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Anexo A: Fundamentos teóricos 

Las redes neuronales son modelos computacionales basado en el funcionamiento 

biológico de las neuronas permitiendo así la clasificación y predicción de datos. En el 

caso de este trabajo, el desarrollo y programación de las redes se fundamentará en el 

Teorema de Bayes para dar un enfoque estocástico al aprendizaje.  

 

1. Teorema de Bayes 

La base en la que se sustentan las redes neuronales bayesianas, como su propio nombre 

indica, es el Teorema de Bayes. El Teorema de Bayes se presenta como: 

(A.1) 𝑃(𝜃|𝐷) =
𝑃(𝐷|𝜃)𝑃(𝜃)

𝑃(𝐷)
 

Siendo: 

𝑃(𝜃|𝐷): Probabilidad a posteriori (o posterior) 

𝑃(𝐷|𝜃): Probabilidad condicionada o verosimilitud (o likelihood) 

𝑃(𝜃): Probabilidad a priori (o priori) 

P(D): Probabilidad marginal (o evidence) 

La probabilidad de los datos, debido al teorema de la probabilidad, se aproxima como la 

suma así que se transforma como la integral al ser un término continuo. 

(A.2) 𝑃(𝜃|𝐷) =
𝑃(𝐷|𝜃) 𝑃(𝜃)

∫ 𝑃(𝐷|𝜃) 𝑑𝜃
 

El Teorema de Bayes ajusta las distribuciones de probabilidad de los parámetros gracias 

a los datos.  Es decir, siempre se parte de una creencia inicial conocida de los 

parámetros (priori) y mediante el teorema de bayes se actualiza a la distribución 

posterior. 

distribución priori → datos →  distribución posterior 

El problema de este enfoque reside en el cálculo de la evidencia, ya que no es posible 

calcular su integral porque la solución no es analítica y, además, su complejidad 

aumenta conforme crece la profundidad y los parámetros de la red.  

Las variaciones de 𝜃 solo afectarán a los términos 𝑃(𝐷|𝜃) y 𝑃(𝜃)  

(A.3) 𝑃(𝜃|𝐷) ∝ 𝑃(𝐷|𝜃) 𝑃(𝜃) 

2. Divergencia de Kullback-Leibler
 [5]

 

Dada la inviabilidad del cálculo de 𝑃(𝐷) = ∫ 𝑃(𝐷|𝜃) 𝑑𝜃, se debe encontrar una manera 

alternativa de conseguir la distribución de la posterior. Ésto se consigue mediante la 
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aproximación de la posterior como una nueva función que es ajustada mediante un 

proceso de optimización. 

(A.4) 𝑞(𝜃) ≈ 𝑃(𝜃|𝐷) 

Siendo: 

𝑞(𝜃): Aproximación de distribución de probabilidad 

𝑃(𝜃|𝐷): Probabilidad de la posterior 

Por lo tanto, para poder conseguir que esta aproximación sea válida, se necesita un paso 

intermedio donde validar cómo de parecida es la distribución posterior a la 

aproximación propuesta. 

La Divergencia de Kullback-Leibler (Divergencia de KL) establece una forma cuantitativa 

de medir la “distancia“ entre dos distribuciones de probabilidad. Si el resultado de la 

divergencia es nulo, entonces las dos distribuciones son idénticas. Por lo tanto, el 

objetivo será minimizar la divergencia. La divergencia de KL se puede expresar como: 

(A.5) 𝐾𝐿(𝑞(𝜃) || 𝑃(𝜃|𝐷)) = 𝔼(ln 𝑞(𝜃)) − 𝔼(ln 𝑃(𝜃|𝐷)) 

Para tener un buen contexto de la divergencia de KL es importante conocer algunas de 

sus propiedades: 

• No es simétrica: 

(A.6) 𝐾𝐿(𝑞(𝜃) || 𝑃(𝜃|𝐷)) ≠ 𝐾𝐿(𝑃(𝜃|𝐷) || 𝑞(𝜃)) 

• Siempre es positiva: 

(A.7) 𝐾𝐿(𝑞(𝜃) || 𝑃(𝜃|𝐷))  >  0 

 

Siguiendo con el desarrollo de la divergencia de KL, en la ecuación (A.8) vuelve a 

aparecer el término 𝔼(ln 𝑃(𝜃|𝐷)), que no se puede resolver.  

