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Resumen  
En el presente trabajo se aborda la implementación en FPGA (Field-Programmable Gate 
Array) del Juego de la Vida de Conway, un autómata celular que simula la evolución de 
células en una cuadrícula bidimensional. El objetivo principal es desarrollar un algoritmo en 
VHDL y verificar su funcionamiento, comparándolo con un modelo de referencia realizado 
en Matlab. Una vez que el diseño sea correcto, se representará de una manera gráfica en un 
panel de LEDs. 
 
Se realizará una revisión de los fundamentos teóricos del Juego de la Vida, incluyendo las 
reglas de evolución, la representación de la cuadrícula y los patrones característicos. 
 
Se llevará a cabo una explicación de los recursos, software y hardware que han sido 
utilizados. 
 
Se desarrollará la implementación del algoritmo en Matlab, lo que servirá como modelo de 
referencia. 
 
Posteriormente, se propondrá una arquitectura para la implementación en FPGA. Se 
describirán los componentes del sistema, como el módulo que realiza las iteraciones (que 
contiene el generador de vecinos y el evaluador de reglas), y el controlador de visualización. 
 
Posteriormente, se realizará la síntesis e implementación del diseño propuesto.  
 
Finalmente, se realizarán pruebas del sistema implementado, evaluando su funcionalidad. 
Por un lado, se comparará mediante ficheros con la implementación de Matlab. Por otro 
lado, se comprobará visualmente en un panel de LEDs con un modo de funcionamiento 
denominado “debug”, que permite ejecutar una única iteración y visualizarla al presionar un 
pulsador. 
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1. Introducción 
El juego de la vida es un autómata celular desarrollado por el matemático John Horton 
Conway en 1970 [5]. Se trata de un ejemplo clásico de autómata celular cuyas sencillas 
reglas no lo eximen de un comportamiento sorprendentemente complejo y fascinante. Ha 
llegado a convertirse en un tema muy estudiado por investigadores en el campo de la 
computación, para explorar conceptos de sistemas complejos, teoría de autómatas y 
algoritmos. 
 
En el presente trabajo fin de grado, se va a llevar a cabo el desarrollo, implementación y 
verificación del juego de la vida de Conway en una FPGA. Se trata de un dispositivo 
programable que permite una gran flexibilidad y adaptación a la hora de implementar 
sistemas digitales, cuyo uso ha sido impulsado por los avances en la electrónica digital, lo 
que ha llevado al desarrollo de sistemas de alto rendimiento, cada vez más complejos, para 
los cuales las FPGAs constituyen una herramienta fundamental. Además, su capacidad de 
procesamiento paralelo y en tiempo real hace que sea la opción perfecta para estudiar el 
comportamiento de juegos y autómatas celulares. 
 
A lo largo de este capítulo se van a tratar temas relacionados con los objetivos y alcance del 
trabajo, con la utilidad real y actual del juego de la vida de Conway, así como con la 
explicación de términos y conceptos importantes para el desarrollo del trabajo fin de grado, 
y con el porqué de la elección de la FPGA para su implementación. 
 

1.1. Objetivos y alcance 
El objetivo principal de este trabajo es diseñar, implementar, y verificar el juego de la vida 
de Conway en una FPGA, para poder estudiar su evolución y funcionamiento. 
 
El proyecto se llevará a cabo utilizando el lenguaje de descripción hardware VHDL, que será 
desarrollado en el entorno de trabajo Vivado Design Suite de Xilinx, capaz de describir su 
funcionamiento mediante circuitos digitales. 
 
Se pretende conocer más acerca del algoritmo creado para simular el juego de la vida en 
una FPGA, al tratarse de un dispositivo que presenta un gran paralelismo a la estructura del 
juego. 
 
Una vez que el desarrollo en VHDL se finalice, se comparará su funcionamiento con los 
resultados obtenidos gracias al modelo de referencia hecho en Matlab. 
 



8 

También se realizará la interfaz para la comunicación con un panel de 8 por 8 LEDs sobre el 
que se mostrará la evolución de las celdas en cada iteración. 
 
Asimismo, se comentarán los tiempos de propagación de las señales y utilización de 
recursos. 
 
Este proyecto puede servir como base para futuras investigaciones de autómatas celulares y 
otros algoritmos complejos, así como para explorar otras técnicas de implementación. 
 
En la Figura 1 se muestra el diagrama de Gantt de las distintas tareas llevadas a cabo 
durante el desarrollo de este proyecto. Se representan las semanas de trabajo desde el 31 
de enero hasta el 4 de junio. 

 

 
Figura 1. Diagrama de Gantt 

 

1.2. Descripción del algoritmo 

1.2.1. Autómata celular [16] 
Un autómata celular es un modelo matemático y computacional, que evoluciona de forma 
discreta. Consiste en una cuadrícula bidimensional o tridimensional, compuesta por un 
conjunto de celdas interconectadas que adquieren distintos valores o estados.  
 
Su nombre se debe a la similitud con el crecimiento de las células, de esta forma, las celdas 
del autómata evolucionan según una expresión matemática, dependiente del estado de las 
celdas en el estado anterior y del estado de sus vecinas. 
El estado o valor de una celda puede ser discreto o continuo, tomando valores como ‘1’ o ‘0’ 
si es discreto, o números reales si es continuo. 
 
En cada iteración, se aplica la expresión matemática que constituye una regla de 
actualización y el sistema evoluciona generando patrones y estructuras complejas. 
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Estos autómatas se utilizan en diversos campos como la computación, la biología o la física, 
ya que se trata de un concepto simple que es capaz de modelar fenómenos muy complejos, 
relacionando, en algunos casos, sistemas naturales con sistemas artificiales (como es el caso 
del crecimiento de las células humanas). 
 
Algunos ejemplos de utilización de autómatas celulares son: el estudio de poblaciones 
biológicas, para simular la propagación y muerte de las células. La simulación de máquinas 
Turing completas. La generación de gráficos por computadora. Incluso la simulación de la 
dinámica social y los patrones de comportamiento en comunidades humanas 
 
En cuanto al ámbito que nos ocupa, el de la computación, los autómatas celulares son 
grandes herramientas para la simulación de sistemas con diseño modular, ya que ambos 
conceptos se basan en la idea de dividir un sistema complejo en componentes más simples y 
definir reglas locales para su interacción. 
 

1.2.2. El juego de la vida 
El juego de la vida es un ejemplo de autómata celular. Se trata de un juego con reglas muy 
simples, pero que ha llamado la atención de muchos científicos debido a su complejo 
comportamiento [6]. 
Consiste en una cuadrícula bidimensional, con simetría cilíndrica, formada por celdas que 
pueden estar vivas o muertas. El tamaño de la matriz en la que se desarrolla el juego es 
variable y depende de los recursos de los que se disponga, pudiendo llegar a desarrollarse 
sobre una matriz infinita.  
En el caso de este trabajo, el panel de LEDs sobre el que se va a representar la matriz de 
celdas es de 8 por 8, por ello se ha escogido este tamaño para su implementación.  
La evolución de este juego depende de un estado inicial y no requiere intervención 
adicional, cada celda evoluciona según la interacción con sus ocho vecinas adyacentes.  
A partir del estado inicial, el tablero evoluciona en pasos discretos de tiempo, cambiando el 
estado de las celdas (muerta o viva).  
 
Las reglas de evolución son las siguientes: 
 

1- Si una celda muerta tiene 3 celdas vecinas vivas, revivirá en la siguiente iteración 
(Reproducción). 

 
2- Una celda muere si tiene más de 3 o menos de 2 celdas vecinas vivas 

(Superpoblación/Subpoblación). 
 

3- Una celda viva seguirá viva en la siguiente iteración si tiene 2 o 3 vecinas vivas 
(Familia). 
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Estas reglas determinan cómo evoluciona la cuadrícula en el tiempo. A continuación, se 
muestran algunos de los patrones más característicos [4]: 
 
• Extinción: tras un número finito de iteraciones todas las celdas mueren.  
 
• Estabilización: tras un número finito de iteraciones las celdas mantienen el mismo valor 

u oscilan entre dos estados diferentes. La figura 2 muestra un ejemplo de patrón que 
mantiene el mismo valor en todas las iteraciones. Mientras que la figura 3 muestra un 
ejemplo de patrón oscilante. 

 

 
Figura 2. Patrón barco, iteración 1 y 50 

 

 
Figura 3. Patrón oscilador, iteraciones 1,6 y 49 

 
 
• Crecimiento o variación constante: el valor de las celdas cambia permanentemente. 
En la figura 4 se muestra un ejemplo de crecimiento constante. 
 

 
Figura 4. Patrón planeador, iteraciones 1,3 y 25 
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El juego de la vida de Conway es muy utilizado en la investigación de sistemas complejos y 
autómatas. Se considera una herramienta muy valiosa en la simulación y modelado de 
fenómenos naturales, como el estudio de patrones físicos. 
 
En el ámbito que nos ocupa, representa un desafío para programadores. Se pueden estudiar 
diversas técnicas de diseño e implementación en diferentes dispositivos hardware o 
lenguajes de programación. Determinar la estructura de datos más adecuada para 
almacenar y acceder a las celdas, así como realizar operaciones como contar vecinos y 
actualizar estados, puede representar un desafío técnico. 
 

1.3. Estado del arte 
En el ámbito de la electrónica, las implementaciones del juego de la vida han evolucionado 
con el avance de la tecnología y se han convertido en un gran tema de investigación en el 
ámbito de la electrónica digital, dado que existen numerosas formas eficientes y 
optimizadas de implementar el juego de la vida en diversas plataformas.  
 
Un área que se estudia con relación al juego de la vida en la electrónica es su 
implementación en circuitos integrados, buscando una ejecución rápida y eficiente.  
Asimismo, la investigación ha llegado al estudio de algoritmos eficientes para la 
actualización de celdas, así como la compresión de datos para reducir la memoria necesaria 
para almacenar el estado del juego. 
 
Otro campo en el que el juego de la vida ha resultado ser útil es en seguridad informática, ya 
que se ha demostrado que este algoritmo es capaz de generar patrones aleatorios que 
pueden utilizarse en criptografía, por lo que se ha contemplado la posibilidad de integrar el 
juego de la vida como un componente en sistemas de seguridad. 
 
Se ha diseñado de diferentes formas, tanto en software y hardware especializado, como en 
un microprocesador con cualquier lenguaje de programación, en plataformas de 
programación como Matlab, en ASICs (Application-Specific Integrated Circuits), o en FPGAs y 
GPUs (Graphics Processing Units). Cada tecnología ofrece diferentes niveles de rendimiento 
y flexibilidad. 
 
En este trabajo va a realizarse la implementación del juego de la vida en Matlab (lo que será 
el modelo de referencia) y en FPGA (lo que constituye el proyecto principal). 
Una FPGA es un complejo circuito integrado digital programable, compuesto por matrices 
de bloques lógicos configurables y puertos de entrada/salida, como se muestra en la figura 
5.  



12 

 
Figura 5. Estructura de una FPGA [17] 

 
La interconexión y funcionalidad de dichos bloques puede ser programada mediante un 
lenguaje de descripción de hardware especializado. 
 
La elección de este componente para la realización del trabajo se ha basado en cinco ideas 
importantes: 
 
• Las FPGAs son adecuadas para tareas complejas que requieren altas velocidades de 

procesamiento y que, además, pueden procesar en paralelo, en contraste con otros 
métodos de implementación en software que serían secuenciales. El juego de la vida 
requiere operaciones simultáneas en varias celdas de la cuadrícula, por lo que el 
paralelismo de la FPGA puede ser beneficioso para realizar estos cálculos. 
 

• Las FPGAs permiten al diseñador programar cualquier funcionalidad conectando 
diferentes bloques, lo que brinda una gran flexibilidad y, además, son reconfigurables 
por lo que se pueden adaptar para la implementación del juego de la vida, explorando 
diferentes reglas o variaciones.  

 
• Además, permiten trabajar con datos de un bit, lo cual es beneficioso en la 

implementación del juego de la vida, ya que permite almacenar el estado de las celdas 
(viva o muerta) como un ‘1’ o un ‘0’. 
 

• A nivel educativo, trabajar con una FPGA resulta un desafío interesante, ya que permite 
conocer más a fondo aspectos de la electrónica digital y la implementación de 
algoritmos en hardware, campo que está en constante crecimiento hoy en día. 

 
• Como se ha comentado anteriormente, el juego de la vida de Conway ha resultado muy 

útil en diversas aplicaciones prácticas, por lo que al diseñarlo en una FPGA se pueden 
explorar estas aplicaciones e incluso descubrir nuevos campos prácticos. 
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Teniendo en cuenta la descripción anterior, se llega a la conclusión de que este dispositivo 
puede ser una buena elección.  

1.4. Estructura de la memoria 
Esta memoria contiene 6 capítulos. 

- El capítulo 1 introduce el tema del trabajo fin de grado, así como los objetivos y el 
tema a tratar en la actualidad. 
 

- El capítulo 2 explica el entorno de desarrollo utilizado, englobando las herramientas 
hardware y software. 
 

- El capítulo 3 desarrolla la implementación digital llevada a cabo, explicando uno a 
uno todos los bloques que conforman el proyecto, así como el funcionamiento 
general del mismo. 

 
- El capítulo 4 explica cómo se ha llevado a cabo la verificación del funcionamiento del 

algoritmo haciendo uso del modelo de referencia en Matlab y la utilización de 
simulaciones y ficheros. 

 
- El capítulo 5 hace un análisis de los resultados, así como de los recursos hardware 

utilizados, verificando que se cumplen las restricciones temporales. 
 

