir de las 4000 épocas predice adecuadamente todos
los casos de simulacion. Después se simula la red BNN con 4000 épocas y asi se puede
comparar en igualdad de condiciones tal y como se aprecia en la figura 2.14.

100 4 |

lo—l 4

10—2 4

Error MSE

10—3 4

104 5

10—5 i

T T T T
ANN_Train ANN_Test BNM_Train BNM_Test

Figura 2.14 Gréfica de diagramas de caja del error medio de todas las
variables de estado. Se aprenden matrices L y M. 4000 epoch.

Analizando los resultados se ve como las ANN ya no llegan a tanta precisién como en el
caso de que L y M sean conocidos. Sin embargo, las BNN no mejoran, aunque se
aumenten las iteraciones de entrenamiento.

2.4.2 Base de datos reducida

Se espera que, si la red es forzada a ser entrenada con los minimos datos posibles, las
redes bayesianas presenten mejores resultados gracias a su enfoque probabilistico.
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Los parametros utilizados seran los mismos que en la tabla 2.1, pero se entrenard con
menos datos. Esto implica que ahora se eliminardn varias trayectorias del dataset de
entrenamiento y se pasaran a la fase de test, por lo que evaluardn muchas mas
trayectorias que no se han visto antes.

Parametros ANN BNN

train_percent 40% 40%

Tabla 2.2 Configuracidn de simulacidn con dataset reducido

2.4.2.1 Simulacion sin aprender matrices Ly M

Para la comparacién de los resultados se muestran los diagramas de caja en la figura
2.15. En este caso soélo se incluyen los diagramas de caja de la BNN porque las ANN no
han sido capaces de extraer un resultado.

La mayor parte de las trayectorias de entrenamiento tienden a infinito, por lo que se
puede concluir que las redes BNN cuando tienen menos datos se comportan mucho
mejor.

100 4

1071 4

10—2 4

Error MSE

10—3 4

1074 4

T T T T
ANN_Train ANN_Test BNN_Train BNN_Test

Figura 2.15 Grafica de diagramas de caja del error medio de todas las
variables de estado. Dataset reducido. 40% del dataset de entrenamiento

En la figura 2.16 se muestra la precisidon de las redes BNN en el caso de reducirse el
porcentaje de entrenamiento al 30%. Comparando la figura 2.16 con la 2.15 si que se
aprecia una disminucidn de precision.
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Figura 2.16 Gréfica de diagramas de caja del error medio de todas las
variables de estado. Dataset reducido. 30% del dataset de entrenamiento
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3 Aplicacion de redes neuronales a SHM

Una vez se comprueba el funcionamiento de las redes neuronales bayesianas en el
ejemplo del péndulo doble se procede a la aplicacidon de monitorizacién estructural a un
ejemplo tipico en el campo de la mecanica de medios continuos.

3.1 Metodologia

Con el fin de poder adaptar el ejemplo estructural a la red se decide eliminar el término
entropia del formalismo GENERIC. Esto es debido a que el problema es elastico lineal, no
hay fendmenos disipativos. Es decir, ya no existen irreversibilidades que deba aprender

la red neuronal.

Otra consecuencia de no tener término disipativo es que no es necesario aplicar las
condiciones de degeneracidn. Las Unicas dos condiciones son la aplicacién del esquema
GENERIC, y asegurar que L es semidefinida positiva. Por lo tanto, el formalismo se va a
cumplir por construccion. En consecuencia, la ecuacion (1.8) se transforma en la
ecuacién (3.1):

(3.1) Zpi1 =2z, + At (L-Azy,)

3.1.1 Creacion de la base de datos

La base de datos se crea mediante simulacion computacional en un software comercial
de elementos finitos para obtener datos pseudo-experimentales. Se define una unica
geometria con unas condiciones de contorno concretas y un Unico caso de carga. El
objetivo es caracterizar el problema bajo estas condiciones para que, al cambiar las
propiedades del material, se pueda detectar los fallos de la estructura.

Es importante destacar que se crean dos modelos de elementos finitos:

e Modelo con mismo mdédulo de Young: modelo que representa una estructura sin

fallos.
e Modelo con dos regiones con médulo de Young diferente: Misma estructura que la

anterior, pero se le afiade una regién con un médulo de Young diferente.