(A.8) K𝐿(𝑞(𝜃) || 𝑃(𝜃|𝐷)) = 𝔼(ln 𝑞(𝜃)) − 𝔼(ln 𝑃(𝜃, 𝐷)) + ln 𝑃(𝐷) 

3. ELBO (Evidence Lower BOund)
 [5]

 

Modificando la ecuación (A.8) aparece la función llamada “límite inferior de la 

evidencia” o también llamada en inglés Evidence Lower BOund (ELBO) que transformará 

el problema en uno de optimización: 

(A.9) K𝐿(𝑞(𝜃) || 𝑃(𝜃|𝐷)) =  𝔼(ln 𝑞(𝜃)) − 𝔼(ln 𝑃(𝜃|𝐷)) 

                                                         = 𝔼(ln 𝑞(𝜃)) − 𝔼(ln 𝑃(𝜃, 𝐷)) + ln 𝑃(𝐷) 

− − −−               = − (
ln 𝑃(𝜃,𝐷)

ln 𝑞(𝜃)
) + ln 𝑃(𝐷). 

Reorganizando la ecuación (A.9): 
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(A.10) 
𝐸𝐿𝐵𝑂 = 𝔼 (

ln 𝑃(𝜃, 𝐷)

ln 𝑞(𝜃)
) = ln 𝑃(𝐷) − K𝐿(𝑞(𝜃) || 𝑃(𝜃|𝐷)) 

Ahora el problema de optimización se convierte en la maximización de la ELBO para 

poder minimizar la divergencia de KL entre las dos distribuciones, que es el objetivo 

principal. Al maximizar la ELBO también se está maximizando la evidencia ln 𝑃(𝐷). 

(A.11) 
𝑎𝑟𝑔𝑚𝑎𝑥 𝐸𝐿𝐵𝑂 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝔼 (

ln 𝑃(𝜃, 𝐷)

ln 𝑞(𝜃)
) 

Una vez que termina el problema de optimización se obtiene la distribución de la 

aproximación a la posterior 𝑞(𝜃 ∗). 

Una posible interpretación gráfica para el problema de optimización de la ELBO 

quedaría reflejada en la figura (A.9). Se observa cómo la distribución aproximada trata 

de minimizar su divergencia de KL hasta que ya no se lo permite su dominio. 

 

Figura A.1 Representación gráfica ELBO  

Siendo: 

• Q: Dominio de las distribuciones aproximadas 𝑞(𝜃) 

• 𝑞(𝜃 ∗): Distribución aproximada optimizada 

• 𝑞(𝜃𝑖𝑛𝑖𝑡 ): Distribución aproximada inicial 

• 𝑃(𝜃, 𝐷): Distribución real 

4. Redes neuronales 

Las redes neuronales son modelos matemáticos inspirados en las conexiones neuronales 

humanas. Estos modelos tienen la capacidad de aprender por sí solos a través de 

información que se muestra (bases de datos) y así poder predecir resultados con datos 

que no habían visto anteriormente. 

Este tipo de modelos tienen una ventaja muy importante ya que no hay que 

preocuparse de programarlos explícitamente para poder resolver un problema. A la vez 
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esto tiene otra gran desventaja y es que una vez que se tiene el modelo no se ha 

conseguido dar una explicación a los resultados, por lo tanto, muchas veces son 

impredecibles. 

A continuación, se comentarán las dos redes neuronales que se van a tratar en este 

trabajo, las redes neuronales artificiales y las redes neuronales bayesianas. 