- El capítulo 6 está dedicado a las conclusiones y a posibles mejoras que pueden ser 
realizadas en el futuro. 
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2. Entorno de desarrollo 
El presente capítulo se centra en la explicación global del entorno de desarrollo elegido para 
implementar el proyecto, tanto a nivel de hardware, con la descripción detallada de los 
componentes y dispositivos utilizados, como de software, con la explicación de los 
programas utilizados. 

2.1. Entorno Hardware 
En este apartado se describe la placa utilizada para la implementación, así como el panel de 
LEDs en el cual se ha realizado la representación de la matriz de celdas. 

2.1.1. Placa Basys 3 
La placa Basys 3 de Digilent [1], es una placa de desarrollo basada en la FPGA Artix-7 de 
Xilinx. Se utiliza con frecuencia en proyectos de educación y desarrollo, debido a su 
capacidad de integración y versatilidad. 
 
Se trata de una plataforma de desarrollo de circuitos digitales completa, que puede 
utilizarse para un gran rango de diseños, desde circuitos combinacionales sencillos hasta 
circuitos secuencias más complejos como procesadores y controladores integrados. Cuenta 
con una amplia gama de puertos y periféricos (LEDs, pantallas de siete segmentos, 
interruptores, botones…), que permiten probar el diseño, y elaborar un gran número de 
diseños sin necesidad de utilizar hardware adicional. Estos periféricos se muestran en la 
figura 6. 
 

 
Figura 6. Esquema de conexión de la FPGA 
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Además, es compatible con diversas herramientas y entornos de desarrollo, y permite la 
conectividad con otros dispositivos (en el caso que nos ocupa con un panel de LEDs). 
 

2.1.2. FPGA Artix-7 
 
La placa Basys 3 está basada en la FPGA Artix-7 de Xilinx.  
Cuenta con 33280 celdas lógicas, cada una de ellas con 4 LUT de entrada y 8 flip-flops, 1800 
Kbits de RAM rápida, un conversor analógico-digital y velocidades de reloj superiores a 450 
MHz. 
Utiliza tecnología de proceso de silicio de 28nm. 
En cuanto a sus componentes y características principales, son las siguientes [8]: 
 
• Matriz lógica programable (PL), que consiste en una red de bloques lógicos y conexiones 

programables 
 

• Memoria programable, que es una combinación de bloques de memoria RAM 
distribuida y memoria RAM que puede ser configurada. 

 
• Gran variedad de puertos entrada/salida mediante los cuales se reciben o envían 

señales, estableciendo así comunicaciones con otros dispositivos por medio de algún 
tipo de interfaz de comunicación. 

 
• Bloques DSP (Procesamiento Digital de Señal), que realizan operaciones matemáticas y 

algoritmos de procesamiento de señal, así como multiplicación, acumulación y otros 
cálculos específicos para procesar datos digitales. 

 
• Controladores y periféricos, que permiten gran flexibilidad en el diseño. 
 
• Herramientas de desarrollo proporcionadas por Xilinx como el software Vivado, del cual 

se hablará más adelante. 
 

 

2.1.3. Panel WS2812 

La visualización de la matriz de celdas se ha llevado a cabo en el panel de LEDs WS2812 [3]. 
Se trata de un dispositivo de iluminación programable formado por una matriz de LEDs RGB 
(rojo, verde, azul) con control inteligente, donde el circuito de control y el LED RGB están 
integrados en el mismo encapsulado conformando un píxel (ver anexo B). 
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El panel de LEDs utilizado para la representación gráfica es de 64 pixeles (8 por 8), 
conectados en serie de la forma en que se muestra en la figura 7. 
 
Al estar conectados en serie, la señal de control se transmite de un LED al siguiente. 
 
 

 
Figura 7. Conexión serie de LEDs 

 
 
Incluye la interfaz serie de entrada, un registro de almacenamiento, un circuito de salida 
serie y un oscilador de precisión.  
 
El protocolo de transferencia de datos es el siguiente: cada LED tiene una memoria donde 
almacena los primeros 3 bytes que recibe, los siguientes bytes recibidos pasarán al segundo 
LED y así sucesivamente.  
 
Para resetear los LEDs, es necesario mantener la entrada a ‘0’ durante al menos 50 
microsegundos.  
 
El control del panel se llevará a cabo en la FPGA, igual que el resto del proyecto, para lo cual 
es importante tener en cuenta las siguientes consideraciones: 
 

- Para enviar un ‘1’ al panel es necesario mantener la salida a ‘1’ durante T1H y 
después a ‘0’ durante T1L.  
 

- Para enviar un ‘0’, habrá que mantener la salida a ‘1’ durante T0H y después a ‘0’ 
durante T0L.  

 
- Para resetear el panel es necesario mantener la salida a 0 durante al menos 50 

µs. 
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Será importante respetar los tiempos de envío de datos para que la comunicación funcione 
correctamente.  
 
La figura 8 y la tabla 1 muestran las formas de onda que codifican los bits y la activación del 
reset correspondientes a las consideraciones anteriores.  
 

 
Figura 8. Formas de onda que codifican los bits [13] 

 
 

 
Tabla 1. Tiempos que codifican los bits 

 

2.2. Herramientas Software 

2.2.1. Vivado 
El proyecto se ha desarrollado en el entorno de diseño integrado Vivado.  
 
Se trata de un software producido por Xilinx para la síntesis y el análisis de lenguajes de 
descripción hardware que incluye características para el desarrollo de SoC y síntesis de alto 
nivel. 
Vivado permite el diseño a nivel RTL (transferencia de registros) mediante el uso de 
lenguajes de descripción hardware (VHDL o Verilog). 
 
La interfaz de usuario es el navegador de proyectos, que contiene los archivos del diseño, 
cuyas relaciones son interpretadas por el propio programa. 
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La figura 9 muestra la estructura del código desarrollado en este trabajo, como se puede 
observar, existe un fichero principal que engloba a otros llamados bloques o módulos. Esto 
constituye un diseño modular que será explicado más adelante. 
 

 
Figura 9. Estructura de ficheros en Vivado 

 

2.2.2. VHDL 
VHDL es un acrónimo que proviene de otros dos. VHSIC (Very High Speed Integrated 
Circuits) y HDL (Hardware Description Language). Se trata de un lenguaje de especificación 
utilizado para describir circuitos digitales y para la automatización de diseño electrónico 
utilizando distintos niveles de abstracción [11]. 
 
No se trata de un lenguaje de programación, sino de un lenguaje de descripción hardware 
que permite describir circuitos síncronos y asíncronos y realizar simulaciones, verificaciones 
y síntesis de diseño. Con este lenguaje, se pueden descubrir problemas en el diseño antes 
de implementarlos físicamente, y, además, permite que más de una persona trabaje en el 
mismo proyecto. 
 
Existen tipos de datos (std_logic) que permiten trabajar a nivel de bit y que son los que se 
han utilizado en la implementación del proyecto.  
 
Como se ha comentado anteriormente, VHDL permite una estructuración modular a la hora 
de describir sistemas digitales. Ofrece una descripción estructural y de comportamiento 
mediante la cual es posible decidir cómo se conectan los componentes entre sí y qué 
función realiza cada uno de ellos. 
 
Como lenguaje de descripción hardware, todos los circuitos trabajan a la vez para obtener el 
resultado, es decir, todo se ejecuta en paralelo, a diferencia de los lenguajes de 
programación. Además, existen herramientas que transforman una descripción VHDL en un 
circuito real (síntesis). 
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2.2.3. Matlab 
Matlab (MATrix LABoratory), es una plataforma de programación y cálculo numérico que 
ofrece un entorno de desarrollo integrado con un lenguaje de programación propio, que es 
interpretado y puede ejecutarse tanto en el entorno interactivo, como a través de un 
fichero de script. Entre sus prestaciones básicas se encuentran la manipulación de matrices, 
implementación de algoritmos, representación de datos y funciones, creación de interfaces 
de usuario y la comunicación con programas en otros lenguajes y con otros dispositivos 
hardware (en el caso de este trabajo con la FPGA).  
 
Además, Matlab dispone de dos herramientas adicionales: Simulink, que es una plataforma 
de simulación multidominio y Guide, que es un editor de interfaces de usuario. Matlab 
cuenta también con toolboxes mediante las cuales se pueden ampliar sus capacidades. 
En el caso que nos ocupa, se realizará la implementación del juego de la vida en Matlab, 
para ser utilizada como modelo de referencia debido a la facilidad para representar 
gráficamente la matriz de celdas y poder comprobar su funcionamiento visualmente. 
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3. Implementación digital 
En este apartado se va a explicar la implementación en Vivado (con la utilización de lenguaje 
VHDL) y en Matlab del juego de la vida, así como la descripción detallada de los bloques 
utilizados en el proceso y la comunicación entre ellos. 
 

3.1. Diseño modular 
La programación modular está basada en la técnica de diseño descendente, que consiste en 
dividir el problema original en diversos subproblemas que se pueden resolver por separado, 
para después recomponer los resultados y obtener la solución general al problema. 
Un módulo o bloque es cada una de las partes en que se divide el proyecto final. Cada uno 
tiene una tarea definida y se puede diseñar y verificar de forma individual antes de ser 
integrado en el sistema completo, aunque en algunos casos, estos módulos necesitan 
comunicarse con otros para poder operar.  
 
La modularidad del diseño tiene una serie de ventajas que se van a comentar a 
continuación: 
 
• Los bloques que conforman el proyecto pueden ser diseñados individualmente y ser 

utilizados en otros proyectos. 
 

• El diseño modular permite optimizar cada módulo por separado, lo que puede llevar a 
mejoras en el rendimiento global.  
 

• Dividir un proyecto completo en módulos más simples facilita el desarrollo de la 
implementación. 
 

• Favorece la depuración y el mantenimiento, ya que, si se produce un error, es más 
fácilmente localizable y solucionable. Además, las modificaciones en un módulo no 
afectarán a los demás siempre y cuando la interfaz de comunicación esté bien 
establecida. 

 
En el diseño de este trabajo, encontramos 4 módulos que se comunican entre ellos 
mediante interfaz AXI4-Stream (Advanced eXtensible Interface), que será explicada más 
adelante. Todos los módulos están integrados dentro de un módulo general 
(GoL_Panel_top), mediante el cual se relacionan sus entradas y salidas. El problema global 
que se pretende abordar es la realización del juego de la vida, incluyendo además su 
visualización en el panel de LEDs. Para ello, es necesario, en primer lugar, un bloque SRESET, 
que se encarga de sincronizar el pulsador de reset (que es asíncrono) y además, de hacerlo 
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activo en bajo, lo cual es un standard para la interfaz de comunicación AXI4-Stream. El 
siguiente bloque GameofLife, se encargará de realizar cada iteración del juego de la vida, 
teniendo como entrada una disposición de la matriz de celdas inicial. En tercer lugar, es 
necesario un bloque Enviar_dato, que se encargue de organizar la información que devuelve 
el bloque GameOfLife, de manera que pueda ser enviada de una forma eficiente y sencilla al 
siguiente y último bloque WS2812, que se encargará de enviar los datos ya procesados de 
salida al panel de LEDs, teniendo en cuenta la necesidad de respetar los tiempos de envío, 
para su correcta interpretación. En la figura 10 se muestra un esquema de los bloques 
utilizados en la implementación. 
 

 
Figura 10. Esquema de bloques 

 
A continuación, se va a detallar el funcionamiento de la interfaz de comunicación utilizada y 
cada uno de los bloques que componen el proyecto por separado, así como su 
implementación en Matlab. 
 

3.1.1. Interfaz AXI4 
El protocolo AXI [2] es un protocolo de comunicación síncrona entre módulos, muy útil a la 
hora de realizar transacciones de datos en las que estos se transmiten en paralelo. Está 
pensado principalmente para comunicaciones on-chip (entre los diferentes componentes 
integrados en un solo chip), ya que muchos bloques IP de Xilinx utilizan esta interfaz. 
 
Se utiliza un protocolo handshake que funciona con un reloj global y una señal de reset 
general activa en bajo. En la comunicación mediante esta interfaz, un módulo actúa como 
maestro (el que envía los datos) y el otro como esclavo (el que recibe los datos). Existen, 
además, dos señales, VALID y READY, que permiten gestionar las comunicaciones. 
 
Existen 3 tipos de interfaz AXI4: 
 

• Full AXI4: realiza un mapeado en memoria y requiere un canal de direcciones que 
contiene la dirección del registro o ubicación de memoria a la que se está 
accediendo en la transacción. Admite operaciones en modo ráfaga (transferencia de 
múltiples datos consecutivos). 

• AXI4-Lite: se trata de una versión simplificada de AXI4 que tiene un bus fijo de 32 bits 
y no admite operaciones en modo ráfaga. 
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• AXI4-Stream: no necesita canal de direcciones. Se centra en la transmisión de datos 
en secuencia continua. Se basa en un canal unidireccional para la transferencia de 
datos. Esta interfaz es la que se va a utilizar para la comunicación entre bloques en 
este trabajo y su funcionamiento se va a explicar a continuación. 

 
El protocolo de comunicación (handshake) en la interfaz AXI4-Stream se lleva a cabo de la 
siguiente forma: 
El maestro activa la señal VALID cuando los datos que va a enviar son válidos, indicando así 
al esclavo que los datos están disponibles para usarse. Por su parte, el esclavo, debe activar 
la señal READY cuando esté listo para recibir nuevos datos. El intercambio de datos se 
produce cuando ambas señales (VALID y READY) están activas en un mismo flanco de reloj. 
El orden en que se activan las señales VALID y READY carece de importancia.  
Las figuras 11 y 12 muestran esquemas del funcionamiento del protocolo handshake.  
 

