
Trabajo Fin de Grado

SISTEMA AUTOMATIZADO DE DETECCIÓN
DE MALWARE CON LA SANDBOX CAPE

CAPE AUTOMATED MALWARE
DETECTION SYSTEM

Autor

Mario Romeo Lázaro

Director

Álvaro Alesanco Iglesias

Grado en Ingenieŕıa de Tecnoloǵıas y Servicios de Telecomunicación

ESCUELA DE INGENIERÍA Y ARQUITECTURA

2023

AGRADECIMIENTOS

En primer lugar, quiero agradecer a mi familia y a mis amigos todo el apoyo, pa-

ciencia y confianza que han tenido a lo largo de estos años de carrera.

También, quiero agradecer en especial a todas las personas que han contribuido y

apoyado en la realización de este proyecto. Tanto a mi tutor, Álvaro, por aconsejarme

en el enfoque del proyecto, en momentos de colapso, como a Lorenzo y Andriy por

responder a mis preguntas sobre CAPEv2.

Además, quiero agradecer a toda la gente que he conocido a ráız de la carrera, la

compañ́ıa en las buenas y, sobre todo, en las malas.

Por último, agradezco a todas las personas que, para bien o para mal, han influido

en mi manera de ser hasta hoy. Ya que gracias a ellos, soy capaz de intentar, con todas

mis enerǵıas, todo lo que me propongo.

I

II

Lista de acrónimos

CEO: Chief Executive Officer

CAAS: Cybercrime as a Service

Anti-VM: Anti-Virtual Machine

CAPE: Configuration And Payload Extraction

LTS: Long-Term Support

MAC: Media Access Control

IDS: Intrusion Detection System

DLL: Dynamic Link Library

KVM: Kernel-based Virtual Machine

API: Application Programming Interface

VNC: Virtual Network Computing

VPN: Virtual Private Network

TOR: The Onion Router

SFTP: Secure File Transfer Protocol

IP: Internet Protocol

IOC: Indicator of Compromise

MD5: Message Digest Algorithm 5

CMD: Command Prompt

WEB: World Wide Web

URL: Uniform Resource Locator

HTML: HyperText Markup Language

TCP: Transmission Control Protocol

HTTP: HyperText Transfer Protocol

III

IV

Lista de Figuras

2.1. Etapas de un ciber-ataque [1]. 6

3.1. Arquitectura de la sandbox CAPEv2 [2]. 9

3.2. Arquitectura de Guacamole [3]. 12

3.3. Esquema utilizado con el proxy NGINX. 13

3.4. Escenario de red principal. 14

3.5. Esquema del equipo Ubuntu Server . 15

3.6. Esquema del equipo Debian 11. 16

4.1. Representación de la comunicación realizada entre agente y servidor. . . 19

4.2. Representación de la comunicación realizada por el servidor tras recibir

una muestra. 21

4.3. Interfaz gráfica del agente programado. 21

4.4. Panel de control generado en Kibana. 23

5.1. Apartados Overview en los resultados de un análisis. 26

5.2. Apartados interesantes en Overview, para los resultados de un análisis. 26

5.3. Utilidad de procesado con opción debug activada en CAPEv2. 27

5.4. Conexiones correspondientes a análisis con Windows Update activado. . 27

5.5. Comparativa de fecha de creación de muestra WannaCry. 28

5.6. Comparativa de la orden ejecutada para garantizar persistencia por la

muestra WannaCry. 29

5.7. Comparativa de las órdenes ejecutadas para evitar la recuperación del

sistema por la muestra WannaCry. 29

5.8. Comparativa del mutex creado por la muestra WannaCry. 29

5.9. Firmas de mayor riesgo, detectadas en la ejecución de la muestra de

Emotet. 30

5.10. Alertas disparadas por Suricata durante la ejecución de la muestra de

Emotet. 30

V

5.11. Contenido de la conexión potencialmente peligrosa, detectada en las

alestas de Suricata. 31

5.12. Alertas de Suricata, correspondientes a muestras de Adloader, Mint y

Msil. 31

5.13. Firmas, correspondientes a Nymaim. 32

5.14. Firmas, correspondientes a Mint. 32

A.1. Configuración del servicio Windows Update. 85

B.1. Esquema que sigue el tráfico de un paquete en la VPN que se ha des-

plegado. 87

VI

Sistema automatizado de detección de malware con
la sandbox CAPE

RESUMEN

El proyecto comienza con la investigación de los fundamentos en el ámbito de la

seguridad en redes y sistemas. Se realiza un análisis detallado de los conceptos y prin-

cipios clave del malware y de su análisis, con el objetivo de comprender mejor las

amenazas existentes y las posibles soluciones. Además, se lleva a cabo un estudio de la

situación actual en este campo, examinando las tendencias y los avances tecnológicos

relevantes.

Tras este estudio, se procede a la selección y puesta en marcha conjunta de dife-

rentes herramientas especializadas, para crear un entorno de sandboxing. Este entorno

proporciona la capacidad de analizar y detectar posibles amenazas, en los ficheros des-

cargados por los sistemas de una red, sin comprometer la integridad de los sistemas y

la red en su conjunto.

Finalmente, se llevan a cabo pruebas y se evalúan los resultados obtenidos en el

entorno desarrollado. Estas pruebas permiten evaluar la eficacia y el rendimiento de

las herramientas seleccionadas, para detectar y prevenir ataques cibernéticos.

VII

CAPE Automated Malware Detection System

ABSTRACT

The project begins by exploring the foundations of network and system security. A

thorough analysis of key concepts and principles related to malware and its analysis is

conducted to gain a deeper understanding of existing threats and potential solutions.

Additionally, the current landscape in this field is examined, taking into account rele-

vant trends and technological advancements.

Based on this research, a selection of specialized tools is implemented to create a

sandboxing environment. This environment empowers the analysis and detection of

potential threats within files downloaded by network systems, ensuring the integrity of

both the systems and the network as a whole.

Finally, testing is carried out to evaluate the effectiveness and performance of the

chosen tools in detecting and preventing cyberattacks. These tests provide valuable

insights into the capabilities and limitations of the selected tools in real-world scenarios.

VIII

Índice

1. Introducción 1

1.1. Motivación . 1

1.2. Objetivos . 2

2. Detección y análisis de Malware 5

2.1. Categoŕıas más comunes de malware 5

2.1.1. Virus . 6

2.1.2. Ransomware . 6

2.1.3. Gusano . 6

2.1.4. Troyano . 7

2.2. Análisis de malware . 7

2.2.1. Desensambladores . 7

2.2.2. Depuradores . 7

2.2.3. Sandboxing . 7

2.3. Técnicas ANTI-VM . 8

3. Entorno de trabajo 9

3.1. Herramientas utilizadas . 9

3.1.1. CAPEv2 . 9

3.1.2. Elastic . 11

3.1.3. VirusTotal . 12

3.1.4. Guacamole . 12

3.1.5. NGINX . 13

3.2. Software de virtualización . 13

3.2.1. KVM . 13

3.3. Escenario de trabajo . 14

3.3.1. Ubuntu Server . 14

3.3.2. Ubuntu Desktop . 15

3.3.3. Debian 11 . 15

IX

4. Diseño de la solución 17

4.1. Enfoque del problema a resolver . 17

4.2. Programación en Python . 17

4.3. Medidas ANTI-VM aplicadas en los guest 17

4.4. Solución planteada . 18

4.4.1. Flujo de trabajo . 19

4.4.2. Servidor . 19

4.4.3. Agente . 21

4.5. Reporte de los datos generados . 22

5. Pruebas realizadas y resultados 25

5.1. Formato de los resultados de un análisis 25

5.2. Puesta en marcha previa a análisis . 26

5.3. Análisis con malware real . 28

5.3.1. Malware detectado . 28

5.3.1.1. WannaCry . 28

5.3.1.2. Emotet . 29

5.3.2. Malware no detectado . 30

6. Conclusiones y ĺıneas futuras 33

6.1. Conclusiones . 33

6.2. Ĺıneas futuras . 35

7. Bibliograf́ıa 37

Anexos 39

A. INSTALACIÓN DE CAPEv2 41

A.1. Instalación en host . 41

A.2. Ficheros de configuración del host . 41

A.3. Instalación en guest . 85

B. MONTAJE DE VPN 87

B.1. Instalación router virtual Mikrotik . 87

B.2. Configuración túnel OVPN . 88

B.2.1. Configuración desde el router Mikrotik 88

B.2.2. Configuración desde el equipo CAPEv2 host 89

B.3. Configuración firewall . 89

B.4. Configuración router de la operadora 90

X

C. REPOSITORIOS DE MALWARE 91

C.1. TheZoo . 91

C.2. Malware Bazar . 91

C.3. VirusShare . 91

D. SOLUCIONES EN PYTHON 93

E. CONFIGURACION ELASTIC 95

E.1. Configuración de Elasticsearch . 95

E.2. Configuración de Kibana . 114

E.3. Configuración y filtros de Logstash . 115

E.4. Configuración de Filebeat . 116

F. Anexo de términos y siglas 119

XI

XII

Caṕıtulo 1

Introducción

1.1. Motivación

Durante las últimas décadas, debido al exponencial avance que experimenta la

tecnoloǵıa, un porcentaje de las actividades delictivas han sufrido, parcialmente, una

transición del plano f́ısico al plano virtual. El aumento de las cifras tiene varias justifi-

caciones, entre las cuales se encuentra que ya no es necesario ser un experto en sistemas,

para llevar a cabo un ciberataque. Dado que, desde hace unos años, las organizacio-

nes criminales, ofrecen lo que se denomina como Cybercrime-As-A-Service (CAAS) [4],

provocando que la realización de ciberdelitos esté al alcance de una gran parte de la

población. Esto se ve reflejado, por ejemplo, en el aumento de intentos de intrusión

en sistemas informáticos que, a pesar de que 2021, fue el año con más ciberataques

registrados en la historia, según los datos proporcionados por la empresa SonicWall en

su reporte anual [5], han aumentado en un 19% respecto a 2021, sumando un total de

5500 millones de intentos.

La transición del crimen a un plano virtual, también se puede observar fácilmente

en los nuevos métodos utilizados para atacar a entidades, que trabajan a diario con

grandes cantidades de dinero o con información cŕıtica, como pueden ser las empresas

o las instituciones públicas. Por ejemplo, durante la pandemia causada por la COVID-

19, se puso de manifiesto, en el sector sanitario, la gravedad que pod́ıa llegar a tener

el secuestro de ordenadores en los hospitales [6]. En lo referido al sector privado, son

comunes las estafas mediante la suplantación de identidad, en las que el atacante simula

ser el CEO de una compañ́ıa e indica al personal que está a su cargo la realización de

transferencias a cuentas [7] ubicadas en paráısos fiscales o en páıses en los que este tipo

de delitos no se persiguen con la rigurosidad pertinente.

Esta transición genera nuevas necesidades, como pueden ser formar especialistas

y crear soluciones capaces de combatir las amenazas que surgen a ráız del progreso

tecnológico.

1

Una de estas amenazas es el código malicioso, también conocido en el ámbito de

la ciberseguridad como malware. Siendo este el encargado de infectar los sistemas, ha-

bitualmente a través de un conjunto de instrucciones, que suelen estar enmascaradas

sobre un ejecutable o un documento con apariencia no sospechosa, que aprovechan vul-

nerabilidades del software del sistema para comenzar su infección. Como se comentará

en la sección 2.1 hay distintos tipos de malware, aumentando aśı la dificultad a la hora

de abordar el problema de su detección y análisis. En el caṕıtulo 2 se expanden los

principales conceptos relativos al malware.

Este proyecto está centrado en la automatización de la detección y el análisis de

código malicioso, pero para plantear el problema a resolver, como se explicará en la

sección 4.1, hay que tener una visión global de la cuestión que se aborda. Por este mo-

tivo, se introducen los conceptos básicos del estado actual del malware y se desarrollan

las caracteŕısticas del entorno de trabajo que se va a emplear en el proyecto.

1.2. Objetivos

El objetivo principal de este proyecto es el diseño e implementación de un sistema

de sandboxing, para minimizar el riesgo de infección en una red. Esta solución se va

a abordar mediante la automatización de una serie de herramientas, que puestas en

marcha de manera conjunta pueden proporcionar un alto grado de control sobre los

ficheros que entran en los equipos de una red.