4.1. Redes neuronales artificiales 

Las redes neuronales artificiales también llamadas Artificial Neural Network (ANN) son 

modelos deterministas ya que ante una misma entrada siempre se le asocia una salida. 

Para poder entender mejor la estructura de las ANN conviene fijarse con mayor detalle 

en la unidad más básica, la neurona artificial. El nombre que recibe no es casualidad y 

ésta, al igual que la neurona biológica tiene unas conexiones de entrada y otras de 

salida. 

Cada neurona está compuesta de unos pesos (w) y unos sesgos o bias (b), que son 

parámetros de la neurona y se actualizan durante la etapa de entrenamiento de la red.  

El procesamiento de información en una neurona se expresa como una suma ponderada 

de los pesos más el término bias: 

(A.12) 𝑧 = ∑ 𝑤𝑖  𝑥𝑖  + 𝑏
𝑖

 

Siendo: 

i: número de entradas 

 𝑥𝑖: dato de entrada en la neurona 

𝑤𝑖: peso 

𝑏: sesgo 

Para la salida de la red se le puede añadir una función no lineal, esta es llamada función 

de activación. Tiene la función de introducir no linealidades para aprender relaciones y 

patrones complejos.    

(A.13) 𝑦 = 𝑓(𝑧) = 𝑓(∑ 𝑤𝑖  𝑥𝑖  + 𝑏
𝑖

) 

En la figura A.2 se muestran algunas de las funciones de activación más comunes y que 

además son detalladas a continuación: 

• Escalón: La función de activación escalón, también conocida como función de paso, 

asigna un valor de salida de 1 si la entrada es mayor o igual a cero, y un valor de 

salida de 0 en caso contrario. Puede ser útil para problema de clasificación binaria. 
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• ReLU: llamada así por su nombre en inglés “Rectified Linear Unit”. Es la función más 

utilizada para las redes neuronales. Mapea los valores negativos a cero y mantiene 

los valores positivos sin modificar. 

• Sigmoide: también conocida como función logística, transforma los valores de 

entrada en un rango entre 0 y 1 

• Softmax: se utiliza comúnmente en problemas de clasificación multiclase.  

 

Figura A.2 Funciones de activación  

A su vez la neurona se puede agrupar en varias neuronas formando la estructura 

llamada capa. Por último, las capas se agrupan y así forman la red neuronal. Se 

diferencian 3 tipos de capas dentro de la red neuronal: 

• Capa de entrada 

• Capas ocultas 

• Capa de salida 
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Figura A.3 Capas de la red 

Cuanto mayor es el número de capas ocultas mayor es la complejidad de la red.  Esto 

hace que se adapte mejor a funciones complicadas. Sin embargo, aumentarlas en 

exceso puede provocar sobreajuste o también llamado en inglés overfitting.  

Para poder predecir un resultado (forward pass) se procesan los datos a través de cada 

una de las neuronas de la red como aparece en la figura A.3. Por último, la capa de 

salida proporciona un resultado que será la predicción de nuestro modelo. 

Para poder optimizar la red debemos añadir una función de coste para que evalúe el 

error que estamos cometiendo en cada predicción que se realiza con la red. El más 

común y que además será utilizado en el proyecto es el error medio cuadrático o mean 

squared error (MSE): 

(A.14) 
𝑀𝑆𝐸 =  

1

𝑛
 ∑ (𝑦𝑖  −  𝑦̂𝑖 )2

𝑛

𝑖=1
 

Siendo: 

 𝑛: Número de muestras 

 𝑦𝑖: Predicción del modelo o salida de la red 

 𝑦̂𝑖: Etiqueta de los datos de entrada  

El error obtenido se propaga en sentido contrario (hacia atrás, llamado Backward 

propagation) para así poder modificar los parámetros convenientemente. Para 

determinar la penalización que debemos usar para cada uno de los parámetros 𝜃 se 

hace uso de las derivadas parciales. La técnica consiste en derivar la función de coste 

respecto a cada uno de los parámetros para poder encontrar el error proporcional que 

ha realizado cada parámetro 
𝜕𝐿

𝜕𝜃
. Conocer el gradiente de la función de coste en función 

de sus parámetros se puede asemejar a conocer la dirección en la que cada parámetro 

debería de cambiar para poder minimizar la función de coste. 
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Para poder minimizarla de forma controlada se hace uso de un hiperparámetro llamado 

tasa de aprendizaje o learning rate (lr).  