 
Figura 11. Interfaz AXI4-Stream [18] 

 
 

 
Figura 12. Protocolo AXI4-Stream [18] 

 

3.2. Implementación en Matlab [7] 
La implementación del juego de la vida en Matlab ha sido realizada para utilizarse como 
modelo de referencia a la hora de verificar la funcionalidad del diseño en VHDL.  
Esta decisión ha sido tomada debido a que en Matlab se puede representar gráficamente la 
matriz de celdas en cada iteración y de esta forma comprobar visualmente el 
funcionamiento del algoritmo.  
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El código no está estructurado mediante módulos como en VHDL, sino que contiene 3 
funciones y un bucle principal que se ejecuta continuamente hasta un número de 
iteraciones que puede ser modificado. La matriz de celdas, como se ha comentado 
anteriormente, es bidimensional con simetría cilíndrica, esto quiere decir que las celdas del 
extremo derecho están conectadas con las del extremo izquierdo y las de arriba con las de 
abajo, por ello, para la implementación en Matlab, ha sido necesario crear un marco ficticio 
en el que se replican las filas y columnas de los extremos de la matriz, para, de esta forma, 
poder sumar correctamente las vecinas vivas que tiene cada celda. 
 
A continuación, se muestra una imagen (figura 13) de la matriz sin marco (borde amarillo), 
en la que se ha dibujado una disposición de celdas vivas (casillas con circulo amarillo) y 
muertas (casillas vacías) aleatoria. La matriz exterior (borde negro) constituye la matriz con 
marco, y en ella se han copiado las filas y columnas exteriores de la forma en que indican las 
flechas, de forma que los círculos negros representan las celdas vivas y las casillas vacías las 
celdas muertas en el marco ficticio.  
 
 

 
Figura 13. Matriz de celdas con marco 

 
Uno de los puntos clave a la hora de implementarlo es conocer el número de vecinas vivas 
que tiene cada celda de la matriz. En cuanto a la programación, existen varias formas de 
llevar esto a cabo. Aquí se va a explicar la utilizada en este proyecto. 
 
Las funciones utilizadas en el código son las siguientes: 
 
• F_vecinas_vivas: tiene como argumentos de entrada una matriz 9 por 9 (a la que se ha 

llamado matriz con marco), y el número de fila (i) y de columna (j) en el que se 
encuentra la celda de la cual vamos a calcular sus vecinas vivas. En la función, se calcula 
la posición de la celda al norte, al sur, al este, al oeste, noroeste, noreste, suroeste y 
sureste de la celda actual y se comprueba el estado de todas las celdas contiguas a la 
que estamos analizando, con una secuencia de sentencias if, sumando un 1 a una 
variable X (inicialmente con valor 0) cada vez que una celda contigua está viva. De esta 
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forma, al comprobar el estado de todas las celdas contiguas, tendremos en la variable X 
el número de vecinas vivas que tiene la celda (i, j). Esta función devuelve la variable X. 

 

 
Figura 14. Celdas vecinas 

 
En la figura 14 se observa la celda actual (punto amarillo) y sus vecinas. Los números  
corresponden a los índices i (vertical/fila) y j (horizontal/columna) de cada celda. 
 
• F_modificar_marco: esta función actualiza el marco ficticio de la matriz en cada 

iteración, ya que el bucle principal recorre únicamente la matriz sin marco, por lo que es 
necesario actualizarlo en cada iteración. Tiene como argumento de entrada la matriz con 
marco y devuelve otra matriz igual que la anterior, pero con el marco modificado. 

 
• F_quitar_marco: quita el marco de la matriz, dejando la matriz original 8 por 8 para 

poder representarla gráficamente. Tiene como argumento de entrada una matriz con 
marco y devuelve la misma matriz, pero sin marco. 

 
En cuanto al bucle principal, en primer lugar, se representa gráficamente la matriz, 
indicando el número de iteración al que corresponde cada representación, y posteriormente 
se escribe en un fichero de texto con la función “writematrix”, que es propia de Matlab y 
sirve para escribir matrices en ficheros de texto.  
Este fichero se comparará con otro generado en VHDL.  
Dentro del bucle principal, existen dos bucles for anidados, que se utilizan para recorrer 
todas las filas y columnas de la matriz (sin marco). Para cada celda se llama a la función 
F_vecinas_vivas, que actualiza su estado (o valor) dependiendo de cuantas vecinas vivas 
tenga y de su valor actual, siguiendo las reglas del juego de la vida.  
 
Por último, se actualiza el valor de la matriz para prepararla para la siguiente iteración del 
bucle. 
 
El diagrama de flujo del código descrito puede observarse en la figura 15. 
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Figura 15. Diagrama de flujo de la implementación en Matlab 

 
En cada ejecución del programa, el fichero de texto se actualiza con los nuevos valores 
correspondientes a las iteraciones llevadas a cabo en dicha ejecución. Posteriormente, será 
necesario trasladar ese fichero a un directorio en el que el proyecto VHDL pueda leerlo y 
compararlo con otro que se generará en la simulación. 
 

3.3. Implementación en FPGA [19] 
Como se ha mencionado anteriormente, la implementación en VHDL consta de diferentes 
módulos que forman parte de otro general. Cada módulo está conectado con el siguiente y 
se comunican mediante la interfaz AXI4-Stream. En cuanto a la estructura de cada módulo, 
todos ellos contienen un proceso de flip-flops, que actualiza todos los valores de los 
biestables del bloque siguiendo el flanco ascendente de la señal de reloj y realiza el reseteo 
de las señales cuando el reset se encuentra con valor ‘0’ (activo en bajo). Además, en todos 
los bloques (excepto en el que se encarga de sincronizar el pulsador de reset), existe una 
máquina de estados que modela su funcionamiento y que a continuación serán 
representadas y explicadas. Por último, alguno de los módulos contiene otro tipo de 
procesos o funciones que se explicarán individualmente más adelante.  
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La figura 16 representa la estructura en la que están organizados los bloques que conforman 
el proyecto. 
 
 

 
Figura 16. Esquema de los módulos que forman el proyecto 

 
 

3.3.1. Módulo SRESET 
Se trata de un bloque que tiene como señal de entrada el reloj, y reset asíncrono. Este 
bloque se encarga de sincronizar el reset por medio de dos biestables y, además, lo hace 
activo en bajo. Como señal de salida, tiene la señal AXIS_ARESETN, que es el reset síncrono y 
activo en bajo y que constituye la entrada de reset de los demás bloques (ver Anexo A, 
apartado A1). 
 

3.3.2. Módulo GameOfLife 
Este bloque es, como se ha comentado anteriormente, en el que se implementa el juego de 
la vida de Conway. Realiza las iteraciones a una velocidad que sea perceptible para el ojo 
humano a la hora de visualizar cada iteración en el panel de LEDs. Envía los datos al bloque 
Enviar_dato cuando este está preparado y con la señal READY_G en alto (ver Anexo A, 
apartado A2). 
 
 Como señales de entrada, tiene las siguientes: 
- IN_DEBUG: pulsador que inicia el programa en modo debug. Corresponde al pulsador  

BTNR conectado al pin T17 de la placa (figura x). 
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- IN_INICIO: pulsador que inicia el programa de forma normal, calculando y mostrando 
cada iteración sin necesidad de intervención. Corresponde al pulsador BTNL conectado 
al pin W19 de la placa (figura x). 

 
- LED_INICIO: LED que se enciende cuando el programa se ha iniciado en modo normal. 

Corresponde al LED0 conectado al pin U16 de la placa (figura x). 
 

- LED_DEBUG: LED que se enciende cuando el programa se ha iniciado en modo debug. 
Corresponde al LED1 conectado al pin E19 de la placa (figura x). 

 
- IN_SW1 e IN_SW2: interruptores de dos posiciones que permiten seleccionar entre 4 

disposiciones iniciales diferentes (oscilador, estático, prueba1, prueba2). Corresponden 
a los interruptores SW0 y SW1 conectados a los pines V17 y V16 de la placa, 
respectivamente. 

 
- CLK: reloj de la placa (100 MHz) 

 
- RST: señal de reset síncrona y activa en bajo. 

 
- READY_G: señal que se recibe del esclavo en la comunicación e indica que este está 

preparado para recibir nuevos datos. 
 
 
En cuanto a las señales de salida: 
- Fi_G: son 8 vectores de 1 byte y constituyen cada una de las filas de la matriz de celdas. 

 
- VALID_G: señal necesaria para la comunicación con el siguiente bloque. Se activa a ‘1’ 

cuando los datos almacenados en Fi_G son válidos. 
 
Este bloque está formado por 7 biestables: dos sincronizadores (para los pulsadores), dos 
detectores de flanco, un contador de pulsos de reloj y los correspondientes al estado de la 
máquina de estados y a la matriz de celdas (que además cuenta con habilitación enable). 
 
La matriz de celdas es un array bidimensional de 8x8 bits. 
Al declarar la matriz de esta forma, no es necesario añadirle un marco, ya que al analizar las 
vecinas de la celda (7)(7) y sumar un 1 a estos valores para obtener las celdas sur y este, el 
dato se desborda (va de 0 a 7), y se obtiene la celda (0)(0). 
 
Este bloque cuenta con una función (F_VECINAS_VIVAS), que tiene el mismo 
funcionamiento que la explicada anteriormente en Matlab con la consideración de que en 
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este caso no existe matriz con marco, sino que se trabaja en todo momento con la matriz 
normal. 
 
El funcionamiento del módulo es el siguiente: el código está formado por tres procesos que 
se ejecutan simultáneamente. El primero de ellos es un multiplexor, el cual selecciona la 
matriz inicial de entre cuatro opciones posibles según el estado de los interruptores. Por 
otro lado, tenemos el proceso de flip-flops, mediante el cual, los 7 biestables existentes 
actualizan su valor en cada flanco de subida de reloj, a excepción de la matriz de celdas, que 
sólo se actualizará cuando una señal de enable esté a ‘1’. Esta señal se activará según una 
máquina de estados que se va a explicar a continuación. 
 
Por último, tenemos la máquina de estados que modela el funcionamiento general del 
programa. Esta máquina de estados está compuesta por 7 estados, uno de reposo, 3 
dedicados al inicio normal (inicio, espera, iteración) y otros 3 dedicados al inicio en el modo 
debug (debug, espera_debug, iteración_debug). (Figura 13) 
 
Al pulsar reset, la máquina de estados se encuentra en el estado reposo, en el que ambos 
LEDs están encendidos, a la espera de que se elija uno de los dos modos. Si se presiona el 
pulsador de inicio se pasa al estado inicio y si se pulsa el de debug, se pasa al estado 
espera_debug. 
 
En el estado inicio, únicamente el LED de inicio normal queda encendido, y en el momento 
que el bloque Enviar_dato pone la señal ready a ‘1’, la máquina de estados pasa al estado 
espera. En este estado existe un temporizador, que consiste en un contador de 48000000 
ciclos de reloj, para que cada iteración se realice cada medio segundo aproximadamente y 
de esta forma sea perceptible para el ojo humano a la hora de visualizarla en la placa de 
LEDs. Una vez que ha pasado este tiempo, se pasa al estado iteración, donde se realiza una 
iteración del juego de la vida de manera similar a cómo se hacía en Matlab, se calculan las 
vecinas vivas de cada celda dentro de dos sentencias for-loop anidadas para recorrer las 
celdas de la matriz, y según su valor se actualiza el valor de cada celda. Automáticamente, 
una vez finalizado la sentencia for, se pasa al estado inicio, donde VALID_G se pone a ‘1’, ya 
que los datos están disponibles para enviarlos. 
 
Por otro lado, si escogemos el modo debug, pasamos al estado espera_debug, donde queda 
encendido únicamente el LED correspondiente a este modo y se espera hasta que se 
presiona el mismo pulsador, momento en el que se pasa al estado debug. Aquí, pasamos 
directamente a iteracion_debug donde se realiza lo mismo que en una iteración normal. 
Finalmente volvemos al estado espera_debug para esperar a que se pulse otra vez el 
pulsador. 
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El modo de operación del programa solo puede seleccionarse al principio de este y es 
necesario resetearlo para seleccionar otro modo. 
Las señales de salida Fi_G son actualizadas en cada ciclo de reloj con los valores de las filas 
de la matriz. 
La figura 17 muestra un esquema de la máquina de estados de este bloque. 
 

 
Figura 17. Máquina de estados del bloque GoL 

 
 

3.3.3. Módulo Enviar_dato 
En este bloque se realiza la adecuación de los datos recibidos desde GameOfLife para poder 
mandarlos al siguiente bloque (ver Anexo A, apartado A3).  
 
Las entradas de este módulo son: 
- CLK:  reloj de la placa (100 MHz) 

 
- RST: señal de reset síncrona y activa en bajo. 

 
- VALID_E: señal necesaria para la comunicación con el bloque anterior. Se activa a ‘1’ 

cuando los datos almacenados en Fi_G en el módulo GoL son válidos. 
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- FI_E: datos recibidos desde GoL, son 8 bytes que contienen las filas de la matriz de 
celdas. 

 
- S_AXIS_TREADY: señal necesaria para la comunicación con el siguiente bloque. Se activa 

a ‘1’ cuando el esclavo está listo para recibir datos. 
 
 
En cuanto a las señales de salida, son las siguientes: 
- READY_E: señal que se activa cuando el bloque está listo para recibir nuevos datos. 

 
- BOUT: señal de 8 bits, que corresponde a la codificación de uno de los colores RGB de un 

LED de la placa, y que posteriormente será enviada bit a bit desde el siguiente bloque a 
la placa. 

 
- S_AXIS_TVALID: señal necesaria para la comunicación con el bloque siguiente, se pone a 

‘1’ cuando los datos son válidos en BOUT. 
 