Para realizar esta automatización hay que enfrentarse a varios objetivos secundarios,

que se explican a continuación:

Selección del software que se va a utilizar, en el cual se profundiza en la sección

3.1.

Instalación y configuración de los programas con los que se va a trabajar.

Diseñar y establecer la comunicación que estos programas van a tener y en que

equipos van a estar situados.

Diseñar cómo se va a realizar en una red, de manera automática, la monitorización

de los nuevos ficheros en los equipos.

Implementar y probar la automatización diseñada. Obteniendo los resultados que

se ampĺıan en el caṕıtulo 5 con muestras reales.

El software seleccionado para la automatización diseñada es el siguiente:

Herramienta de malware sandboxing open-source CAPEv2.

2

Conjunto de programas Elasticsearch, Kibana, Logstash y Filebeat.

API de VirusTotal.

Proxy-web NGINX y Guacamole, utilizados para habilitar cierta interactividad

durante los análsis.

Sistema operativo de Mikrotik.

3

4

Caṕıtulo 2

Detección y análisis de Malware

Para la comprensión del proyecto es necesario introducir los principales conceptos

relacionados con el análisis, la ejecución y la detección del malware. En las siguientes

secciones se tratan estos aspectos, sin profundizar en exceso, con el ánimo de propor-

cionar una visión global.

2.1. Categoŕıas más comunes de malware

En primer lugar, es importante recalcar que la entrada en el sistema de los códigos

maliciosos se suele realizar a través de puntas de lanza, como pueden ser portales

web, unidades extráıbles, correo electrónico y otros medios telemáticos que usamos

en nuestro d́ıa a d́ıa. Posicionando, de esta manera, al control sobre los ficheros de

entrada en un sistema, como una actividad fundamental, a la hora de garantizar cierta

seguridad en una red.

Como se ha mencionado en la introducción, los códigos maliciosos no actúan uni-

formemente. Esto se debe a varias razones, entre las cuales se encuentran las fases

mostradas en la figura 2.1, el objetivo y la intención de cada ciberataque.

Por ejemplo, a la hora de plantear un ataque, no se orienta igual la recopilación de

información, que la exfiltración de datos. Puesto que, la recopilación de información

suele requerir de técnicas pasivas, como puede ser un Keylogger o un Spyware, mientras

que la exfiltración de datos requiere de acciones activas, como podŕıan ser la instalación

y ejecución de un troyano.

A continuación se describen de manera breve las principales categoŕıas de código

malicioso cuyos análisis se muestran en el caṕıtulo 5. Hay que tener en cuenta que,

como se ve en los resultados, es común que una muestra de malware pertenezca a

varias categoŕıas.

5

Figura 2.1: Etapas de un ciber-ataque [1].

2.1.1. Virus

Los virus informáticos están diseñados para replicarse a śı mismos y propagarse

a otros equipos. Los virus se propagan al insertar su código en archivos leǵıtimos y

engañar al usuario para que los ejecute. Pueden causar daños graves al sistema, como

la eliminación de archivos, el robo de información y la corrupción del sistema operativo.

2.1.2. Ransomware

El ransomware es un tipo de malware que restringe el acceso del usuario a su

sistema o a sus archivos y exige un rescate a cambio de restaurar el acceso a este. Este

tipo de malware puede cifrar archivos o bloquear completamente el acceso al equipo, y

como veremos en la sección 5.3.1.1 suelen exigir el pago del rescate con una cantidad

de dinero en criptomonedas.

2.1.3. Gusano

Un gusano, también conocido como worm, se propaga a través de las redes y de los

sistemas conectados al equipo en el que se ubica. A diferencia de los virus, los gusanos

no necesitan infectar archivos leǵıtimos para propagarse, sino que se replican y buscan

vulnerabilidades en otros sistemas para infectarlos. Los gusanos pueden ralentizar y

corromper los datos de los equipos afectados.

6

2.1.4. Troyano

Los troyanos suelen tener la apariencia de un programa útil o de un juego y se

instalan en el sistema sin el conocimiento del usuario. Una vez instalados, pueden robar

información confidencial, controlar el sistema o abrir puertas traseras para permitir un

acceso no autorizado al sistema infectado.

2.2. Análisis de malware

A la hora de analizar muestras correspondientes a código malicioso existen varias

técnicas que aportan diferentes enfoques al análisis. El análisis de malware se puede

clasificar principalmente en dos categoŕıas: análisis estático y análisis dinámico. Estas

categoŕıas se diferencian en que mientras el análisis estático se dedica a examinar el

código malicioso sin ejecutarlo, el análisis dinámico ejecuta las muestras en un entorno

controlado.

A continuación se resumen las principales caracteŕısticas de los métodos más utili-

zados en este ámbito.

2.2.1. Desensambladores

Los desensambladores son herramientas, que permiten traducir el código binario de

un programa en un lenguaje ensamblador, a un código interpretable para su análisis.

Esto es útil para entender el comportamiento del código malicioso y analizar su estruc-

tura. Los desensambladores tratan de mostrar la lógica subyacente de la muestra que

analizan.

2.2.2. Depuradores

Los depuradores o debuggers son herramientas que permiten ejecutar el código de

un programa paso a paso, lo que habilita la detección de errores y vulnerabilidades. Los

depuradores también pueden detener la ejecución del programa en un punto espećıfico

y examinar el estado de la memoria y los registros del sistema. Esto es útil para analizar

el comportamiento del código malicioso y encontrar posibles puntos de entrada.

2.2.3. Sandboxing

La técnica de sandboxing consiste en llevar a cabo la ejecución de muestras de código

malicioso en un entorno virtual, conocido como sandbox.

El término sandbox tiene múltiples definiciones según diversos investigadores. Sin

embargo, según el art́ıculo cient́ıfico, A systematic analysis of the science of sandboxing,

7

la definición del concepto sandbox en términos de aislamiento se puede unificar como

“un mecanismo de encapsulación que se utiliza para imponer una poĺıtica de seguridad

en los componentes de software”[8].

En lo que se refiere a la sandbox en términos de análisis de malware, se puede

definir como “un entorno de redes y computadores aislado construido para analizar el

comportamiento de muestras de software”[9].

Existen diferentes herramientas de sandboxing, tanto de pago como puede ser la

aplicación ANY.RUN [10], como de código libre, que es el caso de la herramienta que

se usa en este proyecto y que se detalla en la sección 3.1.1 [2].

2.3. Técnicas ANTI-VM

Ahora que se tiene una visión general, del significado del código dañino, se van a

explicar los principales conceptos relacionados con el ANTI-VM.

La importancia de este tema reside en que, desde hace años, los autores de malware

han comenzado a diseñar código malicioso, capaz de detectar si está siendo ejecutado en

un entorno virtual. En tal caso, este ajusta su comportamiento, generalmente evitando

ejecutar actividades maliciosas o ralentizando su ejecución [11]. En los últimos años,

se ha observado que la principal tendencia, en el desarrollo del malware, es centrarse

únicamente en la detección de un entorno sandbox, en lugar de un entorno virtualizado

genérico. Esta es una consecuencia de la popularidad de los sistemas de producción,

que se ejecutan en entornos virtualizados en la nube [12].

Un aspecto que el malware comprueba es la presencia de ciertos artefactos, que deja

en el sistema operativo de sus guest el host que los aloja. Se implantan en los guest con

el fin de facilitar la gestión y comunicación, con el administrador de la máquina vir-

tual. Estos artefactos incluyen, entre otros, procesos, claves y valores del registro, DLL

cargadas y exportadas, caracteŕısticas relacionadas con la red (por ejemplo, direcciones

MAC espećıficas y nombres de adaptadores), trazas reconocibles en archivos (por ejem-

plo, system32\vboxtray.exe), directorios propios (por ejemplo,%PROGRAMFILES%

VMWare) y etiquetas de hardware [13].

Las medidas aplicadas en este proyecto para contrarrestar algunas de las técnicas

explicadas se detallan en la sección 4.3.

8

Caṕıtulo 3

Entorno de trabajo

3.1. Herramientas utilizadas

3.1.1. CAPEv2

La herramienta de sandboxing, CAPEv2, está instalada y configurada, tal y como

se explica en el anexo A. Esta herramienta trabaja con la arquitectura de la figura

3.1 y evalúa la muestra seleccionada en varias fases: análisis, procesado y reporte de

resultados. Funciona a través del despliegue y comunicación de los 4 servicios que se

explican a continuación:

Figura 3.1: Arquitectura de la sandbox CAPEv2 [2].

cape.service: Es el servicio encargado de enviar la muestra a analizar al guest,

con las opciones que hayan sido configuradas, de manera adecuada. Cuando se

indica la realización de un análisis, este servicio es el encargado de indicar al

servicio cape-rooter qué opciones han sido seleccionadas para la configuración de

red. Tras esto pone el guest en marcha, con el snapshot que se haya configurado y

9

le manda al agente que está instalado en el guest los scripts que se deben ejecutar

en el análisis. Mientras se realiza un análisis, este servicio mantiene de manera

constante la comunicación con el agente instalado en el guest, recopilando de

este modo información a cerca de lo que está sucediendo durante el análisis. Tras

finalizar el tiempo de análisis, se encarga de apagar el guest, indicar al servicio

cape-rooter que desactive las opciones activadas y de especificarle al servicio cape-

processor que debe iniciar el procesado de los resultados del análisis.

En resumen, es el servicio organizador, ya que es el que define cuando empiezan

y acaban las fases en la sandbox para una muestra.

cape-processor.service: Es el servicio encargado de dar un formato interpretable

a la información extráıda, tras el análisis de una muestra. Este servicio gestiona

dos etapas de manera secuencial:

- Procesado de datos: Procesa los datos con los módulos que tenga confi-

gurados, por ejemplo, aplicando scripts de detección de malware mediante

la aplicación de reglas YARA. Otro ejemplo de procesado es el realizado

por el módulo Suricata, que es un sistema de detección de intrusos en red,

que analiza el tráfico en busca de patrones maliciosos y comportamientos

sospechosos. Este módulo se ha configurado para que los reportes sean alma-

cenados en un archivo llamado eve.json. Además, se pueden añadir módulos

personalizados.

- Reporte de datos: En esta etapa se realiza un reporte de los datos procesados,

con los módulos que tenga configurados. En el caṕıtulo 4.5 se explica cómo

se ha creado un módulo de reporte propio, cuyo código está disponible en el

anexo D.

cape-rooter.service: La herramienta cape-rooter es la encargada de enrutar el tráfi-

co saliente del guest, tal y como se haya especificado en la configuración del

análisis a realizar, mediante la modificación de las iptables del host. Dando las

siguientes posibilidades de enrutamiento:

- Directamente a internet.

- A través de una VPN.

- Bloquear la conexión a internet, descartando los paquetes.

- A través de TOR.

- Usando simuladores de conexión, como InetSim.

- Mediante sockets personalizados.

10

cape-web.service: Es el servicio que permite indicar las opciones de un análisis y

la visualización de los datos generados por los módulos de reporte, mediante una

interfaz web de manera gráfica. Utiliza la interfaz localhost y el puerto 8000. A

su vez, es el encargado de comunicarse con el servicio guac-web, en los análisis en

los que está habilitada la interacción.

En este proyecto se ha configurado CAPEv2 para habilitar un análisis interactivo,

esto quiere decir que mientras se realiza el análisis, desde la interfaz web, se puede

interactuar con el guest, gracias al software detallado en las secciones 3.1.5 y 3.1.4.

También existe la posibilidad de realizar un análisis en el que la interacción humana

sea simulada, en este caso la aplicación CAPEv2 lanzaŕıa en el guest un script, que

han creado los desarrolladores de este software, llamado human.py. En este proyecto

se ha adaptado este script para que interactúe con software en castellano. Este script

está disponible en el anexo D. También se han configurado dos guest, uno con sistema

operativo Windows 7 y otro con Windows 10.

En lo relativo al nivel de red se ha trabajado direccionando el tráfico por una VPN

en una ubicación externa a la universidad. Esta decisión ha sido tomada para evitar

cualquier limitación que pudiera imponer, a la hora de realizar las pruebas con malware

real, el firewall de la universidad. La configuración de esta VPN se ha realizado a través

de una máquina virtual, con el sistema operativo de Mikrotik, ubicada en el domicilio

del alumno, cuya configuración está detallada en el anexo B.

