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Anexo A: Fundamentos tedricos

Las redes neuronales son modelos computacionales basado en el funcionamiento
biolégico de las neuronas permitiendo asi la clasificacion y prediccién de datos. En el
caso de este trabajo, el desarrollo y programacion de las redes se fundamentara en el
Teorema de Bayes para dar un enfoque estocastico al aprendizaje.

1. Teorema de Bayes

La base en la que se sustentan las redes neuronales bayesianas, como su propio nombre
indica, es el Teorema de Bayes. El Teorema de Bayes se presenta como:

P(D|8)P(6)

(A.1) P(OID) ==

Siendo:
P(6|D): Probabilidad a posteriori (o posterior)
P(D|8): Probabilidad condicionada o verosimilitud (o likelihood)
P (6): Probabilidad a priori (o priori)
P(D): Probabilidad marginal (o evidence)

La probabilidad de los datos, debido al teorema de la probabilidad, se aproxima como la
suma asi que se transforma como la integral al ser un término continuo.
P(D|0) P(6)

El Teorema de Bayes ajusta las distribuciones de probabilidad de los pardmetros gracias
a los datos. Es decir, siempre se parte de una creencia inicial conocida de los
parametros (priori) y mediante el teorema de bayes se actualiza a la distribucion
posterior.

distribucién priori — datos — distribucidn posterior

El problema de este enfoque reside en el cdlculo de la evidencia, ya que no es posible
calcular su integral porque la solucién no es analitica y, ademads, su complejidad
aumenta conforme crece la profundidad y los parametros de la red.

Las variaciones de 6 solo afectaran a los términos P(D|0) y P(0)

(A.3) P(6|D) « P(D|0) P(0)

2. Divergencia de Kullback-Leibler®™

Dada la inviabilidad del calculo de P(D) = [ P(D|6) d@, se debe encontrar una manera
alternativa de conseguir la distribucién de la posterior. Esto se consigue mediante la
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aproximacion de la posterior como una nueva funciéon que es ajustada mediante un
proceso de optimizacién.

(A.4) q(0) =~ P(6|D)
Siendo:
q(8): Aproximacién de distribucidn de probabilidad
P(6|D): Probabilidad de la posterior

Por lo tanto, para poder conseguir que esta aproximacién sea valida, se necesita un paso
intermedio donde validar cdmo de parecida es la distribucién posterior a la
aproximacion propuesta.

La Divergencia de Kullback-Leibler (Divergencia de KL) establece una forma cuantitativa
de medir la “distancia” entre dos distribuciones de probabilidad. Si el resultado de la
divergencia es nulo, entonces las dos distribuciones son idénticas. Por lo tanto, el
objetivo serd minimizar la divergencia. La divergencia de KL se puede expresar como:

(A.5) KL(q(6) || P(6]D)) = E(Inq(8)) —E(In P(6|D))

Para tener un buen contexto de la divergencia de KL es importante conocer algunas de
sus propiedades:

e No es simétrica:

(A.6) KL(q(6) | P(6]D)) # KL(P(6|D) || 9(6))

e Siempre es positiva:

(A.7) KL(q(6) 1| P(6]D)) > O

Siguiendo con el desarrollo de la divergencia de KL, en la ecuacidon (A.8) vuelve a
aparecer el término E(In P(8|D)), que no se puede resolver.

(A.8) KL(q(8) || P(8]D)) = E(Inq(#)) — E(In P(6, D)) + In P(D)

3. ELBO (Evidence Lower BOund)®™

Modificando la ecuacién (A.8) aparece la funcién llamada “limite inferior de la

evidencia” o también llamada en inglés Evidence Lower BOund (ELBO) que transformara
el problema en uno de optimizacidn:

(A.9) KL(q(®) || P(6]D))

E(Ing(6)) —E(InP(6|D))
= E(Inq(6)) — E(n P(6, D)) + In P(D)

_ _(InP(6.,D)
= (—lnq(e))+lnP(D).