En el este bloque, se leen los datos de las entradas Fi_E, y se guardan en un vector de 64 
bits. Por cada bit del vector, se envían 3 bytes cuyos valores dependen de si este bit es un ‘1’ 
o un ‘0’. Cuando sea un ‘0’, el valor de los 3 bytes será 0 y el LED estará apagado, cuando el 
valor sea un ‘1’, el valor será 15 y el LED estará encendido en color blanco ya que los 3 bytes 
tendrán el mismo valor.  Esto se debe a que el panel de LEDs, como se comentó en 
secciones anteriores, necesita 3 bytes para cada LED, cada uno asociado a un color RGB. 
 
En cuanto a los procesos, existe un proceso de flip-flops, como en el caso anterior, y otro 
correspondiente a la máquina de estados, que se ejecutan en paralelo.  
 
Enviar_dato está formado por 6 biestables: tres contadores, un temporizador, un registro de 
almacenamiento, y el relacionado con el estado de la máquina de estados.  
Cuenta también con un registro de desplazamiento. 
 
Existe una función llamada DAR_VUELTA_VECTOR que se encarga de cambiar el orden de los 
elementos de un vector de std_logic_vector para posteriormente unirlos todos en otro 
vector y mandarlos por orden al panel de LEDs, ya que como se comentó en secciones 
anteriores, estos datos deben ser enviados de una forma específica. 
 
La máquina de estados está formada por tres estados: inicio, crea_byte y envia_byte. En 
primer lugar, después de pulsar reset, la máquina de estados se encuentra en el estado 
inicio. En el momento en que la señal valid se pone a ‘1’, se leen los datos de las entradas 
Fi_E, y se guardan en el vector de 64 bits, además, se pasa al estado crea_byte, en el que 
según el valor de dos contadores (cnt_bit y cont_iteraciones) se realizan diferentes 
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acciones. Si cnt_bit es igual a 64, quiere decir que se han enviado todos los datos de la 
matriz de celdas y, por lo tanto, se ha terminado de enviar una iteracion completa, el 
siguiente estado será inicio y se reseteará cnt_bit. Si no se han contado los 64 bits todavía y 
además cnt_iteraciones es ‘1’ (lo que quiere decir que no nos encontramos en el primer bit 
a enviar), se activa el enable de un registro del desplazamiento que desplaza una posición a 
la izquierda el vector de 64 bits. Finalmente, se suma 1 a cnt_bit y se pasa al estado 
envia_byte. En este estado se activa la señal S_AXIS_TVALID que constituye parte del 
handshake con el siguiente bloque.  
 
Si todavía no se han enviado los 3 bytes correspondientes a cada bit, el siguiente estado 
será envia_byte y se sumará uno a cnt_byte. Si ya se han enviado los 3 bytes, pero todavía 
no han sido recorridos los 64 bits, entonces el siguiente estado será crea_byte y se iniciará 
el contador de bytes, y si, por último, se han envíado los 3 bytes, y además se han recorrido 
los 64 bits, entonces se pasará a inicio para estar listo cuando lleguen nuevos datos para 
enviar. Todas estas condiciones están también condicionadas por el tiempo de transmisión 
de cada byte, que es de 10 microsegundos, por lo que la máquina de estados se encontrará 
en el mismo estado hasta que este tiempo haya transucurrido. 
 
La figura 18 muestra un esquema de la máquina de estados de este bloque. 
 

 
Figura 18. Máquina del bloque Enviar_dato 

 

3.3.4. Módulo WS2812 [13] 
Las señales de entrada de este bloque son las siguientes: 
- AXIS_ARESETN: señal de reset síncrono, activa en bajo. 
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- AXIS_ACLK: reloj de la placa (100 MHz) 
 

- S_AXIS_TDATA: datos recibidos por el bloque anterior, correspondientes al byte que 
configura un color RGB perteneciente a un LED de la placa. 

- S_AXIS_TVALID: señal que permite la comunicación con el maestro y se activa cuando 
los datos están listos en el bloque Enviar_dato, en la salida BOUT. 

En cuanto a las salidas: 
- S_AXIS_TREADY: señal que permite la comunicación con el maestro y se activa cuando 

el esclavo está listo para recibir nuevos datos. 
 

- TO_WS2812: señal de un bit que se envía al panel de LEDs. 
 
El objetivo de este bloque es recibir un byte, e ir enviándolo bit a bit, modificado de tal 
forma que cumpla con las especificaciones y restricciones temporales del panel de LEDs 
comentadas en apartados anteriores. La forma de enviar cada bit se representó 
anteriormente en la figura 6 y tabla 2 (ver Anexo A, apartado A4). 
 
De esta forma, si la señal de entrada es, por ejemplo “00000111”, el primer dato a enviar 
será un ‘0’, para lo cual la señal de salida deberá valer ‘1’ durante 250 nanosegundos y 
posteriormente, ‘0’ durante 1000 nanosegundos. Con el ejemplo descrito, tendremos que 
repetir esta operación 5 veces, que corresponden al número de 0. En el momento en que 
sea necesario enviar un ‘1’, la señal de salida deberá valer ‘1’ durante 900 nanosegundos y 
‘0’ durante 350 nanosegundos. Esta operación se repetirá 3 veces. Sumando los tiempos 
necesarios para enviar un byte siguiendo estas reglas, se obtiene un tiempo total de 10 
microsegundos, que es exactamente el tiempo necesario para enviar un byte en el módulo 
Envia_dato, lo que facilita en gran medida la transmisión. 
 
En este bloque hay dos procesos, uno correspondiente a los flip-flops y otro a la máquina de 
estados que modela el funcionamiento. 
Existen 4 biestables: un contador, un temporizador, un registro de almacenamiento y el 
correspondiente al estado de la máquina de estados. 
 
El estado en el que se encuentra la MEF tras pulsar reset es reposo, en el que la señal de 
salida TO_WS2812 vale ‘0’. En el momento en que la señal valid se activa, se guarda la señal 
S_AXIS_DATA en un registro de almacenamiento y se pasa al estado enviar1, en el que la 
señal de salida vale ‘1’ durante el tiempo establecido (contado por un contador de ciclos de 
reloj) por las características del panel de LEDs, comentadas anteriormente, y que depende 
de si el dato a enviar es un ‘0’ o un ‘1’. Finalmente, pasa al estado enviar0, donde 
similarmente con el estado anterior, la señal de salida vale ‘0’ un tiempo determinado 
(haciendo uso del mismo temporizador, que se resetea al terminar de enviar un bit). Con un 
contador que cuenta bits enviados, se decide si el siguiente estado será enviar1 (para enviar 
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el siguiente bit), cuando todavía no se han enviado los 8 bits, o reposo (para esperar nuevos 
datos de entrada y la activación de la señal valid), cuando los 8 bits han sido enviados. 
La figura 19 muestra un esquema de la máquina de estados de este bloque. 
 

 
Figura 19. Máquina de estados del bloque WS2812 
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4. Verificación funcional 
Como se ha comentado anteriormente, la verificación del funcionamiento del proyecto en 
VHDL se va a realizar con ayuda del diseño de Matlab, utilizando este como modelo de 
referencia. Para ello, se ha creado un fichero a partir de las iteraciones llevadas a cabo en 
Matlab, que guarda la matriz (sin marco) por filas y una iteración detrás de otra sin ningún 
tipo de separador.  

4.1. Test bench 
El test bench es un banco de pruebas diseñado para probar y verificar el comportamiento de 
un diseño VHDL antes de probarlo en los dispositivos hardware, también es posible aplicar 
estímulos al diseño a fin de analizar los resultados o comparar los mismos de dos 
simulaciones diferentes [19]. 
 
Tiene como objetivo realizar una simulación del sistema. Durante la simulación, se generan 
estímulos que servirán de entradas al diseño para verificar si sus salidas coinciden con lo 
que se esperaba. Esto implica que el banco de pruebas ya no es un circuito, sino que es un 
programa que se encargará de verificar la descripción del circuito. Es por ello, que en el test 
bench existen elementos del lenguaje VHDL que son más similares a los que existen en 
algunos lenguajes de programación, como por ejemplo manejo de archivos y de tiempo, que 
son los más involucrados en el caso que nos ocupa. 
 
En cuanto a la implementación que se está desarrollando, lo primero es declarar los 
componentes o bloques que conforman el proyecto y que se han comentado 
anteriormente, para de esta forma poder dar valor a sus entradas. Por otro lado, una de las 
cosas que resulta más interesante es conocer el periodo de la señal de salida (TO_WS2812), 
ya que puede dar alguna pista sobre el correcto funcionamiento del envío de datos a la 
placa de LEDs. Para obtener el periodo de la señal, se ha creado un proceso, que utiliza la 
función now, que devuelve el tiempo actual de simulación, con lo cual se puede conocer el 
periodo de la señal. Además, también se realiza una reconstrucción del bit enviado. Esto es 
necesario para poder ver de forma más sencilla qué datos se están enviando a la placa, ya 
que la señal TO_WS2812, no es fácil de interpretar. Por ello, además del periodo, se calculan 
los tiempos en alto y en bajo de esta señal de salida, con los cuales se puede calcular si lo 
que se está enviando es un ‘1’ o un ‘0’.  
También resulta interesante generar un fichero de texto que contenga la matriz en cada 
iteración llevada a cabo y que sea exactamente igual que el de Matlab para poder, de esta 
forma, compararlos y comprobar si se ha cometido algún error en cualquiera de las 
iteraciones. El lenguaje VHDL posee un manejo de archivos particular [14], más limitado 
que, por ejemplo, en lenguaje C. La lectura y escritura de datos a un archivo se encuentra 
orientada a líneas, no a caracteres sueltos, por lo que el mecanismo básico consiste en 
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formar una línea de texto y después escribirla al archivo. Las funciones involucradas en 
escribir y leer archivos se encuentran declaradas en la biblioteca std y en el paquete textio. 
En este TFG se utiliza el paquete std_logic_textio [15], ya que permite trabajar con datos de 
tipo std_logic y std_logic_vector, que son los que se han utilizado mayoritariamente en el 
proyecto. 
 
En cuanto a la estructura del test bench, es la siguiente: en primer lugar, se define una señal 
llamada numIteraciones_des, que representa el número de iteraciones que se desean 
escribir en el fichero, ya que para compararlo posteriormente con el de Matlab es 
importante que exista el mismo número de iteraciones. 
 
Después, se abre el fichero y se espera el tiempo necesario para que se 
lleve a cabo una iteración.  
Para escribir cada fila en el fichero, se ha creado una sentencia for para 
cada una de ellas. Esto se debe a que en Matlab la única forma de 
escribir la matriz en el archivo es con un delimitador (espacio) entre 
cada caracter, por lo que es necesario insertar este mismo caracter 
también en el fichero generado por VHDL.  
 
Por esto, en cada bucle for se recorre una línea insertando un espacio 
entre cada elemento y posteriormente, cuando se ha recorrido toda la 
línea, se escribe en el fichero.  
 
La figura 20 muestra un ejemplo de cómo se escriben dos iteraciones 
de un patrón oscilante en un fichero. 
 
Una vez que todas las iteraciones deseadas se han escrito, es necesario cerrar el fichero y 
volver a abrirlo, ya que no es posible abrir un fichero en modo escritura y lectura al mismo 
tiempo. Por ello, para compararlo con lo obtenido en Matlab es necesario cerrarlo y abrir 
ambos ficheros (Matlab y VHDL) en modo lectura. Se recorren ambos ficheros, omitiendo 
los espacios en blanco y se comparan caracter a caracter. Para conocer si se ha cometido 
algún fallo, existe una variable fallo que se pone a ‘1’ solo en caso de que dos caracteres de 
sendos ficheros no coincidan. Además, en el momento en que existe un fallo, se crea otro 
fichero llamado “estado” que contiene un texto que informa de en qué iteración y en qué 
línea se ha cometido este error. 
 
La figura 21 muestra el mensaje que se escribe en el fichero si se producen algún error. 
 

 
Figura 21. Mensaje de fallo al comparar ficheros 

Figura 20. Ejemplo de 
datos en fichero 
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Si por el contrario, todas las iteraciones son correctas, se deja plasmado en este mismo 
fichero.  
 
La figura 22 muestra el mensaje que se escribe en el fichero si no se producen ningún error. 
 

 
Figura 22. Mensajes de iteraciones correctas 

 
Para verificar el funcionamiento se han probado patrones con evoluciones conocidas. En la 
figura 23 se observa un ejemplo de simulación llevada a cabo con un patrón que se hace 
estático tras 10 iteraciones. Se puede observar como las señales Fi_G (que corresponden a 
las filas de la matriz) mantienen su valor tras este número de iteraciones. Así mismo, se 
muestra la evolución de este mismo patrón en Matlab (figura 24), de forma que se 
corrobora que esta iteración es correcta, al ser ambos iguales. 
 

 

 
Figura 23. Simulación de patrón que se hace estático en 10 iteraciones en VHDL 

 
 

 
Figura 24. Simulación de patrón que se hace estático en 10 iteraciones en Matlab 
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5. Resultados  
Vivado lleva a cabo diversos análisis del diseño durante el proceso de síntesis e 
implementación, evaluando diferentes aspectos y proporcionando información útil sobre 
rendimiento, utilización de recursos y cumplimiento de restricciones [10]. 
 
En primer lugar, analiza si el diseño es sintetizable (si puede convertirse en una 
implementación lógica). En este análisis se identifican errores de sintaxis o latches. 
También se realiza un análisis de restricciones temporales que identifica violaciones de 
tiempo y rutas críticas en las cuales se produce el mayor retardo y las cuales determinan la 
frecuencia máxima de operación. 
 
Además, Vivado lleva a cabo un análisis de recursos utilizados por el diseño, y, por último, 
un análisis del consumo de potencia. 
 