Todos los ficheros y procesos de configuración se engloban en el anexo A.

3.1.2. Elastic

A continuación se explica de manera breve la función y ubicación de cada compo-

nente del stack de Elastic [14].

Elasticsearch: Está instalado en el equipo Debian 11 y es el componente encar-

gado de gestionar los ı́ndices en los que se almacena la información. Tanto el

mapeado, como las poĺıticas, que se han aplicado a los ı́ndices utilizados para

este proyecto, se detallan en el anexo E.

Logstash: Está instalado en el equipo Debian 11 , siendo el responsable de procesar

y filtrar los logs que se env́ıan desde el equipo Ubuntu Server . Las opciones y los

filtros aplicados para este programa se encuentran en el anexo E.

Kibana: Está instalado en el equipo Debian 11 , se requiere para crear y mostrar

los formatos de visualización que se crean pertinentes, para los datos previamente

procesados por Logstash y almacenados en un ı́ndice configurado de Elasticsearch.

11

Las opciones y los dashboards creados están detallados en el anexo E y en el

caṕıtulo 5, respectivamente.

Filebeat : Es el agente instalado en el equipo Ubuntu Server , que escucha en una

carpeta, especificada en su configuración, que apunta al último análisis realizado,

donde se generan los logs por el módulo de reporte creado, que se detalla en

la sección 4.5. Los ficheros de configuración modificados para este programa se

especifican en el anexo E.

3.1.3. VirusTotal

VirusTotal es un servicio en ĺınea gratuito que permite analizar archivos y URLs en

busca de malware y otras amenazas de seguridad. Utiliza múltiples motores antivirus y

herramientas de análisis para escanear los archivos y proporciona un informe detallado

de los resultados.

En la solución detallada en el caṕıtulo 4.4, para realizar un análisis preliminar de las

muestras, se hace uso de la versión 3 de la API de VirusTotal. Mediante las llamadas

a esta API, se recibe un archivo JSON, que contiene información relativa al riesgo que

tiene el objeto enviado a analizar. [15]

3.1.4. Guacamole

Guacamole [16] es la utilidad que permite realizar de manera segura y visual un

análisis interactivo sobre las muestras, que se analizan en los guest. Su arquitectura se

muestra en la figura 3.2, está compuesta por dos servicios:

guacd.service: Es el servicio encargado de establecer con el guest la conexión

VNC, para habilitar la interacción en tiempo real, mientras se realiza el análisis.

guac-web.service: Es el servicio encargado de dar una interfaz gráfica a la interac-

ción con el guest, a través del servicio web. Utiliza la interfaz localhost y el puerto

8008.

Figura 3.2: Arquitectura de Guacamole [3].

12

3.1.5. NGINX

Esta aplicación [17] es el proxy-web que se va a utilizar para unificar en un puerto

y una dirección IPv4 los servicios cape-web y guac-web. Esto se lleva a cabo, para que,

según la ruta a la que se acceda en la dirección del proxy, se redireccione tal y como se

muestra en la figura 3.3.

Figura 3.3: Esquema utilizado con el proxy NGINX.

3.2. Software de virtualización

3.2.1. KVM

A la hora de gestionar las máquinas virtuales se emplea el software de virtualización

KVM, que viene integrado en los sistemas Linux. Se escoge este hipervisor por varias

razones:

Es el hipervisor más compatible con CAPEv2, según su documentación oficial.

[2]

Las técnicas ANTI-VM se pueden paliar de manera más efectiva con KVM que

con otros hipervisores. Esto se debe a que se pueden modificar las trazas t́ıpicas,

que suelen comprobar las muestras de malware, de una forma más créıble que

otros hipervisores.

Es un software open-source, esto ahorra la necesidad de destinar recursos económi-

cos para su uso.

13

3.3. Escenario de trabajo

El entorno en el que se van a desplegar todas las herramientas de software utilizadas

es el que se muestra en la figura 3.4.

Figura 3.4: Escenario de red principal.

3.3.1. Ubuntu Server

La máquina Ubuntu Server trabaja con el sistema operativo Ubuntu 22.04.02 LTS.

Cuenta con una memoria RAM de 32 GB. El procesador utilizado es el Intel(R)

Xeon(R) Silver 4210 CPU @ 2.20GHz, con 8 cores habilitados. Además, dispone de un

espacio de almacenamiento de 125 GB.

En este equipo se instalan y configuran los principales servicios de este proyecto, en

lo que se refiere al análisis de muestras. Para comprender la función de cada utilidad

usada en este equipo, se ilustra un esquema en la figura 3.5. El diagrama aplica una

lógica, en la que las secciones resaltadas en azul son funcionalidades que interactúan

con equipos externos y el software remarcado con morado son servicios, que inter-

actúan como intermediarios para realizar funciones, que no implementa la aplicación

fundamental, resaltada en verde.

14

Figura 3.5: Esquema del equipo Ubuntu Server .

3.3.2. Ubuntu Desktop

La máquina Ubuntu Desktop trabaja con el sistema operativo Ubuntu 22.04.01 LTS.

Opera con una memoria RAM de 16 GB. El procesador utilizado es el Intel(R) Xeon(R)

Silver 4210 CPU @ 2.20GHz, con 4 cores habilitados. Además, dispone de un espacio

de almacenamiento de 125 GB.

Este equipo ha tenido principalmente dos funciones en el desarrollo del proyecto. La

primera de estas, ha sido permitir la configuración, de manera gráfica, de las máquinas

virtuales alojadas en el Ubuntu Server , para aplicar las configuraciones detalladas en

el anexo A. Por otro lado, esta máquina también se ha empleado para programar y

probar el agente de monitorización que se detalla en la sección 4.4.

3.3.3. Debian 11

La máquina Ubuntu Desktop utiliza el sistema operativo Ubuntu 22.04.01 LTS.

Trabaja con una memoria RAM de 8 GB. El procesador utilizado es el Intel(R) Xeon(R)

Silver 4210 CPU @ 2.20GHz, con 4 cores habilitados. Además, dispone de un espacio

de almacenamiento de 100 GB.

La principal función de este equipo es filtrar, procesar y visualizar, de manera

compacta y precisa, los datos que son generados por el equipo Ubuntu Server . La

jerarqúıa por la que se rigen los programas en este equipo se muestra en la figura 3.6.

15

Figura 3.6: Esquema del equipo Debian 11.

16

Caṕıtulo 4

Diseño de la solución

4.1. Enfoque del problema a resolver

El problema global a resolver se enfoca de la siguiente manera. Tenemos una red

con varios equipos en los que, para minimizar el riesgo de infección, se cree necesario

realizar una monitorización sobre los ficheros que se descargan en estos. Para esta

monitorización se plantea la implementación de un seguimiento ćıclico, constituido por

las siguientes fases:

Escucha en los equipos.

Análisis en el equipo Ubuntu Server .

Muestra de resultados de interés, garantizando un control centralizado de todos

los análisis.

4.2. Programación en Python

La solución planteada en la sección 4.4 se ha programado en Python. La principal

razón de esta decisión ha sido la gran variedad de bibliotecas que se proporciona en

este lenguaje. También ha influido que el 92.1% del programa CAPEv2 haya sido

desarrollado en este lenguaje, causando aśı un desarrollo de cierta soltura y comprensión

en el estudiante a la hora de manejar este lenguaje.

4.3. Medidas ANTI-VM aplicadas en los guest

Adicionalmente, a las medidas que aplica CAPEv2 en sus análisis, se han añadido

una serie de precauciones en las máquinas virtuales configuradas para los análisis.

Todos los archivos relacionados con estas se pueden ver expĺıcitamente en el anexo A.

A continuación se explican estas:

17

Se ha modificado la dirección MAC de las máquinas virtuales.

En el archivo .xml de los guest se han realizado las siguientes modificaciones,

para acercar las caracteŕısticas cada guest a las de una máquina real [18]:

- Se ha modificado el modelo de CPU a uno seleccionado de una lista de CPU,

compatibles con la que usa el host.

- Se ha modificado la información del fabricante del producto que se muestra

en la BIOS.

- Se han añadido en el archivo .xml de cada guest una serie de comandos que

modifican caracteŕısticas que KVM añade por defecto en algunos registros

y que son fácilmente comprobables.

Se han aceptado cookies de diferentes sitios web y se han descargado diferentes

tipos de ficheros en cada guest, para simular el estado de una máquina real.

4.4. Solución planteada

La solución planteada para cada fase ha sido la siguiente:

Escucha en los equipos: Para garantizar la monitorización, de los directorios de-

seados, de un equipo espećıfico, se han diseñado y programado una serie de fun-

ciones en Python. Estas funciones se utilizan en conjunto por un agente, también

programado en Python. El agente se encarga de acceder y recopilar información

sobre la ubicación especificada, del equipo objetivo.

Análisis en el equipo Ubuntu Server : En el equipo Ubuntu Server , se ha desa-

rrollado un servidor, programado para recibir de manera segura las solicitudes

de análisis, provenientes de los agentes instalados en los equipos de la red. El

servidor está configurado para establecer una comunicación cifrada e integra, ga-

rantizando aśı la seguridad de los datos transmitidos. Una vez que se reciben las

solicitudes de análisis, el servidor procesa la información enviada por los agentes

y realiza las tareas de análisis correspondientes.

Muestra de resultados de interés: Utilizando la herramienta Kibana en el equipo

Debian 11 , se genera un panel de control, dónde se muestran los datos básicos re-

lacionados con las conexiones de red, realizadas durante el análisis de la muestra

indicada por el agente, en los equipos monitorizados. Kibana permite visualizar

18

y analizar de manera intuitiva los datos recopilados durante el proceso de mo-

nitoreo. Se presentan gráficos, tablas y otros elementos visuales que ayudan a

comprender y evaluar las conexiones de red detectadas durante el análisis.

4.4.1. Flujo de trabajo

La comunicación implementada entre agentes y servidor garantiza una comuni-

cación integra y confidencial. La confidencialidad de esta comunicación se garantiza

generando un par de claves (pública y privada), tanto en el agente cómo en el servidor.

Tras la generación de estas claves, los dos extremos de la comunicación comparten,

mutuamente, sus claves públicas para que ambos sean capaces de mantener una co-

municación cifrada. Tras este intercambio de claves y de manera cifrada, el agente le

env́ıa al servidor el hash del archivo que le va a enviar, para que este pueda verificar

posteriormente su integridad. A continuación, el servidor env́ıa al agente, de manera

cifrada, un usuario y una contraseña con el formato usuario:contraseña. Finalmente,

con estas credenciales, el agente transfiere al servidor, usando el protocolo SFPT, el

fichero nuevo que ha detectado. Toda esta comunicación se representa en la figura 4.1.

En las siguientes secciones se ve en profundidad la manera de trabajar de cada extremo

de esta comunicación.

Figura 4.1: Representación de la comunicación realizada entre agente y servidor.

4.4.2. Servidor

En la sección 4.4.1 se ha explicado, parcialmente, el intercambio de mensajes en-

tre servidor y agente. Es importante recalcar que, en este proyecto, el servidor se ha

19

configurado para que escuche en la dirección IP 192.168.153.5 y en el puerto 33033.

A continuación se especifica, secuencialmente, como procede el servidor cuando recibe

una muestra de un agente, en la figura 4.2 se puede observar esta comunicación de

manera gráfica:

Una vez el servidor recibe una muestra, compara el hash de esa muestra con el

enviado por el usuario, al principio de la comunicación.

Si los hashes coinciden, el servidor realizará un análisis preliminar, a través de

la API de VirusTotal. Este análisis preliminar puede obtener como resultado 4

calificaciones diferentes (malicioso, sospechoso, no malicioso y no sospechoso).

La intención de este análisis preliminar es el ahorro de recursos en el servidor,

consultando la base de datos de VirusTotal.

Dicho resultado se cifra y es comunicado al agente, para que decida como quiere

proceder.

Si el usuario de ese equipo decide proceder con un análisis, la muestra se env́ıa a

la sandbox.

