.2s Universidad
i0f Zaragoza

1 2

A

w
-

Trabajo Fin de Grado

Implementacion en FPGA del juego de la vida

Game of Life implementation on an FPGA

Autora

Carla Cabrejas Escosa

Directores

Isidro Urriza Parroqué
Luis Angel Barragan Pérez

Ingenieria Electrénica y Automatica

Escuela de Ingenieria y Arquitectura
ARO 2022 - 2023

MASTER

W
Q
<
U
~
o)
S
o
G
W
Q
=
W
W
Q
%)
o
<
<
S

Ingenieria y Arquitectura

.ﬁl Escuela de DECLARACION DE
UniversidadZaragoza AUTORIA Y ORIGINALIDAD

(Este documento debe remitirse a seceina@unizar.es dentro del plazo de depdsito)

D./D2. Carla Cabrejas Escosa)

en aplicacién de lo dispuesto en el art. 14 (Derechos de autor) del Acuerdo de
11 de septiembre de 2014, del Consejo de Gobierno, por el que se
aprueba el Reglamento de los TFGy TFM de la Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de Estudios de la titulacién de

Grado en Ingenieria Electronica y Automatica © (Titulo del Trabajo)

Implementacién en FPGA del Juego de la Vida.

es de mi autoria y es original, no habiéndose utilizado fuente sin ser

citada debidamente.

Zaragoza, 05/06/2023

Fdo: @

Tabla de contenidos

LR =E 0 1= o PP PPPPP 6
) o Yo LU ol ol o T ST PR PRSP 7
0 O] o= Y o I V| [or-] o] D PRSP 7
1.2. DescripCion del alZOrITMOciiiiiiiiei e 8
1.2.1. AULOMALA CRIUIAT [16].uuuururururuiririeriirirrrturrrierrrrrrrrrrrrrererraererar...—...———————————————————.—.—.—.—.. 8
0 A L VL= < {o Yo [T IR T I TS URRRR 9

1.3 ESTad0 del @M ..o e 11
1.4. ESTructura de 1a MemOria...c.ceocueeeieeieee e s 13
2. ENtOrn0 de deSarrollOc.c.ueeiuiiiiiiiieieieeeeee e e e 14
2.0, ENTOINO HarAWare ..o.ueiiiieeiiiee ettt ettt s e e s e s es 14
A O R o - Tor- = 7= Y TSR 14
2.0.2. FPGA ATTiX-7 ettt sttt r e e ne e 15
2.1.3. PAN@I WS2BL2 ...t 15

2.2. Herramientas SOTEWAIeccuiiiiiiiiiieceeceee e 17
2,20 VIV ettt sttt ettt et a e e b e st e nbe e nane e be e 17
2.2.2. VHDL ettt h e bt e s an e e b sane e be e 18
2.2.3. Matlab. . e 19

3. Implementacion digital........ccccueeee e e e 20
70 B D 1Y =Y o To X 4y T Yo [V - PP PR PSPPSRI 20
3.1.1.INTEITAZ AXIA e st be e 21

3.2. Implementacion en Matlab [7] ... 22
3.3. Implementacion €n FPGA [19] ...cccccuiiie ettt et e e e e e e aae e e e e nanaee s 25
3.3.1. MOAUIO SRESET ...ttt sttt et s e e e b e 26
3.3.2. MOdUIO GaMEOTLIEeereeiiieiee e 26
RIS T T Y/ [Yo [V1 o I =1 o V7 F- [e -1 o PSP 29
3.3.4. MOAUIO WS2812 [13]..eeieiieiiieiieeieesiee et e sttt ettt et et sbe e st eesbe e s be e b e saneebeeeaee 31

4. Verificacion fUNCIONALooiiiiiiiiiie e e s 34
AL TESEDENCI e e 34
5. RESUITATOS ...ttt st e s nne e nane e 37

6. Conclusiones y trabajo fUtUIO.......cccuiiii i e 41

6.1, CONCIUSIONES ..ottt st et et e r e san e e ne e s e e e neesane e neeeaee 41
6.2, LIN@AS TULUIAS ..o s 41
271 oY [ToT=d =Y - TS UPPUR 43
ANEXO A i e e s e et e e e e e s 45
N 21 o T TU IR Ty SRR 45
A2, BlogUE GamMEOTLITE ..coieiiieeeiee et eret e e e s e st e e e e e s s nabaeaes 46
JE =] (o Lo T Tl = 1V =Y G o - | o T PSSP 51
AL, BlOQUE WS28L2.....eiieeieiieee ettt e ettt e e s st e s s tae e e s st e e e s s aae e e s s sabaeeessnsbaeesennsaaeeeennnaeeean 54
A5, BlogUE GOL _Pan@l_TOP....oeeiie ettt e e eetree e e e e e e e e s eaaare e e e e e e e e e neneaees 56
AB. TEST BENCR ..t 59
A7. COIZO dE MAtlabh....cooiiiiiieiiee e e e e e e s e e e e e e s s naraeeees 65
ANBXO B oo e 68
B1. Hoja de caracteristicas de los pixels del panel WS2812Bcccccccveeeevivieeeencieeeeennne 68

Lista

Figura 1.
Figura 2.
Figura 3.
Figura 4.
Figura 5.
Figura 6.
Figura 7.
Figura 8.
Figura 9.

Figura 10.
Figura 11.
Figura 12.
Figura 13.
Figura 14.
Figura 15.
Figura 16.
Figura 17.
Figura 18.
Figura 19.
Figura 20.
Figura 21.
Figura 22.
Figura 23.
Figura 24.
Figura 25.
Figura 26.
Figura 27.

de figuras

DI T o= [= I e (S G o o A SRR 8
Patrdn barco, iteracion 1y 50........uviiiiiii i 10
Patrén oscilador, iteraciones 1,6 Y 49..........uuiiiiiieie et 10
Patrén planeador, iteraciones 1,3y 25 ... i 10
EStructura de UNa FPGA [17] oo 12
Esquema de conexion de 1@ FPGAooiiiiiie ettt 14
CoNEXiON SEIIE A LEDS ..uuvieiiiieeeeciieee ettt ettt e e e e tae e e e e are e e e e ennaae e e ennees 16
Formas de onda que codifican [0S bits [13]ccceviiiieiiiiiieeeeeeee e 17
Estructura de ficheros en Vivadoc..eeeieiiiii e 18

(Yo TUT=] 0 F= e [N o] Fo Lo [0 L= 21
Interfaz AXI4-Stream [18] ...ccouvvcviieriiii ittt e e et e e e e sesnabraeees 22
Protocolo AXI4-STream [18] ... e s 22
Matriz de celdas CON MArCO......cc.uuiiiiieei e e e e 23
(0= [TRV Tol [- L3 SRS 24
Diagrama de flujo de la implementacion en Matlabccccceeevveciivveeeeiceiieiineee, 25
Esquema de los médulos que forman el proyectocceeevveeeecciieeecccieee e, 26
Mdaquina de estados del bloque GOLcccuuieeieiiiieeiiiiee e 29
Maquina del bloque Enviar_dato.......cccceeeeciiiieicciiiee e 31
Maquina de estados del bloque WS2812eeevieiieiiciirreeeeeeeeeerreeee e, 33
Ejemplo de datos €n fICherouvveeieiiiiiciiieeee e 35
Mensaje de fallo al comparar fiCherosccvveeeiieiiieiciiiieeeee e 35
Mensajes de iteracioNes COIMECLAS .uvvviiiiiiiiiiirrrreeeeeeeeieiirreeeeeeeeeseerrrrereeeeeeeesearreeees 36
Simulacion de patrén que se hace estatico en 10 iteraciones en VHDL 36
Simulacion de patrén que se hace estatico en 10 iteraciones en Matlab.............. 36
RESUMEN 08 TIEIMPOS .erveveeiieiieiiiitreeeee et e e e eeestrrree e e e e e e e seansrrereeseeeeesensrreeees 39
CONSUMO 0 POLENCIA ..eeeveevirierieeeeeeeiiirrreeeeeeeeeeeiarrrreeeeeeeeeseassraeeeeeeeseesansrsrseeeeeeens 39
BanCO A& PrUBDES......uuiviieeiieiieereeeee e e e e e et e e e e e e e narraees 40

Lista de tablas

Tabla 1. Tiempos que codifican [0S BitSueeeeeiiiieii e

Tabla 2. Recursos utilizados

Resumen

En el presente trabajo se aborda la implementacién en FPGA (Field-Programmable Gate
Array) del Juego de la Vida de Conway, un autémata celular que simula la evolucion de
células en una cuadricula bidimensional. El objetivo principal es desarrollar un algoritmo en
VHDL vy verificar su funcionamiento, comparandolo con un modelo de referencia realizado
en Matlab. Una vez que el disefio sea correcto, se representard de una manera grafica en un
panel de LEDs.

Se realizard una revision de los fundamentos tedricos del Juego de la Vida, incluyendo las
reglas de evolucidn, la representacién de la cuadricula y los patrones caracteristicos.

Se llevara a cabo una explicacién de los recursos, software y hardware que han sido
utilizados.

Se desarrollara la implementacién del algoritmo en Matlab, lo que servird como modelo de
referencia.

Posteriormente, se propondrd una arquitectura para la implementacion en FPGA. Se
describiran los componentes del sistema, como el médulo que realiza las iteraciones (que
contiene el generador de vecinos y el evaluador de reglas), y el controlador de visualizacion.

Posteriormente, se realizara la sintesis e implementacién del disefio propuesto.

Finalmente, se realizaran pruebas del sistema implementado, evaluando su funcionalidad.
Por un lado, se comparara mediante ficheros con la implementaciéon de Matlab. Por otro
lado, se comprobara visualmente en un panel de LEDs con un modo de funcionamiento
denominado “debug”, que permite ejecutar una Unica iteracién y visualizarla al presionar un
pulsador.

1. Introducciodn

El juego de la vida es un autdmata celular desarrollado por el matematico John Horton
Conway en 1970 [5]. Se trata de un ejemplo clasico de autdmata celular cuyas sencillas
reglas no lo eximen de un comportamiento sorprendentemente complejo y fascinante. Ha
llegado a convertirse en un tema muy estudiado por investigadores en el campo de la
computacién, para explorar conceptos de sistemas complejos, teoria de autdmatas vy
algoritmos.

En el presente trabajo fin de grado, se va a llevar a cabo el desarrollo, implementacién y
verificacion del juego de la vida de Conway en una FPGA. Se trata de un dispositivo
programable que permite una gran flexibilidad y adaptaciéon a la hora de implementar
sistemas digitales, cuyo uso ha sido impulsado por los avances en la electrénica digital, lo
gue ha llevado al desarrollo de sistemas de alto rendimiento, cada vez mdas complejos, para
los cuales las FPGAs constituyen una herramienta fundamental. Ademas, su capacidad de
procesamiento paralelo y en tiempo real hace que sea la opcion perfecta para estudiar el
comportamiento de juegos y autédmatas celulares.

A lo largo de este capitulo se van a tratar temas relacionados con los objetivos y alcance del
trabajo, con la utilidad real y actual del juego de la vida de Conway, asi como con la
explicacidon de términos y conceptos importantes para el desarrollo del trabajo fin de grado,
y con el porqué de la eleccion de la FPGA para su implementacion.

1.1. Objetivos y alcance

El objetivo principal de este trabajo es disefiar, implementar, y verificar el juego de la vida
de Conway en una FPGA, para poder estudiar su evolucidn y funcionamiento.

El proyecto se llevara a cabo utilizando el lenguaje de descripcién hardware VHDL, que serd
desarrollado en el entorno de trabajo Vivado Design Suite de Xilinx, capaz de describir su
funcionamiento mediante circuitos digitales.

Se pretende conocer mads acerca del algoritmo creado para simular el juego de la vida en
una FPGA, al tratarse de un dispositivo que presenta un gran paralelismo a la estructura del
juego.

Una vez que el desarrollo en VHDL se finalice, se comparara su funcionamiento con los
resultados obtenidos gracias al modelo de referencia hecho en Matlab.

También se realizard la interfaz para la comunicacién con un panel de 8 por 8 LEDs sobre el
gue se mostrara la evoluciéon de las celdas en cada iteracion.

Asimismo, se comentaran los tiempos de propagacion de las sefiales y utilizaciéon de
recursos.

Este proyecto puede servir como base para futuras investigaciones de autdématas celulares y
otros algoritmos complejos, asi como para explorar otras técnicas de implementacion.

En la Figura 1 se muestra el diagrama de Gantt de las distintas tareas llevadas a cabo
durante el desarrollo de este proyecto. Se representan las semanas de trabajo desde el 31
de enero hasta el 4 de junio.

Busqueda de informacion sobre el Juego de la Vida.

Disefio en Matlab del algoritmo.

Disefio del algoritmo de control del panel de LEDs.

Disefio del resto de blogues.

Test Bench

Sintesis, correccion de errores y pruebas en el panel.

Elaboracion de la memoria.

Figura 1. Diagrama de Gantt

1.2. Descripcion del algoritmo

1.2.1. Autdmata celular [16]

Un autdmata celular es un modelo matematico y computacional, que evoluciona de forma
discreta. Consiste en una cuadricula bidimensional o tridimensional, compuesta por un
conjunto de celdas interconectadas que adquieren distintos valores o estados.

Su nombre se debe a la similitud con el crecimiento de las células, de esta forma, las celdas
del autdmata evolucionan segln una expresidn matematica, dependiente del estado de las
celdas en el estado anterior y del estado de sus vecinas.

El estado o valor de una celda puede ser discreto o continuo, tomando valores como ‘1’ o0 ‘0’
si es discreto, o numeros reales si es continuo.

En cada iteracién, se aplica la expresién matemdtica que constituye una regla de
actualizacion y el sistema evoluciona generando patrones y estructuras complejas.

Estos autdmatas se utilizan en diversos campos como la computacion, la biologia o la fisica,
ya que se trata de un concepto simple que es capaz de modelar fenémenos muy complejos,
relacionando, en algunos casos, sistemas naturales con sistemas artificiales (como es el caso
del crecimiento de las células humanas).

Algunos ejemplos de utilizacion de autdmatas celulares son: el estudio de poblaciones
bioldgicas, para simular la propagacion y muerte de las células. La simulacién de maquinas
Turing completas. La generacion de graficos por computadora. Incluso la simulacién de la
dindmica social y los patrones de comportamiento en comunidades humanas

En cuanto al ambito que nos ocupa, el de la computacién, los autdmatas celulares son
grandes herramientas para la simulaciéon de sistemas con disefio modular, ya que ambos
conceptos se basan en la idea de dividir un sistema complejo en componentes mas simples y
definir reglas locales para su interaccion.

1.2.2. El juego de la vida

El juego de la vida es un ejemplo de autémata celular. Se trata de un juego con reglas muy
simples, pero que ha llamado la atencidn de muchos cientificos debido a su complejo
comportamiento [6].

Consiste en una cuadricula bidimensional, con simetria cilindrica, formada por celdas que
pueden estar vivas o muertas. El tamano de la matriz en la que se desarrolla el juego es
variable y depende de los recursos de los que se disponga, pudiendo llegar a desarrollarse
sobre una matriz infinita.

En el caso de este trabajo, el panel de LEDs sobre el que se va a representar la matriz de
celdas es de 8 por 8, por ello se ha escogido este tamafio para su implementacién.

La evolucién de este juego depende de un estado inicial y no requiere intervencién
adicional, cada celda evoluciona segun la interaccidén con sus ocho vecinas adyacentes.