En este apartado, se van a analizar los resultados obtenidos y las prestaciones. Para ello, se 
analizarán los datos proporcionados por el software una vez sintetizado e implementado el 
proyecto (sin ningún error). También se explicarán una serie de conceptos importantes para 
la interpretación de estos datos. 
Al sintetizar e implementar el diseño en Vivado, se obtienen los siguientes resultados en 
cuanto a la utilización de recursos: 
 
Estos porcentajes proporcionan información sobre cómo se están utilizando los recursos de 
la FPGA, en relación con los recursos totales disponibles. 
 

 
Tabla 2. Recursos utilizados 

 
La tabla 2 refleja la cantidad de recursos utilizados. Se puede observar que el porcentaje 
total de recursos utilizados sobre el total disponible es reducido. A continuación, se 
describen cada uno de los recursos: 
 
• LUT (Look Up Table): se trata de bloques de lógica programable que se utilizan para 

implementar funciones lógicas en el diseño. En el contexto de la lógica combinacional, es 
la tabla de verdad, que define cómo se comporta la lógica combinatoria. Las FPGA 
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implementan la lógica combinatoria con LUT’s y al configurarla, los bits de la LUT se 
cargan con unos o ceros.  
 

• FF (Flip-Flop): son biestables que se utilizan para sincronizar la lógica y guardar estados 
lógicos entre ciclos de reloj. En cada ciclo de reloj, un flip-flop mantiene el valor en su 
salida. 
 

• IO: Entradas y salidas.  
 

• BUFG (Global Clock Buffer): distribuye señales de reloj de alta distribución (high fan-out 
clock signals) a través de un dispositivo PLD. 

 
Como se observa en la figura x, el porcentaje de utilización de recursos es reducido, 
predominando el uso de LUT’s. 
 
A continuación, se van a analizar las prestaciones del diseño, para lo cual se ha realizado un 
análisis temporal del resumen obtenido en Vivado. El resumen de tiempos es una 
herramienta importante para evaluar si el diseño cumple con las restricciones temporales 
establecidas y si se alcanzan los objetivos de rendimiento deseados. Antes de analizarlo, es 
interesante conocer una serie de términos: 
 
• WNS (Worst Negative Slack): se trata del peor valor de incumplimiento de los tiempos 

de establecimiento/recuperación dentro de un dominio de reloj. Este valor puede 
utilizarse para calcular la frecuencia máxima de reloj a la que funciona el circuito 
(ecuación (1)). 
 
 

𝑓𝑐𝑙𝑘, 𝑚𝑎𝑥 (𝑀𝐻𝑧)  =
1

𝑇𝑐𝑙𝑘 (𝑛𝑠)  −  𝑊𝑁𝑆 (𝑛𝑠)  

 
 

 
• WHS (Worst Hold Slack): indica el peor valor de incumplimiento de los tiempos de 

mantenimiento/eliminación dentro de un dominio de reloj. 
 

• WPWS (Worst Pulse Width Slack): medida del peor valor de incumplimiento de los 
requisitos de periodo mínimo, periodo máximo, tiempo de pulso alto y tiempo de pulso 
bajo para cada pin de reloj de la instancia.  

 
 

(1) 
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En el diseño se ha impuesto una restricción temporal en la frecuencia de reloj (señal de 
temporización periódica para restricciones temporales en diseños síncronos) de 100 MHz. 
 
 

 
Figura 25. Resumen de tiempos 

 
 
En la figura 25 se observa que la ruta con peor valor de WNS tiene un valor de 4.153 ns. Esto 
quiere decir que el diseño cumple con las restricciones temporales, ya que este valor es 
positivo y, además, menor que el periodo de reloj del diseño (10 ns). Para que un diseño 
funcione correctamente, las señales deben propagarse dentro de un ciclo de reloj. 
 
En cuanto a la frecuencia máxima, utilizando la fórmula anterior se obtiene un valor de 171 
MHz, con lo que el diseño alcanzará sin problema la frecuencia establecida (100MHz). 
También resulta interesante analizar la potencia que consumirá el diseño. Para ello, se va a 
analizar los datos que proporciona Vivado. 
 

 
Figura 26. Consumo de potencia 

 
En la figura 26, se observa como la potencia dinámica se encuentra en el 12%, que a su vez 
se divide en la consumida por el reloj (21%), la consumida por las señales (27%), la 
consumida por la lógica interna (40%), que es la que abarca mayor porcentaje, y la 
consumida por los puertos de entrada/salida (12%). 
La lógica interna es la que más porcentaje abarca debido a que, como se ha observado 
antes, el mayor porcentaje de utilización era el de las LUT de la FPGA. 
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Al analizar estos datos y simular la implementación probando diferentes patrones, el 
proyecto se ha probado en el banco de pruebas. 
Como se observa en la figura 27, dicho banco se compone de la placa Basys 3 (izquierda), 
conectada al circuito de acondicionamiento (centro), que a su vez está conectado al panel 
de LEDs (derecha). 
 

 
Figura 27. Banco de pruebas 

 
 
Para la realización de esta prueba se ha utilizado un patrón aleatorio y el modo debug para 
observar la evolución de la matriz en cada iteración al presionar el pulsador.  
 
La prueba ha sido satisfactoria ya que la representación se visualiza correctamente en el 
panel.  
 

  



41 

6. Conclusiones y trabajo futuro 
En este apartado, se abordan las conclusiones obtenidas tras elaborar el trabajo fin de grado 
al completo, así como posibles acciones futuras con las cuales seguir abordando el tema de 
la implementación del juego de la vida de Conway. 

6.1. Conclusiones 
Tras la elaboración de este trabajo, cabe destacar que el objetivo propuesto (diseño, 
implementación y verificación del juego de la vida de Conway en FPGA), ha sido alcanzado 
satisfactoriamente.  
 
El juego de la vida se trata de un algoritmo en constante evolución para el cuál se siguen 
descubriendo nuevos usos y variantes hoy en día, por lo que conocer de qué se trata y 
diferentes formas de implementarlo resulta importante. 
Además, mediante la elaboración de este TFG, se corrobora la buena elección que ha 
supuesto realizar la implementación en una FPGA, ya que se lleva a cabo de forma exitosa y 
ofrece flexibilidad y capacidad de procesamiento suficientes para ejecutar eficientemente el 
juego de la vida.  
 
Como se ha comentado varias veces a lo largo del trabajo, existen diferentes versiones del 
juego de la vida de Conway. Una posibilidad de modificación sería crear un marco de ceros 
alrededor de la matriz y considerar que todas las celdas laterales están muertas, en lugar de 
conectar una celda siempre con la siguiente como se ha hecho en este caso. También 
podrían incluirse nuevas reglas o diferentes patrones fácilmente sin más que modificar el 
bloque GameOfLife. Cabría la posibilidad de juntar varios paneles de LEDs para tener una 
matriz más grande y analizar cómo cambia la utilización de recursos en estos supuestos. 

6.2. Líneas futuras 
Aparte de todas las posibles modificaciones que podrían llevarse a cabo, comentadas en el 
apartado anterior, una buena idea sería realizar la implementación en HDL Coder [12]. 
HDL Coder es una herramienta de la empresa MathWorks (empresa desarrolladora de 
Matlab), que permite realizar diseños de alto nivel mediante la generación de código VHDL 
portátil y sintetizable a partir de funciones Matlab o Simulink. Esta generación se lleva a 
cabo mediante síntesis de alto nivel que transforma el diseño de Matlab en VHDL. Utilizar 
esta herramienta sería conveniente ya que como se ha comentado repetidas veces, se ha 
utilizado el modelo de Matlab como modelo de referencia, por lo que opera correctamente 
y ya es un modelo funcional. Podría modificarse para sintetizarlo y visualizarlo en la placa de 
LEDs. 
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Otra idea con la que seguir trabajando en este tema sería implementar el juego de la vida en 
un microcontrolador y observar las limitaciones reales (no solo teóricas) que ofrece en 
comparación con el diseño en FPGA. 
Por otro lado, podría plantearse la utilización de dos relojes, uno más lento para el bloque 
GameOfLife y otro rápido para llevar a cabo la interfaz con los LEDs. 
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Anexo A 

A1. Bloque sreset 
 
library ieee ; 
    use ieee.std_logic_1164.all ; 
    use ieee.numeric_std.all ; 
 
entity SRESET is 
  port ( 
    RST : in  std_logic; -- Reset asincrono y activo en alto 
    CLK : in  std_logic; -- Señal de reloj 
    AXIS_ARESETN : out std_logic -- Reset sincrono y activo en bajo 
    ); 
end SRESET ;  
 
architecture arch of SRESET is 
    signal rst_sinc0, rst_sinc1 : std_logic; 
begin 
 
    process( RST,CLK ) 
    begin 
        if (RST='1') then 
            rst_sinc0<= '0'; 
            rst_sinc1<= '0'; 
        elsif (rising_edge(CLK)) then 
        -- Se sincroniza y se invierte la señal de reset 
            rst_sinc0 <= '1'; 
            rst_sinc1 <= rst_sinc0; 
        end if ; 
    end process; 
     
    AXIS_ARESETN <= rst_sinc1; 
  
end architecture ; 
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A2. Bloque GameOfLife 
 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.NUMERIC_STD.ALL; 
 
entity GameOfLive is 
    Port ( CLK : in STD_LOGIC; 
           RST : in STD_LOGIC; 
           VALID_G : out STD_LOGIC; 
           READY_G : in STD_LOGIC; 
           IN_DEBUG: in STD_LOGIC; 
           IN_INICIO: in STD_LOGIC; 
           LED_INICIO: out STD_LOGIC; 
           LED_DEBUG: out STD_LOGIC; 
           IN_SW1: in STD_LOGIC; 
           IN_SW2: in STD_LOGIC; 
           F0_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F1_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F2_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F3_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F4_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F5_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F6_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F7_G : out STD_LOGIC_VECTOR (7 downto 0)); 
end GameOfLive; 
 
architecture Behavioral of GameOfLive is 
 
type MATRIZ_GOL is array(0 to 7) of std_logic_vector(0 to 7); 
signal GOL_MATRIZ, GOL_MATRIX_sig: MATRIZ_GOL; 
 
constant GOL_INIT_OSCILADOR: MATRIZ_GOL:=("00000000", 
                                          "00000000", 
                                          "00000000", 
                                          "00111000", 
                                          "00000000", 
                                          "00000000", 
                                          "00000000", 
                                          "00000000");  
                                           
constant GOL_INIT_PRUEBA: MATRIZ_GOL:= ("11100001", 
                                        "00000000", 
                                        "01000000", 
                                        "00111000", 
                                        "00000000", 
                                        "10000100", 
                                        "00010000", 
                                        "00000000"); 
                                         
constant GOL_INIT_PRUEBA2: MATRIZ_GOL:= ("11100001", 
                                        "00000000", 
                                        "01010000", 
                                        "00111000", 
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                                        "00000000", 
                                        "10000100", 
                                        "00010000", 
                                        "00000000"); 
                                         
constant GOL_INIT_ESTATICO: MATRIZ_GOL:= ("00000000", 
                                          "00000000", 
                                          "00011000", 
                                          "00011000", 
                                          "00000000", 
                                          "00000000", 
                                          "00000000", 
                                          "00000000"); 
                                         
                                            
signal GOL_INIT: MATRIZ_GOL; 
type ESTADOS is (REPOSO, ESPERA, INICIO, ITERACION, DEBUG, ITERACION_DEBUG, ESPERA_DEBUG); 
signal sig_ESTADO, ESTADO: ESTADOS; 
signal EN_tiempo, EN_iterar, IN_DEBUG_sinc, IN_DEBUG_sig, IN_INICIO_sig, IN_INICIO_sinc : std_logic; 
signal tiempo, sig_tiempo: unsigned(25 downto 0); 
 
                               
-- Funcion que calcula las vecinas adyacentes vivas dada la posicion de una celda y la matriz.                                   
function F_VECINAS_VIVAS(MATRIZ: MATRIZ_GOL; i, j: integer) return unsigned is 
    variable vecinas_vivas: unsigned(3 downto 0);  
    variable vecina_i, vecina_j: unsigned(2 downto 0); 
    variable i_S, i_N, j_E, j_O: unsigned(2 downto 0); 
    begin 
        vecinas_vivas := "0000"; 
        vecina_i := to_unsigned(i,3);     
        vecina_j := to_unsigned(j,3);     
        i_S := vecina_i + 1; -- Sur 
        i_N := vecina_i + 7; -- Norte 
        j_E := vecina_j + 1; -- Este 
        j_O := vecina_j + 7; -- Oeste       
              
        if (MATRIZ(to_integer(i_N))(to_integer(j_O))='1')  then 
         vecinas_vivas := vecinas_vivas + 1;  
        end if; 
        if (MATRIZ(to_integer(i_N))(j)='1')  then 
            vecinas_vivas := vecinas_vivas + 1;  
        end if; 
        if (MATRIZ(to_integer(i_N))(to_integer(j_E))='1')  then 
            vecinas_vivas := vecinas_vivas + 1;  
        end if; 
        if (MATRIZ(i)(to_integer(j_O))='1')  then 
            vecinas_vivas := vecinas_vivas + 1;  
        end if; 
        if (MATRIZ(i)(to_integer(j_E))='1')  then 
            vecinas_vivas := vecinas_vivas + 1;  
        end if; 
        if (MATRIZ(to_integer(i_S))(to_integer(j_O))='1')  then 
            vecinas_vivas := vecinas_vivas + 1;  
        end if; 
        if (MATRIZ(to_integer(i_S))(j)='1')  then 
            vecinas_vivas := vecinas_vivas + 1;  
        end if; 
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        if (MATRIZ(to_integer(i_S))(to_integer(j_E))='1')  then 
            vecinas_vivas := vecinas_vivas + 1;  
        end if; 
         
    return vecinas_vivas; 
end function; 
 
 
begin 
 
-- Proceso de seleccion de la matriz inicial 
process(IN_SW1, IN_SW2) 
 
begin 
    if(IN_SW1 = '0' and IN_SW2 = '1') then 
        GOL_INIT <= GOL_INIT_OSCILADOR; 
    elsif (IN_SW1 = '1' and IN_SW2 = '0') then 
        GOL_INIT <= GOL_INIT_PRUEBA; 
    elsif (IN_SW1 = '0' and IN_SW2 = '0') then 
        GOL_INIT <= GOL_INIT_ESTATICO; 
    elsif(IN_SW1 = '1' and IN_SW2 = '1') then  
        GOL_INIT <= GOL_INIT_PRUEBA2; 
    end if; 
end process; 
 