Reorganizando la ecuacién (A.9):
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InP(6,D)
Inq(6)

(A.10)

ELBO = IE( ) — InP(D) — KL(q(6) || P(8]D))

Ahora el problema de optimizacién se convierte en la maximizacion de la ELBO para
poder minimizar la divergencia de KL entre las dos distribuciones, que es el objetivo
principal. Al maximizar la ELBO también se estd maximizando la evidencia In P(D).
lnP(B,D))
Inq(0)

Una vez que termina el problema de optimizacidon se obtiene la distribucion de la

A1l
( ) argmax ELBO = argmax [E(

aproximacion a la posterior q (6 *).

Una posible interpretacion grafica para el problema de optimizaciéon de la ELBO
quedaria reflejada en la figura (A.9). Se observa cdmo la distribucion aproximada trata
de minimizar su divergencia de KL hasta que ya no se lo permite su dominio.

P(8, D)
o Q

minimum KL divergence

Figura A.1 Representacion grafica ELBO

Siendo:

e Q: Dominio de las distribuciones aproximadas q(6)
e (0 *): Distribucion aproximada optimizada

e q(6B;ni): Distribucion aproximada inicial

e P(6,D): Distribucion real

4. Redes neuronales

Las redes neuronales son modelos matematicos inspirados en las conexiones neuronales
humanas. Estos modelos tienen la capacidad de aprender por si solos a través de
informacién que se muestra (bases de datos) y asi poder predecir resultados con datos
qgue no habian visto anteriormente.

Este tipo de modelos tienen una ventaja muy importante ya que no hay que
preocuparse de programarlos explicitamente para poder resolver un problema. A la vez
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esto tiene otra gran desventaja y es que una vez que se tiene el modelo no se ha
conseguido dar una explicacién a los resultados, por lo tanto, muchas veces son
impredecibles.

A continuacién, se comentaran las dos redes neuronales que se van a tratar en este
trabajo, las redes neuronales artificiales y las redes neuronales bayesianas.

4.1.Redes neuronales artificiales

Las redes neuronales artificiales también llamadas Artificial Neural Network (ANN) son
modelos deterministas ya que ante una misma entrada siempre se le asocia una salida.

Para poder entender mejor la estructura de las ANN conviene fijarse con mayor detalle
en la unidad mas basica, la neurona artificial. El nombre que recibe no es casualidad y
ésta, al igual que la neurona bioldgica tiene unas conexiones de entrada y otras de
salida.

Cada neurona esta compuesta de unos pesos (w) y unos sesgos o bias (b), que son
parametros de la neurona y se actualizan durante la etapa de entrenamiento de la red.
El procesamiento de informacidén en una neurona se expresa como una suma ponderada
de los pesos mas el término bias:

(A.12) ;= Z wix; +b
i

Siendo:
i: nUmero de entradas
x;: dato de entrada en la neurona
w;: peso
b: sesgo

Para la salida de la red se le puede afiadir una funcién no lineal, esta es llamada funcién
de activacién. Tiene la funcién de introducir no linealidades para aprender relaciones y
patrones complejos.

A.13
(A-13) y =)= wixi +b)
L
En la figura A.2 se muestran algunas de las funciones de activacién mdas comunes y que

ademas son detalladas a continuacion:

e Escalén: La funcidn de activacion escaldn, también conocida como funciéon de paso,
asigna un valor de salida de 1 si la entrada es mayor o igual a cero, y un valor de
salida de 0 en caso contrario. Puede ser util para problema de clasificacién binaria.
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e RelU: llamada asi por su nombre en inglés “Rectified Linear Unit”. Es la funcién mas
utilizada para las redes neuronales. Mapea los valores negativos a cero y mantiene
los valores positivos sin modificar.

e Sigmoide: también conocida como funcién logistica, transforma los valores de
entrada enunrangoentreOy 1

e Softmax: se utiliza comunmente en problemas de clasificacion multiclase.