A partir del estado inicial, el tablero evoluciona en pasos discretos de tiempo, cambiando el
estado de las celdas (muerta o viva).

Las reglas de evolucién son las siguientes:

1- Si una celda muerta tiene 3 celdas vecinas vivas, revivird en la siguiente iteracién
(Reproduccioén).

2- Una celda muere si tiene mas de 3 o menos de 2 celdas vecinas vivas
(Superpoblacién/Subpoblacion).

3- Una celda viva seguira viva en la siguiente iteracidén si tiene 2 o 3 vecinas vivas
(Familia).

Estas reglas determinan cédmo evoluciona la cuadricula en el tiempo. A continuacion, se
muestran algunos de los patrones mas caracteristicos [4]:

e Extincion: tras un numero finito de iteraciones todas las celdas mueren.

e Estabilizacién: tras un numero finito de iteraciones las celdas mantienen el mismo valor
u oscilan entre dos estados diferentes. La figura 2 muestra un ejemplo de patrén que
mantiene el mismo valor en todas las iteraciones. Mientras que la figura 3 muestra un
ejemplo de patrén oscilante.

Figura 2. Patron barco, iteracion 1y 50

Figura 3. Patrdn oscilador, iteraciones 1,6 y 49

e Crecimiento o variacion constante: el valor de las celdas cambia permanentemente.
En la figura 4 se muestra un ejemplo de crecimiento constante.

Figura 4. Patrén planeador, iteraciones 1,3y 25

10

El juego de la vida de Conway es muy utilizado en la investigacidén de sistemas complejos y
autématas. Se considera una herramienta muy valiosa en la simulacién y modelado de
fendmenos naturales, como el estudio de patrones fisicos.

En el ambito que nos ocupa, representa un desafio para programadores. Se pueden estudiar
diversas técnicas de disefio e implementacion en diferentes dispositivos hardware o
lenguajes de programaciéon. Determinar la estructura de datos mas adecuada para
almacenar y acceder a las celdas, asi como realizar operaciones como contar vecinos y
actualizar estados, puede representar un desafio técnico.

1.3. Estado del arte

En el dmbito de la electrdnica, las implementaciones del juego de la vida han evolucionado
con el avance de la tecnologia y se han convertido en un gran tema de investigacién en el
ambito de la electréonica digital, dado que existen numerosas formas eficientes vy
optimizadas de implementar el juego de la vida en diversas plataformas.

Un area que se estudia con relacion al juego de la vida en la electréonica es su
implementacidon en circuitos integrados, buscando una ejecucién rapida y eficiente.
Asimismo, la investigacion ha llegado al estudio de algoritmos eficientes para la
actualizacion de celdas, asi como la compresidn de datos para reducir la memoria necesaria
para almacenar el estado del juego.

Otro campo en el que el juego de la vida ha resultado ser util es en seguridad informatica, ya
que se ha demostrado que este algoritmo es capaz de generar patrones aleatorios que
pueden utilizarse en criptografia, por lo que se ha contemplado la posibilidad de integrar el
juego de la vida como un componente en sistemas de seguridad.

Se ha disefiado de diferentes formas, tanto en software y hardware especializado, como en
un microprocesador con cualquier lenguaje de programacién, en plataformas de
programacion como Matlab, en ASICs (Application-Specific Integrated Circuits), o en FPGAs y
GPUs (Graphics Processing Units). Cada tecnologia ofrece diferentes niveles de rendimiento
y flexibilidad.

En este trabajo va a realizarse la implementacion del juego de la vida en Matlab (lo que sera
el modelo de referencia) y en FPGA (lo que constituye el proyecto principal).

Una FPGA es un complejo circuito integrado digital programable, compuesto por matrices
de bloques ldgicos configurables y puertos de entrada/salida, como se muestra en la figura
5.

11

Boque Logico D D D |:| l:] D D | E)_—Cémoe;s

SRl
O o
SR-irriey
e

nerEonexn oo

Figura 5. Estructura de una FPGA [17]

pooogood

La interconexion y funcionalidad de dichos bloques puede ser programada mediante un
lenguaje de descripcion de hardware especializado.

La eleccién de este componente para la realizacion del trabajo se ha basado en cinco ideas
importantes:

e Las FPGAs son adecuadas para tareas complejas que requieren altas velocidades de
procesamiento y que, ademas, pueden procesar en paralelo, en contraste con otros
métodos de implementacion en software que serian secuenciales. El juego de la vida
requiere operaciones simultaneas en varias celdas de la cuadricula, por lo que el
paralelismo de la FPGA puede ser beneficioso para realizar estos cdlculos.

e las FPGAs permiten al disefiador programar cualquier funcionalidad conectando
diferentes bloques, lo que brinda una gran flexibilidad y, ademas, son reconfigurables
por lo que se pueden adaptar para la implementacién del juego de la vida, explorando
diferentes reglas o variaciones.

e Ademads, permiten trabajar con datos de un bit, lo cual es beneficioso en la
implementacién del juego de la vida, ya que permite almacenar el estado de las celdas
(viva o muerta) como un ‘1’ oun ‘0.

e A nivel educativo, trabajar con una FPGA resulta un desafio interesante, ya que permite
conocer mas a fondo aspectos de la electrénica digital y la implementacion de
algoritmos en hardware, campo que estd en constante crecimiento hoy en dia.

e Como se ha comentado anteriormente, el juego de la vida de Conway ha resultado muy

util en diversas aplicaciones practicas, por lo que al disefiarlo en una FPGA se pueden
explorar estas aplicaciones e incluso descubrir nuevos campos practicos.

12

Teniendo en cuenta la descripcidn anterior, se llega a la conclusidon de que este dispositivo
puede ser una buena eleccion.

1.4. Estructura de la memoria

Esta memoria contiene 6 capitulos.
- El capitulo 1 introduce el tema del trabajo fin de grado, asi como los objetivos y el
tema a tratar en la actualidad.

- El capitulo 2 explica el entorno de desarrollo utilizado, englobando las herramientas
hardware y software.

- El capitulo 3 desarrolla la implementacion digital llevada a cabo, explicando uno a
uno todos los bloques que conforman el proyecto, asi como el funcionamiento
general del mismo.

- El capitulo 4 explica cdmo se ha llevado a cabo la verificacion del funcionamiento del
algoritmo haciendo uso del modelo de referencia en Matlab y la utilizacion de

simulaciones y ficheros.

- El capitulo 5 hace un analisis de los resultados, asi como de los recursos hardware
utilizados, verificando que se cumplen las restricciones temporales.

- El capitulo 6 estad dedicado a las conclusiones y a posibles mejoras que pueden ser
realizadas en el futuro.

13

2. Entorno de desarrollo

El presente capitulo se centra en la explicacion global del entorno de desarrollo elegido para
implementar el proyecto, tanto a nivel de hardware, con la descripcidon detallada de los
componentes y dispositivos utilizados, como de software, con la explicacion de los
programas utilizados.

2.1. Entorno Hardware

En este apartado se describe la placa utilizada para la implementacion, asi como el panel de
LEDs en el cual se ha realizado la representacion de la matriz de celdas.

2.1.1. Placa Basys 3

La placa Basys 3 de Digilent [1], es una placa de desarrollo basada en la FPGA Artix-7 de
Xilinx. Se utiliza con frecuencia en proyectos de educacién y desarrollo, debido a su
capacidad de integracién y versatilidad.

Se trata de una plataforma de desarrollo de circuitos digitales completa, que puede
utilizarse para un gran rango de disenos, desde circuitos combinacionales sencillos hasta
circuitos secuencias mas complejos como procesadores y controladores integrados. Cuenta
con una amplia gama de puertos y periféricos (LEDs, pantallas de siete segmentos,
interruptores, botones...), que permiten probar el disefio, y elaborar un gran niamero de
disefios sin necesidad de utilizar hardware adicional. Estos periféricos se muestran en la
figura 6.

b——————w— W19 U16 -2 mt-
LD 354

BTNL E19 3
o2,
= BTNR h17: ;\218 LD3 .W‘y;:
uttons
T e ulg L0555
u17 14 L6 5
BTND V14 LOT st
u1g Vi3 J-Dﬁ—'w»—wl
BTNC V3 ‘]
: %3 3 210,57
T Artix-7 U3 -Lou
33v P3 LD12
LD13
[SWot-o—w— V17 ';? LD14
L1 -LDi5, ¥

7-segment
33y Display

SW1ro—w— Vi6

{ SW2To—w— W16

SW3ro—a— W17

SW4 —o—w— W15

SWSo—w— V15

SWE —o—w— W14

SW7 r—o—at—
Slide e Wi
Switches

| SW8 ro—wm— V2

{SW135~—w— U1

SW14r—o—mw— T1

SW155o—mw— R2

Figura 6. Esquema de conexion de la FPGA

14

Ademas, es compatible con diversas herramientas y entornos de desarrollo, y permite la
conectividad con otros dispositivos (en el caso que nos ocupa con un panel de LEDs).

2.1.2. FPGA Artix-7

La placa Basys 3 esta basada en la FPGA Artix-7 de Xilinx.

Cuenta con 33280 celdas légicas, cada una de ellas con 4 LUT de entrada y 8 flip-flops, 1800
Kbits de RAM rapida, un conversor analdgico-digital y velocidades de reloj superiores a 450
MHz.

Utiliza tecnologia de proceso de silicio de 28nm.

En cuanto a sus componentes y caracteristicas principales, son las siguientes [8]:

e Matriz légica programable (PL), que consiste en una red de bloques légicos y conexiones
programables

e Memoria programable, que es una combinacién de bloques de memoria RAM
distribuida y memoria RAM que puede ser configurada.

e Gran variedad de puertos entrada/salida mediante los cuales se reciben o envian
sefiales, estableciendo asi comunicaciones con otros dispositivos por medio de algin
tipo de interfaz de comunicacion.

e Bloques DSP (Procesamiento Digital de Sefial), que realizan operaciones matematicas y
algoritmos de procesamiento de seiial, asi como multiplicacidn, acumulacién y otros
calculos especificos para procesar datos digitales.

e Controladores y periféricos, que permiten gran flexibilidad en el disefo.

e Herramientas de desarrollo proporcionadas por Xilinx como el software Vivado, del cual
se hablara mas adelante.

2.1.3. Panel WS2812

La visualizacidn de la matriz de celdas se ha llevado a cabo en el panel de LEDs WS2812 [3].
Se trata de un dispositivo de iluminacion programable formado por una matriz de LEDs RGB
(rojo, verde, azul) con control inteligente, donde el circuito de control y el LED RGB estdn
integrados en el mismo encapsulado conformando un pixel (ver anexo B).

15

El panel de LEDs utilizado para la representacidon grafica es de 64 pixeles (8 por 8),
conectados en serie de la forma en que se muestra en la figura 7.

Al estar conectados en serie, la sefial de control se transmite de un LED al siguiente.

<= Data Input

i

e
o TR

wuwog

v 1
—l 80mm >l

Figura 7. Conexiodn serie de LEDs

Incluye la interfaz serie de entrada, un registro de almacenamiento, un circuito de salida
serie y un oscilador de precision.

El protocolo de transferencia de datos es el siguiente: cada LED tiene una memoria donde
almacena los primeros 3 bytes que recibe, los siguientes bytes recibidos pasaran al segundo

LED y asi sucesivamente.

Para resetear los LEDs, es necesario mantener la entrada a ‘0’ durante al menos 50
microsegundos.

El control del panel se llevara a cabo en la FPGA, igual que el resto del proyecto, para lo cual
es importante tener en cuenta las siguientes consideraciones:

- Para enviar un ‘1’ al panel es necesario mantener la salida a ‘1’ durante T1H y
después a ‘0’ durante T1L.

- Para enviar un ‘0’, habrd que mantener la salida a ‘1’ durante TOH y después a ‘0’
durante TOL.

- Para resetear el panel es necesario mantener la salida a 0 durante al menos 50
M.

16

Serd importante respetar los tiempos de envio de datos para que la comunicacién funcione
correctamente.

La figura 8 y la tabla 1 muestran las formas de onda que codifican los bits y la activacion del
reset correspondientes a las consideraciones anteriores.

TOL

0 code

A
A\ 4
A
v

TOH

| code |« :‘TIL‘
T1H

y
A

RET code |« licet >

Figura 8. Formas de onda que codifican los bits [13]

) Valores
Data transfer time (TH+TL=1.25us+600ns)
utilizados
TOH 0 code,high voltage time 0.4us +150ns 250 ns
T1H 1 code high voltage time 0.8us +150ns 900 ns
TOL Ocode, lowvoltagetime 0.85us+150ns 1000 ns
TIL 1code lowvoltagetime 0.45us +150ns 350 ns

RES low voltage time Above 50 ps 50 ps

Tabla 1. Tiempos que codifican los bits

2.2. Herramientas Software

2.2.1. Vivado

El proyecto se ha desarrollado en el entorno de disefio integrado Vivado.

Se trata de un software producido por Xilinx para la sintesis y el analisis de lenguajes de
descripcidén hardware que incluye caracteristicas para el desarrollo de SoC y sintesis de alto
nivel.

Vivado permite el disefio a nivel RTL (transferencia de registros) mediante el uso de
lenguajes de descripcién hardware (VHDL o Verilog).

La interfaz de usuario es el navegador de proyectos, que contiene los archivos del disefio,
cuyas relaciones son interpretadas por el propio programa.

17

La figura 9 muestra la estructura del cédigo desarrollado en este trabajo, como se puede
observar, existe un fichero principal que engloba a otros Ilamados bloques o mddulos. Esto
constituye un disefio modular que sera explicado mas adelante.

Design Sources
v @2 GOL_Panel_TOP!(!
@ U_sreset: SRESET(a
® U_GameOfLive : GameOfLive
@ U_Enviar_dato : Enviar_Dato
® U_ws2812:ws2812

Figura 9. Estructura de ficheros en Vivado

2.2.2. VHDL

VHDL es un acréonimo que proviene de otros dos. VHSIC (Very High Speed Integrated
Circuits) y HDL (Hardware Description Language). Se trata de un lenguaje de especificacion
utilizado para describir circuitos digitales y para la automatizacion de disefio electrénico
utilizando distintos niveles de abstraccién [11].

No se trata de un lenguaje de programacion, sino de un lenguaje de descripcion hardware
gue permite describir circuitos sincronos y asincronos y realizar simulaciones, verificaciones
y sintesis de disefio. Con este lenguaje, se pueden descubrir problemas en el disefio antes
de implementarlos fisicamente, y, ademas, permite que mdas de una persona trabaje en el
mismo proyecto.

Existen tipos de datos (std_logic) que permiten trabajar a nivel de bit y que son los que se
han utilizado en la implementacidon del proyecto.

Como se ha comentado anteriormente, VHDL permite una estructuracién modular a la hora
de describir sistemas digitales. Ofrece una descripcidn estructural y de comportamiento
mediante la cual es posible decidir como se conectan los componentes entre si y qué
funcidn realiza cada uno de ellos.

Como lenguaje de descripcidn hardware, todos los circuitos trabajan a la vez para obtener el
resultado, es decir, todo se ejecuta en paralelo, a diferencia de los lenguajes de
programacion. Ademas, existen herramientas que transforman una descripcién VHDL en un
circuito real (sintesis).