Los resultados con información de las conexiones de red, generados por el módulo

de reporte personalizado geolookup.py, son enviados al equipo Debian 11 a través

de filebeat.

Estos resultados y los que genera el propio CAPEv2, se pueden consultar de

modos:

- A través de la dirección del proxy-web del host (192.68.153.5:3333), se pue-

den consultar los datos detallados sobre el servicio web, proporcionado por

CAPEv2.

- A través de la dirección 192.68.153.2:5601, se pueden consultar los relativos a

las conexiones de red, tal y como se han configurado de manera personalizada

en Kibana.

20

Figura 4.2: Representación de la comunicación realizada por el servidor tras recibir una
muestra.

4.4.3. Agente

El agente se debe iniciar desde la terminal en Linux o desde la CMD en Windows,

y se ha programado con los siguientes parámetros de entrada:

“m” : Indica el método que se quiere usar para introducir los parámetros relacio-

nados con el servidor. Acepta dos modos:

- “auto”: El modo auto requiere que se indiquen los parámetros “-c” y “-d”

mediante la terminal.

- “user”: El modo user abre una ventana emergente, por la que se deben

introducir los parámetros que se indican. Este modo obvia los parámetros

“-c” y “-d”. La ventana, creada por este modo, se muestra en la figura 4.3.

Figura 4.3: Interfaz gráfica del agente programado.

“c”: Indica la ruta del archivo de configuración .conf, en el que se incluyen los

parámetros de conexión al servidor con el siguiente formato:

[analyzer]

ip =

port =

21

”d”: Indica el directorio que se quiere monitorizar.

Este agente es capaz de identificar el último fichero añadido en la carpeta que le sea

especificada. Además, es el encargado de establecer con el servidor la comunicación,

indicada en las figuras 4.1 y 4.2.

4.5. Reporte de los datos generados

Cómo bien se ha mencionado anteriormente, en este proyecto se ha creado e integra-

do un módulo de reporte en la aplicación CAPEv2. Dicho módulo se ha implementado

para ejemplificar las posibilidades que esta aplicación proporciona, gracias a su arqui-

tectura modular.

El módulo que se ha creado obtiene la latitud y la longitud, de manera aproximada,

de todas las direcciones involucradas en un análisis. Para ello se ha añadido un script

en el directorio /opt/CAPEv2/modules/reporting/, que se puede ver en el anexo D.

En este script se añaden al reporte generado por Suricata (eve.json), la longitud y la

latitud de cada dirección IP. Estas medidas se obtienen a través de consultas a una

API pública.

Para implementar correctamente un módulo de reporte integrado en la arquitectura

de CAPEv2, hay que programar el script de reporte teniendo en cuenta los siguientes

requisitos:[2]

Crear una clase con el nombre que le quieres dar a tu módulo de reporte.

Declarar esa clase, de tal modo que herede de la clase Report.

Tener una función llamada run(), que realice las operaciones principales.

Intentar capturar la mayoŕıa de las excepciones y generar un CuckooReportError,

para notificar los problemas que se pudieran generar durante el funcionamiento

de este módulo.

Para la visualización de los datos, proporcionados por este módulo de reporte, se

ha generado, en Kibana, el panel que se muestra en la figura 4.4. En concreto, el panel

presentado, en la figura 4.4, corresponde al análisis de WannaCry que se expande en

la sección 5.3.1.1.

22

Figura 4.4: Panel de control generado en Kibana.

Este panel proporciona una tabla, en la que se indica el número de conexiones

asociadas a cada puerto y un mapa en el que se muestran geográficamente, unidas por

una ĺınea, las conexiones realizadas desde el guest durante el análisis. Si se pulsa en

estas ĺıneas se puede observar tanto la dirección de origen, como la de destino. Hay que

mencionar, que este panel permite filtrar por el número identificativo de un análisis,

por dirección de origen y de destino.

23

24

Caṕıtulo 5

Pruebas realizadas y resultados

Las pruebas realizadas se han dividido principalmente en las dos etapas que se

describen en las secciones 5.2 y 5.3.

5.1. Formato de los resultados de un análisis

Los resultados de un análisis, se muestran por la interfaz web de CAPEv2, tal y

como se observa en la figura 5.1. En la navegación sobre los resultados, se encuentran

diferentes secciones habilitadas, entre las que se tienen que recalcar las principales:

Quick Overview : En esta sección se proporciona información en términos gene-

rales del análisis, como pueden ser capturas de pantalla que se han realizado

en su transcurso o posibles indicadores de compromiso extráıdos de los análisis.

También se muestra, en el caso de que la hubiera, la detección realizada sobre la

muestra. Esta información se visualiza en la figura 5.2.

Behavioral Analysis : Corresponde al comportamiento que tiene la muestra. Se

expande información a nivel de sistema, como puede ser el árbol de procesos

que ha sido generado y todos los elementos con los que interactúa, como son las

instrucciones que ejecuta o las direcciones de memoria a las que accede.

Network Analysis : Se muestran las conexiones a nivel de red que provoca la

ejecución de la muestra y se identifica cada conexión con su protocolo. También

se muestran las alertas, que ha identificado Suricata.

Dropped Files : Incluye información de los ficheros que ha lanzado la muestra

analizada.

25

Figura 5.1: Apartados Overview en los resultados de un análisis.

Figura 5.2: Apartados interesantes en Overview, para los resultados de un análisis.

5.2. Puesta en marcha previa a análisis

Para poner en marcha la sandbox, antes de realizar pruebas con malware real, se

han realizado un total de 216 análisis. Dado que, tras la configuración de todos los

servicios necesarios, ha sido necesario ajustar, a medida que se realizaban los análisis,

diferentes opciones que causaban errores.

Estos errores han surgido tanto en el análisis, como en el procesado de las muestras.

Las causas de estos, han ido desde malas configuraciones, hasta situaciones que no con-

templaba el propio programa, como se ha dado en un apartado, durante la configuración

de la sesión interactiva.

En el ejemplo de la puesta en marcha de la sesión interactiva, se contactó con los

actuales desarrolladores de CAPEv2. Después de una larga conversación, que se puede

26

ver en la sección Issue #1508 [19] de su GitHub, añadieron un pequeño parche que

habilitó una funcionalidad no contemplada. En el caso de los errores provocados por

malas configuraciones, en el anexo A se especifican las configuraciones realizadas, en

cada guest, para que no haya ningún problema. Ya que, por ejemplo, a la hora de

procesar la información, durante los primeros análisis realizados, se exced́ıa el timeout

de procesado. Tras inspeccionar la utilidad de procesado de CAPEv2, activando la

opción del debugger de la figura 5.3, se observó que el módulo de procesado se estancaba

en la etapa Network Analysis. Teniendo en cuenta lo mencionado, se examinaron los

archivos generados por el análisis. De este modo, se identificó que el tamaño del archivo

.pcap, generado por el análisis, era del orden de MegaBytes, tamaño mucho mayor del

común.

Figura 5.3: Utilidad de procesado con opción debug activada en CAPEv2.

Figura 5.4: Conexiones correspondientes a análisis con Windows Update activado.

27

En vista de la información recopilada, se inspeccionó el .pcap generado, en busca de

anomaĺıas. Observando aśı, que el tráfico significativo correspond́ıa al intercambio de

mensajes con dos direcciones IP, se visualiza en la figura 5.4. A ráız de lo explicado, se

inspeccionó estas direcciones a través de medios de recopilación de información, como

TalosIntelligence, obteniendo una relación de esa dirección con empresas relacionadas

con Microsoft. Haciendo ver de esta manera, que el problema que se estaba teniendo

era una consecuencia directa de haber deshabilitado de manera incorrecta la utilidad

Windows Update.

5.3. Análisis con malware real

En las siguientes secciones se van a mostrar los resultados obtenidos, de los análisis

de muestras reales de malware. Se realizará una comparativa de estos, con los infor-

mes oficiales de esas muestras. Esta se calificará, basándonos en la obtención de IOC,

respecto a los informes oficiales.

5.3.1. Malware detectado

5.3.1.1. WannaCry

En el análisis realizado sobre la muestra deWannaCry, cuyoMD5 hash corresponde

con 84c82835a5d21bbcf75a61706d8ab549, se han extráıdo ciertos IOC, explicados a

continuación. Estos corresponden con los que se indican en el informe oficial, elaborado

por el CCN [20]. En primer lugar, se ha podido observar que la fecha interna de creación

del programa corresponde al 20 de noviembre de 2010, siendo la misma que se muestra

en el análisis oficial. En la imagen superior de la figura 5.5 se muestra la información

oficial, mientras que, en la imagen inferior, aparece la relativa al análisis del proyecto.

Figura 5.5: Comparativa de fecha de creación de muestra WannaCry.

28

Además, durante el análisis, se ejecuta la orden que se indica en el informe, que

garantiza la persistencia en el sistema. Se muestra en la figura 5.6, con el formato

anteriormente descrito.

Figura 5.6: Comparativa de la orden ejecutada para garantizar persistencia por la
muestra WannaCry.

También, en la figura 5.7, se presentan las instrucciones ejecutadas por la muestra,

para borrar las Shadow Copies presentes en el equipo, evitar que el equipo arranque

en modo de recuperación y borrar los catálogos de copias de seguridad.

Figura 5.7: Comparativa de las órdenes ejecutadas para evitar la recuperación del
sistema por la muestra WannaCry.

Por último, en la figura 5.8, se visualiza una captura, en la que se resalta cómo la

muestra crea un mutex con el mismo nombre que el indicado en [20].

Figura 5.8: Comparativa del mutex creado por la muestra WannaCry.

5.3.1.2. Emotet

En el análisis realizado sobre la muestra de Emotet, cuyoMD5 hash corresponde con

32289068803d70d40f42172c33760016, se han extráıdo ciertos indicadores de compro-

29

miso del propio análisis. En este caso se van a mostrar los potenciales IOC extráıdos,

sin realizar una comparación con el informe oficial del CCN. Debido a la diferente na-

turaleza de la muestra ejecutable utilizada, con la muestra del informe, correspondiente

a un archivo .doc.

En la figura 5.9 se muestran las coincidencias que ha tenido la ejecución de la

muestra, con las firmas identificadas como comportamientos potencialmente peligrosos.

Entre estas firmas se encuentran las coincidencias encontradas con las reglas YARA.

Figura 5.9: Firmas de mayor riesgo, detectadas en la ejecución de la muestra de Emotet.

En cuanto a las conexiones de red, se identifica una alerta de Suricata, figura 5.10,

relacionada con actividad sospechosa propia de Emotet. Esta actividad corresponde

al intercambio de mensajes, correspondiente a un POST y a un GET por parte del

guest, con una dirección ubicada en Corea del Sur. Este intercambio viene indicado en

la figura 5.11 y la respuesta al GET realizado por el guest, corresponde con un archivo

.html.

Figura 5.10: Alertas disparadas por Suricata durante la ejecución de la muestra de
Emotet.

5.3.2. Malware no detectado

En los análisis correspondientes a las muestras más recientes de malware, las detec-

ciones no se han llevado a cabo con éxito. Esto se debe a las instrucciones observadas,

correspondientes a técnicas ANTI-VM, que se explican a continuación:

30

Figura 5.11: Contenido de la conexión potencialmente peligrosa, detectada en las alestas
de Suricata.

Las alertas, que se muestran en la figura 5.12, corresponden a detecciones, rea-

lizadas por el servicio de Suricata en la etapa de procesado. Estas detecciones

corresponden con instrucciones marcadas como ANTI-DEBUG, que se podŕıan

estar usando para detectar el entorno de análisis, finalizando, tras esta detección,

la ejecución de la muestra.

Figura 5.12: Alertas de Suricata, correspondientes a muestras de Adloader, Mint y Msil.

Las firmas identificadas en la ejecución de una muestra de Nymaim, permiten

identificar la aplicación de un posible método ANTI-VM en su ejecución. Me-

diante la llamada a la API SetUnhandledExceptionFilter, con un retorno de valor

’1’. Lo cual, podŕıa ser interpretado por la muestra como un indicador de análi-

sis. Por otro lado, se observa cómo varios procesos, han disparado distintas reglas

31

YARA. Por tanto, pese a no tener una detección en esta muestra, hay indicadores

que podŕıan permitir a un analista ajustar la configuración del guest, para evi-

tar la eficacia que, en este caso, han tenido las técnicas ANTI-VM del malware

analizado. Los indicadores descritos se observan en la figura 5.13.