-- Proceso de F/F 
process(CLK, RST) 
 
begin 
 
    if (CLK'event and CLK='1') then 
        if (RST='0') then 
            GOL_MATRIZ <= GOL_INIT; 
            ESTADO <= REPOSO; 
            tiempo <= (others => '0'); 
        else 
            tiempo <= sig_tiempo; 
            IN_DEBUG_sinc <= IN_DEBUG; 
            IN_DEBUG_sig <= IN_DEBUG_sinc; 
            IN_INICIO_sinc <= IN_INICIO; 
            IN_INICIO_sig <= IN_INICIO_sinc; 
            ESTADO <= sig_ESTADO; 
            if(EN_iterar = '1') then 
                GOL_MATRIZ <= GOL_MATRIX_sig; 
            end if; 
        end if; 
    end if; 
end process; 
 
-- Temporizador 
sig_tiempo <= tiempo + 1 when (EN_tiempo = '1') else 
              (others => '0'); 
 
-- Proceso de la maquina de estados 
process(tiempo,IN_INICIO, IN_INICIO_sig, IN_DEBUG, IN_DEBUG_sig ,READY_G, ESTADO, sig_ESTADO, 
GOL_MATRIX_sig, GOL_MATRIZ) 
 



49 

variable suma_vecinas_vivas: unsigned(3 downto 0); 
 
begin 
    sig_ESTADO <= ESTADO; 
    EN_iterar <= '0'; 
    GOL_MATRIX_sig <= GOL_MATRIZ; 
    EN_tiempo <= '0'; 
    LED_INICIO <= '0'; 
    LED_DEBUG <= '0'; 
    VALID_G <= '1'; 
 
    case ESTADO is 
     
        when REPOSO => 
            VALID_G <= '0'; 
            LED_INICIO <= '1'; 
            LED_DEBUG <= '1'; 
            if(IN_INICIO = '1' and IN_INICIO_sig = '0') then 
                sig_ESTADO <= INICIO; 
            elsif(IN_DEBUG = '1' and IN_DEBUG_sig = '0') then 
                sig_ESTADO <= ESPERA_DEBUG; 
            end if; 
             
        
        when INICIO => 
            LED_INICIO <= '1'; 
            if(READY_G = '1') then 
                sig_ESTADO <= ESPERA;  
            end if; 
             
             
         when ESPERA => 
            LED_INICIO <= '1'; 
            if(tiempo = 48000000) then  
                sig_ESTADO <= ITERACION;  
            end if; 
            EN_tiempo <= '1'; 
            VALID_G <= '0'; 
 
 
        when ITERACION => 
            LED_INICIO <= '1';  
            for fila_i in 0 to 7 loop 
                for columna_j in 0 to 7 loop 
                    suma_vecinas_vivas := F_VECINAS_VIVAS(GOL_MATRIZ ,fila_i , columna_j); 
                    if (suma_vecinas_vivas=3) then 
                        GOL_MATRIX_sig(fila_i)(columna_j) <= '1';          
                    elsif (GOL_MATRIZ(fila_i)(columna_j)='1') and (suma_vecinas_vivas=2) then 
                        GOL_MATRIX_sig(fila_i)(columna_j) <= '1';        
                    else 
                        GOL_MATRIX_sig(fila_i)(columna_j) <= '0';       
                    end if; 
                end loop; 
            end loop; 
 
            VALID_G <= '0'; 
            EN_iterar <= '1';   
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            sig_ESTADO <= INICIO; 
 
             
        when DEBUG => 
            LED_DEBUG <= '1'; 
            sig_ESTADO <= ITERACION_DEBUG; 
             
             
        when ESPERA_DEBUG => 
            VALID_G <= '0'; 
            LED_DEBUG <= '1'; 
            if(IN_DEBUG = '1' and IN_DEBUG_sig = '0') then 
                sig_ESTADO <= DEBUG; 
            end if; 
             
             
        when ITERACION_DEBUG => 
            LED_DEBUG <= '1'; 
            for fila_i in 0 to 7 loop 
                for columna_j in 0 to 7 loop 
                    suma_vecinas_vivas := F_VECINAS_VIVAS(GOL_MATRIZ ,fila_i , columna_j); 
                    if (suma_vecinas_vivas=3) then 
                        GOL_MATRIX_sig(fila_i)(columna_j) <= '1';          
                    elsif (GOL_MATRIZ(fila_i)(columna_j)='1') and (suma_vecinas_vivas=2) then 
                        GOL_MATRIX_sig(fila_i)(columna_j) <= '1';        
                    else 
                        GOL_MATRIX_sig(fila_i)(columna_j) <= '0';       
                    end if; 
                end loop; 
            end loop; 
            VALID_G <= '0'; 
            EN_iterar <= '1';  
            sig_ESTADO <= ESPERA_DEBUG;  
         
    end case; 
     
end process; 
 
-- Actualizacion de los valores de las salidas 
F0_G <= GOL_MATRIZ(0);  
F1_G <= GOL_MATRIZ(1);  
F2_G <= GOL_MATRIZ(2);  
F3_G <= GOL_MATRIZ(3);  
F4_G <= GOL_MATRIZ(4);  
F5_G <= GOL_MATRIZ(5); 
F6_G <= GOL_MATRIZ(6); 
F7_G <= GOL_MATRIZ(7); 
 
 
end Behavioral; 
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A3. Bloque Enviar_dato 
 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.NUMERIC_STD.ALL; 
 
entity Enviar_Dato is 
    Port ( CLK : in STD_LOGIC; 
           RST : in STD_LOGIC; 
           VALID_E : in STD_LOGIC; 
           READY_E : out STD_LOGIC; 
           S_AXIS_TVALID : out std_logic; 
           BOUT : out STD_LOGIC_VECTOR(7 downto 0); 
           F0_E : in STD_LOGIC_VECTOR (7 downto 0); 
           F1_E : in STD_LOGIC_VECTOR (7 downto 0); 
           F2_E : in STD_LOGIC_VECTOR (7 downto 0); 
           F3_E : in STD_LOGIC_VECTOR (7 downto 0); 
           F4_E : in STD_LOGIC_VECTOR (7 downto 0); 
           F5_E : in STD_LOGIC_VECTOR (7 downto 0); 
           F6_E : in STD_LOGIC_VECTOR (7 downto 0); 
           F7_E : in STD_LOGIC_VECTOR (7 downto 0)); 
end Enviar_Dato; 
 
architecture Behavioral of Enviar_Dato is 
 
-- Funcion que invierte el orden de los elementos de un vector  
function DAR_VUELTA_VECTOR(VECTOR: std_logic_vector; dimension: integer) return std_logic_vector is 
    variable vector_sol: std_logic_vector(7 downto 0); 
    begin 
     
        for i in dimension-1 downto 0 loop 
            vector_sol(i) := VECTOR(-i + dimension-1); 
        end loop; 
         
    return vector_sol; 
end function; 
 
 
type ESTADOS is (INICIO,CREA_BYTE, ENVIA_BYTE); 
signal sig_ESTADO, ESTADO: ESTADOS; 
signal datos, sig_datos: std_logic_vector(63 downto 0); 
signal byte : std_logic_vector(7 downto 0); 
signal cont_iteraciones, cont_iteraciones_sig, EN_desp, EN_cnt_bit, EN_cnt_byte, INIT_cnt_bit, INIT_cnt_byte, 
EN_tiempo, INIT_tiempo, EN_leer: std_logic; 
signal cnt_bit, sig_cnt_bit: unsigned(10 downto 0); 
signal cnt_byte, sig_cnt_byte: unsigned(1 downto 0); 
signal tiempo, sig_tiempo: unsigned(9 downto 0); 
 
begin 
 
-- Proceso de F/F 
process(CLK, RST) 
 
begin 
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    if (CLK'event and CLK='1') then 
        if (RST='0') then 
            datos <= (others => '0'); 
            ESTADO <= INICIO; 
            cnt_bit <= (others => '0'); 
            cnt_byte <= (others => '0'); 
            tiempo <= (others => '0'); 
            cont_iteraciones <= '0'; 
        else 
            datos <= sig_datos; 
            cnt_bit <= sig_cnt_bit; 
            cnt_byte <= sig_cnt_byte; 
            tiempo <= sig_tiempo; 
            ESTADO <= sig_ESTADO; 
            cont_iteraciones <= cont_iteraciones_sig; 
        end if; 
    end if; 
end process; 
 
-- Proceso de la maquina de estados 
process(cont_iteraciones, VALID_E,datos,cnt_bit,cnt_byte,tiempo, ESTADO, sig_ESTADO, byte) 
begin 
    EN_leer <= '0'; 
    EN_desp <= '0'; 
    EN_tiempo <= '0'; 
    INIT_tiempo <= '0'; 
    EN_cnt_bit <= '0'; 
    INIT_cnt_bit <= '0'; 
    EN_cnt_byte <= '0'; 
    INIT_cnt_byte <= '0'; 
    sig_ESTADO <= ESTADO; 
    sig_tiempo <= tiempo + 1; 
    EN_desp <= '0'; 
    S_AXIS_TVALID <= '0'; 
    BOUT <= byte; 
    cont_iteraciones_sig <= cont_iteraciones; 
     
   if(datos(63) = '1') then 
       byte <= "00001111"; 
   else 
       byte <= (others => '0'); 
   end if; 
     
    case ESTADO is 
         
        when INICIO => 
            READY_E <= '1'; 
             INIT_cnt_bit <= '1'; -- Inicializa cnt_bit 
            cont_iteraciones_sig <= '0'; 
            if(VALID_E = '1') then 
                EN_leer <= '1'; -- Se leen nuevos datos 
                sig_ESTADO <= CREA_BYTE; 
                sig_tiempo <= (others => '0'); 
            end if; 
       
        when CREA_BYTE =>  
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              sig_tiempo <= (others => '0'); 
             
            READY_E <= '0'; 
 
            if(cnt_bit = 64) then 
                sig_ESTADO <= INICIO; 
                INIT_cnt_bit <= '1'; -- Inicializa cnt_bit 
            else 
                if(cont_iteraciones = '1') then 
                   EN_desp <= '1'; -- Enalbe del registro de desplazamiento 
                end if; 
                EN_cnt_bit <= '1'; -- Suma 1 a cnt_bit 
                sig_ESTADO <= ENVIA_BYTE; 
            end if; 
 
        when ENVIA_BYTE => 
            S_AXIS_TVALID <= '1'; 
            READY_E <= '0'; 
            if(cnt_byte < 2 and tiempo = 999) then  
                sig_ESTADO <= ENVIA_BYTE; 
                EN_cnt_byte <= '1'; -- Suma 1 a cnt_byte 
                sig_tiempo <= (others => '0'); 
                S_AXIS_TVALID <= '1'; 
            elsif(cnt_byte = 2 and tiempo = 998 and cnt_bit < 64) then 
                sig_ESTADO <= CREA_BYTE; 
                INIT_cnt_byte <= '1'; -- Inicializa cnt_byte 
                sig_tiempo <= (others => '0'); 
                S_AXIS_TVALID <= '1'; 
            elsif(cnt_byte = 2 and tiempo = 995 and cnt_bit = 64) then 
                sig_tiempo <= (others => '0'); 
                sig_ESTADO <= INICIO; 
                INIT_cnt_byte <= '1'; -- Inicializa cnt_byte 
                              
            end if; 
            cont_iteraciones_sig <= '1'; 
     end case; 
 
end process;   
 
--Contador bit 
sig_cnt_bit <= cnt_bit + 1 when (EN_cnt_bit = '1') else 
               (others => '0') when (INIT_cnt_bit = '1') else 
               cnt_bit;  
 
--Contador byte 
sig_cnt_byte <= cnt_byte + 1 when (EN_cnt_byte = '1') else 
               (others => '0') when (INIT_cnt_byte = '1') else 
               cnt_byte; 
 
-- Almacenamiento y desplazamiento de datos               
sig_datos <= F0_E & DAR_VUELTA_VECTOR(F1_E,8) & F2_E & DAR_VUELTA_VECTOR(F3_E,8) & F4_E & 
DAR_VUELTA_VECTOR(F5_E,8) & F6_E & DAR_VUELTA_VECTOR(F7_E,8) when (EN_leer = '1') else 
             datos(62 downto 0) & '0' when (EN_desp = '1') else 
             datos; 
 
         
end Behavioral; 
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A4. Bloque ws2812 
library ieee ; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.NUMERIC_STD.ALL; 
 
 
entity ws2812 is 
  port ( 
    AXIS_ARESETN : in std_logic; -- Reset asinc/sinc activo en bajo 
    AXIS_ACLK : in std_logic; -- Reloj 100MHz 
    S_AXIS_TDATA : in std_logic_vector(7 downto 0) ;  
    S_AXIS_TVALID : in std_logic; 
    S_AXIS_TREADY : out std_logic; 
    TO_WS2812 : out std_logic -- Control del ws2812 
     ) ; 
end ws2812 ;  
 
architecture Behavioral of ws2812 is 
    type ESTADOS is (REPOSO, ENVIAR1, ENVIAR0); 
    signal sig_ESTADO, ESTADO: ESTADOS; 
    --Contador de pulsos de reloj: 
    signal sig_tiempo, tiempo: unsigned(6 downto 0);  
    --Contador de bits enviados: 
    signal sig_contador, contador: unsigned(2 downto 0);  
    signal dato, datoactual, sig_datoactual: std_logic_vector(7 downto 0); 
    signal EN_OUT, EN_reposo : std_logic; 
     
 
begin 
 
    -- Proceso de F/F 
    process(AXIS_ACLK, AXIS_ARESETN) 
    begin 
        if(AXIS_ARESETN = '0') then 
            ESTADO <= REPOSO; 
            tiempo <= (others => '0'); 
            contador <= (others => '0'); 
        elsif rising_edge(AXIS_ACLK) then 
            ESTADO <= sig_ESTADO; 
            tiempo <= sig_tiempo; 
            contador <= sig_contador; 
            datoactual <= sig_datoactual; 
             
        end if; 
    end process; 
     