18

2.2.3. Matlab

Matlab (MATrix LABoratory), es una plataforma de programacion y cdlculo numérico que
ofrece un entorno de desarrollo integrado con un lenguaje de programacion propio, que es
interpretado y puede ejecutarse tanto en el entorno interactivo, como a través de un
fichero de script. Entre sus prestaciones basicas se encuentran la manipulacidon de matrices,
implementacién de algoritmos, representacién de datos y funciones, creacién de interfaces
de usuario y la comunicaciéon con programas en otros lenguajes y con otros dispositivos
hardware (en el caso de este trabajo con la FPGA).

Ademas, Matlab dispone de dos herramientas adicionales: Simulink, que es una plataforma
de simulacion multidominio y Guide, que es un editor de interfaces de usuario. Matlab
cuenta también con toolboxes mediante las cuales se pueden ampliar sus capacidades.

En el caso que nos ocupa, se realizard la implementacidn del juego de la vida en Matlab,
para ser utilizada como modelo de referencia debido a la facilidad para representar
graficamente la matriz de celdas y poder comprobar su funcionamiento visualmente.

19

3. Implementacion digital

En este apartado se va a explicar la implementacién en Vivado (con la utilizacién de lenguaje
VHDL) y en Matlab del juego de la vida, asi como la descripcién detallada de los bloques
utilizados en el proceso y la comunicacién entre ellos.

3.1. Diseno modular

La programacion modular esta basada en la técnica de diseifio descendente, que consiste en
dividir el problema original en diversos subproblemas que se pueden resolver por separado,
para después recomponer los resultados y obtener la solucién general al problema.

Un madulo o bloque es cada una de las partes en que se divide el proyecto final. Cada uno
tiene una tarea definida y se puede disefiar y verificar de forma individual antes de ser
integrado en el sistema completo, aunque en algunos casos, estos mddulos necesitan
comunicarse con otros para poder operar.

La modularidad del disefio tiene una serie de ventajas que se van a comentar a
continuacion:

e Los bloques que conforman el proyecto pueden ser disefiados individualmente y ser
utilizados en otros proyectos.

e El disefio modular permite optimizar cada mddulo por separado, lo que puede llevar a
mejoras en el rendimiento global.

e Dividir un proyecto completo en mddulos mas simples facilita el desarrollo de la
implementacion.

e Favorece la depuracidon y el mantenimiento, ya que, si se produce un error, es mas
facilmente localizable y solucionable. Ademas, las modificaciones en un mddulo no
afectaran a los demads siempre y cuando la interfaz de comunicacién esté bien
establecida.

En el disefio de este trabajo, encontramos 4 moddulos que se comunican entre ellos
mediante interfaz AXI4-Stream (Advanced eXtensible Interface), que serd explicada mas
adelante. Todos los moddulos estdan integrados dentro de un médulo general
(GoL_Panel_top), mediante el cual se relacionan sus entradas y salidas. El problema global
gue se pretende abordar es la realizacién del juego de la vida, incluyendo ademads su
visualizacién en el panel de LEDs. Para ello, es necesario, en primer lugar, un bloque SRESET,
gue se encarga de sincronizar el pulsador de reset (que es asincrono) y ademas, de hacerlo

20

activo en bajo, lo cual es un standard para la interfaz de comunicacién AXI4-Stream. El
siguiente bloque Gameoflife, se encargara de realizar cada iteracidn del juego de la vida,
teniendo como entrada una disposiciéon de la matriz de celdas inicial. En tercer lugar, es
necesario un bloque Enviar_dato, que se encargue de organizar la informacion que devuelve
el bloque GameOfLife, de manera que pueda ser enviada de una forma eficiente y sencilla al
siguiente y ultimo bloque WS2812, que se encargara de enviar los datos ya procesados de
salida al panel de LEDs, teniendo en cuenta la necesidad de respetar los tiempos de envio,
para su correcta interpretacion. En la figura 10 se muestra un esquema de los bloques
utilizados en la implementacion.

SRESET GameOfLife

Y
A

Enviar_dato WS2812

Figura 10. Esquema de bloques

A continuacion, se va a detallar el funcionamiento de la interfaz de comunicacién utilizada y
cada uno de los bloques que componen el proyecto por separado, asi como su
implementacion en Matlab.

3.1.1. Interfaz AXl4

El protocolo AXI [2] es un protocolo de comunicacion sincrona entre médulos, muy util a la
hora de realizar transacciones de datos en las que estos se transmiten en paralelo. Esta
pensado principalmente para comunicaciones on-chip (entre los diferentes componentes
integrados en un solo chip), ya que muchos bloques IP de Xilinx utilizan esta interfaz.

Se utiliza un protocolo handshake que funciona con un reloj global y una sefial de reset
general activa en bajo. En la comunicacion mediante esta interfaz, un mdédulo actia como
maestro (el que envia los datos) y el otro como esclavo (el que recibe los datos). Existen,
ademas, dos sefiales, VALID y READY, que permiten gestionar las comunicaciones.

Existen 3 tipos de interfaz AXI4:

e Full AXI4: realiza un mapeado en memoria y requiere un canal de direcciones que
contiene la direccion del registro o ubicacién de memoria a la que se esta
accediendo en la transaccion. Admite operaciones en modo rafaga (transferencia de
multiples datos consecutivos).

e AXl4-Lite: se trata de una versidn simplificada de AXI4 que tiene un bus fijo de 32 bits
y no admite operaciones en modo rafaga.

21

e AXl4-Stream: no necesita canal de direcciones. Se centra en la transmision de datos
en secuencia continua. Se basa en un canal unidireccional para la transferencia de
datos. Esta interfaz es la que se va a utilizar para la comunicacién entre bloques en
este trabajo y su funcionamiento se va a explicar a continuacion.

El protocolo de comunicacion (handshake) en la interfaz AXI4-Stream se lleva a cabo de la
siguiente forma:

El maestro activa la sefial VALID cuando los datos que va a enviar son vdlidos, indicando asi
al esclavo que los datos estadn disponibles para usarse. Por su parte, el esclavo, debe activar
la sefial READY cuando esté listo para recibir nuevos datos. El intercambio de datos se
produce cuando ambas senales (VALID y READY) estdn activas en un mismo flanco de relo;j.
El orden en que se activan las sefiales VALID y READY carece de importancia.

Las figuras 11 y 12 muestran esquemas del funcionamiento del protocolo handshake.

MAESTRO e————— ESCLAVO

Figura 11. Interfaz AXI4-Stream [18]

T1 T2 T3

ack| [L L] L[]

INFORMATION X \

VALID N \\
READY N \\

Figura 12. Protocolo AXI4-Stream [18]

3.2. Implementacion en Matlab [7]

La implementacién del juego de la vida en Matlab ha sido realizada para utilizarse como
modelo de referencia a la hora de verificar la funcionalidad del disefio en VHDL.

Esta decision ha sido tomada debido a que en Matlab se puede representar graficamente la
matriz de celdas en cada iteracion y de esta forma comprobar visualmente el
funcionamiento del algoritmo.

22

El codigo no estd estructurado mediante mdédulos como en VHDL, sino que contiene 3
funciones y un bucle principal que se ejecuta continuamente hasta un numero de
iteraciones que puede ser modificado. La matriz de celdas, como se ha comentado
anteriormente, es bidimensional con simetria cilindrica, esto quiere decir que las celdas del
extremo derecho estdn conectadas con las del extremo izquierdo y las de arriba con las de
abajo, por ello, para la implementacién en Matlab, ha sido necesario crear un marco ficticio
en el que se replican las filas y columnas de los extremos de la matriz, para, de esta forma,
poder sumar correctamente las vecinas vivas que tiene cada celda.

A continuacién, se muestra una imagen (figura 13) de la matriz sin marco (borde amarillo),
en la que se ha dibujado una disposicion de celdas vivas (casillas con circulo amarillo) y
muertas (casillas vacias) aleatoria. La matriz exterior (borde negro) constituye la matriz con
marco, y en ella se han copiado las filas y columnas exteriores de la forma en que indican las
flechas, de forma que los circulos negros representan las celdas vivas vy las casillas vacias las
celdas muertas en el marco ficticio.

o

| |®eje] | i

> ® @

Figura 13. Matriz de celdas con marco

Uno de los puntos clave a la hora de implementarlo es conocer el nimero de vecinas vivas
gue tiene cada celda de la matriz. En cuanto a la programacién, existen varias formas de
llevar esto a cabo. Aqui se va a explicar la utilizada en este proyecto.

Las funciones utilizadas en el cddigo son las siguientes:

e F_vecinas_vivas: tiene como argumentos de entrada una matriz 9 por 9 (a la que se ha
llamado matriz con marco), y el nimero de fila (i) y de columna (j) en el que se
encuentra la celda de la cual vamos a calcular sus vecinas vivas. En la funcidn, se calcula
la posicion de la celda al norte, al sur, al este, al oeste, noroeste, noreste, suroeste y
sureste de la celda actual y se comprueba el estado de todas las celdas contiguas a la
gue estamos analizando, con una secuencia de sentencias if, sumando un 1 a una
variable X (inicialmente con valor 0) cada vez que una celda contigua esta viva. De esta

23

forma, al comprobar el estado de todas las celdas contiguas, tendremos en la variable X
el nimero de vecinas vivas que tiene la celda (i, j). Esta funcién devuelve la variable X.

3 ‘ NO| N | NE
4 0] E
5 SO| S | SE

Figura 14. Celdas vecinas

En la figura 14 se observa la celda actual (punto amarillo) y sus vecinas. Los numeros
corresponden a los indices i (vertical/fila) y j (horizontal/columna) de cada celda.

e F_modificar_marco: esta funcion actualiza el marco ficticio de la matriz en cada
iteracion, ya que el bucle principal recorre Unicamente la matriz sin marco, por lo que es
necesario actualizarlo en cada iteracion. Tiene como argumento de entrada la matriz con
marco y devuelve otra matriz igual que la anterior, pero con el marco modificado.

e F_quitar_marco: quita el marco de la matriz, dejando la matriz original 8 por 8 para
poder representarla graficamente. Tiene como argumento de entrada una matriz con
marco y devuelve la misma matriz, pero sin marco.

En cuanto al bucle principal, en primer lugar, se representa graficamente la matriz,
indicando el nUmero de iteracion al que corresponde cada representacion, y posteriormente
se escribe en un fichero de texto con la funcién “writematrix”, que es propia de Matlab y
sirve para escribir matrices en ficheros de texto.

Este fichero se comparara con otro generado en VHDL.

Dentro del bucle principal, existen dos bucles for anidados, que se utilizan para recorrer
todas las filas y columnas de la matriz (sin marco). Para cada celda se llama a la funcién
F_vecinas_vivas, que actualiza su estado (o valor) dependiendo de cuantas vecinas vivas
tenga y de su valor actual, siguiendo las reglas del juego de la vida.

Por dltimo, se actualiza el valor de la matriz para prepararla para la siguiente iteracién del
bucle.

El diagrama de flujo del cédigo descrito puede observarse en la figura 15.

24

Figura 15. Diagrama de flujo de la implementacion en Matlab

En cada ejecucion del programa, el fichero de texto se actualiza con los nuevos valores
correspondientes a las iteraciones llevadas a cabo en dicha ejecucién. Posteriormente, sera
necesario trasladar ese fichero a un directorio en el que el proyecto VHDL pueda leerlo y
compararlo con otro que se generard en la simulacidn.

3.3. Implementacion en FPGA [19]

Como se ha mencionado anteriormente, la implementaciéon en VHDL consta de diferentes
modulos que forman parte de otro general. Cada mddulo estd conectado con el siguiente y
se comunican mediante la interfaz AXI4-Stream. En cuanto a la estructura de cada médulo,
todos ellos contienen un proceso de flip-flops, que actualiza todos los valores de los
biestables del bloque siguiendo el flanco ascendente de la sefial de reloj y realiza el reseteo
de las senales cuando el reset se encuentra con valor ‘0’ (activo en bajo). Ademas, en todos
los blogues (excepto en el que se encarga de sincronizar el pulsador de reset), existe una
maquina de estados que modela su funcionamiento y que a continuacidon serdn
representadas y explicadas. Por ultimo, alguno de los mddulos contiene otro tipo de
procesos o funciones que se explicaran individualmente mas adelante.

25

La figura 16 representa la estructura en la que estan organizados los bloques que conforman
el proyecto.

GOL_Panel_TOP

SRESET

RST

g AXIS_ARESETN|
i »cLK
— GoL Enviar_dato ws2812 Yy

= »IN_DEBUG RSTH€ RST AXIS_ARESETN

IN_INICIO o S_AXIS_TVALD

PN
LED_INICIO ;

— PLED_INICIO 110 Shoativie S_AXIS_TREADY 3 i
LED_DEBUG »iieopesus | s < » TO_Ws2812
IN_z\,:g Siin swi READY_G |« READY_E BOUT
INsw2 | Fi_G < Fi_E =l

»IN_SW2 Bl CLK CLK
4 [[

CLK

Figura 16. Esquema de los mddulos que forman el proyecto

3.3.1. Mddulo SRESET

Se trata de un bloque que tiene como seiial de entrada el reloj, y reset asincrono. Este
bloque se encarga de sincronizar el reset por medio de dos biestables y, ademas, lo hace
activo en bajo. Como seial de salida, tiene la sefial AXIS_ARESETN, que es el reset sincrono y
activo en bajo y que constituye la entrada de reset de los demds bloques (ver Anexo A,
apartado Al).

3.3.2. M6dulo GameOfLife

Este bloque es, como se ha comentado anteriormente, en el que se implementa el juego de
la vida de Conway. Realiza las iteraciones a una velocidad que sea perceptible para el ojo
humano a la hora de visualizar cada iteracidn en el panel de LEDs. Envia los datos al bloque
Enviar_dato cuando este estd preparado y con la sefial READY_G en alto (ver Anexo A,
apartado A2).

Como seiales de entrada, tiene las siguientes:

- IN_DEBUG: pulsador que inicia el programa en modo debug. Corresponde al pulsador
BTNR conectado al pin T17 de la placa (figura x).

26

- IN_INICIO: pulsador que inicia el programa de forma normal, calculando y mostrando
cada iteracion sin necesidad de intervencién. Corresponde al pulsador BTNL conectado
al pin W19 de la placa (figura x).

- LED_INICIO: LED que se enciende cuando el programa se ha iniciado en modo normal.
Corresponde al LEDO conectado al pin U16 de la placa (figura x).

- LED_DEBUG: LED que se enciende cuando el programa se ha iniciado en modo debug.
Corresponde al LED1 conectado al pin E19 de la placa (figura x).

- IN_SW1 e IN_SW2: interruptores de dos posiciones que permiten seleccionar entre 4
disposiciones iniciales diferentes (oscilador, estatico, pruebal, prueba2). Corresponden
a los interruptores SWO y SW1 conectados a los pines V17 y V16 de la placa,
respectivamente.

- CLK: reloj de la placa (100 MHz)

- RST: seiial de reset sincrona y activa en bajo.

- READY_G: sefal que se recibe del esclavo en la comunicacion e indica que este esta
preparado para recibir nuevos datos.

En cuanto a las senales de salida:
- Fi_G:son 8 vectores de 1 byte y constituyen cada una de las filas de la matriz de celdas.

- VALID_G: sefial necesaria para la comunicacién con el siguiente bloque. Se activa a ‘1’
cuando los datos almacenados en Fi_G son validos.

Este bloque esta formado por 7 biestables: dos sincronizadores (para los pulsadores), dos
detectores de flanco, un contador de pulsos de reloj y los correspondientes al estado de la
maquina de estados y a la matriz de celdas (que ademas cuenta con habilitacién enable).

La matriz de celdas es un array bidimensional de 8x8 bits.