Sigmoid RelLU
1.0 10
0.8 - 8
0.6 - 6
N N
= =
0.4 44
0.2 2+
0.0 0+
T T T T T T T T T T
-10 -5 0 5 10 -10 -5 0 5 10
z z
Funcion Escalon Softmax
1.0
0.175 -
0.5 0.150 -
0.125 -
0.6
_ | 0.100
™~ ™~
= =
0.4 1 0.075 4
0.050 -
0.2
0.025 -
0.0 0.000 -
-10 -5 0 5 10 -10 -5 0 5 10
z Z

Figura A.2 Funciones de activacion

A su vez la neurona se puede agrupar en varias neuronas formando la estructura
llamada capa. Por Ultimo, las capas se agrupan y asi forman la red neuronal. Se
diferencian 3 tipos de capas dentro de la red neuronal:

e C(Capade entrada
e (Capas ocultas
e C(Capade salida
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Capa de entrada Capa oculta Capa oculta

8%%%8 Capa de salida
AR A ZRE O
Q; ;Q; ;O

Figura A.3 Capas de lared

Cuanto mayor es el nimero de capas ocultas mayor es la complejidad de la red. Esto
hace que se adapte mejor a funciones complicadas. Sin embargo, aumentarlas en
exceso puede provocar sobreajuste o también llamado en inglés overfitting.

Para poder predecir un resultado (forward pass) se procesan los datos a través de cada
una de las neuronas de la red como aparece en la figura A.3. Por ultimo, la capa de
salida proporciona un resultado que sera la prediccidon de nuestro modelo.

Para poder optimizar la red debemos anadir una funcién de coste para que evalue el
error que estamos cometiendo en cada prediccion que se realiza con la red. El mas
comun y que ademas sera utilizado en el proyecto es el error medio cuadratico o mean

squared error (MSE):

A.14 O .

( ) MSE = — Z i — 91)°
n i=1

Siendo:

n: Numero de muestras
y;: Prediccion del modelo o salida de la red
y;: Etiqueta de los datos de entrada

El error obtenido se propaga en sentido contrario (hacia atrds, llamado Backward
propagation) para asi poder modificar los pardmetros convenientemente. Para
determinar la penalizacién que debemos usar para cada uno de los parametros 6 se
hace uso de las derivadas parciales. La técnica consiste en derivar la funcién de coste
respecto a cada uno de los parametros para poder encontrar el error proporcional que

. . aL . ., .
ha realizado cada pardmetro Y Conocer el gradiente de la funcién de coste en funcién

de sus parametros se puede asemejar a conocer la direccidn en la que cada parametro
deberia de cambiar para poder minimizar la funcién de coste.
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Para poder minimizarla de forma controlada se hace uso de un hiperparametro llamado
tasa de aprendizaje o learning rate (Ir).

(A.15) oL
Oiv1 = 0; +ax 20,

Siendo:
L: Funcién de coste
0;: Parametro en iteracion i
« : Tasa de aprendizaje

Cuando se realiza esta operacién numerosas veces se llega al minimo de la funcién de
coste. A veces no tiene por qué alcanzar el minimo global y se puede atascar en un
minimo local. En la figura A.4 se muestra como con el mismo nuimero de iteraciones,
pero diferente tasa de aprendizaje se fuerza a que el modelo llegue a un minimo local.

Se observa como el ante un learning rate mas alto (figura A.4 a) se puede evitar mas
facilmente los minimos locales que con uno mas bajo (figura A.4 b).

(a) (b)

L(x)
L(x)

T T T T T T T T T T T T T T T T T T
-2.0 =15 -1.0 -0.5 0.0 0.5 10 15 2.0 -2.0 =15 -1.0 =0.5 0.0 0.5 10 15 2.0

Figura A.4 Optimizacion global vs local

En la figura A.5 se aprecia la importancia de este hiperparametro. Con un ejemplo tan
sencillo como el citado es facil de explicar los 3 posibles casos que nos pueden aparecer
en el entrenamiento de una red neuronal. Para poder realizar una buena comparacion
se realiza el mismo numero de iteraciones:

e Learning rate alto, figura A.5.a: No llega a alcanzar el dptimo porque el paso que se

da es demasiado grande, se alcanzan optimos inestables. Se debe de reducir el
learning rate.
e Learning rate bajo, figura A.5.b: En este caso, el learning rate es demasiado bajo y el

algoritmo de descenso del gradiente da pasos pequefios en cada iteracién. Esto
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puede llevar a una convergencia lenta y a quedar atrapado en minimos locales en
lugar del minimo global. Se debe de aumentar el learning rate.

e Learning rate éptimo, figura A.5.c: Se encuentra el learning rate adecuado para el

problema, el minimo encontrado no es inestable, se adapta en todo momento al
gradiente de la funcién de coste y alcanza el minimo global.