Figura 5.13: Firmas, correspondientes a Nymaim.

Para finalizar la sección de resultados, se ha realizado el análisis de una mues-

tra correspondiente a la familia de malware Mint. En las firmas relativas a su

ejecución, en la figura 5.14, se observa como esta muestra recopila información

relativa a los componentes del sistema. Probablemente, este reconocimiento haya

disparado la finalización de la ejecución de la muestra.

Figura 5.14: Firmas, correspondientes a Mint.

32

Caṕıtulo 6

Conclusiones y ĺıneas futuras

Durante el desarrollo de este trabajo de fin de grado, he experimentado una curva de

aprendizaje notablemente acelerada, la cual refleja la naturaleza de toda la carrera, en

la que se han planteado una serie de desaf́ıos, que han requerido adquirir rápidamente

conocimientos y habilidades para su resolución, en un tiempo limitado.

En gran medida, la capacidad para resolver problemas desarrollada a lo largo de

la carrera, combinada con los conocimientos adquiridos en redes y programación, ha

sido fundamental para solucionar la mayoŕıa de los obstáculos presentados durante el

desarrollo de este trabajo. Ya fuese a través de la captura y evaluación de paquetes,

para identificar la causa de los problemas, o al contactar con los desarrolladores de

CAPEv2 en otro idioma, utilizando un lenguaje técnico.

En resumen, pese a tener d́ıas de trabajo complicados, en los que planteas y prue-

bas muchas soluciones y no funciona ninguna o en los que, aparentemente, por ninguna

razón, los componentes que se hab́ıan montado y puesto en marcha dejan de funcio-

nar. He disfrutado el camino recorrido para la implementación de todo lo que se ha

desarrollado.

6.1. Conclusiones

En la realización del proyecto, CAPEv2 ha sido el núcleo sobre el que se ha tra-

bajado. Se ha observado que esta aplicación, gracias a las personas que participan de

manera altruista, proporciona funcionalidades de gran valor a coste cero. Muchas de

estas funcionalidades no se han explorado en este proyecto, pero resultan muy interesan-

tes, cómo puede ser el modo de trabajo distribuido que proponen en su documentación

los desarrolladores.

Es importante recalcar que al trabajar con una aplicación de Github, se ha teni-

do que trabajar con la herramienta git, comprendiendo de este modo, como actuali-

zar y mantener, correctamente, las aplicaciones que se encuentran en esta plataforma.

33

Además, se ha comprendido el funcionamiento de las aplicaciones actuales, entendiendo

como se realiza la comunicación de los diferentes servicios y la necesidad de implemen-

tar un gestor de errores de manera correcta, en una aplicación, para proporcionar a los

usuarios cierta autonomı́a a la hora de resolver los errores que puedan surgir, propor-

cionándo unos logs enriquecidos.

Otro punto clave del proyecto ha sido el uso de las herramientas proporcionadas por

Elastic. Ya que han permitido una gran comprensión de cómo es tratada la información,

a la hora de generar un entorno, en el que esta se pueda consultar de manera eficiente.

Teniendo que crear, tanto el mapeado del ı́ndice en el que se han almacenado los datos,

como las poĺıticas de rotación en los ı́ndices de almacenaje, para poder aprovechar, de

manera eficiente, el espacio disponible en el equipo.

Por otro lado, se ha profundizado en las trazas que genera el software de virtua-

lización sobre sus guest. Observando y modificando las mismas mediante diferentes

técnicas, que hay que desarrollar, puesto que a lo largo del caṕıtulo 5, se han llevado a

cabo varios análisis, en los que se ha manifestado la necesidad de mejorar las medidas

ANTI-VM, aplicadas a los guest de la sandbox. Ya que, cómo se ha visualizado en los

resultados, un número significativo de muestras, son capaces de detectar que se están

ejecutando en un entorno de análisis y detienen su ejecución, como consecuencia.

Por último, hay que mencionar que se han observado dos funcionalidades que no

han sido implementadas, necesarias en un entorno de producción. A continuación se

detallan las principales caracteŕısticas:

Diseñar la interacción con un sistema de cuarentena. Dado que, el grado de con-

trol planteado sobre los equipos puede que no sea suficiente, para un entorno de

producción. Ya que el encargado, con acceso a las interfaces web, donde se des-

criben los detalles de los análisis, debeŕıa tomar medidas de manera manual en el

caso de encontrarse con algún incidente. Por estos motivos se debeŕıa plantear un

control centralizado, desde el servidor, para indicar al agente que medidas tomar

con la muestra analizada. Entre estas medidas, podŕıa estar la aplicabilidad de

un protocolo de cuarentena sobre el fichero analizado.

Programar el servidor para que acepte solicitudes de análisis de manera concu-

rrente. Al ser una prueba de concepto se ha comprobado el correcto funciona-

miento para un solo equipo en la red. Por lo que seŕıa interesante programar

el servidor generalizando este comportamiento, para una red de mayor tamaño.

De esta manera se podŕıan plantear diferentes soluciones, en el caso de que la

implementación proporcionada fuese poco escalable.

34

6.2. Ĺıneas futuras

En lo que respecta al diseño de los guest, se debeŕıan volver a crear, aplicando

técnicas ANTI-VM más avanzadas. Estas técnicas se podŕıan diseñar visualizando,

detalladamente, cómo las muestras que han detectado el entorno virtual han llevado a

cabo esta detección. En el nuevo guest, una vez identificado el método de detección, se

podŕıan aplicar las modificaciones necesarias para neutralizarlo.

Por otro lado, pese a haber desactivado las funciones de Windows, que contaminan

las capturas de las conexiones en los análisis. Siguen existiendo ciertas conexiones que

se repiten en todos los análisis. Se podŕıa crear un módulo de procesado, que elimina-

se las conexiones que se ejecutan en el guest por defecto. Este módulo se planteaŕıa

identificando y guardando en un fichero, en un análisis de código no malicioso, las co-

nexiones realizadas. Tras la obtención de este fichero, se continuaŕıa con la creación de

un script de procesado que filtrase, consultando el fichero creado previamente, todas

las conexiones que coincidieran.

Cómo última observación, en los aspectos relacionados con las máquinas guest, se

tendŕıa que explorar la implementación de un guest con el reciente sistema operativo

Windows 11. Ya que se desconoce cómo se deben realizar, en este sistema operativo,

las configuraciones pertinentes, para el correcto desarrollo de los análisis. Seŕıa muy

interesante, dado que probablemente este S.O. se extienda de manera significativa, a

lo largo de los próximos años.

En lo relativo al software usado, para la solución aportada, se debeŕıa plantear

la adición de plataformas en las que se comparte información sobre amenazas, como

puede serMISP. De esta manera, se contribuiŕıa a la mejora en la detección y el análisis

de malware, compartiendo los indicadores de compromiso identificados en el análisis

realizado en la sandbox.

Para concluir, hay que destacar que la implementación de todo el software rela-

cionado con la solución planteada ha sido un proceso laborioso, que ha requerido una

considerable cantidad de horas de trabajo. Sin embargo, se podŕıa estudiar la posibi-

lidad de replicar el proceso realizado a lo largo del proyecto, de manera automática,

a través del software Ansible. De este modo, se podŕıa gestionar la configuración y el

despliegue de la estructura de sandboxing, que se ha planteado, de una manera sencilla.

35

36

Caṕıtulo 7

Bibliograf́ıa

[1] AyudaLey. Qué es un ciberataque y qué tipos existen. https://

ayudaleyprotecciondatos.es/2018/10/08/ciberataque/, Oct 2018.

[2] Kevin O’Reilly. Capev2. https://github.com/kevoreilly/CAPEv2, 2023.

[3] Csongor Horvath, Trygve Thomessen, and Gabor Sziebig. Overview of modern

teaching equipment that supports distant learning. Recent Innovations in Mecha-

tronics, 5, 01 2018.

[4] Calvin Nobles, Sharon Burton, and Darrell Burrell. Cybercrime as a Sustained

Business, pages 98–120. 03 2023.

[5] SonicWall. 2023 sonicwall cyber threat report. "https://www.sonicwall.com/

medialibrary/en/white-paper/2023-cyber-threat-report.pdf", 2023.

[6] Liselotte Boven, Renske Kusters, Derrick Tin, Frits Osch, H. Cauwer, Linsay Ke-

telings, Madhura Rao, Christian Dameff, and Dennis Barten. Hacking acute care:

A qualitative study on the healthcare impacts of ransomware attacks against hos-

pitals, 02 2023.

[7] Adrienne de Ruiter. The distinct wrong of deepfakes. Philosophy & Technology,

34(4):1311–1332, December 2021.

[8] Michael Maass, Adam Sales, Benjamin Chung, and Joshua Sunshine. A systematic

analysis of the science of sandboxing. PeerJ Computer Science, 2:5–6, 01 2016.

[9] Cedric Pernet. ANY.RUN vs. Joe Sandbox: Malware analysis tools com-

parison. https://www.techrepublic.com/article/anyrun-vs-joe-sandbox/,

March 2023.

[10] Alexey Lapshin. Any.run. https://any.run/, 2023.

37

https://ayudaleyprotecciondatos.es/2018/10/08/ciberataque/
https://ayudaleyprotecciondatos.es/2018/10/08/ciberataque/
https://github.com/kevoreilly/CAPEv2
"https://www.sonicwall.com/medialibrary/en/white-paper/2023-cyber-threat-report.pdf"
"https://www.sonicwall.com/medialibrary/en/white-paper/2023-cyber-threat-report.pdf"
https://www.techrepublic.com/article/anyrun-vs-joe-sandbox/
https://any.run/

[11] Theodoros Apostolopoulos, Vasilios Katos, Kim-Kwang Raymond Choo, and

Constantinos Patsakis. Resurrecting anti-virtualization and anti-debugging:

Unhooking your hooks. Future Generation Computer Systems, 116:393–405, 2021.

[12] A. Yokoyama, K. Ishii, R. Tanabe, Y. Papa, K. Yoshioka, T. Matsumoto, T. Ka-

sama, D. Inoue, M. Brengel, M. Backes, et al. Sandprint: Fingerprinting malware

sandboxes to provide intelligence for sandbox evasion. International Symposium

on Research in Attacks, Intrusions, and Defenses, pages 165–187, 2016.

[13] Anoirel Issa. Anti-virtual machines and emulations. Journal in Computer Virology,

8(4):141–149, November 2012.

[14] Shay Banon. Elastic stack. https://www.elastic.co/, 2023.

[15] Virustotal. Virustotal api. https://developers.virustotal.com/reference/

overview, 2023. APIv3.

[16] Apache Software Foundation. Apache guacamole. https://guacamole.apache.

org/, 2023.

[17] Igor Sysoev. Nginx. https://nginx.org/, 2023.

[18] Andriy Brukhovetskyy. Kvm settings for malware analy-

sis. https://www.doomedraven.com/2016/05/kvm.html#

modifying-kvm-qemu-kvm-settings-for-malware-analysis, 2016.

[19] Mario Romeo. Capev2 issue #1508. https://github.com/kevoreilly/CAPEv2/

issues/1508, 2023.

[20] CCN-CERT. Informe código dañino CCN-CERT ID-17/17. https:

//www.ccn-cert.cni.es/informes/informes-ccn-cert-publicos/

2169-ccn-cert-id-17-17-codigo-danino-wannacry-1/file.html, May

2017.

[21] Mikrotik. Mikrotik RouterOS v7. https://mikrotik.com/download, 2023.