Al declarar la matriz de esta forma, no es necesario afiadirle un marco, ya que al analizar las
vecinas de la celda (7)(7) y sumar un 1 a estos valores para obtener las celdas sur y este, el
dato se desborda (va de 0 a 7), y se obtiene la celda (0)(0).

Este bloque cuenta con wuna funcion (F_VECINAS_VIVAS), que tiene el mismo
funcionamiento que la explicada anteriormente en Matlab con la consideracion de que en

27

este caso no existe matriz con marco, sino que se trabaja en todo momento con la matriz
normal.

El funcionamiento del mddulo es el siguiente: el cédigo esta formado por tres procesos que
se ejecutan simultdneamente. El primero de ellos es un multiplexor, el cual selecciona la
matriz inicial de entre cuatro opciones posibles segun el estado de los interruptores. Por
otro lado, tenemos el proceso de flip-flops, mediante el cual, los 7 biestables existentes
actualizan su valor en cada flanco de subida de reloj, a excepcién de la matriz de celdas, que
solo se actualizara cuando una senal de enable esté a ‘1’. Esta sefial se activara seguin una
maquina de estados que se va a explicar a continuacion.

Por ultimo, tenemos la mdaquina de estados que modela el funcionamiento general del
programa. Esta maquina de estados esta compuesta por 7 estados, uno de reposo, 3
dedicados al inicio normal (inicio, espera, iteracion) y otros 3 dedicados al inicio en el modo
debug (debug, espera_debug, iteracién_debug). (Figura 13)

Al pulsar reset, la maquina de estados se encuentra en el estado reposo, en el que ambos
LEDs estan encendidos, a la espera de que se elija uno de los dos modos. Si se presiona el
pulsador de inicio se pasa al estado inicio y si se pulsa el de debug, se pasa al estado
espera_debug.

En el estado inicio, Unicamente el LED de inicio normal queda encendido, y en el momento
qgue el bloque Enviar_dato pone la sefial ready a ‘1’, la maquina de estados pasa al estado
espera. En este estado existe un temporizador, que consiste en un contador de 48000000
ciclos de reloj, para que cada iteracién se realice cada medio segundo aproximadamente y
de esta forma sea perceptible para el ojo humano a la hora de visualizarla en la placa de
LEDs. Una vez que ha pasado este tiempo, se pasa al estado iteracion, donde se realiza una
iteracion del juego de la vida de manera similar a cdmo se hacia en Matlab, se calculan las
vecinas vivas de cada celda dentro de dos sentencias for-loop anidadas para recorrer las
celdas de la matriz, y segun su valor se actualiza el valor de cada celda. Automaticamente,
una vez finalizado la sentencia for, se pasa al estado inicio, donde VALID_G se pone a ‘1’, ya
gue los datos estan disponibles para enviarlos.

Por otro lado, si escogemos el modo debug, pasamos al estado espera_debug, donde queda
encendido Unicamente el LED correspondiente a este modo y se espera hasta que se
presiona el mismo pulsador, momento en el que se pasa al estado debug. Aqui, pasamos
directamente a iteracion_debug donde se realiza lo mismo que en una iteracién normal.
Finalmente volvemos al estado espera_debug para esperar a que se pulse otra vez el
pulsador.

28

El modo de operacidon del programa solo puede seleccionarse al principio de este y es
necesario resetearlo para seleccionar otro modo.
Las sefales de salida Fi_G son actualizadas en cada ciclo de reloj con los valores de las filas

de la matriz.
La figura 17 muestra un esquema de la maquina de estados de este bloque.

/,(INICIO) | ESPERA_DEBUG)
.

\ - /
\/ 4 V4
(meracioN) [ITERACION_DEBUG }

Figura 17. Mdquina de estados del bloque Gol

3.3.3. Médulo Enviar_dato

En este bloque se realiza la adecuacidon de los datos recibidos desde GameOfLife para poder

mandarlos al siguiente bloque (ver Anexo A, apartado A3).

Las entradas de este médulo son:
- CLK: reloj de la placa (100 MHz)

- RST: sefial de reset sincrona y activa en bajo.

- VALID_E: sefal necesaria para la comunicacién con el bloque anterior. Se activa a ‘1’
cuando los datos almacenados en Fi_G en el mddulo Gol son validos.

29

- FL_E: datos recibidos desde GoL, son 8 bytes que contienen las filas de la matriz de
celdas.

- S_AXIS_TREADY: sefal necesaria para la comunicacion con el siguiente blogue. Se activa
a ‘1’ cuando el esclavo esta listo para recibir datos.

En cuanto a las senales de salida, son las siguientes:
- READY_E: senal que se activa cuando el bloque esta listo para recibir nuevos datos.

- BOUT: seiial de 8 bits, que corresponde a la codificacién de uno de los colores RGB de un
LED de la placa, y que posteriormente sera enviada bit a bit desde el siguiente bloque a
la placa.

- S_AXIS_TVALID: sefial necesaria para la comunicacidn con el bloque siguiente, se pone a
1’ cuando los datos son validos en BOUT.

En el este bloque, se leen los datos de las entradas Fi_E, y se guardan en un vector de 64
bits. Por cada bit del vector, se envian 3 bytes cuyos valores dependen de si este bit es un ‘1’
o un ‘0’. Cuando sea un ‘0’, el valor de los 3 bytes serd 0 y el LED estard apagado, cuando el
valor sea un ‘1’, el valor serd 15 y el LED estard encendido en color blanco ya que los 3 bytes
tendran el mismo valor. Esto se debe a que el panel de LEDs, como se comentd en
secciones anteriores, necesita 3 bytes para cada LED, cada uno asociado a un color RGB.

En cuanto a los procesos, existe un proceso de flip-flops, como en el caso anterior, y otro
correspondiente a la maquina de estados, que se ejecutan en paralelo.

Enviar_dato estd formado por 6 biestables: tres contadores, un temporizador, un registro de
almacenamiento, y el relacionado con el estado de la maquina de estados.
Cuenta también con un registro de desplazamiento.

Existe una funcion llamada DAR_VUELTA_VECTOR que se encarga de cambiar el orden de los
elementos de un vector de std_logic_vector para posteriormente unirlos todos en otro
vector y mandarlos por orden al panel de LEDs, ya que como se comentd en secciones
anteriores, estos datos deben ser enviados de una forma especifica.

La maquina de estados esta formada por tres estados: inicio, crea_byte y envia_byte. En
primer lugar, después de pulsar reset, la maquina de estados se encuentra en el estado
inicio. En el momento en que la sefal valid se pone a ‘1’, se leen los datos de las entradas
Fi_E, y se guardan en el vector de 64 bits, ademas, se pasa al estado crea_byte, en el que
segun el valor de dos contadores (cnt_bit y cont_iteraciones) se realizan diferentes

30

acciones. Si cnt_bit es igual a 64, quiere decir que se han enviado todos los datos de Ila
matriz de celdas y, por lo tanto, se ha terminado de enviar una iteracion completa, el
siguiente estado sera inicio y se reseteara cnt_bit. Si no se han contado los 64 bits todavia y
ademads cnt_iteraciones es ‘1’ (lo que quiere decir que no nos encontramos en el primer bit
a enviar), se activa el enable de un registro del desplazamiento que desplaza una posicién a
la izquierda el vector de 64 bits. Finalmente, se suma 1 a cnt_bit y se pasa al estado
envia_byte. En este estado se activa la seifal S_AXIS_TVALID que constituye parte del
handshake con el siguiente bloque.

Si todavia no se han enviado los 3 bytes correspondientes a cada bit, el siguiente estado
sera envia_byte y se sumard uno a cnt_byte. Si ya se han enviado los 3 bytes, pero todavia
no han sido recorridos los 64 bits, entonces el siguiente estado sera crea_byte y se iniciard
el contador de bytes, y si, por ultimo, se han enviado los 3 bytes, y ademas se han recorrido
los 64 bits, entonces se pasara a inicio para estar listo cuando lleguen nuevos datos para
enviar. Todas estas condiciones estan también condicionadas por el tiempo de transmision
de cada byte, que es de 10 microsegundos, por lo que la maquina de estados se encontrara
en el mismo estado hasta que este tiempo haya transucurrido.

La figura 18 muestra un esquema de la maquina de estados de este bloque.

,r/-..-.- \'.
e INICIO .
N 7\
€ |l D E
\ ¥
_ / \ '.
% CREA_BYTE) : . .
/ g \"--; - ,/ |
\. — T /
"/ N
N ENVIA_BYTE YV
N /

Figura 18. Mdquina del bloque Enviar_dato

3.3.4. M6dulo WS2812 [13]

Las seiales de entrada de este bloque son las siguientes:
- AXIS_ARESETN: sefial de reset sincrono, activa en bajo.

31

- AXIS_ACLK: reloj de la placa (100 MHz)

- S_AXIS_TDATA: datos recibidos por el bloque anterior, correspondientes al byte que
configura un color RGB perteneciente a un LED de la placa.

- S_AXIS_TVALID: sefial que permite la comunicacion con el maestro y se activa cuando
los datos estdn listos en el bloque Enviar_dato, en la salida BOUT.

En cuanto a las salidas:

- S_AXIS_TREADY: sefial que permite la comunicacién con el maestro y se activa cuando
el esclavo esta listo para recibir nuevos datos.

- TO_WS2812: seiial de un bit que se envia al panel de LEDs.

El objetivo de este bloque es recibir un byte, e ir enviandolo bit a bit, modificado de tal
forma que cumpla con las especificaciones y restricciones temporales del panel de LEDs
comentadas en apartados anteriores. La forma de enviar cada bit se representd
anteriormente en la figura 6 y tabla 2 (ver Anexo A, apartado A4).

De esta forma, si la sefial de entrada es, por ejemplo “00000111”, el primer dato a enviar
serd un ‘0’, para lo cual la seiial de salida debera valer ‘1’ durante 250 nanosegundos vy
posteriormente, ‘O’ durante 1000 nanosegundos. Con el ejemplo descrito, tendremos que
repetir esta operacion 5 veces, que corresponden al nimero de 0. En el momento en que
sea necesario enviar un ‘1’, la sefial de salida debera valer ‘1’ durante 900 nanosegundos y
‘0’ durante 350 nanosegundos. Esta operacidn se repetird 3 veces. Sumando los tiempos
necesarios para enviar un byte siguiendo estas reglas, se obtiene un tiempo total de 10
microsegundos, que es exactamente el tiempo necesario para enviar un byte en el médulo
Envia_dato, lo que facilita en gran medida la transmision.

En este bloque hay dos procesos, uno correspondiente a los flip-flops y otro a la maquina de
estados que modela el funcionamiento.

Existen 4 biestables: un contador, un temporizador, un registro de almacenamiento y el
correspondiente al estado de la maquina de estados.

El estado en el que se encuentra la MEF tras pulsar reset es reposo, en el que la seial de
salida TO_WS2812 vale ‘0’. En el momento en que la sefial valid se activa, se guarda la sefal
S_AXIS_DATA en un registro de almacenamiento y se pasa al estado enviarl, en el que la
sefial de salida vale ‘1’ durante el tiempo establecido (contado por un contador de ciclos de
reloj) por las caracteristicas del panel de LEDs, comentadas anteriormente, y que depende
de si el dato a enviar es un ‘0" o un ‘1. Finalmente, pasa al estado enviarO, donde
similarmente con el estado anterior, la sefial de salida vale ‘0’ un tiempo determinado
(haciendo uso del mismo temporizador, que se resetea al terminar de enviar un bit). Con un
contador que cuenta bits enviados, se decide si el siguiente estado sera enviarl (para enviar

32

el siguiente bit), cuando todavia no se han enviado los 8 bits, o reposo (para esperar nuevos
datos de entrada y la activacioén de la sefial valid), cuando los 8 bits han sido enviados.
La figura 19 muestra un esquema de la maquina de estados de este bloque.

(tiermpa = 123) and (contador =7

Sempo = 124 and contadar < 7 |

Figura 19. Mdquina de estados del bloque WS2812

33

4. Verificacion funcional

Como se ha comentado anteriormente, la verificacién del funcionamiento del proyecto en
VHDL se va a realizar con ayuda del disefio de Matlab, utilizando este como modelo de
referencia. Para ello, se ha creado un fichero a partir de las iteraciones llevadas a cabo en
Matlab, que guarda la matriz (sin marco) por filas y una iteracion detras de otra sin ningin
tipo de separador.

4.1. Test bench

El test bench es un banco de pruebas disefiado para probar y verificar el comportamiento de
un disefio VHDL antes de probarlo en los dispositivos hardware, también es posible aplicar
estimulos al disefio a fin de analizar los resultados o comparar los mismos de dos
simulaciones diferentes [19].

Tiene como objetivo realizar una simulacién del sistema. Durante la simulacion, se generan
estimulos que servirdn de entradas al disefio para verificar si sus salidas coinciden con lo
qgue se esperaba. Esto implica que el banco de pruebas ya no es un circuito, sino que es un
programa que se encargara de verificar la descripcidn del circuito. Es por ello, que en el test
bench existen elementos del lenguaje VHDL que son mas similares a los que existen en
algunos lenguajes de programacion, como por ejemplo manejo de archivos y de tiempo, que
son los mds involucrados en el caso que nos ocupa.

En cuanto a la implementacidon que se esta desarrollando, lo primero es declarar los
componentes o bloques que conforman el proyecto y que se han comentado
anteriormente, para de esta forma poder dar valor a sus entradas. Por otro lado, una de las
cosas que resulta mas interesante es conocer el periodo de la sefial de salida (TO_WS2812),
ya que puede dar alguna pista sobre el correcto funcionamiento del envio de datos a la
placa de LEDs. Para obtener el periodo de la sefal, se ha creado un proceso, que utiliza la
funcién now, que devuelve el tiempo actual de simulacién, con lo cual se puede conocer el
periodo de la sefial. Ademads, también se realiza una reconstruccion del bit enviado. Esto es
necesario para poder ver de forma mas sencilla qué datos se estan enviando a la placa, ya
que la seflal TO_WS2812, no es facil de interpretar. Por ello, ademas del periodo, se calculan
los tiempos en alto y en bajo de esta seiial de salida, con los cuales se puede calcular si lo
gue se esta enviando es un ‘1’ oun ‘0’.

También resulta interesante generar un fichero de texto que contenga la matriz en cada
iteracion llevada a cabo y que sea exactamente igual que el de Matlab para poder, de esta
forma, compararlos y comprobar si se ha cometido alglin error en cualquiera de las
iteraciones. El lenguaje VHDL posee un manejo de archivos particular [14], mads limitado
que, por ejemplo, en lenguaje C. La lectura y escritura de datos a un archivo se encuentra
orientada a lineas, no a caracteres sueltos, por lo que el mecanismo basico consiste en

34

formar una linea de texto y después escribirla al archivo. Las funciones involucradas en
escribir y leer archivos se encuentran declaradas en la biblioteca std y en el paquete textio.
En este TFG se utiliza el paquete std_logic_textio [15], ya que permite trabajar con datos de
tipo std_logic y std_logic_vector, que son los que se han utilizado mayoritariamente en el
proyecto.

En cuanto a la estructura del test bench, es la siguiente: en primer lugar, se define una sefal
llamada numlteraciones_des, que representa el nimero de iteraciones que se desean
escribir en el fichero, ya que para compararlo posteriormente con el de Matlab es
importante que exista el mismo numero de iteraciones.