(a) (b) ()

~ 15 4 1541

- 10 10 4

Ltx)
L(x)

Figura A.5 Parametrizacion del learning rate

4.2.Redes neuronales bayesianas

Las redes neuronales bayesianas o bayesian neural network (BNN) se basan en las ANN.
La gran diferencia es que las BNN estan basadas en un modelo probabilistico.
Concretamente los pesos de las neuronas ya no se tratan como numeros fijos que se
aprenden, sino que pasan a ser distribuciones de probabilidad.

Este enfoque le aporta nuevas ventajas:

e Aparicién de la incertidumbre: Debido a que el modelo es estocastico (ante una

misma entrada la salida es diferente debido a la introduccién de la aleatoriedad) se
puede realizar varias predicciones del modelo y asociar una incertidumbre a cada
prediccidn. Esta caracteristica es muy importante ya que se sabe la prediccion y se
posee una incertidumbre asociada por lo que asi se sabe lo fiable que es esa
prediccion.

e Disminucidon del sobreajuste: Generalizan mdas eficientemente que las redes

neuronales normales.

e Aprendizaje con datos limitados: No necesitan bases de datos tan grandes como las

redes neuronales normales ya que con una pequeia parte de los datos son capaces
de generalizar adecuadamente el resto de los datos.

4.2.1. Neurona

La nueva definicion de los pesos de las neuronas se formula en base a la probabilidad:

(A.16) e~N(0,1)
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Siendo:

e ¢: Distribucion de probabilidad normal que modela la incertidumbre en cada

prediccién.
(A.17) z=pu+log(l+ef)x*e
(A.18) 0 = (up)
Siendo:

e u:lamedia de la distribucion de probabilidad normal de los parametros
e VARIANZA = ef

El intervalo de confianza es la nueva caracteristica que se le afiade a este modelo. Para
poder calcularlo se sigue el siguiente procedimiento:

1. Se realizan varias predicciones del modelo y se almacenan los resultados.
2. Los resultados son procesados para extraer la media y desviacion tipica.

3. Se establece el nivel de confianza asociado al intervalo, generalmente entre el 90%
y 95%.

4. Por ultimo, se obtienen los rangos del intervalo, estos estan centrados en la media
de la distribucion normal.
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Anexo B: Parametros de la red

En la memoria del trabajo de fin de grado aparecen 3 tipos de parametros, van a estar

diferenciados por el tipo de red donde se usen:

e Pardmetros que comparten las dos redes:

o

max_epoch: Equivale al numero de épocas que se realizan en un modelo.
Durante una época se realiza la prediccién de los ejemplos a entrenar y ademas
se realiza una actualizacién de los parametros en funcién del error cometido en
esa primera prediccion. El valor de este pardmetro puede depender del tipo de
red, en general para las redes BNN no es necesario tantas épocas como para las
ANN. Ademas, también puede variar segun la dificultad del modelo a entrenar.
train_percent: Indica la parte de la base de datos total que sirve para entrenar
la red neuronal. El resto de los datos seran destinados para comprobar los
resultados.