38

https://www.elastic.co/
https://developers.virustotal.com/reference/overview
https://developers.virustotal.com/reference/overview
https://guacamole.apache.org/
https://guacamole.apache.org/
https://nginx.org/
https://www.doomedraven.com/2016/05/kvm.html#modifying-kvm-qemu-kvm-settings-for-malware-analysis
https://www.doomedraven.com/2016/05/kvm.html#modifying-kvm-qemu-kvm-settings-for-malware-analysis
https://github.com/kevoreilly/CAPEv2/issues/1508
https://github.com/kevoreilly/CAPEv2/issues/1508
https://www.ccn-cert.cni.es/informes/informes-ccn-cert-publicos/2169-ccn-cert-id-17-17-codigo-danino-wannacry-1/file.html
https://www.ccn-cert.cni.es/informes/informes-ccn-cert-publicos/2169-ccn-cert-id-17-17-codigo-danino-wannacry-1/file.html
https://www.ccn-cert.cni.es/informes/informes-ccn-cert-publicos/2169-ccn-cert-id-17-17-codigo-danino-wannacry-1/file.html
https://mikrotik.com/download

Anexos

39

Anexos A

INSTALACIÓN DE CAPEv2

La instalación en de CAPEv2 tiene dos fases, que corresponde al proceso corres-

pondiente al host y al relativo al guest.

A.1. Instalación en host

Para instalar todo lo necesario en el host, se han ejecutado las siguientes instruc-

ciones:

wget https://raw.githubusercontent.com/kevoreilly/CAPEv2/master/

↪→ installer/cape2.sh

wget https://raw.githubusercontent.com/kevoreilly/CAPEv2/master/

↪→ installer/kvm-qemu.sh

sudo ./kvm-qemu.sh all xxx | tee kvm-qemu.log

chmod a+x cape2.sh

sudo ./cape2.sh base cape | tee cape.log

poetry install

sudo ./cape2.sh guacamole

sudo apt-get install nginx

sudo apt-get install libwebsockets-dev

A.2. Ficheros de configuración del host

A continuación se muestran ı́ntegramente los ficheros de configuración que han sido

modificados, a lo largo del proyecto.

/opt/CAPEv2/custom/conf/cuckoo.conf

[cuckoo]

Which category of tasks do you want to analyze?

categories = static, pcap, url, file

41

If turned on, Cuckoo will delete the original file after its

↪→ analysis

has been completed.

delete_original = off

Archives are not deleted by default, as it extracts and "

↪→ original file" become extracted file

delete_archive = on

If turned on, Cuckoo will delete the copy of the original file

↪→ in the

local binaries repository after the analysis has finished. (On *

↪→ nix this

will also invalidate the file called "binary" in each analysis

↪→ directory,

as this is a symlink.)

delete_bin_copy = off

Specify the name of the machinery module to use, this module

↪→ will

define the interaction between Cuckoo and your virtualization

↪→ software

of choice.

machinery = kvm

Enable creation of memory dump of the analysis machine before

↪→ shutting

down. Even if turned off, this functionality can also be enabled

↪→ at

submission. Currently available for: VirtualBox and libvirt

↪→ modules (KVM).

memory_dump = on

When the timeout of an analysis is hit, the VM is just killed by

↪→ default.

For some long-running setups it might be interesting to

↪→ terminate the

moinitored processes before killing the VM so that connections

↪→ are closed.

terminate_processes = off

Enable automatically re-schedule of "broken" tasks each startup.

Each task found in status "processing" is re-queued for analysis

↪→ .

reschedule = off

Fail "unserviceable" tasks as they are queued.

Any task found that will never be analyzed based on the

42

↪→ available analysis machines

will have its status set to "failed".

fail_unserviceable = on

Limit the amount of analysis jobs a Cuckoo process goes through.

This can be used together with a watchdog to mitigate risk of

↪→ memory leaks.

max_analysis_count = 0

Limit the number of concurrently executing analysis machines.

This may be useful on systems with limited resources.

Set to 0 to disable any limits.

max_machines_count = 10

Limit the amount of VMs that are allowed to start in parallel.

↪→ Generally

speaking starting the VMs is one of the more CPU intensive parts

↪→ of the

actual analysis. This option tries to avoid maxing out the CPU

↪→ completely.

max_vmstartup_count = 5

Minimum amount of free space (in MB) available before starting a

↪→ new task.

This tries to avoid failing an analysis because the reports can’

↪→ t be written

due out-of-diskspace errors. Setting this value to 0 disables

↪→ the check.

(Note: this feature is currently not supported under Windows.)

freespace = 0

Process tasks, but not reach out of memory

freespace_processing = 15000

Temporary directory containing the files uploaded through Cuckoo

↪→ interfaces

(web.py, api.py, Django web interface).

tmppath = /tmp

Delta in days from current time to set the guest clocks to for

↪→ file analyses

A negative value sets the clock back, a positive value sets it

↪→ forward.

The default of 0 disables this option

Note that this can still be overridden by the per-analysis clock

↪→ setting

and it is not performed by default for URL analysis as it will

↪→ generally

result in SSL errors

43

daydelta = 0

Path to the unix socket for running root commands.

rooter = /tmp/cuckoo-rooter

Enable if you want to see a DEBUG log periodically containing

↪→ backlog of pending tasks, locked vs unlocked machines.

NOTE: Enabling this feature adds 4 database calls every 10

↪→ seconds.

periodic_log = off

[resultserver]

The Result Server is used to receive in real time the behavioral

↪→ logs

produced by the analyzer.

Specify the IP address of the host. The analysis machines should

↪→ be able

to contact the host through such address, so make sure it’s

↪→ valid.

NOTE: if you set resultserver IP to 0.0.0.0 you have to set the

↪→ option

‘resultserver_ip‘ for all your virtual machines in machinery

↪→ configuration.

ip = 192.168.50.1

Specify a port number to bind the result server on.

port = 2042

Force the port chosen above, don’t try another one (we can

↪→ select another

port dynamically if we can not bind this one, but that is not an

↪→ option

in some setups)

force_port = yes

pool_size = 0

Should the server write the legacy CSV format?

(if you have any custom processing on those, switch this on)

store_csvs = off

Maximum size of uploaded files from VM (screenshots, dropped

↪→ files, log)

The value is expressed in bytes, by default 100MB.

upload_max_size = 100000000

Prevent upload of files that passes upload_max_size?

do_upload_max_size = no

44

[processing]

Set the maximum size of analyses generated files to process.

↪→ This is used

to avoid the processing of big files which may take a lot of

↪→ processing

time. The value is expressed in bytes, by default 200MB.

analysis_size_limit = 200000000

The number of calls per process to process. 0 switches the limit

↪→ off.

10000 api calls should be processed in less than 2 minutes

analysis_call_limit = 0

Enable or disable DNS lookups.

resolve_dns = on

Enable or disable reverse DNS lookups

This information currently is not displayed in the web interface

reverse_dns = off

Use ram to boost processing speed. You will need more than 20GB

↪→ of RAM for this feature.

Please read "performance" section in the documentation.

ram_boost = yes

Enable PCAP sorting, needed for the connection content view in

↪→ the web interface.

sort_pcap = on

[database]

Specify the database connection string.

Examples, see documentation for more:

sqlite:///foo.db

postgresql://foo:bar@localhost:5432/mydatabase

mysql://foo:bar@localhost/mydatabase

If empty, default is a SQLite in db/cuckoo.db.

SQLite doens’t support database upgrades!

For production we strongly suggest go with PostgreSQL

connection = postgresql://cape:sj3cAnClc0v#@localhost:5432/cape

Database connection timeout in seconds.

If empty, default is set to 60 seconds.

timeout =

[timeouts]

Set the default analysis timeout expressed in seconds. This

↪→ value will be

45

used to define after how many seconds the analysis will

↪→ terminate unless

otherwise specified at submission.

default = 300

Set the critical timeout expressed in (relative!) seconds. It

↪→ will be added

to the default timeout above and after this timeout is hit

Cuckoo will consider the analysis failed and it will shutdown

↪→ the machine

no matter what. When this happens the analysis results will most

↪→ likely

be lost.

critical = 60

Maximum time to wait for virtual machine status change. For

↪→ example when

shutting down a vm. Default is 300 seconds.

vm_state = 300

[log_rotation]

Activate log rotation for cuckoo.log and process.log.

enabled = on

Keep 30 days of log history (default is 7).

backup_count = 30

[tmpfs]

only if you using volatility to speedup IO

mkdir -p /mnt/tmpfs

mount -t tmpfs -o size=50g ramfs /mnt/tmpfs

chown cape:cape /mnt/tmpfs

#

vim /etc/fstab

tmpfs /mnt/tmpfs tmpfs nodev,nosuid,noexec,nodiratime,size=50g 0

↪→ 0

#

Add crontab with

@reboot chown cape:cape /mnt/tmpfs -R

enabled = off

path = /mnt/tmpfs/

in mb

freespace = 2000

/opt/CAPEv2/custom/conf/kvm.conf

[kvm]

Specify a comma-separated list of available machines to be used.

46

↪→ For each

specified ID you have to define a dedicated section containing

↪→ the details

on the respective machine. (E.g. cuckoo1,cuckoo2,cuckoo3)

machines = win7,win10

interface = virbr1

[win7]

Specify the label name of the current machine as specified in

↪→ your

libvirt configuration.

label = win7

Specify the operating system platform used by current machine

[windows/darwin/linux].

platform = windows

Specify the IP address of the current virtual machine. Make sure

↪→ that the

IP address is valid and that the host machine is able to reach

↪→ it. If not,

the analysis will fail. You may want to configure your network

↪→ settings in

/etc/libvirt/<hypervisor>/networks/

ip = 192.168.50.91

(Optional) Specify tags to display

Tags may be used to specify on which guest machines a sample

↪→ should be run

tags = windows_xp_sp3,acrobat_reader_6

(Optional) Specify the snapshot name to use. If you do not

↪→ specify a snapshot

name, the KVM MachineManager will use the current snapshot.

Example (Snapshot1 is the snapshot name):

snapshot = WIN7_con_DNS

(Optional) Specify the name of the network interface that should

↪→ be used

when dumping network traffic from this machine with tcpdump. If

↪→ specified,

overrides the default interface specified in auxiliary.conf

Example (virbr0 is the interface name):

interface = virbr1

(Optional) Specify the IP of the Result Server, as your virtual

↪→ machine sees it.

47

The Result Server will always bind to the address and port

↪→ specified in cuckoo.conf,

however you could set up your virtual network to use NAT/PAT, so

↪→ you can specify here

the IP address for the Result Server as your machine sees it. If

↪→ you don’t specify an

address here, the machine will use the default value from cuckoo

↪→ .conf.

NOTE: if you set this option you have to set result server IP to

↪→ 0.0.0.0 in cuckoo.conf.

Example:

resultserver_ip = 192.168.50.1

(Optional) Specify the port for the Result Server, as your

↪→ virtual machine sees it.

The Result Server will always bind to the address and port

↪→ specified in cuckoo.conf,

however you could set up your virtual network to use NAT/PAT, so

↪→ you can specify here

the port for the Result Server as your machine sees it. If you

↪→ don’t specify a port

here, the machine will use the default value from cuckoo.conf.

Example:

resultserver_port = 2042

Set the machine architecture

Required to auto select proper machine architecture for sample

x64 or x86

arch = x64

[win10]

Specify the label name of the current machine as specified in

↪→ your

libvirt configuration.

label = win10

Specify the operating system platform used by current machine

[windows/darwin/linux].

platform = windows

Specify the IP address of the current virtual machine. Make sure

↪→ that the

IP address is valid and that the host machine is able to reach

↪→ it. If not,

the analysis will fail. You may want to configure your network

↪→ settings in

/etc/libvirt/<hypervisor>/networks/

ip = 192.168.50.121

48

(Optional) Specify tags to display

Tags may be used to specify on which guest machines a sample

↪→ should be run

tags = windows_xp_sp3,acrobat_reader_6

(Optional) Specify the snapshot name to use. If you do not

↪→ specify a snapshot

name, the KVM MachineManager will use the current snapshot.

Example (Snapshot1 is the snapshot name):

snapshot = VNCCONPASS

#snapshot = SINDEFENDER

(Optional) Specify the name of the network interface that should

↪→ be used

when dumping network traffic from this machine with tcpdump. If

↪→ specified,

overrides the default interface specified in auxiliary.conf

Example (virbr0 is the interface name):

interface = virbr1

(Optional) Specify the IP of the Result Server, as your virtual

↪→ machine sees it.

The Result Server will always bind to the address and port

↪→ specified in cuckoo.conf,

however you could set up your virtual network to use NAT/PAT, so

↪→ you can specify here

the IP address for the Result Server as your machine sees it. If

↪→ you don’t specify an

address here, the machine will use the default value from cuckoo

↪→ .conf.