. . . . poeoeoooooe
Después, se abre el fichero y se espera el tiempo necesario para que se 00000000
lleve a cabo una iteracion. PoOOOOBOOO
Para escribir cada fila en el fichero, se ha creado una sentenciaforpara @€ @1 1106 0 @
cada una de ellas. Esto se debe a que en Matlab la Unica forma de g g g g g g g g
escribir la matriz en el archivo es con un delimitador (espacio) entre 5 5 53 09 0 8 8
cada caracter, por lo que es necesario insertar este mismo caracter 2 2 2 2 2 8 0 0
también en el fichero generado por VHDL. 60000000

0 OOOOOOO

) 00010000

Por esto, en cada bucle for se recorre una linea insertando un espacio g gp 1900 0 0
entre cada elemento y posteriormente, cuando se ha recorridotodala ¢ 2 2 1 6 @ @ ©
linea, se escribe en el fichero. 080 B 0808
000 0OB0O0GO

L% I I I % I I

La figura 20 muestra un ejemplo de como se escriben dos iteraciones Figura 20. Ejemplo de

de un patrén oscilante en un fichero. datos en fichero

Una vez que todas las iteraciones deseadas se han escrito, es necesario cerrar el fichero y
volver a abrirlo, ya que no es posible abrir un fichero en modo escritura y lectura al mismo
tiempo. Por ello, para compararlo con lo obtenido en Matlab es necesario cerrarlo y abrir
ambos ficheros (Matlab y VHDL) en modo lectura. Se recorren ambos ficheros, omitiendo
los espacios en blanco y se comparan caracter a caracter. Para conocer si se ha cometido
algun fallo, existe una variable fallo que se pone a ‘1’ solo en caso de que dos caracteres de
sendos ficheros no coincidan. Ademas, en el momento en que existe un fallo, se crea otro
fichero llamado “estado” que contiene un texto que informa de en qué iteracién y en qué
linea se ha cometido este error.

La figura 21 muestra el mensaje que se escribe en el fichero si se producen algun error.

Se ha producido un fallo en la iteracion 1, linea 2 /// Se ha producido un fallo en la iteracion 2, linea 1 ///
ISe ha producido un fallo en la iteracion 2, linea 6 /// Se ha producido un fallo en la iteracion 3, linea 8 ///

Figura 21. Mensaje de fallo al comparar ficheros

35

Si por el contrario, todas las iteraciones son correctas, se deja plasmado en este mismo
fichero.

La figura 22 muestra el mensaje que se escribe en el fichero si no se producen ningun error.

hodas las iteraciones son correctas

Figura 22. Mensajes de iteraciones correctas

Para verificar el funcionamiento se han probado patrones con evoluciones conocidas. En la
figura 23 se observa un ejemplo de simulacién llevada a cabo con un patrén que se hace
estatico tras 10 iteraciones. Se puede observar como las sefiales Fi_G (que corresponden a
las filas de la matriz) mantienen su valor tras este niUmero de iteraciones. Asi mismo, se
muestra la evolucion de este mismo patron en Matlab (figura 24), de forma que se
corrobora que esta iteracion es correcta, al ser ambos iguales.

Figura 23. Simulacion de patrén que se hace estdtico en 10 iteraciones en VHDL

Grid at teration 1 Grid atitoration 2 o = Grid at ration §

Grid at toration 10

Grid at toration 100

Figura 24. Simulacion de patron que se hace estdtico en 10 iteraciones en Matlab

36

5. Resultados

Vivado lleva a cabo diversos analisis del disefio durante el proceso de sintesis e
implementacién, evaluando diferentes aspectos y proporcionando informacion atil sobre
rendimiento, utilizacion de recursos y cumplimiento de restricciones [10].

En primer lugar, analiza si el disefio es sintetizable (si puede convertirse en una
implementacion logica). En este andlisis se identifican errores de sintaxis o latches.

También se realiza un analisis de restricciones temporales que identifica violaciones de
tiempo vy rutas criticas en las cuales se produce el mayor retardo y las cuales determinan la
frecuencia maxima de operacion.

Ademas, Vivado lleva a cabo un analisis de recursos utilizados por el disefo, y, por ultimo,
un analisis del consumo de potencia.

En este apartado, se van a analizar los resultados obtenidos y las prestaciones. Para ello, se
analizaran los datos proporcionados por el software una vez sintetizado e implementado el
proyecto (sin ningun error). También se explicaran una serie de conceptos importantes para
la interpretacion de estos datos.

Al sintetizar e implementar el disefio en Vivado, se obtienen los siguientes resultados en
cuanto a la utilizacién de recursos:

Estos porcentajes proporcionan informacion sobre cémo se estdn utilizando los recursos de
la FPGA, en relacidn con los recursos totales disponibles.

Resource Utilization Available Utilization %

LUT 413 20800 1.99
FF 213 41600 0.51
10 9 106 8.49
BUFG 1 32 3.13

Tabla 2. Recursos utilizados

La tabla 2 refleja la cantidad de recursos utilizados. Se puede observar que el porcentaje
total de recursos utilizados sobre el total disponible es reducido. A continuacion, se
describen cada uno de los recursos:

e LUT (Look Up Table): se trata de bloques de ldgica programable que se utilizan para

implementar funciones légicas en el disefo. En el contexto de la ldgica combinacional, es
la tabla de verdad, que define cémo se comporta la ldgica combinatoria. Las FPGA

37

implementan la légica combinatoria con LUT’s y al configurarla, los bits de la LUT se
cargan con unos o Ceros.

FF (Flip-Flop): son biestables que se utilizan para sincronizar la légica y guardar estados
l6gicos entre ciclos de reloj. En cada ciclo de reloj, un flip-flop mantiene el valor en su
salida.

10: Entradas y salidas.

BUFG (Global Clock Buffer): distribuye sefiales de reloj de alta distribucién (high fan-out
clock signals) a través de un dispositivo PLD.

Como se observa en la figura x, el porcentaje de utilizacién de recursos es reducido,

predominando el uso de LUT’s.

A continuacién, se van a analizar las prestaciones del disefio, para lo cual se ha realizado un

analisis temporal del resumen obtenido en Vivado. El resumen de tiempos es una

herramienta importante para evaluar si el disefio cumple con las restricciones temporales

establecidas y si se alcanzan los objetivos de rendimiento deseados. Antes de analizarlo, es

interesante conocer una serie de términos:

WNS (Worst Negative Slack): se trata del peor valor de incumplimiento de los tiempos
de establecimiento/recuperacién dentro de un dominio de reloj. Este valor puede
utilizarse para calcular la frecuencia maxima de reloj a la que funciona el circuito
(ecuacion (1)).

1
felk,max (MHZ) = 4 sy — WNS (ns) (@)

WHS (Worst Hold Slack): indica el peor valor de incumplimiento de los tiempos de
mantenimiento/eliminacién dentro de un dominio de relo;j.

WPWS (Worst Pulse Width Slack): medida del peor valor de incumplimiento de los

requisitos de periodo minimo, periodo maximo, tiempo de pulso alto y tiempo de pulso
bajo para cada pin de reloj de la instancia.

38

En el disefio se ha impuesto una restriccion temporal en la frecuencia de reloj (sefial de
temporizacién periddica para restricciones temporales en disefios sincronos) de 100 MHz.

Setup Hold Puise Width
Worst Negative Slack (WNS). 4,153 ns Worst Hold Slack (WHS): 0,155 ns Worst Pulse Width Slack (WPWS): 4500 ns
Total Negative Slack (TNS): 0,000 ns Total Hold Slack (THS): 0,000 ns Total Pulse Width Negative Slack (TPWS): 0,000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 546 Total Number of Endpoints 546 Total Number of Endpoints: 214

Figura 25. Resumen de tiempos

En la figura 25 se observa que la ruta con peor valor de WNS tiene un valor de 4.153 ns. Esto
quiere decir que el disefio cumple con las restricciones temporales, ya que este valor es
positivo y, ademas, menor que el periodo de reloj del disefio (10 ns). Para que un disefio
funcione correctamente, las sefiales deben propagarse dentro de un ciclo de relo;j.

En cuanto a la frecuencia maxima, utilizando la férmula anterior se obtiene un valor de 171
MHz, con lo que el disefio alcanzard sin problema la frecuencia establecida (100MHz).
También resulta interesante analizar la potencia que consumira el disefio. Para ello, se va a
analizar los datos que proporciona Vivado.

On-Chip Power
‘ 12%77 Dynamic; 0.010W
| 21% 0.002 W
27% 0.003 W
88% | 40% Logic: 0.004 W
C | L1VO: 0.001 W
| Device Static. ~ 0.072W

Figura 26. Consumo de potencia

En la figura 26, se observa como la potencia dindmica se encuentra en el 12%, que a su vez
se divide en la consumida por el reloj (21%), la consumida por las senales (27%), la
consumida por la légica interna (40%), que es la que abarca mayor porcentaje, y la
consumida por los puertos de entrada/salida (12%).

La légica interna es la que mas porcentaje abarca debido a que, como se ha observado
antes, el mayor porcentaje de utilizacion era el de las LUT de la FPGA.

39

Al analizar estos datos y simular la implementacién probando diferentes patrones, el
proyecto se ha probado en el banco de pruebas.

Como se observa en la figura 27, dicho banco se compone de la placa Basys 3 (izquierda),
conectada al circuito de acondicionamiento (centro), que a su vez esta conectado al panel
de LEDs (derecha).

i)
N
]
B
B
g
o
a

BB
CHCE
LE
E -
T
-n
)
N

Figura 27. Banco de pruebas

Para la realizacién de esta prueba se ha utilizado un patrén aleatorio y el modo debug para
observar la evolucion de la matriz en cada iteracion al presionar el pulsador.

La prueba ha sido satisfactoria ya que la representacion se visualiza correctamente en el
panel.

40

6. Conclusiones y trabajo futuro

En este apartado, se abordan las conclusiones obtenidas tras elaborar el trabajo fin de grado
al completo, asi como posibles acciones futuras con las cuales seguir abordando el tema de
la implementacién del juego de la vida de Conway.

6.1. Conclusiones

Tras la elaboracidon de este trabajo, cabe destacar que el objetivo propuesto (disefio,
implementacién y verificacion del juego de la vida de Conway en FPGA), ha sido alcanzado
satisfactoriamente.

El juego de la vida se trata de un algoritmo en constante evolucidn para el cual se siguen
descubriendo nuevos usos y variantes hoy en dia, por lo que conocer de qué se trata y
diferentes formas de implementarlo resulta importante.

Ademas, mediante la elaboracidon de este TFG, se corrobora la buena eleccién que ha
supuesto realizar la implementacion en una FPGA, ya que se lleva a cabo de forma exitosa y
ofrece flexibilidad y capacidad de procesamiento suficientes para ejecutar eficientemente el
juego de la vida.

Como se ha comentado varias veces a lo largo del trabajo, existen diferentes versiones del
juego de la vida de Conway. Una posibilidad de modificacién seria crear un marco de ceros
alrededor de la matriz y considerar que todas las celdas laterales estan muertas, en lugar de
conectar una celda siempre con la siguiente como se ha hecho en este caso. También
podrian incluirse nuevas reglas o diferentes patrones facilmente sin mas que modificar el
blogue GameOfLife. Cabria la posibilidad de juntar varios paneles de LEDs para tener una
matriz mas grande y analizar cdmo cambia la utilizacién de recursos en estos supuestos.

6.2. Lineas futuras

Aparte de todas las posibles modificaciones que podrian llevarse a cabo, comentadas en el
apartado anterior, una buena idea seria realizar la implementacion en HDL Coder [12].

HDL Coder es una herramienta de la empresa MathWorks (empresa desarrolladora de
Matlab), que permite realizar disefios de alto nivel mediante la generacién de cédigo VHDL
portatil y sintetizable a partir de funciones Matlab o Simulink. Esta generacién se lleva a
cabo mediante sintesis de alto nivel que transforma el disefio de Matlab en VHDL. Utilizar
esta herramienta seria conveniente ya que como se ha comentado repetidas veces, se ha
utilizado el modelo de Matlab como modelo de referencia, por lo que opera correctamente
y ya es un modelo funcional. Podria modificarse para sintetizarlo y visualizarlo en la placa de
LEDs.

41

Otra idea con la que seguir trabajando en este tema seria implementar el juego de la vida en
un microcontrolador y observar las limitaciones reales (no solo tedricas) que ofrece en
comparacion con el disefio en FPGA.

Por otro lado, podria plantearse la utilizacién de dos relojes, uno mas lento para el bloque
GameOfLife y otro rapido para llevar a cabo la interfaz con los LEDs.

42

Bibliografia

[1] Digilent, «Basys 3 FPGA Board Reference Manual», 8 abril 2016.

[2] arm Developer, «kAMBA AXI-Stream Protocol Specification», 9 Abril 2021. [En linea]
Disponible: https://developer.arm.com/documentation/ihi0051/b/?lang=en

[3] Worldsemi, «WS2812B Intelligent control LED integrated light source».

[4] Life Lexicon, 2 Julio 2018. [En linea]
Disponible: https://conwaylife.com/ref/lexicon/lex.htm

[5] Wikipedia, «Conway’s Game of Life». [En linea]
Disponible: https://en.wikipedia.org/wiki/Conway%27s Game of Life

[6] M. Gardner, «Mathematical Games: The fantastic combinations of John Conway’s new solitaire
game life», Sci. Amer., vol. 223, no. 4, pp. 120-123, 1970.

[7] MathWorks, «Conway Game of Life», 7 Mayo 2012. [En linea]
Disponible: https://es.mathworks.com/matlabcentral/fileexchange/27233-conway-game-of-life

[8] ni, «Las ventajas de los dispositivos FPGA de la serie 7 de Xilinx», 17 mayo 2023. [En linea]
Disponible: https://www.ni.com/es-es/shop/compactrio/what-are-compactrio-controllers/advantages-of-

xilinx-7-series-fpga-and-soc-devices.html

[9] W. Ewert, W. Dembski and R. J. Marks, "Algorithmic Specified Complexity in the
Game of Life," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45,
no. 4, pp. 584-594, April 2015.

[10] AMD, «UltraFast Design Methodology Guide for FPGAs and SoCs». [En linea]
Disponible: https://docs.xilinx.com/r/en-US/ug949-vivado-design-methodology/Assessing-Post-Synthesis-
Quality-of-Results

[11] H. Kaeslin, «Top-Down Digital VLSI Design. From Architectures to Gate-Level Circuits and
FPGAs», Morgan Kaufmann 2015.

[12] MathWorks, «HDL Coder». [En linea]
Disponible: https://es.mathworks.com/products/hdI-coder.html

[13] Electrénica Digital (581-30315), Universidad de Zaragoza, «Control de un panel de LEDS RGB», curso
2021/2022. [PDF]

[14] A. Rushton, «VHDL forLogicSynthesis», John Wiley& Sons, 32 Ed., 2011
[15] V.A. Pedroni, «Circuit Design and Simulation with VHDL», MIT Press, 22 Ed., 2010.

[16] Fernando Sancho Cparrini, «Autématas celulares», 30 octubre 2016. [En linea]

43

Disponible:
http://www.cs.us.es/~fsancho/?e=66#:~:text=Un%20aut%C3%B3mata%20celular%20es%20un,valores%20ent
eros%20a%20intervalos%20regulares.

[17] MCI, paguayo, «FPGA (Field Programmable Gate Array)», 18 Junio 2019. [En linea]
Disponible: https://cursos.mcielectronics.cl/2019/06/18/fpga-field-programmable-gate-array/

[18] ADM, «AXI4-Stream Interface». [En linea]
Disponible: https://docs.xilinx.com/r/en-US/pg256-sdfec-integrated-block/AXI4-Stream-Interface

[19] W. Kafig, “Howto Builda Self-CheckingTestbench”, Xcell Journal, FirstQuarter2012.