Ir: tasa de aprendizaje o learning rate, indica el paso de avance en cada
actualizacion de los parametros. (Explicado con mas detalle en anexo A
apartado 4.1 Redes neuronales bayesianas)

hidden vec: Define el tamafio de la red neuronal, el nUmero dentro de los
corchetes indica el tamafio de cada capa y el numero por el que se multiplica
indica el nimero de capas de la red.

miles: Indica en el nimero de épocas exacto en el que se reduce la tasa de
aprendizaje para asi no tener que partir de una tasa de aprendizaje muy
pequena.

gamma: Es un valor por el que se multiplica la tasa de aprendizaje justo en el
momento que lo indique el parametro miles. El valor de este pardmetro
siempre sera menor a la unidad.

lambda d - lambda deg - lambda r: Durante el entrenamiento, al sumar el

error cometido por las condiciones de degeneracion (deg), el error de las
predicciones (d) y la regularizacion de los pesos (reg) aparecen estos
parametros para ponderar la importancia que se le quiere dar a cada término.
Esta necesidad es debido a que si un término es mucho mds pequeiio que el
otro la red optimizard los pardmetros para que solamente disminuya el de
mayor magnitud porque el resto van a ser despreciados.

e Pardametros propios de las redes bayesianas:

(@]

o

lambda kl: Es idéntico a los pardmetros lambda_d y lambda_deg pero este
error solo aparece en las redes neuronales bayesianas. Va asociado al error
cometido en la distribucion de Kullback-Leibler.

n _samples: En las redes neuronales convencionales en cada época solo se
realiza una predicciéon de los datos de entrenamiento, pero en las redes
bayesianas al tener cierta estocasticidad se permite realizar mds de una
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prediccién. Por lo tanto este parametro indicard el numero de predicciones a
realizar, al tener varias predicciones se realiza la media.

o n_samples ELBO: Este parametro indica el nimero de muestras que se quiere
que la red prediga en la fase de comprobacién de los resultados.

o Cl: Indica la probabilidad de que los valores predichos se encuentren en el
intervalo de confianza.

e Pardmetros propios de las redes convencionales:
o net _init: Método usado para la inicializacién de los parametros de la red.
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Anexo C: Mapas de variables de estado secundarios

1. Red ANN

1.1.Placa sin fallos - modelo gemelo digital

Se aportan gréaficas secundarias algunas de ellas como la deformacidn y las tensiones en
direccién x y direccién y son imprescindibles para construir el mapa del médulo de

Young:
Mapa de la deformacién
a0 R R R Abagus _ R R R R R Met
-0.021259
-0.021341
100 —0.021422
| ~0.021504
E E -0.021586
£ H —0.021667
3007 = 0.021749F
5 T -0.021831 8
F] F —0.021913 2
B E] 0.021994 £
Fam, %" -0.022076 8
o 2 —0.022158
2 2
G = 0022239
100 -0.022321
-0.022403
—0.022485
-0.022566
ht 100 00 00 A00 D0 a 100 00 00 400 00
Coordenadas en x [mm] Coordenadas en x [mm]
. . . . .
Figura C.1 Mapa de la deformacidn de la placa sin fallo. Gemelo digital.
Mapa de la tension en direccidn x
500: Abaqus . ; . ; R ; Net
—1414.47
l—1420 13
200 -1425.78
—-1431.44
T = -1437.10
£ £ -1442.76
=300 | -1448.41
i S -1454.07
g g -1450.73E
E E -1465.38=
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s o -1476.70
Q =3
S o] -1482.36
100 -1488.01
—1493 67
l71499‘33
-1504.99
& 100 0 300 a00 00 00 700 00 300 Sho
Coordenadas en x [mm] Coordenadas en x [mm]

Figura C.2 Mapa de la tension en direccion x de la placa sin fallo. Gemelo
digital.
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Mapa de la tension en direccion y

500 Abaqus . . N ) . N . Net

00
T E
E g .
=300 =)
c c
@ L0
2 2
5 3
2 2
$200 H
B B
g g
(] ()

100

% 100 0] 300 a0 sho 100 700 00 00 E
Coordenadas en x [mm] Coordenadas en x [mm]
Figura C.3 Mapa de la tensidn en direccidn y de la placa sin fallo. Gemelo
digital.
Mapa de la velocidad
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400
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- M
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§200 5
' z
=3 =3
Q =]
(&) ()

100

Coordenadas en x [mm]

Coordenadas en x [mm]

Figura C.4 Mapa de la velocidad de la placa sin fallo. Gemelo digital.

1.2. Placa con fallos - modelo gemelo digital

Mapa de la deformacion
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E
E
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Figura C.5 Mapa de la deformacién de la placa con fallo. Gemelo digital.