3.1.2 Entrenamiento del modelo. Gemelo digital

El entrenamiento del modelo estructural es similar al del péndulo doble.

Primero se entrena el modelo con la base de datos que posee un mismo médulo de
Young. En este caso, el modelo ya seria capaz de predecir la evolucién de las variables
de estado y mddulo de Young en cualquier punto de la estructura, incluyendo los que no
estan presentes en el entrenamiento.
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Esto constituye el gemelo digital de la estructura, es decir, un modelo virtual capaz de
replicar el comportamiento fisico de la estructura.

En cambio, si ahora se introduce la base de datos del modelo con el fallo estructural se
observa cémo no predice correctamente su comportamiento, por lo que el gemelo
requiere una actualizacidon que permitira analizar a que se debe el cambio detectado. En
caso de aplicarlo practicamente se requiere conocer la ubicacion del fallo ya que en
base a los resultados ya se intuye que el fallo existe.

3.1.3 Desarrollo del gemelo hibrido

El cambio de comportamiento se asocia a un posible fallo en la estructura. Para poder
establecer la localizacion del fallo se introducira el concepto de gemelo hibrido. El
gemelo hibrido es una evolucion del gemelo digital. Este es capaz de adaptarse a los
cambios del sistema real cuando detecta una anomalia. La clave esta en la conexidn del
gemelo hibrido en tiempo real con las fluctuaciones de la estructura que permiten
ajustar su comportamiento y enriquecer la aproximacion existente.

En términos matematicos el gemelo hibrido consistiria en sumar al gemelo digital el
error que esta cometiendo. Por lo tanto, para poder crear este gemelo hibrido se debe
de crear otra red que solo se encargue de aprender sobre el error cometido por el
gemelo digital.

(32) ZGH =ZGD+ZE
Siendo:

e Z.y: Datos predichos por el gemelo hibrido.
e Z.p:Salida de la primera red neuronal (Gemelo Digital).
e Z:Salida de la segunda red neuronal que solo predice el error.

Para poder seguir con el desarrollo del gemelo hibrido solo se estudian unos pocos
nodos repartidos uniformemente en la estructura como si fueran sensores reales.

Estos sensores sirven para hacer un seguimiento del comportamiento de la estructura.
Primero se compara la prediccion de la primera red con las medidas de los sensores. En
este punto se vera una desviacién entre las mediciones y las predicciones, dando lugar a
una base de datos de errores que se empleara para entrenar la segunda red.

Posteriormente se trata de crear una segunda red que consiga aprender el error de cada
variable para poder sumarselo a la prediccidn de la primera red y asi conseguir una
prediccidn correcta.

(33) ZE :ZGT_ZGD
(3.4) Zy = LVE(Zy)
(3.5) Zsr = LVE(Z;p) + LVE(Zp)
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(3.6) E,n+1At En _ LDE(Z;)

Gemelo hibrido
Gemelo digital

Se
predice
correctamente el
modulo de
Young

Termina el
problema

Base de datos
del modelo

Prediccion red 1

Creacion de la
base de datos
de error

Prediccion red 2

Termina el Prediccién final
problema (error)

Figura 3.1 Esquema gemelo digital/hibrido

3.2 Implementacion: Placa apoyada-empotrada

El ejemplo elegido para poder desarrollar la técnica del SHM va a ser un problema tipico
de la mecdnica del sélido deformable, una placa apoyada - empotrada. Se trata de una
placa cuadrada 2D apoyada en los laterales y empotrada en su base, ilustrada en Ia

figura 3.2.

Tal y como se ha comentado se crean dos modelos. En la figura 3.2 se observa el modelo
sin fallo y en la figura 3.3 se aprecia en gris la zona con el fallo.

Se le ha asignado un moddulo de Young de 200.000 MPa. En cambio, para la zona

afectada por el fallo se le ha reducido a un mdédulo de Young de 100.000 MPa. Se

entiende como un modelo ideal.