44

Anexo A

Al. Bloque sreset

library ieee ;
use ieee.std_logic_1164.all;;
use ieee.numeric_std.all ;

entity SRESET is
port (
RST :in std_logic; -- Reset asincrono y activo en alto
CLK : in std_logic; -- Sefial de reloj
AXIS_ARESETN : out std_logic -- Reset sincrono y activo en bajo
);
end SRESET ;

architecture arch of SRESET is
signal rst_sinc0, rst_sincl : std_logic;
begin

process(RST,CLK)
begin
if (RST='1') then
rst_sincO<="'0";
rst_sincl<="'0";
elsif (rising_edge(CLK)) then
-- Se sincroniza y se invierte la sefial de reset
rst_sincO<="'1';
rst_sincl <= rst_sinc0;
end if;
end process;

AXIS_ARESETN <= rst_sincl;

end architecture ;

45

A2. Bloque GameOfLife

library IEEE;
use |EEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity GameOfLive is
Port (CLK : in STD_LOGIC;

RST: in STD_LOGIC;
VALID_G : out STD_LOGIG;
READY_G : in STD_LOGIC;
IN_DEBUG: in STD_LOGIC;
IN_INICIO: in STD_LOGIC;
LED_INICIO: out STD_LOGIG;
LED_DEBUG: out STD_LOGIC;
IN_SW1:in STD_LOGIC;
IN_SW2:in STD_LOGIC;
FO_G :out STD_LOGIC_VECTOR (7 downto 0);
F1_G:out STD_LOGIC_VECTOR (7 downto 0);
F2_G:out STD_LOGIC_VECTOR (7 downto 0);
F3_G:out STD_LOGIC_VECTOR (7 downto 0);
F4_G:outSTD_LOGIC_VECTOR (7 downto 0);
F5_G:out STD_LOGIC_VECTOR (7 downto 0);
F6_G : out STD_LOGIC_VECTOR (7 downto 0);
F7_G:out STD_LOGIC_VECTOR (7 downto 0));

end GameOfLive;

architecture Behavioral of GameOfLive is

type MATRIZ_GOL is array(0 to 7) of std_logic_vector(0 to 7);
signal GOL_MATRIZ, GOL_MATRIX_sig: MATRIZ_GOL;

constant GOL_INIT_OSCILADOR: MATRIZ_GOL:=("00000000",
"00000000",
"00000000",
"00111000",
"00000000",
"00000000",
"00000000",
"00000000");

constant GOL_INIT_PRUEBA: MATRIZ_GOL:=("11100001",
"00000000",
"01000000",
"00111000",
"00000000",
"10000100",
""00010000",
"00000000");

constant GOL_INIT_PRUEBA2: MATRIZ_GOL:= ("11100001",
"00000000",
"01010000",
"00111000",

"'00000000",
"10000100",
"00010000",
"00000000");

constant GOL_INIT_ESTATICO: MATRIZ_GOL:= ("00000000",
"00000000",
"00011000",
"00011000",
"00000000",
"'00000000",
"00000000",
"00000000");

signal GOL_INIT: MATRIZ_GOL;

type ESTADOS is (REPOSO, ESPERA, INICIO, ITERACION, DEBUG, ITERACION_DEBUG, ESPERA_DEBUG);
signal sig_ESTADO, ESTADO: ESTADOS;

signal EN_tiempo, EN_iterar, IN_DEBUG_sinc, IN_DEBUG_sig, IN_INICIO_sig, IN_INICIO_sinc : std_logic;
signal tiempo, sig_tiempo: unsigned(25 downto 0);

-- Funcion que calcula las vecinas adyacentes vivas dada la posicion de una celda y la matriz.
function F_VECINAS_VIVAS(MATRIZ: MATRIZ_GOL; i, j: integer) return unsigned is

variable vecinas_vivas: unsigned(3 downto 0);

variable vecina_i, vecina_j: unsigned(2 downto 0);

variablei_S,i N, j_E,j_O: unsigned(2 downto 0);

begin
vecinas_vivas := "0000";
vecina_i := to_unsigned(i,3);

vecina_j := to_unsigned(j,3);
i_S:=vecina_i+1;-- Sur
i_N:=vecina_i+ 7; -- Norte
j_E:=vecina_j+ 1; -- Este
j_O:=vecina_j+ 7/; -- Oeste

if (MATRIZ(to_integer(i_N))(to_integer(j_0))='1") then
vecinas_vivas := vecinas_vivas + 1;
end if;
if (MATRIZ(to_integer(i_N))(j)='1') then
vecinas_vivas :=vecinas_vivas + 1;
end if;
if (MATRIZ(to_integer(i_N))(to_integer(j_E))='1") then
vecinas_vivas :=vecinas_vivas + 1;
end if;
if (MATRIZ(i)(to_integer(j_0))='1') then
vecinas_vivas :=vecinas_vivas + 1;
end if;
if (MATRIZ(i)(to_integer(j_E))="1") then
vecinas_vivas :=vecinas_vivas + 1;
end if;
if (MATRIZ(to_integer(i_S))(to_integer(j_0))='1') then
vecinas_vivas :=vecinas_vivas + 1;
end if;
if (MATRIZ(to_integer(i_S))(j)='1") then
vecinas_vivas :=vecinas_vivas + 1;
end if;

if (MATRIZ(to_integer(i_S))(to_integer(j_E))='1") then
vecinas_vivas :=vecinas_vivas + 1;
end if;

return vecinas_vivas;
end function;

begin

-- Proceso de seleccion de la matriz inicial
process(IN_SW1, IN_SW2)

begin
if(IN_SW1="0"and IN_SW2 ="1') then
GOL_INIT <= GOL_INIT_OSCILADOR;
elsif (IN_SW1="1"and IN_SW2 ="'0') then
GOL_INIT <= GOL_INIT_PRUEBA;
elsif (IN_SW1="0"and IN_SW2 ='0') then
GOL_INIT <= GOL_INIT_ESTATICO;
elsif(IN_SW1="1"and IN_SW2 ="1") then
GOL_INIT <= GOL_INIT_PRUEBAZ2;
end if;
end process;

-- Proceso de F/F
process(CLK, RST)

begin

if (CLK'event and CLK="1') then
if (RST='0) then
GOL_MATRIZ <= GOL_INIT;
ESTADO <= REPOSO;
tiempo <= (others =>'0');
else
tiempo <= sig_tiempo;
IN_DEBUG_sinc <= IN_DEBUG;
IN_DEBUG_sig <= IN_DEBUG_sinc;
IN_INICIO_sinc <= IN_INICIO;
IN_INICIO_sig <= IN_INICIO_sinc;
ESTADO <= sig_ESTADO;
if(EN_iterar = '1') then
GOL_MATRIZ <= GOL_MATRIX_sig;
end if;
end if;
end if;
end process;

-- Temporizador
sig_tiempo <= tiempo + 1 when (EN_tiempo ='1') else
(others =>'0');

-- Proceso de la maquina de estados

process(tiempo,IN_INICIO, IN_INICIO_sig, IN_DEBUG, IN_DEBUG_sig ,READY_G, ESTADO, sig_ESTADO,
GOL_MATRIX_sig, GOL_MATRIZ)

48

variable suma_vecinas_vivas: unsigned(3 downto 0);

begin
sig_ESTADO <= ESTADO;
EN_iterar<="'0";
GOL_MATRIX_sig <= GOL_MATRIZ;
EN_tiempo <='0';
LED_INICIO <='0';
LED_DEBUG <="'0";
VALID_G <="'1};

case ESTADO is

when REPOSO =>

VALID_G <='0';

LED_INICIO <="1%;

LED_DEBUG <="'1";

if(IN_INICIO = '1" and IN_INICIO_sig = '0') then
sig_ESTADO <= INICIO;

elsif(IN_DEBUG ="'1" and IN_DEBUG_sig = '0') then
sig_ ESTADO <= ESPERA_DEBUG;

end if;

when INICIO =>
LED_INICIO <="1%;
if(READY_G ='1") then
sig_ESTADO <= ESPERA;
end if;

when ESPERA =>
LED_INICIO <="1};

if(tiempo =) then
sig_ ESTADO <= ITERACION;

end if;

EN_tiempo<="1';

VALID_G <= '0';

when ITERACION =>
LED_INICIO <="1";
for fila_iin O to 7 loop
for columna_jin O to 7 loop
suma_vecinas_vivas := F_VECINAS_VIVAS(GOL_MATRIZ ,fila_i, columna_j);
if (suma_vecinas_vivas=3) then
GOL_MATRIX_sig(fila_i)(columna_j) <="1";
elsif (GOL_MATRIZ(fila_i)(columna_j)='1") and (suma_vecinas_vivas=2) then
GOL_MATRIX_sig(fila_i)(columna_j) <= '1';
else
GOL_MATRIX_sig(fila_i)(columna_j) <="'0";
end if;
end loop;
end loop;

VALID_G <='0';
EN_iterar<="1";

49

sig_ ESTADO <= INICIO;

when DEBUG =>
LED_DEBUG <="1";
sig_ESTADO <= ITERACION_DEBUG;

when ESPERA_DEBUG =>
VALID_G <='0%
LED_DEBUG <="'1";
if(IN_DEBUG ="'1"and IN_DEBUG_sig = '0") then
sig_ESTADO <= DEBUG;
end if;

when ITERACION_DEBUG =>
LED_DEBUG <="'1";
for fila_iin O to 7 loop
for columna_jin O to 7 loop
suma_vecinas_vivas := F_VECINAS_VIVAS(GOL_MATRIZ ,fila_i, columna_j);
if (suma_vecinas_vivas=3) then
GOL_MATRIX_sig(fila_i)(columna_j) <="1';
elsif (GOL_MATRIZ(fila_i)(columna_j)='1") and (suma_vecinas_vivas=2) then
GOL_MATRIX_sig(fila_i)(columna_j) <= '1';
else
GOL_MATRIX_sig(fila_i)(columna_j) <="'0";
end if;
end loop;
end loop;
VALID_G <='0"
EN_iterar<="1";
sig_ESTADO <= ESPERA_DEBUG;

end case;
end process;

-- Actualizacion de los valores de las salidas
FO_G <= GOL_MATRIZ(0);
F1_G <= GOL_MATRIZ(1);
F2_G <= GOL_MATRIZ(2);
F3_G <= GOL_MATRIZ(3);
FA_G <= GOL_MATRIZ(4);
F5_G <= GOL_MATRIZ(5);
F6_G <= GOL_MATRIZ(6);
F7_G <= GOL_MATRIZ(7);

end Behavioral;

50

A3. Bloque Enviar_dato

library IEEE;
use |EEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity Enviar_Dato is
Port (CLK : in STD_LOGIC;

RST: in STD_LOGIC;
VALID_E : in STD_LOGIC;
READY_E : out STD_LOGIC;
S_AXIS_TVALID : out std_logic;
BOUT : out STD_LOGIC_VECTOR(7 downto 0);
FO_E :in STD_LOGIC_VECTOR (7 downto 0);
F1_E:in STD_LOGIC_VECTOR (7 downto 0);
F2_E:in STD_LOGIC_VECTOR (7 downto 0);
F3_E:in STD_LOGIC_VECTOR (7 downto 0);
F4_E:in STD_LOGIC_VECTOR (7 downto 0);
F5_E:in STD_LOGIC_VECTOR (7 downto 0);
F6_E :in STD_LOGIC_VECTOR (7 downto 0);
F7_E:in STD_LOGIC_VECTOR (7 downto 0));

end Enviar_Dato;

architecture Behavioral of Enviar_Dato is

-- Funcion que invierte el orden de los elementos de un vector

function DAR_VUELTA_VECTOR(VECTOR: std_logic_vector; dimension: integer) return std_logic_vector is
variable vector_sol: std_logic_vector(7 downto 0);
begin

foriin dimension-1 downto O loop
vector_sol(i) := VECTOR(-i + dimension-1);
end loop;

return vector_sol;
end function;

type ESTADOS is (INICIO,CREA_BYTE, ENVIA_BYTE);

signal sig_ESTADO, ESTADO: ESTADOS;

signal datos, sig_datos: std_logic_vector(63 downto 0);

signal byte : std_logic_vector(7 downto 0);

signal cont_iteraciones, cont_iteraciones_sig, EN_desp, EN_cnt_bit, EN_cnt_byte, INIT_cnt_bit, INIT_cnt_byte,
EN_tiempo, INIT_tiempo, EN_leer: std_logic;

signal cnt_bit, sig_cnt_bit: unsigned(10 downto 0);

signal cnt_byte, sig_cnt_byte: unsigned(1 downto 0);

signal tiempo, sig_tiempo: unsigned(9 downto 0);

begin

-- Proceso de F/F
process(CLK, RST)

begin

51

if (CLK'event and CLK='1") then
if (RST='0') then
datos <= (others =>'0');
ESTADO <= INICIO;
cnt_bit <= (others =>'0');
cnt_byte <= (others => '0');
tiempo <= (others =>'0');
cont_iteraciones <= '0';
else
datos <= sig_datos;
cnt_bit <=sig_cnt_bit;
cnt_byte <=sig_cnt_byte;
tiempo <= sig_tiempo;
ESTADO <= sig_ESTADO;
cont_iteraciones <= cont_iteraciones_sig;
end if;
end if;
end process;

-- Proceso de la maquina de estados
process(cont_iteraciones, VALID_E,datos,cnt_bit,cnt_byte,tiempo, ESTADO, sig_ESTADO, byte)

begin
EN_leer<='0';
EN_desp <='0';

EN_tiempo <='0";
INIT_tiempo <="'0";
EN_cnt_bit <='0";
INIT_cnt_bit <="'0;
EN_cnt_byte <="'0;
INIT_cnt_byte <='0';
sig_ESTADO <= ESTADO;
sig_tiempo <= tiempo + 1;
EN_desp <='0"
S_AXIS_TVALID <='0';
BOUT <= byte;
cont_iteraciones_sig <= cont_iteraciones;

if(datos(63) = '1') then
byte <="00001111";
else
byte <= (others =>'0');
end if;

case ESTADO is

when INICIO =>

READY_E <=1}

INIT_cnt_bit <= '1'; -- Inicializa cnt_bit

cont_iteraciones_sig <='0';

if(VALID_E ='1") then
EN_leer <="1"; -- Se leen nuevos datos
sig_ESTADO <= CREA_BYTE;
sig_tiempo <= (others =>'0');

end if;

when CREA_BYTE =>

52

sig_tiempo <= (others =>'0');
READY_E <=0}

if(cnt_bit = 64) then
sig_ESTADO <= INICIO;
INIT_cnt_bit <="'1'; -- Inicializa cnt_bit
else
if(cont_iteraciones = '1') then
EN_desp <='1"; -- Enalbe del registro de desplazamiento
end if;
EN_cnt_bit <="'1"; -- Suma 1 a cnt_bit
sig_ESTADO <= ENVIA_BYTE;
end if;

when ENVIA_BYTE =>

S_AXIS_TVALID <= '1;