—4714.9
—47337
—4752.6
—4771.5

0.00
—0.67
-1.33
-2.00
-2.67
-3.34
=401
-4.67
—5.34
-6.01
—6.68
—=7.34
-8.01
—8.68
-9.35
-10.01
-10.68

[mmys]

-0.02050
-0.02258
—0.02465
-0.02672
-0.02878
-0.03086
0.032945
—p.03501 5
003708 %
~0.03915 £
—0.04122 3
~0.04330"
-0.04537
~0.04744
-0.04351
-0.05158
-0.05365



Bl

Escuela de

Ingenieria y Arquitectura

Universidad Zaragoza

7 junio 2023 - Pdg 1

Redes bayesianas informadas por la fisica aplicadas a sistemas estructurales

6

500

400+ .

[y

[s[of}

Coordenadas en y [mm]

500

400+ .

3000

Coordenadas en y [mm]

400+

v
=3
<

Coordenadas en y [mm]
e
(=]
<

—
o
=3

Mapa de la tension en direccién x
Abaqus Net

Coordenadas en y [mm]

100 afo 500

200 300 0
Coordenadas en x [mm] Coordenadas en x [mm]

Figura C.6 Mapa de la tensidon en direccidn x de la placa con fallo. Gemelo
digital.
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Figura C.7 Mapa de la tensidon en direccidn y de la placa con fallo. Gemelo
digital.
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Figura C.8 Mapa de la velocidad de la placa con fallo. Gemelo digital.
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1.3. Placa con fallos - modelo gemelo hibrido
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Figura C.9 Mapa de la deformacién de la placa con fallo. Gemelo hibrido.
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Figura C.10 Mapa de la tensién en direccion x de la placa con fallo. Gemelo

hibrido.
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Figura C.11 Mapa de la tensién en direccion y de la placa con fallo. Gemelo

hibrido.
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Figura C.12 Mapa de la velocidad de la placa sin fallo. Gemelo digital.

1.4.Placa con fallos - modelo gemelo hibrido - Test
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Figura C.13 Mapa de la deformacidn de la placa con fallo. Gemelo hibrido.
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Figura C.14 Mapa de la tensién en direccion x de la placa con fallo. Gemelo hibrido.
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Figura C.15 Mapa de la tensién en direccion y de la placa con fallo. Gemelo hibrido.
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Figura C.16 Mapa de la velocidad de la placa sin fallo. Gemelo digital.

2. Red BNN

2.1.Placa sin fallos - modelo gemelo digital
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Figura C.17 Mapa de la deformacidn de la placa sin fallo. Gemelo digital.
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Figura C.18 Mapa de la deformacion de la placa sin fallo. Intervalo de confianza al
95%. Gemelo digital.
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Figura C.19 Mapa de la tension en direccion x de la placa sin fallo. Gemelo digital.
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Figura C.20 Mapa de la tensién en direccion x de la placa sin fallo. Intervalo de
confianza al 95%. Gemelo digital.
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Figura C.21 Mapa de la tensién en direccion y de la placa sin fallo. Gemelo digital.
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Mapa de la tension en direccién y
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Figura C.22 Mapa de la tensién en direccion y de la placa sin fallo. Intervalo de
confianza al 95%. Gemelo digital.
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Figura C.23 Mapa de la velocidad de la placa sin fallo. Gemelo digital.
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1 Glosario de abreviaturas

e TFG: Trabajo de Fin de Grado

e SPNN: Structure-Preserving Neural Networks
e |A: Inteligencia Artificial

e SHM: Structural Health Monitoring

e BNN: Bayesian Neural Network

e ANN: Artificial Neural Network

e KL: Kullback-Leibler

e Ir: Learning Rate o tasa de aprendizaje

e GENERIC: General Equation for the Non-Equilibrium Reversiblelrreversible Coupling
e ELBO: Evidence Lower BOund

e RelU: Rectified Linear Unit

e GT: Ground Truth

e MSE: Mean squared Error

e GD: Gemelo Digital

e GH: Gemelo Hibrido
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