(A.15) 
𝜃𝑖+1 = 𝜃𝑖 + 𝛼 ∗

𝜕𝐿

𝜕𝜃𝑖
 

Siendo: 

 𝐿: Función de coste 

 𝜃𝑖 : Parámetro en iteración i 

 𝛼 : Tasa de aprendizaje 

Cuando se realiza esta operación numerosas veces se llega al mínimo de la función de 

coste. A veces no tiene por qué alcanzar el mínimo global y se puede atascar en un 

mínimo local. En la figura A.4 se muestra cómo con el mismo número de iteraciones, 

pero diferente tasa de aprendizaje se fuerza a que el modelo llegue a un mínimo local. 

Se observa como el ante un learning rate más alto (figura A.4 a) se puede evitar más 

fácilmente los mínimos locales que con uno más bajo (figura A.4 b). 

 

Figura A.4 Optimización global vs local 

 

En la figura A.5 se aprecia la importancia de este hiperparámetro. Con un ejemplo tan 

sencillo como el citado es fácil de explicar los 3 posibles casos que nos pueden aparecer 

en el entrenamiento de una red neuronal. Para poder realizar una buena comparación 

se realiza el mismo número de iteraciones: 

• Learning rate alto, figura A.5.a: No llega a alcanzar el óptimo porque el paso que se 

da es demasiado grande, se alcanzan óptimos inestables. Se debe de reducir el 

learning rate. 

• Learning rate bajo, figura A.5.b: En este caso, el learning rate es demasiado bajo y el 

algoritmo de descenso del gradiente da pasos pequeños en cada iteración. Esto 
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puede llevar a una convergencia lenta y a quedar atrapado en mínimos locales en 

lugar del mínimo global. Se debe de aumentar el learning rate. 

• Learning rate óptimo, figura A.5.c: Se encuentra el learning rate adecuado para el 

problema, el mínimo encontrado no es inestable, se adapta en todo momento al 

gradiente de la función de coste y alcanza el mínimo global. 

 

Figura A.5 Parametrización del learning rate  

4.2. Redes neuronales bayesianas 

Las redes neuronales bayesianas o bayesian neural network (BNN) se basan en las ANN. 

La gran diferencia es que las BNN están basadas en un modelo probabilístico. 

Concretamente los pesos de las neuronas ya no se tratan como números fijos que se 

aprenden, sino que pasan a ser distribuciones de probabilidad. 

Este enfoque le aporta nuevas ventajas: 

• Aparición de la incertidumbre: Debido a que el modelo es estocástico (ante una 

misma entrada la salida es diferente debido a la introducción de la aleatoriedad) se 

puede realizar varias predicciones del modelo y asociar una incertidumbre a cada 

predicción. Esta característica es muy importante ya que se sabe la predicción y se 

posee una incertidumbre asociada por lo que así se sabe lo fiable que es esa 

predicción. 

• Disminución del sobreajuste: Generalizan más eficientemente que las redes 

neuronales normales. 

• Aprendizaje con datos limitados: No necesitan bases de datos tan grandes como las 

redes neuronales normales ya que con una pequeña parte de los datos son capaces 

de generalizar adecuadamente el resto de los datos. 

4.2.1. Neurona 

La nueva definición de los pesos de las neuronas se formula en base a la probabilidad: 

(A.16) 𝜖~𝒩(0,1) 
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Siendo: 

• 𝜖: Distribución de probabilidad normal que modela la incertidumbre en cada 

predicción. 