NOTE: if you set this option you have to set result server IP to

↪→ 0.0.0.0 in cuckoo.conf.

Example:

resultserver_ip = 192.168.50.1

(Optional) Specify the port for the Result Server, as your

↪→ virtual machine sees it.

The Result Server will always bind to the address and port

↪→ specified in cuckoo.conf,

however you could set up your virtual network to use NAT/PAT, so

↪→ you can specify here

the port for the Result Server as your machine sees it. If you

↪→ don’t specify a port

here, the machine will use the default value from cuckoo.conf.

Example:

resultserver_port = 2042

Set the machine architecture

49

Required to auto select proper machine architecture for sample

x64 or x86

arch = x64

/opt/CAPEv2/custom/conf/routing.conf

[routing]

Default network routing mode; "none", "internet", or "vpn_name".

In none mode we don’t do any special routing - the VM doesn’t

↪→ have any

network access (this has been the default actually for quite a

↪→ while).

In internet mode by default all the VMs will be routed through

↪→ the network

interface configured below (the "dirty line").

And in VPN mode by default the VMs will be routed through the

↪→ VPN identified

by the given name of the VPN.

Note that just like enabling VPN configuration setting this

↪→ option to

anything other than "none" requires one to run utils/rooter.py

↪→ as root next

to the CAPE instance (as it’s required for setting up the

↪→ routing).

route = internet

Network interface that allows a VM to connect to the entire

↪→ internet, the

"dirty line" so to say. Note that, just like with the VPNs, this

↪→ will allow

malicious traffic through your network. So think twice before

↪→ enabling it.

(For example, to route all VMs through eth0 by default: "

↪→ internet = eth0").

internet = ens18

Routing table name/id for "dirty line" interface. If "dirty line

↪→ " is

also default gateway in the system you can leave "main" value.

↪→ Otherwise add

new routing table by adding "<id> <name>" line to /etc/iproute2/

↪→ rt_tables

(e.g., "200 eth0"). ID and name must be unique across the system

↪→ (refer to

/etc/iproute2/rt_tables for existing names and IDs).

rt_table = main

50

When using "dirty line", you can reject forwarding to a certain

↪→ network segment.

For example, a request targeting 192.168.12.1/24,172.16.22.1/24

↪→ will not be

forwarded, but will be rejected:

"reject_segments = 192.168.12.1/24,172.16.22.1/24"

reject_segments = none

When ussing "dirty line", you can reject guest access a certain

↪→ port.

For example, a request targeting host’s port 8000 and 8080 will

↪→ be rejected:

"reject_hostports = 8000,8080"

reject_hostports = none

To route traffic through multiple network interfaces CAPE uses

Policy Routing with separate routing table for each output

↪→ interface

(VPN or "dirty line"). If this option is enabled CAPE on start

↪→ will try

to automatically initialise routing tables by copying routing

↪→ entries from

main routing table to the new routing tables. Depending on your

↪→ network/vpn

configuration this might not be sufficient. In such case you

↪→ would need to

initialise routing tables manually. Note that enabling this

↪→ option won’t

affect main routing table.

auto_rt = no

The drop route basically drops any outgoing network (except for

↪→ CAPE

traffic) whereas the regular none route still allows a VM to

↪→ access its own

subnet (e.g., 192.168.122.1/24). It is disabled by default as it

↪→ does require

the optional rooter to run (unlike the none route, where

↪→ literally nothing

happens). One can either explicitly enable the drop route or if

↪→ the rooter

is enabled anyway, it is automatically enabled.

drop = no

Should check if the inteface is up

verify_interface = yes

[inetsim]

51

Inetsim quick deploy, chose your vm manager if is not kvm

wget https://googledrive.com/host/0B6fULLT_NpxMQ1Rrb1drdW42SkE/

↪→ remnux-6.0-ova-public.ova

tar xvf remnux-6.0-ova-public.ova

qemu-img convert -O qcow2 REMnuxV6-disk1.vmdk remnux.qcow2

enabled = no

server = 192.168.1.2

dnsport = 53

interface = virbr1

Redirect TCP ports (should we also support UDP?). If specified,

↪→ this should

represent whitespace-separated src:dst pairs. E.g., "80:8080

↪→ 443:8080" will

redirect all 80/443 traffic to 8080 on the specified InetSim

↪→ host.

Source port range redirection is also supported. E.g.,

↪→ "996-2041:80" will

redirect all traffic directed at ports between 996 and 2041

↪→ inclusive to port 80

on the specified InetSim host.

ports =

[tor]

enabled = no

dnsport = 5353

proxyport = 9040

interface = virbr1

[vpn]

By default we disable VPN support as it requires running utils/

↪→ rooter.py as

root next to cuckoo.py (which should run as regular user).

enabled = yes

select one of the configured vpns randomly

random_vpn = no

Comma-separated list of the available VPNs.

vpns = vpn0

[vpn0]

Name of this VPN. The name is represented by the filepath to the

configuration file, e.g., cuckoo would represent /etc/openvpn/

↪→ cuckoo.conf

Note that you can’t assign the names "none" and "internet" as

↪→ those would

52

conflict with the routing section in cuckoo.conf.

name = vpn0

The description of this VPN which will be displayed in the web

↪→ interface.

Can be used to for example describe the country where this VPN

↪→ ends up.

description = openvpn_tunnel

The tun device hardcoded for this VPN. Each VPN *must* be

↪→ configured to use

a hardcoded/persistent tun device by explicitly adding the line

↪→ "dev tunX"

to its configuration (e.g., /etc/openvpn/vpn1.conf) where X in

↪→ tunX is a

unique number between 0 and your lucky number of choice.

interface = tun0

Routing table name/id for this VPN. If table name is used it *

↪→ must* be

added to /etc/iproute2/rt_tables as "<id> <name>" line (e.g.,

↪→ "201 tun0").

ID and name must be unique across the system (refer /etc/

↪→ iproute2/rt_tables

for existing names and IDs).

rt_table = tun0

[socks5]

By default we disable socks5 support as it requires running

↪→ utils/rooter.py as

root next to cuckoo.py (which should run as regular user).

enabled = no

select one of the configured socks5 proxies randomly

random_socks5 = no

Comma-separated list of the available proxies.

proxies = socks_ch

[socks_ch]

name = ch_socks

description = ch_socks

proxyport = 5008

dnsport = 10053

/opt/CAPEv2/custom/conf/processing.conf

53

Enable or disable the available processing modules [on/off].

If you add a custom processing module to your Cuckoo setup, you

↪→ have to add

a dedicated entry in this file, or it won’t be executed.

You can also add additional options under the section of your

↪→ module and

they will be available in your Python class.

Requires dependencies of software in vm as by:

https://www.fireeye.com/blog/threat-research/2016/02/

↪→ greater_visibilityt.html

Windows 7 SP1, .NET at least 4.5, powershell 5 preferly over v4

KB3109118 - Script block logging back port update for WMF4

x64 - https://cuckoo.sh/vmcloak/Windows6.1-KB3109118-v4-x64.msu

x32 - https://cuckoo.sh/vmcloak/Windows6.1-KB3109118-v4-x86.msu

KB2819745 - WMF 4 (Windows Management Framework version 4)

↪→ update for Windows 7

x64 - https://cuckoo.sh/vmcloak/Windows6.1-KB2819745-x64-

↪→ MultiPkg.msu

x32 - https://cuckoo.sh/vmcloak/Windows6.1-KB2819745-x86-

↪→ MultiPkg.msu

KB3191566 - https://www.microsoft.com/en-us/download/details.

↪→ aspx?id=54616

You should create following registry entries

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\

↪→ PowerShell\ModuleLogging\ModuleNames" /v * /t REG_SZ /d * /f

↪→ /reg:64

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\

↪→ PowerShell\ScriptBlockLogging" /v EnableScriptBlockLogging /

↪→ t REG_DWORD /d 00000001 /f /reg:64

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\

↪→ PowerShell\Transcription" /v EnableTranscripting /t

↪→ REG_DWORD /d 00000001 /f /reg:64

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\

↪→ PowerShell\Transcription" /v OutputDirectory /t REG_SZ /d C

↪→ :\PSTranscipts /f /reg:64

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\

↪→ PowerShell\Transcription" /v EnableInvocationHeader /t

↪→ REG_DWORD /d 00000001 /f /reg:64

exclude files that doesn’t match safe extension and ignore their

↪→ files from processing inside of other modules like CAPE.py

[antiransomware]

enabled = no

ignore all files with extension found more than X

skip_number = 30

54

[curtain]

enabled = no

[sysmon]

enabled = no

[analysisinfo]

enabled = yes

FLARE capa -> to update rules utils/community.py -cr

install -> cd /tmp && git clone --recurse-submodules https://

↪→ github.com/fireeye/capa.git && cd capa && git submodule

↪→ update --init rules && python -m pip3 install .

[flare_capa]

enabled = no

Generate it always or generate on demand only(user need to click

↪→ button to generate it), still should be enabled to use this

↪→ feature on demand

on_demand = no

Analyze binary payloads

static = no

Analyze CAPE payloads

cape = no

Analyze ProcDump

procdump = no

[decompression]

enabled = no

[dumptls]

enabled = no

[behavior]

enabled = yes

Toggle specific modules within the BehaviorAnalysis class

anomaly = yes

processtree = yes

summary = yes

enhanced = yes

encryptedbuffers = yes

Should the server use a compressed version of behavioural logs?

↪→ This helps

in saving space in Mongo, accelerates searchs and reduce the

↪→ size of the

final JSON report.

loop_detection = no

The number of calls per process to process. 0 switches the limit

↪→ off.

55

10000 api calls should be processed in less than 2 minutes

analysis_call_limit = 0

Use ram to boost processing speed. You will need more than 20GB

↪→ of RAM for this feature.

Please read "performance" section in the documentation.

ram_boost = no

https://capev2.readthedocs.io/en/latest/usage/

↪→ patterns_replacement.html

replace_patterns = no

[debug]

enabled = yes

[detections]

enabled = yes

Signatures

behavior = yes

yara = yes

suricata = yes

virustotal = yes

clamav = no

[dropped]

enabled = yes

Amount of text to carve from plaintext files (bytes)

buffer = 16384

It is intended in CAPE for procdump to replace procmemory...

[procdump]

enabled = yes

... but this mechanism may still be switched on

[procmemory]

enabled = yes

strings = yes

[procmon]

enabled = no

[memory]

enabled = no

[usage]

enabled = no

[network]

enabled = yes

sort_pcap = yes

56

DNS whitelisting to ignore domains/IPs configured in network.py

This should be disabled when utilizing InetSim/Remnux as we end

↪→ up resolving

the IP from fakedns which would then remove all domains

↪→ associated with that

resolved IP

dnswhitelist = yes

additional entries

dnswhitelist_file = extra/whitelist_domains.txt

ipwhitelist = yes

ipwhitelist_file = extra/whitelist_ips.txt

Should the server use a compressed version of behavioural logs?

↪→ This helps

in saving space in Mongo, accelerates searchs and reduce the

↪→ size of the

final JSON report.

[loop_detection]

enabled = no

[static]

enabled = yes

Scan for UserDB.TXT signature matches

userdb_signature = no

Enable a WHOIS lookup for the target domain of a URL analyses

whois = yes

Process files not bigger than value below in Mb. We saw that

↪→ after 90Mb it has biggest delay

max_file_size = 90

[strings]

enabled = yes

on_demand = no

nullterminated_only = no

minchars = 5

[trid]

Specify the path to the trid binary to use for static analysis.

enabled = no

identifier = data/trid/trid

definitions = data/trid/triddefs.trd

[die]

Detect it Easy

enabled = no

binary = /usr/bin/diec

[targetinfo]

57

enabled = yes

[virustotal]

enabled = yes

on_demand = no

timeout = 60

remove empty detections

remove_empty = yes

Add your VirusTotal API key here. The default API key, kindly

↪→ provided

by the VirusTotal team, should enable you with a sufficient

↪→ throughput

and while being shared with all our users, it shouldn’t affect

↪→ your use.

key =

↪→ a0283a2c3d55728300d064874239b5346fb991317e8449fe43c902879d758088

↪→
do_file_lookup = yes

do_url_lookup = yes

urlscrub = (^http:\/\/serw\.clicksor\.com\/redir\.php\?url=|&

↪→ InjectedParam=.+$)

[suricata]

Notes on getting this to work check install_suricata function:

https://github.com/doomedraven/Tools/blob/master/Sandbox/cape2.