Escuela de
Ingenieria y Arquitectura

Universidad Zaragoza

7 junio 2023 - Pdg 28

P =5000 MPa
7 > <t
5By <B
L =500 mm g> <B
> <B
e 7 7 7 7 7 7 7 7 7 7 <B
\||\ *
L =500 mm
Figura 3.2 Esquema placa apoyada-empotrada sin fallo.
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Figura 3.3 Esquema placa apoyada-empotrada con fallo.

145 mm
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3.2.1 Modulo de Young

Para poder determinar el fallo se debe de conocer el médulo de Young y este debe ser
despejado de las ecuaciones de comportamiento.

Para describir el estado de deformaciones y tensiones se parte de:

(3.7) Ox Txy Txz Ex Exy Exz
Txz Tyz Oz €xz Eyz €z

Debido a que se trata de una placa en 2D y que las caras perpendiculares son libres se
estd trabajando con un problema de tension plana.

(3.8) O = Tyz = Tyy = 0

Ademads, en la direccidn x no se puede estirar el sdlido debido a que se encuentra entre
dos apoyos.

(3.9) & =0

Escribiendo la ecuacion de Hooke de un sélido de 3 dimensiones y un material isétropo
para las direcciones principales:

(3.10) ox —v(oy + 0,)
£, =
x E
(3.11) gy —v(oy + 0,)
E =
y E
(3.12) e — Oz — V(Ux + O-y)
d E
Simplificando la ecuacién (3.10):
(3.13) 0= Ox —V "0y
E
O-X
v=—
Oy

Por ultimo, simplificando la ecuacion (3.11) se obtiene el médulo de Young:

(3.14) 0,2
Oy ———
Oy
E =
&y
Siendo:

* & Deformacién vertical de la placa
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* Oy Tensidn vertical de la placa, en el caso de no haber ningun fallo serd constante y
equivaldra a la presion impuesta en el problema, 0, = —P

e 0,:Deformacion horizontal de la placa

3.3 Resultados

En primer lugar, se mostraran los resultados de la placa entrenada con la red ANN y
posteriormente se estudiard la red BNN. Por ultimo, se compararan los resultados en
forma de diagramas de caja.

3.3.1 Red ANN

Primero se entrena el modelo capaz de simular la placa sin ningun fallo. La red se define
con los siguientes parametros:

Parametros ANN

max_epoch 2300

train_percent 80%

Ir le-2
hidden_vec [60, 60, 60, 60]

miles [700, 1000, 1200, 1600,
1900, 2100]
gamma 0.35
lambda_r le-05
net_init kaiming_uniform

Tabla 2.1 Configuracion del modelo de la red ANN
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Resultados de la placa sin fallos:

Mapa del médulo de Young
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Figura 3.3 Mapa del mdédulo de Young de la placa sin fallo. Gemelo digital.

Mapa del error relativo del médulo de Young
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Figura 3.4 Mapa del error relativo del mddulo de Young de la placa sin fallo.
Gemelo digital.

Como se puede comprobar en los mapas, la red es capaz de predecir el médulo de
Young de la placa con una precisién adecuada. El resto de los resultados respecto a las
otras variables de estado pueden encontrase en el anexo C.
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Mapa del médulo de Young
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Figura 3.5 Mapa del mdédulo de Young de la placa con fallo. Gemelo digital.

En la figura 3.5 se observa como la red entrenada para la placa sin fallo no es capaz de
predecir correctamente el comportamiento de la placa con el fallo.

En el caso de que se estuviera aplicando a una estructura real para poder conocer la
existencia de un fallo no se dispondria de la grafica con los datos reales (Figura 3.5,
Abaqus) por lo que no se podria comparar. Sin embargo, si que es conocido cual es el
modulo de Young del material asi que seria facilmente identificable la existencia de un
fallo ya que devuelve valores extremadamente altos del médulo de Young para el
material estudiado.

Ahora se conoce la existencia de un fallo en la placa, pero no se sabe el lugar del mismo.
Se parte de las mediciones en la nueva placa que se supone han sido realizadas
mediante sensores. Las mediciones se realizan en 40 puntos distribuidos de manera
uniforme como se muestra en la figura 3.6.