(A.17) 𝑧 = 𝜇 + log(1 + 𝑒𝜌) ∗ 𝜖 

(A.18) 𝜃 = (𝜇, 𝜌) 

Siendo: 

• 𝜇: la media de la distribución de probabilidad normal de los parámetros 

• 𝑉𝐴𝑅𝐼𝐴𝑁𝑍𝐴 = 𝑒𝜌  

El intervalo de confianza es la nueva característica que se le añade a este modelo. Para 

poder calcularlo se sigue el siguiente procedimiento: 

1. Se realizan varias predicciones del modelo y se almacenan los resultados.  

2. Los resultados son procesados para extraer la media y desviación típica. 

3. Se establece el nivel de confianza asociado al intervalo, generalmente entre el 90% 

y 95%. 

4. Por último, se obtienen los rangos del intervalo, estos están centrados en la media 

de la distribución normal. 
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Anexo B: Parámetros de la red 

En la memoria del trabajo de fin de grado aparecen 3 tipos de parámetros, van a estar 

diferenciados por el tipo de red donde se usen: 

• Parámetros que comparten las dos redes: 

o max_epoch: Equivale al número de épocas que se realizan en un modelo. 

Durante una época se realiza la predicción de los ejemplos a entrenar y además 

se realiza una actualización de los parámetros en función del error cometido en 

esa primera predicción. El valor de este parámetro puede depender del tipo de 

red, en general para las redes BNN no es necesario tantas épocas como para las 

ANN. Además, también puede variar según la dificultad del modelo a entrenar. 

o train_percent: Indica la parte de la base de datos total que sirve para entrenar 

la red neuronal. El resto de los datos serán destinados para comprobar los 

resultados. 

o lr: tasa de aprendizaje o learning rate, indica el paso de avance en cada 

actualización de los parámetros. (Explicado con más detalle en anexo A 

apartado 4.1 Redes neuronales bayesianas) 

o hidden_vec: Define el tamaño de la red neuronal, el número dentro de los 

corchetes indica el tamaño de cada capa y el numero por el que se multiplica 

indica el número de capas de la red. 

o miles: Indica en el número de épocas exacto en el que se reduce la tasa de 

aprendizaje para así no tener que partir de una tasa de aprendizaje muy 

pequeña. 

o gamma: Es un valor por el que se multiplica la tasa de aprendizaje justo en el 

momento que lo indique el parámetro miles. El valor de este parámetro 

siempre será menor a la unidad. 

o lambda_d - lambda_deg - lambda_r: Durante el entrenamiento, al sumar el 

error cometido por las condiciones de degeneración (deg), el error de las 

predicciones (d) y la regularización de los pesos (reg) aparecen estos 

parámetros para ponderar la importancia que se le quiere dar a cada término. 

Esta necesidad es debido a que si un término es mucho más pequeño que el 

otro la red optimizará los parámetros para que solamente disminuya el de 

mayor magnitud porque el resto van a ser despreciados. 

• Parámetros propios de las redes bayesianas: 

o lambda_kl: Es idéntico a los parámetros lambda_d y lambda_deg pero este 

error solo aparece en las redes neuronales bayesianas. Va asociado al error 

cometido en la distribución de Kullback-Leibler. 

o n_samples: En las redes neuronales convencionales en cada época solo se 

realiza una predicción de los datos de entrenamiento, pero en las redes 

bayesianas al tener cierta estocasticidad se permite realizar más de una 
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predicción. Por lo tanto este parámetro indicará el número de predicciones a 

realizar, al tener varias predicciones se realiza la media. 

o n_samples_ELBO: Este parámetro indica el número de muestras que se quiere 

que la red prediga en la fase de comprobación de los resultados.  

o CI: Indica la probabilidad de que los valores predichos se encuentren en el 

intervalo de confianza. 