READY_E <= '0;

if(cnt_byte < 2 and tiempo = 999) then
sig_ ESTADO <= ENVIA_BYTE;
EN_cnt_byte <='1"; -- Suma 1 a cnt_byte
sig_tiempo <= (others =>'0');
S_AXIS_TVALID <= '1';

elsif(cnt_byte = 2 and tiempo = and cnt_bit < 64) then
sig_ESTADO <= CREA_BYTE;
INIT_cnt_byte <="'1'; -- Inicializa cnt_byte
sig_tiempo <= (others =>'0');
S_AXIS_TVALID <= '1’;

elsif(cnt_byte = 2 and tiempo = and cnt_bit = 64) then
sig_tiempo <= (others =>'0');
sig_ESTADO <= INICIO;
INIT_cnt_byte <='1'; -- Inicializa cnt_byte

end if;
cont_iteraciones_sig <="1';
end case;

end process;

--Contador bit

sig_cnt_bit <= cnt_bit + 1 when (EN_cnt_bit ="'1") else
(others =>'0') when (INIT_cnt_bit ="1") else
cnt_bit;

--Contador byte

sig_cnt_byte <= cnt_byte + 1 when (EN_cnt_byte ='1') else
(others => '0') when (INIT_cnt_byte ='1') else
cnt_byte;

-- Almacenamiento y desplazamiento de datos
sig_datos <= FO_E & DAR_VUELTA_VECTOR(F1_E,3) & F2_E & DAR_VUELTA_VECTOR(F3_E,3) & F4 E &
DAR_VUELTA_VECTOR(F5_E,3) & F6_E & DAR_VUELTA_VECTOR(F7_E,3) when (EN_leer ='1') else

datos(62 downto 0) & '0' when (EN_desp ='1") else

datos;

end Behavioral;

53

A4. Bloque ws2812

library ieee ;
use |[EEE.STD_LOGIC_1164.ALL;
use [EEE.NUMERIC_STD.ALL;

entity ws2812 is
port (

AXIS_ARESETN : in std_logic; -- Reset asinc/sinc activo en bajo
AXIS_ACLK : in std_logic; -- Reloj 100MHz
S_AXIS_TDATA :in std_logic_vector(7 downto 0) ;
S_AXIS_TVALID : in std_logic;
S_AXIS_TREADY : out std_logic;
TO_WS2812 : out std_logic -- Control del ws2812
);

end ws2812 ;

architecture Behavioral of ws2812 is
type ESTADOS is (REPOSO, ENVIAR1, ENVIARO);
signal sig_ESTADO, ESTADO: ESTADOS;
--Contador de pulsos de reloj:
signal sig_tiempo, tiempo: unsigned(6 downto 0);
--Contador de bits enviados:
signal sig_contador, contador: unsigned(2 downto 0);
signal dato, datoactual, sig_datoactual: std_logic_vector(7 downto 0);
signal EN_OUT, EN_reposo : std_logic;

begin

-- Proceso de F/F
process(AXIS_ACLK, AXIS_ARESETN)
begin
if(AXIS_ARESETN = '0') then
ESTADO <= REPOSO;
tiempo <= (others =>'0');
contador <= (others =>'0');
elsif rising_edge(AXIS_ACLK) then
ESTADO <= sig_ESTADO;
tiempo <= sig_tiempo;
contador <= sig_contador;
datoactual <= sig_datoactual;

end if;
end process;

--Almacenamiento del dato
dato <=S_AXIS_TDATA;

--Maquina de estados

process(EN_reposo,ESTADO, tiempo, S_AXIS_TVALID, S_AXIS_TDATA, contador, datoactual, dato)
begin

sig_contador <= contador;
sig_datoactual <= datoactual;

EN_reposo <='0';
sig_ESTADO <= estado;
S_AXIS_TREADY <='0';

case ESTADO is
when REPOSO =>

EN_OUT <='0';

sig_contador <= (others =>'0');

sig_tiempo <= (others =>'0');

EN_reposo<="'1";

S_AXIS_TREADY <='0';

if(S_AXIS_TVALID = '1') then
sig_ESTADO <= ENVIAR1;
sig_datoactual <= S_AXIS_TDATA;

end if;

when ENVIARL =>
if(EN_reposo = '1') then
EN_OUT <= '0;
sig_contador <= (others =>'0');
sig_tiempo <= (others => '0");

end if;
sig_tiempo <= tiempo +1;
EN_OUT <="1}

if ((datoactual(7)="0" and tiempo =
sig_ESTADO <= ENVIARO;

else
sig_ESTADO <= ENVIARL;

end if;

when ENVIARO =>
sig_tiempo <=tiempo + 1;
EN_OUT <="'0};
if (tiempo =
sig_contador <= contador + 1;
sig_ESTADO <= ENVIAR1;

) or (datoactual(7)="1" and tiempo =

and contador < 7) then

sig_datoactual <= datoactual(6 downto 0) & '0';

sig_tiempo <= (others=>'0');

elsif ((tiempo =
sig_contador <= (others=>'0');
sig_datoactual <= dato;
sig_ESTADO <= REPOSO;
sig_tiempo <= (others=>'0');
EN_reposo <="'1";

else
sig_ESTADO <= ENVIARO;

end if;

end case;
end process;

-- Salida

) and (contador = 7)) then

TO_WS2812 <="1"'when (EN_OUT ="'1") else '0’;

end Behavioral;

)) then

55

A5, Bloque GOL_Panel TOP

library IEEE;
use |EEE.STD_LOGIC_1164.ALL;

entity GOL_Panel_TOP is
Port (RST : in std_logic;

CLK :in std_logic;
IN_DEBUG :in std_logic;
IN_INICIO: in std_logic;
LED_INICIO: out STD_LOGIC;
LED_DEBUG: out STD_LOGIC;
IN_SW1:in STD_LOGIC;
IN_SW2: in STD_LOGIC;
TO_WS2812 : out std_logic);

end GOL_Panel_TOP;

architecture Behavioral of GOL_Panel_TOP is
component sreset is
Port (RST : in STD_LOGIC;
CLK :in STD_LOGIG;
AXIS_ARESETN: out STD_LOGIC);
end component;

component GameOfLive is
Port (CLK : in STD_LOGIC;

RST :in STD_LOGIC;
VALID_G : out STD_LOGIC;
READY_G : in STD_LOGIC;
IN_DEBUG: in STD_LOGIC;
IN_INICIO: in STD_LOGIC;
LED_INICIO: out STD_LOGIC;
LED_DEBUG: out STD_LOGIC;
IN_SW1:in STD_LOGIC;
IN_SW2:in STD_LOGIC;
FO_G : out STD_LOGIC_VECTOR (7 downto 0);
F1_G:outSTD_LOGIC_VECTOR (7 downto 0);
F2_G :out STD_LOGIC_VECTOR (7 downto 0);
F3_G:out STD_LOGIC_VECTOR (7 downto 0);
F4_G:outSTD_LOGIC_VECTOR (7 downto 0);
F5_G:out STD_LOGIC_VECTOR (7 downto 0);
F6_G : out STD_LOGIC_VECTOR (7 downto 0);
F7_G:out STD_LOGIC_VECTOR (7 downto 0));

end component;

component Enviar_dato is
Port (CLK : in STD_LOGIC;

RST : in STD_LOGIC;
VALID_E : in STD_LOGIC;
READY_E : out STD_LOGIC;
S_AXIS_TVALID : out std_logic;
BOUT : out STD_LOGIC_VECTOR(7 downto 0);
FO_E:in STD_LOGIC_VECTOR (7 downto 0);

F1_E:inSTD_LOGIC_VECTOR (
F2_E:in STD_LOGIC_VECTOR (
F3_E:in STD_LOGIC_VECTOR (
FA_E:in STD_LOGIC_VECTOR (
F5_E :in STD_LOGIC_VECTOR (
F6_E :in STD_LOGIC_VECTOR (
F7_E:inSTD_LOGIC_VECTOR (
end component;

component ws2812 is
Port (
AXIS_ARESETN : in std_logic;
AXIS_ACLK : in std_logic;

S_AXIS_TDATA : in std_logic_vector(7 downto 0) ;

S_AXIS_TVALID : in std_logic;

S_AXIS_TREADY : out std_logic;

TO_WS2812 : out std_logic) ;
end component ;

downto
downto
downto
downto
downto
downto
downto

);
)
)
)
);

);

signal FO_GE, F1_GE, F2_GE, F3_GE, F4_GE, F5_GE, F6_GE, F7_GE, BOUT_GE: std_logic_vector(7 downto 0);

signal VALID_GE, READY_GE, S_AXIS_TVALID_GE, S_AXIS_TREADY_GE, AXIS_ARESETN_GE: std_logic;

begin

U_sreset: sreset
Port map(RST => RST,
CLK => CLK,

AXIS_ARESETN => AXIS_ARESETN_GE);

U_GameOfLive: GameOfLive
Port map(CLK => CLK,

RST => AXIS_ARESETN_GE,
VALID_G => VALID_GE,
READY_G => READY_GE,
IN_DEBUG => IN_DEBUG,
IN_INICIO => IN_INICIO,
LED_INICIO => LED_INICIO,
LED_DEBUG => LED_DEBUG,
IN_SW1=>IN_SW1,
IN_SW2 =>IN_SW2,
FO_G => FO_GE,
F1_G=>F1_GE,
F2_G =>F2_GE,
F3_G =>F3_GE,
F4_G =>F4_GE,
F5_G => F5_GE,
F6_G => F6_GE,
F7_G =>F7_GE);

U_Enviar_dato: Enviar_dato
Port map(CLK => CLK,
RST => AXIS_ARESETN_GE,
VALID_E => VALID_GE,
READY_E => READY_GE,

S_AXIS_TVALID =>S_AXIS_TVALID_GE,

BOUT => BOUT_GE,

57

FO_E => FO_GE,
F1_E=>F1 GE,
F2_E=>F2_GE,
F3_E=>F3_GE,
F4_E=>F4 GE,
F5_E =>F5_GE,
F6_E => F6_GE,
F7_E=>F7_GE);

U_ws2812 : ws2812
Port map(AXIS_ARESETN => AXIS_ARESETN_GE,
AXIS_ACLK => CLK,
S_AXIS_TDATA => BOUT_GE,
S_AXIS_TVALID =>S_AXIS_TVALID_GE,
S_AXIS_TREADY =>S_AXIS_TREADY_GE,
TO_WS2812 =>TO_WS2812);

end Behavioral;

58

A6. Test Bench

library iecee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all ;

library std;

--Librerias para leer y escribir ficheros
use std.textio.all;

use |[EEE.STD_LOGIC_TEXTIO.ALL;

entity GOL_Panel_tb is
end GOL_Panel_tb;

architecture Behavioral of GOL_Panel_tb is

component sreset is
Port (RST : in STD_LOGIC;
CLK : in STD_LOGIC;
AXIS_ARESETN: out STD_LOGIC);
end component;

component GameOfLive is
Port (CLK : in STD_LOGIC;

RST : in STD_LOGIC;
VALID_G : out STD_LOGIC;
READY_G : in STD_LOGIC;
IN_DEBUG: in STD_LOGIC;
IN_INICIO: in STD_LOGIG;
LED_INICIO: out STD_LOGIC;
LED_DEBUG: out STD_LOGIC;
IN_SW1:in STD_LOGIC;
IN_SW2:in STD_LOGIC;
FO_G : out STD_LOGIC_VECTOR (7 downto 0);
F1_G:out STD_LOGIC_VECTOR (7 downto 0);
F2_G:outSTD_LOGIC_VECTOR (7 downto 0);
F3_G:outSTD_LOGIC_VECTOR (7 downto 0);
F4_G :out STD_LOGIC_VECTOR (7 downto 0);
F5_G : out STD_LOGIC_VECTOR (7 downto 0);
F6_G : out STD_LOGIC_VECTOR (7 downto 0);
F7_G:out STD_LOGIC_VECTOR (7 downto 0));

end component;

component Enviar_Dato is
Port (CLK : in STD_LOGIC;

RST :in STD_LOGIC;
VALID_E : in STD_LOGIC;
READY_E : out STD_LOGIC;
S_AXIS_TVALID : out std_logic;
BOUT : out STD_LOGIC_VECTOR(7 downto 0);
FO_E : in STD_LOGIC_VECTOR (7 downto 0);
F1_E:in STD_LOGIC_VECTOR (7 downto 0);
F2_E:in STD_LOGIC_VECTOR (7 downto 0);
F3_E:inSTD_LOGIC_VECTOR (7 downto 0);
F4 E:inSTD_LOGIC_VECTOR (7 downto 0);

59

F5_E:in STD_LOGIC_VECTOR (7 downto 0);

F6_E:in STD_LOGIC_VECTOR (7 downto 0);

F7_E:in STD_LOGIC_VECTOR (7 downto 0));
end component;

component ws2812 is
port (AXIS_ARESETN : in std_logic;
AXIS_ACLK : in std_logic;
S_AXIS_TDATA : in std_logic_vector(7 downto 0) ;
S_AXIS_TVALID : in std_logic;
S_AXIS_TREADY: out std_logic;
TO_WS2812 : out std_logic);
end component ;

signal AXIS_ARESETN_tb, IN_SW1_tb, IN_SW2_tb, LED_INICIO_tb, LED_DEBUG_tb, IN_INICIO_tb, RST_tb,
CLK_tb, TO_WS2812_tb, VALID_ tb, READY_ tb, S_AXIS_TREADY_tb, S_AXIS_TVALID tb, IN_DEBUG_tb

std_logic;
signal BOUT _tb, FO_tb, F1_tb, F2_tb, F3_tb, F4_tb, F5_tb, F6_tb, F7_tb : std_logic_vector(7 downto 0);
constant TCLK: time:= ;

constant bit_time : time := 1 us;

-- Calculo del periodo y ton de la sefial TO_WS2812

signal tiempo_up : time := 0 ns;
signal tiempo_dwn : time := 0 ns;
signal periodo : time := 0 ns;
signal ton : time := 0 ns;

signal toff : time := 0 ns;

signal bit_ws : std_logic;

signal numlteraciones_des : unsigned(7 downto 0);

begin

-- Numero de iteraciones deseadas
numlteraciones_des <= "00000011";

--Proceso que escribe y lee de ficheros para comprobar el funcionamiento
Escribir_iteraciones_comprobar: process

file datos, datos_VHDL, datos_ MATLAB, estado: text;

variable linea, linea_VHDL, linea_MATLAB, linea_fallo: line;
variable status, status1, status2, status3: file_open_status;
variable numlteraciones: unsigned(7 downto 0);

variable dato_VHDL, dato_MATLAB: std_logic_vector(7 downto 0);
variable fallo: std_logic;

variable charm, charv: character;

variable contador_lineas, contador_iteraciones: unsigned(7 downto 0);

begin
numlteraciones := (others => '0');