Para este caso en concreto se dispondrda de una malla de 40 nodos distribuidos
uniformemente, figura 3.6. Se va a entrenar con el 100 % de los nodos y después se
comprobara la precision del gemelo hibrido con otra base de datos mas amplia.



-|1 Escuela de
' Ingenieria y Arquitectura
Universidad Zaragoza Redes bayesianas informadas por la fisica aplicadas a sistemas estructurales

7 junio 2023 - Pdg 33

500 - - - - -
. ]
400 b ] . . .
] ]
300 | . . [ .
]
200 4 L] . L] .
]
100 p . . @ . L
0 - - - -
0 100 200 300 400 500

Figura 3.6 Mapa de puntos entrenados para completar el gemelo hibrido.

Después del entrenamiento de la segunda red se obtienen los siguientes resultados.
Para hacer el cdlculo del médulo de Young anteriormente se suman las variables de
estado de la red del gemelo digital y la red que predice errores de la red. Siguiendo la
ecuacion (3.2).
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Figura 3.7 Mapa del médulo de Young de la placa con fallo. Gemelo hibrido.
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continuacion, se analiza el comportamiento del gemelo hibrido en una malla con mayor

discretizacidon, compuesta por 827 nodos dispuestos como se muestran en la figura 3.9.
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resultados se obtienen unas buenas tolerancias de error.

Figura 3.9 Mapa de puntos para testear el gemelo hibrido.
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Mapa del médulo de Young
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Figura 3.10 Mapa del mddulo de Young de la placa con fallo. Gemelo
hibrido. Test.
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Figura 3.11 Mapa del error relativo del mddulo de Young de la placa con
fallo. Gemelo hibrido. Test.

El error queda perfectamente localizado, y la prediccién del médulo de Young es precisa
en la mayor parte de la placa, estando el error entorno a un +/- 3%. Sin embargo, se

aprecia un error mayor de manera puntual en la transicion entre la zona de fallo y el
resto de la placa.

Esto puede deberse al cambio brusco del médulo de Young. Las redes neuronales son
capaces de generalizar para que cuando se presenten datos que no han visto todavia
puedan adaptarse a ellos. En este caso hay una discontinuidad muy evidente por lo que
en la parte de la frontera genera un cambio gradual en vez de una discontinuidad.
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3.3.2 Red BNN

Los hiperparametros de la red que modela la placa sin fallos en la red neuronal
bayesiana son:

Parametros BNN
max_epoch 1300
train_percent 80%
Ir le-2
hidden_vec [30, 30, 30]
miles [200, 400, 600, 750,
900, 1000, 1100, 1200]
gamma 0.5
lambda_r le-05
lambda_d 1e09
lambda_kl le-2
n_samples 5
n_samples_ELBO 3
Cl 95%

Tabla 2.2 Configuracidn del modelo de la red BNN

A continuacidn, se muestran los resultados de la red bayesiana para la placa sin fallos:
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Figura 3.12 Mapa del médulo de Young de la placa sin fallo. Gemelo digital.
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Sin embargo, como se trata de una red bayesiana se puede conocer los valores del
moddulo de Young en un intervalo de confianza. A continuacién, se muestran los
resultados para un intervalo de confianza del 95%:

Mapa del médulo de Young

Limite superior

228667

226546

224425

222304

220183

218062

215942

Abaqus Net

213821

211700

209579

[MPa]

207458

Coordenadas en y [mm]
Coordenadas en y [mm]

205337

203217

Coordenadas en x [mm] Coordenadas en x [mm]

201096

Limite inferior

198975
196854
194733
192612
190491

188371

Figura 3.13 Mapa del médulo de Young de la placa sin fallo. Intervalo de
confianza al 95%. Gemelo digital.
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Mapa del error relativo del médulo de Young
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Figura 3.14 Mapa del error del mdédulo de Young de la placa sin fallo.
Gemelo digital.
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Mapa del error relativo del modulo de Young
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Figura 3.15 Mapa del mdédulo de Young de la placa sin fallo. Intervalo de
confianza al 95%. Gemelo digital.
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El error cometido en el médulo de Young por la red bayesiana es un poco mayor, pero a
cambio también se obtiene un intervalo de confianza y asi se puede vincular al grado de
certeza de cada valor predicho.