• Parámetros propios de las redes convencionales: 

o net_init: Método usado para la inicialización de los parámetros de la red. 
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Anexo C: Mapas de variables de estado secundarios 

 

 

1. Red ANN 

1.1. Placa sin fallos – modelo gemelo digital 

Se aportan gráficas secundarias algunas de ellas como la deformación y las tensiones en 

dirección x y dirección y son imprescindibles para construir el mapa del módulo de 

Young: 

 

Figura C.1 Mapa de la deformación de la placa sin fallo. Gemelo digital. 

 

Figura C.2 Mapa de la tensión en dirección x de la placa sin fallo. Gemelo 
digital. 
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Figura C.3 Mapa de la tensión en dirección y de la placa sin fallo. Gemelo 
digital. 

 

Figura C.4 Mapa de la velocidad de la placa sin fallo. Gemelo digital. 

1.2.  Placa con fallos – modelo gemelo digital 

 

Figura C.5 Mapa de la deformación de la placa con fallo. Gemelo digital. 
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Figura C.6 Mapa de la tensión en dirección x de la placa con fallo. Gemelo 
digital. 

 

Figura C.7 Mapa de la tensión en dirección y de la placa con fallo. Gemelo 
digital. 

 

Figura C.8 Mapa de la velocidad de la placa con fallo. Gemelo digital. 
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1.3.  Placa con fallos – modelo gemelo híbrido 

  

 

Figura C.9 Mapa de la deformación de la placa con fallo. Gemelo híbrido. 

 

Figura C.10 Mapa de la tensión en dirección x de la placa con fallo. Gemelo 
híbrido. 

 

Figura C.11 Mapa de la tensión en dirección y de la placa con fallo. Gemelo 
híbrido. 
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Figura C.12 Mapa de la velocidad de la placa sin fallo. Gemelo digital. 

1.4. Placa con fallos – modelo gemelo híbrido – Test 

 

Figura C.13 Mapa de la deformación de la placa con fallo. Gemelo híbrido. 

 

Figura C.14 Mapa de la tensión en dirección x de la placa con fallo. Gemelo híbrido. 
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Figura C.15 Mapa de la tensión en dirección y de la placa con fallo. Gemelo híbrido. 

 

Figura C.16 Mapa de la velocidad de la placa sin fallo. Gemelo digital. 

 

 

2. Red BNN 

2.1. Placa sin fallos – modelo gemelo digital 

 

Figura C.17 Mapa de la deformación de la placa sin fallo. Gemelo digital. 
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Figura C.18 Mapa de la deformación de la placa sin fallo. Intervalo de confianza al 
95%. Gemelo digital. 
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Figura C.19 Mapa de la tensión en dirección x de la placa sin fallo. Gemelo digital. 
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Figura C.20 Mapa de la tensión en dirección x de la placa sin fallo. Intervalo de 
confianza al 95%.  Gemelo digital. 
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Figura C.21 Mapa de la tensión en dirección y de la placa sin fallo. Gemelo digital. 
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Figura C.22 Mapa de la tensión en dirección y de la placa sin fallo. Intervalo de 
confianza al 95%. Gemelo digital. 
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Figura C.23 Mapa de la velocidad de la placa sin fallo. Gemelo digital. 
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Figura C.24 Mapa de la velocidad de la placa sin fallo. Intervalo de confianza al 95%. 
Gemelo digital. 
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1 Glosario de abreviaturas 

• TFG: Trabajo de Fin de Grado 

• SPNN: Structure-Preserving Neural Networks 

•  IA: Inteligencia Artificial 

• SHM: Structural Health Monitoring 

• BNN: Bayesian Neural Network 

• ANN: Artificial Neural Network 

• KL: Kullback-Leibler 

• lr: Learning Rate o tasa de aprendizaje 

• GENERIC: General Equation for the Non-Equilibrium ReversibleIrreversible Coupling 

• ELBO: Evidence Lower BOund 

• ReLU: Rectified Linear Unit 

• GT: Ground Truth 

• MSE: Mean squared Error 

• GD: Gemelo Digital 

• GH: Gemelo Híbrido 
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