60

file_open(status, datos, "Matriz_VHDL.txt", WRITE_MODE);
if(status = open_ok) then
wait for 30 ns;
loop
-- Escribe cada carater con un espacio en medio
numlteraciones := numlteraciones + 1;
foriin 7 downto O loop
write(linea, FO_tb(i));
write(linea, string'(" "));
end loop;
writeline(datos, linea);

foriin 7 downto O loop
write(linea, F1_tb(i));
write(linea, string'(" "));

end loop;

writeline(datos, linea);

foriin 7 downto O loop
write(linea, F2_tb(i));
write(linea, string'(" "));

end loop;

writeline(datos, linea);

foriin 7 downto O loop
write(linea, F3_tb(i));
write(linea, string'(" "));

end loop;

writeline(datos, linea);

foriin 7 downto O loop
write(linea, F4_tb(i));
write(linea, string'(" "));

end loop;

writeline(datos, linea);

foriin 7 downto O loop
write(linea, F5_tb(i));
write(linea, string'(" "));

end loop;

writeline(datos, linea);

foriin 7 downto O loop
write(linea, F6_tb(i));
write(linea, string'(" "));

end loop;

writeline(datos, linea);

foriin 7 downto O loop
write(linea, F7_tb(i));
write(linea, string'(" "));

end loop;

writeline(datos, linea);

exit when numlteraciones = numliteraciones_des + 1;
wait for 2.5 ms;
end loop;

file_close(datos);
end if;

file_open(statusl, datos_VHDL, "Matriz_VHDL.txt", READ_MODE);
file_open(status2, datos_MATLAB, "Matriz MATLAB.txt", READ_MODE);
file_open(statusl, estado, "Estado.txt", WRITE_MODE);
contador_iteraciones := (others => '0');
contador_lineas := (others =>'0');
fallo:="0";
if(status1 = open_ok and status2 = open_ok) then
while (not ENDFILE(datos_VHDL)) or (not ENDFILE(datos_MATLAB)) loop
readline(datos_VHDL, linea_VHDL);
readline(datos_MATLAB, linea_MATLAB);

if (contador_lineas = 8) then
contador_lineas := (others =>'0');
contador_iteraciones := contador_iteraciones + 1;
end if;
-- Lee y compara caracter a caracter de ambos ficheros
foriin 14 downto O loop
read(linea_VHDL, charv);
read(linea_MATLAB, charm);
if (charm /=""and charv /="") then
if(charm ='1"and charv ="'1') then
dato_MATLAB(i/2) :='1';
dato_VHDL(i/2) :="1};
elsif(charm ='0" and charv ='0') then
dato_MATLAB(i/2) :='0';
dato_VHDL(i/2) :='0";
-- Si se comete algun fallo
else
fallo:="1";
if(status1 = open_ok) then
write(linea_fallo, string'("'Se ha producido un fallo en la iteracion "));
write(linea_fallo, to_integer(contador_iteraciones));
write(linea_fallo, string'(", linea "));
write(linea_fallo, to_integer(contador_lineas +1));
write(linea_fallo, string'(" ///"));
end if;

end if;
end if;
end loop;
contador_lineas := contador_lineas + 1;
end loop;
if(fallo /='1') then
write(linea_fallo, string'("Todas las iteraciones son correctas"));
end if;
writeline(estado, linea_fallo);
file_close(datos_VHDL);
file_close(datos_MATLAB);
file_close(estado);
end if;
wait;
end process;

62

RST tb<="1",'0" after TCLK;

-- Interruptores para una configuracion de oscilador
IN_SW1 tb<="1';
IN_SW2_tb <=1}

--Inicio en modo normal
IN_DEBUG_tb <='0';

--Proceso de pulsador de modo inicio normal
process begin
IN_INICIO_tb <="'0;
wait for 100ns;
IN_INICIO_tb <="1";
wait for 1us;
IN_INICIO_tb <='0';
wait;
end process;

-- Proceso de reloj

process

begin
CLK_tb<='0', '1" after TCLK/2;
wait for TCLK;

end process;

--Proceso de calculo de periodo y tiempos de on y off con la funcion now

process
begin
wait until (rising_edge(TO_WS2812_tb));
periodo <= now-tiempo_up;
toff <= now -tiempo_dwn;
ton <= tiempo_dwn-tiempo_up;
tiempo_up<=now;
wait for 1 ns;
-- Reconstrucion de bit
if (ton /= 0 ns) then
if (periodo /= 1250 ns) then
bit_ws <="'X', '-' after 50 us;
elsif (ton = 900 ns) then
bit_ws <="1', '-' after 50 us;
elsif (ton = 250 ns) then
bit_ws <="'0', '-' after 50 us;
else
bit_ws <="'X', '-' after 50 us;
end if;
if (toff > 10 us) then
bit_ws <="-';
end if;
end if;
wait until falling_edge(TO_WS2812_tb);
tiempo_dwn <= now;
end process;

U_sreset: sreset
Port map(RST => RST_tb,

63

CLK => CLK_tb,
AXIS_ARESETN => AXIS_ARESETN_tb);

U_GameOfLive: GameOfLive

Port map(CLK => CLK_tb,
RST => AXIS_ARESETN_tb,
VALID_G => VALID_tb,
READY_G => READY_tb,
IN_DEBUG => IN_DEBUG_tb,
IN_INICIO => IN_INICIO_tb,
LED_INICIO => LED_INICIO_tb,
LED_DEBUG => LED_DEBUG_tb,
IN_SW1=>IN_SW1_tb,
IN_SW2 =>IN_SW2_tb,
FO_G => FO_tb,
F1_G=>F1_th,
F2_G=>F2_th,
F3_G=>F3_th,
FA_G=>F4_tb,
F5_G =>F5_tb,
F6_G =>F6_th,
F7_G=>F7_tb);

U_Enviar_dato: Enviar_dato
Port map(CLK => CLK_tb,
RST => AXIS_ARESETN_tb,
VALID_E => VALID tb,
READY_E => READY_tb,
S_AXIS_TVALID =>S_AXIS_TVALID_tb,
BOUT => BOUT _tb,
FO_E => FO_tb,
F1_E =>F1_tb,
F2_E =>F2_tb,
F3_E=>F3_tbh,
F4_E=>F4_tbh,
F5_E =>F5_tb,
F6_E =>F6_tb,
F7_E =>F7_tb);
U_ws2812: ws2812
Port map(AXIS_ARESETN => AXIS_ARESETN_tb,
AXIS_ACLK => CLK_tb,
S_AXIS_TDATA => BOUT_tb,
S_AXIS_TVALID =>S_AXIS_TVALID_tb,
S_AXIS_TREADY =>S_AXIS_TREADY _tb,
TO_WS2812 => TO_WS2812_tb);

end Behavioral;

64

A7. Cddigo de Matlab

close all;
clear;
clg;

% Matriz inicial para seleccionar

oscilador =[0000000000;
00000000O0O;
0000000000;
0000000000;
0001110000;
0000000000;
00000000O0O;
0000000000
0000000000;
0000000000];

bloque =[0000000000;
0000000000;
0000000000;
0000110000;
0000110000;
0000000000;
0000000000;
0000000000;
0000000000;
0000000000];

prueba=[0000000000;
1111000011;
0000000000;
0010000000
0001110000;
0000000000;
0100001001;
0000100000;
0000000000
1111000011];

prueba2=[0000000000;
1111000011;
0000000000;
0010100000
0001110000
0000000000;
0100001001;
0000100000;
0000000000;
1111000011];

% Eleccion de la matriz inicial:

65

Matriz_inicial_marco = prueba;
%Numero de iteraciones:

numlteracion = ;

matriz_marco = Matriz_inicial_marco;
matriz = F_quitar_marco(matriz_marco);
matriz_marco_sig = zeros(10,10);

writematrix([], 'Matriz. MATLAB.txt');
type Matriz_MATLAB.txt;

for iteraciones = O:numlteracion
%Representacion grafica de la matriz
imagesc(matriz);
colormap cool

colormap([; 1);
title(['Grid at Iteration ',num2str(iteraciones)]);
drawnow;

%Escribe la matriz en un fichero
writematrix(matriz, 'Matriz. MATLAB.txt', 'Delimiter’, ' ',"WriteMode', 'append');

%Recorre la matriz y le asigna un valor a cada celda dependiendo de sus
%vecinas vivas y su valor anterior
for fila_i = 2:
for columna_j = 2:
suma_vecinas_vivas = F_vecinas_vivas(matriz_marco, fila_i, columna_j);

if(suma_vecinas_vivas == 3)
matriz_marco_sig(fila_i, columna_j) = 1;

elseif (matriz_marco(fila_i, columna_j) == 1) && (suma_vecinas_vivas == 2)
matriz_marco_sig(fila_i, columna_j) = 1;

else
matriz_marco_sig(fila_i, columna_j) = 0;

end

end

end

%Actualiza el valor de la matriz

matriz_marco = matriz_marco_sig;

matriz_marco = F_modificar_marco(matriz_marco);
matriz = F_quitar_marco(matriz_marco);

end

%Funcion que suma las vecinas vivas de cada celda

function X = F_vecinas_vivas(matriz_marco, vecinas_i, vecinas_j)
X=0;
i_S=vecinas_i + 1;
i_N=vecinas_i-1;

66

j_E=vecinas_j + 1;
j_O=vecinas_j-1;

if matriz_marco(i_N, j_0) ==
X=X+1;

end

if matriz_marco(i_N, vecinas_j) ==
X=X+1;

end

if matriz_marco(i_N, j_E)==
X=X+1;

end

if matriz_marco(vecinas_i, j_O) ==
X=X+1;

end

if matriz_marco(vecinas_i, j_E) ==
X=X+1;

end

if matriz_marco(i_S,j _O) ==
X=X+1;

end

if matriz_marco(i_S, vecinas_j) ==
X=X+1;

end

if matriz_marco(i_S, j_E) ==
X=X+1;

end

end

%Funcion que copia las filas y columnas de los extremos y afiade el nuevo

%marco

function Y = F_modificar_marco(matriz_marco)
Y(1,1) = matriz_marco(9,9);
Y(1, 10) = matriz_marco(9,2);
Y(10, 1) = matriz_marco(2,9);
Y(10, 10) = matriz_marco(2,2);
Y(1, 2:9) = matriz_marco(9, 2:9);
Y(10, 2:9) = matriz_marco(2, 2:9);
Y(2:9, 1) = matriz_marco (2:9, 9);
Y(2:9, 10) = matriz_marco (2:9, 2);
Y(2:9, 2:9) = matriz_marco (2:9, 2:9);

end

%Funcion que quita el marco a la matriz de celdas

function Z = F_quitar_marco(matriz_marco)
Z(1:8, 1:8) = matriz_marco(2:9, 2:9);

end

67

Anexo B

B1. Hoja de caracteristicas de los pixels del panel WS2812B

WS2812B

. ‘ Intelligent control LED
Worldsemi integrated light source

Features and Benefits

® Intclligent reverse connect protection, the power supply reverse connection does not damage the IC.

® The control circuit and the LED share the only power source.

® Control carcuit and RGB chip are integrated mn a package of 5050 components, form a complete control of pixel
pomL

® Builtan signal reshaping circust, after wave reshaping to the next dnver, ensure wave-form distortion not

accumulate.

Built-in electnc reset carcuit and power lost reset carcuit.

Each pixel of the three primary color can achseve 256 brghtness display, completed 16777216 color full color

display, and scan frequency not kess than 400kHz's,

Cascading port transmmission signal by smngle lme.

Any two point the distance more than Sm transmession signal without any increase circust.

When the refresh rate s 30fps, cascade mumber are not less than 1024 poants.

Sernd data ot speeds of M0Kbps.

The color of the light were highly consistent, cost-effective..

Applications

® Full-color module, Full color soft lights a lamp strip.

® LED decomtive lightmg. Indooroutdoor LED video irregular screen

General description

WS2BI2B 15 a intelligent control LED light source that the control circust and RGB chgp are integrated m
a package of 5050 components. It nternal include intelligent digital port data latch and signal reshapmg ampli
fication dnve cmcuit. Also include 2 precision internal oscillstor and a 12V veltage programmable constant curr
ent control part, cffectively ensuring the pixel poemt light color height consistent.

The data transfer protocol use single NZR communicaton mode. After the pixel power-on reset, the DIN
port receive data from controller. the first pixel collect mitial 24bit data then sent to the mbernal data latch,
the other data which reshaping by the intemal signal reshaping amplification circuit sent to the next cascade
paxel through the DO port. After transmussion for cach pixel. the signal to reduce 24bat. pixel adopt awto resha
-ping trunsmit technology, makmg the pixel cascade number ss not limited the signal transmession, only depend

on the speed of signal transmassion.

LED with low dnving voltage. environmental psotection and energy saving, high brightness, scattenng angl
¢ = large, good consstency. low power, long life and other advantages. The control chip mtegrated in LED
shove becoming more simple circuit. small volume, convensent installation.

Worldsemi

WS2812B

Intelligent control LED
integrated light source

Mechanical Dimensions

20

Top View

PIN configuration

Back View Soider Pad

LJ;"

An

XD
O

PIN function
NO. | Symbol Function description
1 VDD | Power supply LED
2 DOUT | Control data signal output
k! VSS Ground
Kl DIN Control data signal input
Absolute Maximum Ratings
Prameter Symbeol Ratings Unit
Power supply voltage Voo t3.5-+53 v
Input voltage Vi L0.5--VDD40.5 A
Operatson junction Topt 25480
temperature
Storage temperature range Tstg ~40)-+105 °C

Electrical Characteristics (T,=-20—+70°C. Vpp=4.5—5.5V,Vss=0V.unless otherwise specified)

69

WS2812B

Intelligent control LED

Worldsem integrated light source
Prameter Smybol conditions Min | Tpy Max Unit
Input current k Vi=Voo/Vss _ — =1 uA
v“ D SET 0.7\'[:() _ —_— v
Input voltage kevel
Vo Dyis SET S —_— 0.3 Voo v
Hysteresis voltage Vu Dy SET — 0.35 — v

Switching characteristics (T,=-20—+70°C. Vpp=4.3—3.5V.Vi=0V.unless otherwise specified)

Prameter Symboel Condition Min Tpy Max Unit
Transmigsioo delay b CL=15pF,DIN— o 200 o
tame DOUT.RL=-10KQ
CL=300pF. OUTROU
Fall ime bz o e 120 us
TGOUTH
Input capaity C, — —_ — 15 pF

RGB IC characteristic parameter

Enutting color Model Wavelength(nm) Luminous intensity{ mecd) Voltage(V)
Red 13CBAUP 620-625 390-420 2022
13CGAUP 522.525 660-720 3.0-34
Biue 10RIMUX 465467 180200 3034

Data transfer time{ TH+TL=125us+600ns)

TOH 0 code Jhigh voltage time O.dus +150ns
TIH | code Jhigh voltage time 08us +150ns
TOL 0 code , low voltage time 0.85us +150ns
TIL I code Jlow voltage tsme 0.45us +150ns
RES low voltage time Above 50ps

Sequence chart:

WS28128B

Intelligent control LED

Worldsemi integrated light source
0 d < -l 10L
code
TOH
| code |« de]Li
TIH
Treset

RET code e —
Cascade method:
D1 D2 D3 D4
— N DO DIN DO DIN D0

PIX1 PIX2 PIX3
Data transmission method;

reset code
>=50us reset
— - —_— code

=D atarcfreshecycle 1 »e=Datarcfresh cycle 2 e
D1 |firs2ani eend fnira 24818 fivst 24bit] “TONY fnica 2464
D2 "2‘::':’ third 245611 ’;:;:"'ld third 24 b
D3 jthierd 24 by khird 24019
D4

WS2812B

| Intelligent control LED
Worldsemi integrated light source

Note: The data of DI is send by MCU and D2, D3. D4 through pixel internal reshaping amplification to
transmit.
Composition of 24bit data:

I(i'.‘l(iﬁ|(‘.Sl(}3|(‘-SIGIIGI|GO|R7|R6|R5|R4IRJ'R2|RI|R.0|B'.'|!§(~IB$IB4|BB|BI|BI|BO|

Note: Follow the order of GRB 1o sent data and the high bit sent at first.
Typical application circuit:

sV
1 : 4D\
%‘ \NDD DN
Cl 2

; - 3
104 DOUT Vs j
= WK 128)
U2
sV
%— DD DIN
2 2 2
> ——foour wspb——
| -
- WamIs
|
ey v At
|
Ui
5V |
h NDD DIN bt
) DouR - 3
104 | DOUT VSS __L
— WA :

72