    --Almacenamiento del dato 
    dato <= S_AXIS_TDATA; 
     
    --Maquina de estados 
    process(EN_reposo,ESTADO, tiempo, S_AXIS_TVALID, S_AXIS_TDATA, contador, datoactual, dato) 
    begin 
        
       sig_contador <= contador; 
       sig_datoactual <= datoactual; 
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       EN_reposo <= '0'; 
       sig_ESTADO <= estado; 
       S_AXIS_TREADY <= '0'; 
                
        case ESTADO is  
            when REPOSO => 
               EN_OUT <= '0'; 
               sig_contador <= (others => '0'); 
               sig_tiempo <= (others => '0'); 
               EN_reposo <= '1'; 
               S_AXIS_TREADY <= '0'; 
               if(S_AXIS_TVALID = '1') then 
                   sig_ESTADO <= ENVIAR1; 
                   sig_datoactual <= S_AXIS_TDATA; 
               end if; 
                     
            when ENVIAR1 =>           
                if(EN_reposo = '1') then 
                   EN_OUT <= '0'; 
                   sig_contador <= (others => '0'); 
                   sig_tiempo <= (others => '0'); 
                end if; 
                sig_tiempo <= tiempo +1; 
                EN_OUT <= '1'; 
                if ((datoactual(7)= '0' and tiempo = 24) or (datoactual(7)= '1' and tiempo = 89)) then 
                    sig_ESTADO <= ENVIAR0;  
                else 
                    sig_ESTADO <= ENVIAR1; 
                end if; 
 
            when ENVIAR0 => 
                sig_tiempo <= tiempo + 1; 
                EN_OUT <= '0'; 
                if (tiempo = 124 and contador < 7) then 
                    sig_contador <= contador + 1; 
                    sig_ESTADO <= ENVIAR1; 
                    sig_datoactual <= datoactual(6 downto 0) & '0'; 
                    sig_tiempo <= (others=> '0'); 
                elsif ((tiempo = 123) and (contador = 7)) then 
                    sig_contador <= (others=> '0'); 
                    sig_datoactual <= dato; 
                    sig_ESTADO <= REPOSO; 
                    sig_tiempo <= (others=> '0'); 
                    EN_reposo <= '1'; 
                else 
                    sig_ESTADO <= ENVIAR0; 
                end if; 
                               
        end case; 
      end process;    
     
    -- Salida 
    TO_WS2812 <= '1' when (EN_OUT = '1') else '0'; 
                                                                    
end Behavioral; 
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A5. Bloque GOL_Panel_TOP 
 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
 
 
entity GOL_Panel_TOP is 
    Port (RST : in std_logic; 
          CLK : in std_logic; 
          IN_DEBUG : in std_logic; 
          IN_INICIO: in std_logic; 
          LED_INICIO: out STD_LOGIC; 
          LED_DEBUG: out STD_LOGIC; 
          IN_SW1: in STD_LOGIC; 
          IN_SW2: in STD_LOGIC; 
          TO_WS2812 : out std_logic);  
end GOL_Panel_TOP; 
 
architecture Behavioral of GOL_Panel_TOP is 
    component sreset is 
        Port ( RST : in STD_LOGIC; 
               CLK : in STD_LOGIC; 
               AXIS_ARESETN: out STD_LOGIC); 
    end component; 
                
    component GameOfLive is 
        Port ( CLK : in STD_LOGIC; 
               RST : in STD_LOGIC; 
               VALID_G : out STD_LOGIC; 
               READY_G : in STD_LOGIC; 
               IN_DEBUG: in STD_LOGIC; 
               IN_INICIO: in STD_LOGIC; 
               LED_INICIO: out STD_LOGIC; 
               LED_DEBUG: out STD_LOGIC;      
               IN_SW1: in STD_LOGIC; 
               IN_SW2: in STD_LOGIC;       
               F0_G : out STD_LOGIC_VECTOR (7 downto 0); 
               F1_G : out STD_LOGIC_VECTOR (7 downto 0); 
               F2_G : out STD_LOGIC_VECTOR (7 downto 0); 
               F3_G : out STD_LOGIC_VECTOR (7 downto 0); 
               F4_G : out STD_LOGIC_VECTOR (7 downto 0); 
               F5_G : out STD_LOGIC_VECTOR (7 downto 0); 
               F6_G : out STD_LOGIC_VECTOR (7 downto 0); 
               F7_G : out STD_LOGIC_VECTOR (7 downto 0)); 
    end component; 
     
    component Enviar_dato is 
        Port ( CLK : in STD_LOGIC; 
               RST : in STD_LOGIC; 
               VALID_E : in STD_LOGIC; 
               READY_E : out STD_LOGIC; 
               S_AXIS_TVALID : out std_logic; 
               BOUT : out STD_LOGIC_VECTOR(7 downto 0); 
               F0_E : in STD_LOGIC_VECTOR (7 downto 0); 
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               F1_E : in STD_LOGIC_VECTOR (7 downto 0); 
               F2_E : in STD_LOGIC_VECTOR (7 downto 0); 
               F3_E : in STD_LOGIC_VECTOR (7 downto 0); 
               F4_E : in STD_LOGIC_VECTOR (7 downto 0); 
               F5_E : in STD_LOGIC_VECTOR (7 downto 0); 
               F6_E : in STD_LOGIC_VECTOR (7 downto 0); 
               F7_E : in STD_LOGIC_VECTOR (7 downto 0)); 
    end component; 
     
    component ws2812 is 
        Port ( 
        AXIS_ARESETN : in std_logic; 
        AXIS_ACLK : in std_logic; 
        S_AXIS_TDATA : in std_logic_vector(7 downto 0) ;  
        S_AXIS_TVALID : in std_logic; 
        S_AXIS_TREADY : out std_logic; 
        TO_WS2812 : out std_logic) ; 
    end component ;  
     
    signal F0_GE, F1_GE, F2_GE, F3_GE, F4_GE, F5_GE, F6_GE, F7_GE, BOUT_GE: std_logic_vector(7 downto 0); 
    signal VALID_GE, READY_GE, S_AXIS_TVALID_GE, S_AXIS_TREADY_GE, AXIS_ARESETN_GE: std_logic; 
 
begin 
 
     U_sreset: sreset 
        Port map( RST => RST, 
                  CLK => CLK, 
                  AXIS_ARESETN => AXIS_ARESETN_GE); 
     
    U_GameOfLive: GameOfLive 
        Port map( CLK => CLK, 
                  RST => AXIS_ARESETN_GE, 
                  VALID_G => VALID_GE, 
                  READY_G => READY_GE, 
                  IN_DEBUG => IN_DEBUG, 
                  IN_INICIO => IN_INICIO, 
                  LED_INICIO => LED_INICIO, 
                  LED_DEBUG => LED_DEBUG, 
                  IN_SW1 => IN_SW1, 
                  IN_SW2 => IN_SW2, 
                  F0_G => F0_GE, 
                  F1_G => F1_GE, 
                  F2_G => F2_GE, 
                  F3_G => F3_GE, 
                  F4_G => F4_GE, 
                  F5_G => F5_GE, 
                  F6_G => F6_GE, 
                  F7_G => F7_GE); 
 
 
    U_Enviar_dato: Enviar_dato 
        Port map(CLK => CLK, 
                 RST => AXIS_ARESETN_GE, 
                 VALID_E => VALID_GE, 
                 READY_E => READY_GE, 
                 S_AXIS_TVALID => S_AXIS_TVALID_GE, 
                 BOUT => BOUT_GE, 



58 

                 F0_E => F0_GE, 
                 F1_E => F1_GE, 
                 F2_E => F2_GE, 
                 F3_E => F3_GE, 
                 F4_E => F4_GE, 
                 F5_E => F5_GE, 
                 F6_E => F6_GE, 
                 F7_E => F7_GE); 
                  
         U_ws2812 : ws2812 
            Port map( AXIS_ARESETN => AXIS_ARESETN_GE, 
                     AXIS_ACLK => CLK, 
                     S_AXIS_TDATA => BOUT_GE, 
                     S_AXIS_TVALID => S_AXIS_TVALID_GE, 
                     S_AXIS_TREADY => S_AXIS_TREADY_GE, 
                     TO_WS2812 => TO_WS2812); 
 
end Behavioral; 
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A6. Test Bench 
 
 
library ieee ; 
use ieee.std_logic_1164.all ; 
use ieee.numeric_std.all ; 
library std; 
--Librerias para leer y escribir ficheros 
use std.textio.all; 
use IEEE.STD_LOGIC_TEXTIO.ALL; 
 
entity GOL_Panel_tb is 
end GOL_Panel_tb; 
 
architecture Behavioral of GOL_Panel_tb is 
 
component sreset is 
    Port ( RST : in STD_LOGIC; 
           CLK : in STD_LOGIC; 
           AXIS_ARESETN: out STD_LOGIC); 
end component; 
 
component GameOfLive is 
    Port ( CLK : in STD_LOGIC; 
           RST : in STD_LOGIC; 
           VALID_G : out STD_LOGIC; 
           READY_G : in STD_LOGIC; 
           IN_DEBUG: in STD_LOGIC; 
           IN_INICIO: in STD_LOGIC; 
           LED_INICIO: out STD_LOGIC; 
           LED_DEBUG: out STD_LOGIC; 
           IN_SW1: in STD_LOGIC; 
           IN_SW2: in STD_LOGIC; 
           F0_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F1_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F2_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F3_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F4_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F5_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F6_G : out STD_LOGIC_VECTOR (7 downto 0); 
           F7_G : out STD_LOGIC_VECTOR (7 downto 0)); 
end component; 
 
component Enviar_Dato is 
    Port ( CLK : in STD_LOGIC; 
           RST : in STD_LOGIC; 
           VALID_E : in STD_LOGIC; 
           READY_E : out STD_LOGIC; 
           S_AXIS_TVALID : out std_logic; 
           BOUT : out STD_LOGIC_VECTOR(7 downto 0); 
           F0_E : in STD_LOGIC_VECTOR (7 downto 0); 
           F1_E : in STD_LOGIC_VECTOR (7 downto 0); 
           F2_E : in STD_LOGIC_VECTOR (7 downto 0); 
           F3_E : in STD_LOGIC_VECTOR (7 downto 0); 
           F4_E : in STD_LOGIC_VECTOR (7 downto 0); 
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           F5_E : in STD_LOGIC_VECTOR (7 downto 0); 
           F6_E : in STD_LOGIC_VECTOR (7 downto 0); 
           F7_E : in STD_LOGIC_VECTOR (7 downto 0)); 
end component; 
 
component ws2812 is 
    port ( AXIS_ARESETN : in std_logic;  
        AXIS_ACLK : in std_logic;  
        S_AXIS_TDATA : in std_logic_vector(7 downto 0) ;  
        S_AXIS_TVALID : in std_logic; 
        S_AXIS_TREADY: out std_logic; 
        TO_WS2812 : out std_logic); 
end component ;  
 
 
signal AXIS_ARESETN_tb, IN_SW1_tb, IN_SW2_tb, LED_INICIO_tb, LED_DEBUG_tb, IN_INICIO_tb, RST_tb, 
CLK_tb, TO_WS2812_tb, VALID_tb, READY_tb, S_AXIS_TREADY_tb, S_AXIS_TVALID_tb, IN_DEBUG_tb : 
std_logic; 
signal BOUT_tb, F0_tb, F1_tb, F2_tb, F3_tb, F4_tb, F5_tb, F6_tb, F7_tb : std_logic_vector(7 downto 0); 
constant TCLK: time:= 10ns; 
 
 
constant bit_time : time := 1 us; 
 
-- Calculo del periodo y ton de la señal TO_WS2812 
signal tiempo_up : time := 0 ns; 
signal tiempo_dwn : time := 0 ns; 
signal periodo : time := 0 ns; 
signal ton : time := 0 ns; 
signal toff : time := 0 ns; 
 
 
signal bit_ws : std_logic; 
 
signal numIteraciones_des : unsigned(7 downto 0); 
 
 
begin 
     
    -- Numero de iteraciones deseadas 
    numIteraciones_des <= "00000011"; 
     