Tras numerosos intentos para que la red bayesiana aprenda el segundo modelo y asi
pueda completar el gemelo hibrido no se consigue entrenar un modelo estable. Para
ninguna configuracién de los pardmetros de la red. Esto se puede deber a dos factores:

e Error excesivamente pequefio para el segundo modelo del gemelo hibrido.
e Poca informacién para que asi pueda generalizar y asi poder encontrar un gradiente
adecuado.

En la figura 3.16 se observa una zona en la esquina derecha superior con un médulo de
Young mads bajo por lo que si que se podria localizar el fallo. Pero el error relativo
cuando se compara con los datos esperados es muy grande, figura 3.17.
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Figura 3.16 Mapa del médulo de Young de la placa con fallo. Gemelo
hibrido.
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Mapa del error relativo del mdédulo de Young
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Figura 3.17 Mapa del error relativo del médulo de Young de la placa con
fallo. Gemelo hibrido.

3.3.3 Comparacion gemelo digital en ANN y BNN

Para poder hacer una comparacion directa entre las dos redes se generan los diagramas
de caja del error cometido por las redes en el entrenamiento y en la prueba.
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Figura 3.18 Diagrama de cajas de la red ANN y BNN para la placa sin fallo.

Las redes bayesianas son ligeramente mas precisas en cuanto a las variables que
predicen.
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4

Conclusiones

Para todos los modelos generados en el presente trabajo de fin de grado se puede

confirmar que las redes neuronales convencionales son mas precisas que las redes

neuronales bayesianas. La diferencia entre ambas es minima asi que no se considera

una gran ventaja a favor de las redes convencionales.

En cambio, las redes bayesianas a costa de la pérdida precisién si que traen ciertas

ventajas muy notables:

4.1

Robustez frente a bases de datos ruidosos: Se demuestra cémo las redes

convencionales son menos precisas cuando se trabaja con ruido. Ademas, en un
sistema como GENERIC se acentua la acumulacion de error porque cada iteracion
depende de la anterior, lo que provoca que en muchos casos la red ANN prediga
valores inestables. En cambio, para las BNN, aunque se reduce la precisidon siempre
sigue la tendencia general de cada variable de estado.

Cuantificaciéon de la incertidumbre: Poder cuantificar la incertidumbre permite

valorar la confianza en el modelo, y, aunque la red realice una prediccion adecuada,
si la incertidumbre es grande es posible que se descarte por no ser lo
suficientemente fiable.

Futuras lineas de trabajo

Algunas lineas futuras de investigacion son:

Progresion a problemas 3D: Un problema con una dinamica mds rica, ademas de
suponer un avance en la simulacién, experimentaria mayores variaciones que quiza,
por las limitaciones numéricas de precisidon, seria mas facil captar de cara al
aprendizaje con una red neuronal bayesiana.

Moddulo de Young menos acusado: Sustituyendo esta discontinuidad por una mucho
mas suave podria ayudar a aprender de forma mas eficiente los pardmetros de la
red.

Ante variaciones pequeiias, se debera explorar la normalizaciéon o tratamiento de
datos necesario para poder aprender este tipo de problemas.

Introduccion de ruido en los problemas de SHM: La introduccién de ruido en
problemas de SHM permite asemejarse a problemas reales.
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5 Glosario de abreviaturas

e TFG: Trabajo de Fin de Grado

e SPNN: Structure-Preserving Neural Networks
e |A: Inteligencia Artificial

e SHM: Structural Health Monitoring

e BNN: Bayesian Neural Network

e ANN: Artificial Neural Network

e KL: Kullback-Leibler

e Ir: Learning Rate o tasa de aprendizaje

e GENERIC: General Equation for the Non-Equilibrium Reversiblelrreversible Coupling
e ELBO: Evidence Lower BOund

e RelU: Rectified Linear Unit

e GT: Ground Truth

e MSE: Mean squared Error

e GD: Gemelo Digital

e GH: Gemelo Hibrido
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