    --Proceso que escribe y lee de ficheros para comprobar el funcionamiento 
    Escribir_iteraciones_comprobar: process  
 
    file datos, datos_VHDL, datos_MATLAB, estado: text; 
    variable linea, linea_VHDL, linea_MATLAB, linea_fallo: line; 
    variable status, status1, status2, status3: file_open_status; 
    variable numIteraciones: unsigned(7 downto 0); 
    variable dato_VHDL, dato_MATLAB: std_logic_vector(7 downto 0); 
    variable fallo: std_logic; 
    variable charm, charv: character; 
     
    variable contador_lineas, contador_iteraciones: unsigned(7 downto 0); 
     
    begin 
        numIteraciones := (others => '0'); 
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        file_open(status, datos, "Matriz_VHDL.txt", WRITE_MODE); 
            if(status = open_ok) then 
                wait for 30 ns; 
                loop 
                    -- Escribe cada carater con un espacio en medio 
                    numIteraciones := numIteraciones + 1; 
                    for i in 7 downto 0 loop 
                        write(linea, F0_tb(i)); 
                        write(linea, string'(" "));  
                    end loop; 
                    writeline(datos, linea); 
                     
                    for i in 7 downto 0 loop 
                        write(linea, F1_tb(i)); 
                        write(linea, string'(" ")); 
                    end loop; 
                    writeline(datos, linea); 
                     
                    for i in 7 downto 0 loop 
                        write(linea, F2_tb(i)); 
                        write(linea, string'(" "));   
                    end loop; 
                    writeline(datos, linea); 
                     
                    for i in 7 downto 0 loop 
                        write(linea, F3_tb(i)); 
                        write(linea, string'(" ")); 
                    end loop; 
                    writeline(datos, linea); 
                     
                    for i in 7 downto 0 loop 
                        write(linea, F4_tb(i)); 
                        write(linea, string'(" ")); 
                    end loop; 
                    writeline(datos, linea); 
                     
                    for i in 7 downto 0 loop 
                        write(linea, F5_tb(i)); 
                        write(linea, string'(" "));  
                    end loop; 
                    writeline(datos, linea); 
                     
                    for i in 7 downto 0 loop 
                        write(linea, F6_tb(i)); 
                        write(linea, string'(" ")); 
                    end loop; 
                    writeline(datos, linea); 
                     
                    for i in 7 downto 0 loop 
                        write(linea, F7_tb(i)); 
                        write(linea, string'(" ")); 
                    end loop;     
                    writeline(datos, linea);                                                                                                                                         
                     
                    exit when numIteraciones = numIteraciones_des + 1; 
                    wait for 2.5 ms; 
                end loop; 
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                file_close(datos); 
            end if; 
             
            file_open(status1, datos_VHDL, "Matriz_VHDL.txt", READ_MODE); 
            file_open(status2, datos_MATLAB, "Matriz_MATLAB.txt", READ_MODE); 
            file_open(status1, estado, "Estado.txt", WRITE_MODE); 
            contador_iteraciones := (others => '0'); 
            contador_lineas := (others => '0'); 
            fallo:= '0'; 
            if(status1 = open_ok and status2 = open_ok) then 
                while (not ENDFILE(datos_VHDL)) or (not ENDFILE(datos_MATLAB)) loop 
                    readline(datos_VHDL, linea_VHDL); 
                    readline(datos_MATLAB, linea_MATLAB); 
                     
                    if (contador_lineas = 8) then 
                        contador_lineas := (others => '0'); 
                        contador_iteraciones := contador_iteraciones + 1; 
                    end if; 
                    -- Lee y compara caracter a caracter de ambos ficheros 
                    for i in 14 downto 0 loop 
                        read(linea_VHDL, charv); 
                        read(linea_MATLAB, charm); 
                        if (charm /= ' ' and charv /= ' ') then 
                            if(charm = '1' and charv = '1') then 
                                dato_MATLAB(i/2) := '1'; 
                                dato_VHDL(i/2) := '1'; 
                            elsif(charm = '0' and charv = '0') then 
                                dato_MATLAB(i/2) := '0'; 
                                dato_VHDL(i/2) := '0'; 
                            -- Si se comete algun fallo 
                            else 
                                fallo:= '1'; 
                                if(status1 = open_ok) then 
                                    write(linea_fallo, string'("Se ha producido un fallo en la iteracion  ")); 
                                    write(linea_fallo, to_integer(contador_iteraciones)); 
                                    write(linea_fallo, string'(", linea ")); 
                                    write(linea_fallo, to_integer(contador_lineas +1));                                     
                                    write(linea_fallo, string'(" /// ")); 
                                end if; 
                                 
                            end if; 
                        end if; 
                    end loop; 
                    contador_lineas := contador_lineas + 1; 
                 end loop; 
                if(fallo /= '1') then 
                    write(linea_fallo, string'("Todas las iteraciones son correctas")); 
                end if; 
                writeline(estado, linea_fallo);  
                file_close(datos_VHDL); 
                file_close(datos_MATLAB); 
                file_close(estado); 
            end if; 
        wait; 
    end process; 
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    RST_tb <= '1', '0' after TCLK; 
     
    -- Interruptores para una configuracion de oscilador 
    IN_SW1_tb <= '1';  
    IN_SW2_tb <= '1'; 
     
    --Inicio en modo normal 
    IN_DEBUG_tb <= '0'; 
      
     --Proceso de pulsador de modo inicio normal  
     process begin 
           IN_INICIO_tb <= '0'; 
           wait for 100ns; 
           IN_INICIO_tb <= '1'; 
           wait for 1us; 
           IN_INICIO_tb <= '0'; 
           wait;         
       end process; 
 
    -- Proceso de reloj 
    process 
    begin 
        CLK_tb <= '0', '1' after TCLK/2; 
        wait for TCLK; 
    end process; 
     
    --Proceso de calculo de periodo y tiempos de on y off con la funcion now 
    process 
    begin 
    wait until (rising_edge(TO_WS2812_tb)); 
    periodo <= now-tiempo_up; 
    toff <= now -tiempo_dwn; 
    ton <= tiempo_dwn-tiempo_up; 
    tiempo_up<=now;  
    wait for 1 ns; 
    -- Reconstrucion de bit 
    if (ton /= 0 ns) then 
        if (periodo /= 1250 ns) then 
          bit_ws <= 'X', '-' after 50 us; 
        elsif (ton = 900 ns) then 
          bit_ws <= '1', '-' after 50 us; 
         elsif (ton = 250 ns) then 
          bit_ws <= '0', '-' after 50 us; 
        else 
          bit_ws <= 'X', '-' after 50 us; 
        end if; 
        if (toff > 10 us) then 
          bit_ws <= '-'; 
        end if; 
    end if; 
    wait until falling_edge(TO_WS2812_tb); 
    tiempo_dwn <= now; 
    end process; 
     
         U_sreset: sreset 
            Port map( RST => RST_tb, 
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                      CLK => CLK_tb, 
                      AXIS_ARESETN => AXIS_ARESETN_tb); 
     
        U_GameOfLive: GameOfLive 
        Port map(CLK => CLK_tb, 
                RST => AXIS_ARESETN_tb, 
                VALID_G => VALID_tb, 
                READY_G => READY_tb, 
                IN_DEBUG => IN_DEBUG_tb, 
                IN_INICIO => IN_INICIO_tb, 
                LED_INICIO => LED_INICIO_tb, 
                LED_DEBUG => LED_DEBUG_tb, 
                IN_SW1 => IN_SW1_tb, 
                IN_SW2 => IN_SW2_tb, 
                F0_G => F0_tb, 
                F1_G => F1_tb, 
                F2_G => F2_tb, 
                F3_G => F3_tb, 
                F4_G => F4_tb, 
                F5_G => F5_tb, 
                F6_G => F6_tb, 
                F7_G => F7_tb); 
                 
    U_Enviar_dato: Enviar_dato 
        Port map(CLK => CLK_tb, 
                RST => AXIS_ARESETN_tb, 
                VALID_E => VALID_tb, 
                READY_E => READY_tb, 
                S_AXIS_TVALID => S_AXIS_TVALID_tb, 
                BOUT => BOUT_tb, 
                F0_E => F0_tb, 
                F1_E => F1_tb, 
                F2_E => F2_tb, 
                F3_E => F3_tb, 
                F4_E => F4_tb, 
                F5_E => F5_tb, 
                F6_E => F6_tb, 
                F7_E => F7_tb); 
    U_ws2812: ws2812 
        Port map(AXIS_ARESETN => AXIS_ARESETN_tb,  
            AXIS_ACLK => CLK_tb,  
            S_AXIS_TDATA => BOUT_tb,  
            S_AXIS_TVALID => S_AXIS_TVALID_tb,  
            S_AXIS_TREADY => S_AXIS_TREADY_tb, 
            TO_WS2812 => TO_WS2812_tb); 
 
 
end Behavioral; 
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A7. Código de Matlab 
 
close all; 
clear; 
clc; 
 
% Matriz inicial para seleccionar 
 
oscilador   = [0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0;  
               0 0 0 1 1 1 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0;  
               0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0];  
            
bloque   = [0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 1 1 0 0 0 0;  
               0 0 0 0 1 1 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0;  
               0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0; 
               0 0 0 0 0 0 0 0 0 0]; 
            
            
prueba = [0 0 0 0 0 0 0 0 0 0; 
          1 1 1 1 0 0 0 0 1 1; 
          0 0 0 0 0 0 0 0 0 0; 
          0 0 1 0 0 0 0 0 0 0;  
          0 0 0 1 1 1 0 0 0 0; 
          0 0 0 0 0 0 0 0 0 0; 
          0 1 0 0 0 0 1 0 0 1;  
          0 0 0 0 1 0 0 0 0 0; 
          0 0 0 0 0 0 0 0 0 0; 
          1 1 1 1 0 0 0 0 1 1];  
       
  prueba2 = [0 0 0 0 0 0 0 0 0 0; 
          1 1 1 1 0 0 0 0 1 1; 
          0 0 0 0 0 0 0 0 0 0; 
          0 0 1 0 1 0 0 0 0 0;  
          0 0 0 1 1 1 0 0 0 0; 
          0 0 0 0 0 0 0 0 0 0; 
          0 1 0 0 0 0 1 0 0 1;  
          0 0 0 0 1 0 0 0 0 0; 
          0 0 0 0 0 0 0 0 0 0; 
          1 1 1 1 0 0 0 0 1 1];  
            
 
% Eleccion de la matriz inicial: 
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Matriz_inicial_marco = prueba; 
 
%Número de iteraciones: 
 
numIteracion = 100; 
 
 
matriz_marco = Matriz_inicial_marco; 
matriz = F_quitar_marco(matriz_marco); 
matriz_marco_sig = zeros(10,10); 
 
writematrix([], 'Matriz_MATLAB.txt'); 
type Matriz_MATLAB.txt; 
 
for iteraciones = 0:numIteracion 
    %Representacion grafica de la matriz 
    imagesc(matriz); 
    colormap cool 
    colormap([0 0 0 ; 0 1 0]); 
    title(['Grid at Iteration ',num2str(iteraciones)]); 
    drawnow; 
     
    %Escribe la matriz en un fichero 
    writematrix(matriz, 'Matriz_MATLAB.txt', 'Delimiter', ' ' ,'WriteMode', 'append'); 
     
    %Recorre la matriz y le asigna un valor a cada celda dependiendo de sus 
    %vecinas vivas y su valor anterior 
    for fila_i = 2:9 
        for columna_j = 2:9 
            suma_vecinas_vivas = F_vecinas_vivas(matriz_marco, fila_i, columna_j); 
            if(suma_vecinas_vivas == 3) 
                matriz_marco_sig(fila_i, columna_j) = 1; 
            elseif (matriz_marco(fila_i, columna_j) == 1) && (suma_vecinas_vivas == 2) 
                matriz_marco_sig(fila_i, columna_j) = 1; 
            else 
                matriz_marco_sig(fila_i, columna_j) = 0; 
            end 
             
        end 
    end 
    
    %Actualiza el valor de la matriz 
    matriz_marco = matriz_marco_sig; 
    matriz_marco = F_modificar_marco(matriz_marco); 
    matriz = F_quitar_marco(matriz_marco); 
     
     
end 
 
 
 
%Funcion que suma las vecinas vivas de cada celda 
function X = F_vecinas_vivas(matriz_marco, vecinas_i, vecinas_j) 
    X = 0; 
    i_S = vecinas_i + 1; 
    i_N = vecinas_i - 1; 
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    j_E = vecinas_j + 1; 
    j_O = vecinas_j - 1; 
     
    if matriz_marco(i_N, j_O) == 1  
        X = X + 1; 
 
    end 
    if matriz_marco(i_N, vecinas_j) == 1  
        X = X + 1;  
    end 
    if matriz_marco(i_N, j_E)== 1 
        X = X + 1;  
    end 
    if matriz_marco(vecinas_i, j_O) == 1 
        X = X + 1;  
    end 
    if matriz_marco(vecinas_i, j_E) == 1 
        X = X + 1;  
    end 
    if matriz_marco(i_S, j_O) == 1 
        X = X + 1;  
    end 
    if matriz_marco(i_S, vecinas_j) == 1  
        X = X + 1;  
    end 
    if matriz_marco(i_S, j_E) == 1 
        X = X + 1;  
    end 
     
end 
     
 
%Funcion que copia las filas y columnas de los extremos y añade el nuevo 
%marco 
function Y = F_modificar_marco(matriz_marco) 
        Y(1,1) = matriz_marco(9,9); 
        Y(1, 10) = matriz_marco(9,2); 
        Y(10, 1) = matriz_marco(2,9); 
        Y(10, 10) = matriz_marco(2,2); 
        Y(1, 2:9) = matriz_marco(9, 2:9); 
        Y(10, 2:9) = matriz_marco(2, 2:9); 
        Y(2:9, 1) = matriz_marco (2:9, 9); 
        Y(2:9, 10) = matriz_marco (2:9, 2); 
        Y(2:9, 2:9) = matriz_marco (2:9, 2:9); 
         
end 
             
%Funcion que quita el marco a la matriz de celdas    
function Z = F_quitar_marco(matriz_marco) 
    Z(1:8, 1:8) = matriz_marco(2:9, 2:9); 
end 
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Anexo B 

B1. Hoja de características de los pixels del panel WS2812B 
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