↪→ sh

enabled = yes

#Runmode "cli" or "socket"

runmode = socket

#Outputfiles

if evelog is specified, it will be used instead of the per-

↪→ protocol log files

evelog = eve.json

per-protocol log files

#

#alertlog = alert.json

#httplog = http.json

#tlslog = tls.json

#sshlog = ssh.json

#dnslog = dns.json

fileslog = files-json.log

filesdir = files

Amount of text to carve from plaintext files (bytes)

buffer = 8192

#Used for creating an archive of extracted files

58

7zbin = /usr/bin/7z

zippass = infected

##Runmode "cli" options

bin = /usr/bin/suricata

conf = /etc/suricata/suricata.yaml

##Runmode "socket" Options

socket_file = /tmp/suricata-command.socket

[cif]

enabled = no

url of CIF server

url = https://your-cif-server.com/api

CIF API key

key = your-api-key-here

time to wait for server to respond, in seconds

timeout = 60

minimum confidence level of returned results:

25=not confident, 50=automated, 75=somewhat confident, 85=very

↪→ confident, 95=certain

defaults to 85

confidence = 85

don’t log queries by default, set to ’no’ to log queries

nolog = yes

max number of results per query

per_lookup_limit = 20

max number of queries per analysis

per_analysis_limit = 200

[CAPE]

enabled = yes

Ex targetinfo standalone module

targetinfo = yes

Ex dropped standalone module

dropped = yes

Ex procdump standalone module

procdump = yes

Amount of text to carve from plaintext files (bytes)

buffer = 8192

Process files not bigger than value below in Mb. We saw that

↪→ after 90Mb it has biggest delay

max_file_size = 90

Scan for UserDB.TXT signature matches

userdb_signature = no

https://capev2.readthedocs.io/en/latest/usage/

↪→ patterns_replacement.html

replace_patterns = no

Deduplicate screenshots

59

You need to install dependency ImageHash = "4.2.1" or newer

[deduplication]

#

Available hashs functions:

ahash: Average hash

phash: Perceptual hash

dhash: Difference hash

whash-haar: Haar wavelet hash

whash-db4: Daubechies wavelet hash

enabled = no

hashmethod = ahash

[vba2graph]

Mac - brew install graphviz

Ubuntu - sudo apt-get install graphviz

Arch - sudo pacman -S graphviz+

sudo pip3 install networkx>=2.1 graphviz>=0.8.4 pydot>=1.2.4

enabled = yes

on_demand = yes

ja3 finger print db with descriptions

https://github.com/trisulnsm/trisul-scripts/blob/master/lua/

↪→ frontend_scripts/reassembly/ja3/prints/ja3fingerprint.json

[ja3]

ja3_path = data/ja3/ja3fingerprint.json

[maliciousmacrobot]

https://maliciousmacrobot.readthedocs.io

Install mmbot

sudo pip3 install mmbot

Create/Set required paths

Populate benign_path and malicious_path with appropriate macro

↪→ maldocs (try the tests/samples in the github)

https://github.com/egaus/MaliciousMacroBot/tree/master/tests/

↪→ samples

Create modeldata.pickle with your maldocs (this does not append

↪→ to the model, it overwrites it)

#

mmb = MaliciousMacroBot(benign_path, malicious_path, model_path,

↪→ retain_sample_contents=False)

result = mmb.mmb_init_model(modelRebuild=True)

#

Copy your model file and vocab.txt to your model_path

enabled = no

benign_path = /opt/cuckoo/data/mmbot/benign

malicious_path = /opt/cuckoo/data/mmbot/malicious

model_path = /opt/cuckoo/data/mmbot/model

60

[xlsdeobf]

pip3 install git+https://github.com/DissectMalware/

↪→ XLMMacroDeobfuscator.git

enabled = no

on_demand = no

[boxjs]

enabled = no

timeout = 60

url = http://your_super_box_js:9000

Extractors

[mwcp]

enabled = yes

modules_path = modules/processing/parsers/mwcp/

[ratdecoders]

enabled = yes

modules_path = modules/processing/parsers/RATDecoders/

[malduck]

enabled = yes

modules_path = modules/processing/parsers/malduck/

[CAPE_extractors]

enabled = yes

Must ends with /

modules_path = modules/processing/parsers/CAPE/

[reversinglabs]

enabled = no

url =

key =

[script_log_processing]

enabled = yes

Dump PE’s overlay info

[overlay]

enabled = no

[floss]

enabled = no

on_demand = yes

static_strings = no

stack_strings = yes

decoded_strings = yes

tight_strings = yes

61

min_length = 5

Download FLOSS signatures from https://github.com/mandiant/flare

↪→ -floss/tree/master/sigs

sigs_path = data/flare-signatures

/opt/CAPEv2/custom/conf/reporting.conf

Enable or disable the available reporting modules [on/off].

If you add a custom reporting module to your Cuckoo setup, you

↪→ have to add

a dedicated entry in this file, or it won’t be executed.

You can also add additional options under the section of your

↪→ module and

they will be available in your Python class.

[cents]

enabled = no

on_demand = no

starting signature id for created Suricata rules

start_sid = 1000000

[mitre]

enabled = no

https://github.com/geekscrapy/binGraph

requires -> apt-get install python-tk

[bingraph]

enabled = yes

on_demand = yes

binary = yes

geenrate bingraphs for cape/procdumps

cape = yes

procdump = yes

[pcap2cert]

enabled = yes

[litereport]

enabled = no

keys_to_copy = CAPE procdump info signatures dropped static target

↪→ network shot malscore ttps

behavior_keys_to_copy = processtree summary

[jsondump]

enabled = yes

use the c-optimized JSON encoder, requires fitting entire JSON

↪→ results in memory

62

ram_boost = yes

indent = 4

encoding = latin-1

[reporthtml]

required for the WSGI interface

enabled = no

[reporthtmlsummary]

much smaller, faster report generation, omits API logs and is

↪→ non-interactive

enabled = no

[reportpdf]

Note that this requires reporthtmlsummary to be enabled above as

↪→ well

enabled = no

[maec41]

enabled = no

mode = overview

processtree = true

output_handles = false

static = true

strings = true

virustotal = true

deduplicate = true

[maec5]

enabled = no

[mongodb]

enabled = yes

host = 127.0.0.1

port = 27017

db = cuckoo

Set those values if you are using mongodb authentication

username =

password =

authsource = cuckoo

Automatically delete large dict values that exceed mongos 16MB

↪→ limitation

Note: This only deletes dict keys from data stored in MongoDB.

↪→ You would

still get the full dataset if you parsed the results dict in

↪→ another

63

reporting module or from the jsondump module.

fix_large_docs = yes

Use ElasticSearch as the "database" which powers Django.

NOTE: If this is enabled, MongoDB should not be enabled, unless

search only option is set to yes. Then elastic search is only

↪→ used for /search web page.

[elasticsearchdb]

enabled = no

searchonly = True

host = 192.168.153.2

port = 9200

The report data is indexed in the form of {{index-yyyy.mm.dd}}

so the below index configuration option is actually an index ’

↪→ prefix’.

index = cuckoo

username = elastic

password = tosdkA1AnO_VTWBcWa2A

use_ssl = True

verify_certs = /opt/extra_tfg/certs/http_ca.crt

[retention]

enabled = no

run at most once every this many hours (unless reporting.conf is

↪→ modified)

run_every = 6

The amount of days old a task needs to be before deleting data

Set a value to no to never delete it

memory = 14

procmemory = 62

pcap = 62

sortedpcap = 14

bsonlogs = 62

dropped = 62

screencaps = 62

reports = 62

mongo = 731

elastic = no

[syslog]

enabled = no

IP of your syslog server/listener

host = x.x.x.x

Port of your syslog server/listener

port = 514

Protocol to send data over

protocol = tcp

Store a logfile? [in reports directory]

64

logfile = yes

if yes, what logname? [Default: syslog.txt]

logname = syslog.log

[moloch]

enabled = no

base = https://172.18.100.105:8005/

node = cuckoo3

capture = /data/moloch/bin/moloch-capture

captureconf = /data/moloch/etc/config.ini

user = admin

pass = admin

realm = Moloch

[resubmitexe]

enabled = no

resublimit = 5

[compression]

enabled = yes

zipmemdump = yes

zipmemstrings = yes

zipprocdump = yes

zipprocstrings = yes

[misp]

enabled = no

apikey =

url =

#Make event published after creation?

published = no

minimal malscore, by default all

min_malscore = 0

by default 5 threads

threads =

this will retrieve information for iocs

and activate misp report download from webgui

extend_context = no

upload iocs from cuckoo to MISP

upload_iocs = no

distribution = 0

threat_level_id = 2

analysis = 2

Sections to report

Analysis ID will be appended, change

title = Iocs from cuckoo analysis:

network = no

65

ids_files = no

dropped = no

registry = no

mutexes = no

[callback]

enabled = no

will send as post data {"task_id":X}

can be coma separated urls

url = http://IP/callback

[distributed]

enabled = no

save results on master, not analyze binaries

master_storage_only = no

remove_task_on_worker = no

failed_clean = no

distributed cuckoo database, to store nodes and tasks info

db = sqlite:///dist.db

tried before declare node as dead and deactivate it

dead_count = 5

number of threads witch will retrieve files see api.py for dist

dist_threads = 4

Tags breaks distributed logic,

don’t activate it till you really know what you do

enable_tags = no

Fetch data over REST API or NFS, see docs how to setup NFS

nfs = no

CAPE auto-submission of detected samples

with a selected CAPE package.

[submitCAPE]

enabled = yes

check root keyword, if found not resubmit, allows custom

↪→ extractions

keyword = tr_extractor

distributed CAPE, only enable on clients

distributed = no

rest api url to master node

url = http://IP:8000/api/tasks/create/file/

Compress results including CAPE output

to help avoid reaching the hard 16MB MongoDB limit.

[compressresults]

enabled = yes

[tmpfsclean]

66

enabled = no

key = tr_extractor

This calls the specified command, pointing it at the report.json

↪→ as

well as setting $ENV{CAPE_TASK_ID} to the task ID of the run in

↪→ question.

#

[zexecreport]

enabled=no

command=/foo/bar.pl

run statistics, this may take more times.

[runstatistics]

enabled = no

[malheur]

enabled = no

[geolookup]

enabled = yes

/opt/CAPEv2/custom/conf/selfextract.conf

This config is to be able to enable/disable things like MSI/NSIS

↪→ /UnAutoIt etc

[general]

pefiles = yes

dotnet = yes

office = yes

java = yes

pdf = yes

lnk = yes

windows_script = yes

elf = yes

hwp = yes

Number of workers for pool to run them in parallel

max_workers = 6

sudo apt install msitools

[msi_extract]

enabled = yes

binary = /usr/bin/msiextract

timeout = 60

67

[kixtart_extract]

enabled = yes

timeout = 60

[vbe_extract]

enabled = yes

timeout = 60

[batch_extract]

enabled = yes

timeout = 60

cd /opt/CAPEv2/data/

snap install go --classic

git clone https://github.com/x0r19x91/UnAutoIt && cd UnAutoIt

GOOS="linux" GOARCH="amd64" go build -o UnAutoIt

[UnAutoIt_extract]

enabled = yes

binary = data/UnAutoIt/UnAutoIt

timeout = 60

[RarSFX_extract]

enabled = yes

timeout = 60

apt install upx-ucl

[UPX_unpack]

enabled = yes

timeout = 60

Nsis, 7Zip SFX, etc

[SevenZip_unpack]

enabled = yes

timeout = 60

sudo apt install innoextract

[Inno_extract]

enabled = yes

binary = /usr/bin/innoextract

timeout = 60

https://github.com/mstrobel/procyon/releases

[procyon]

enabled = yes

binary = data/procyon.jar

timeout = 60

sudo apt install de4dot

68

[de4dot_deobfuscate]

enabled = yes

binary = /usr/bin/de4dot

extra_args =

timeout = 60

https://github.com/SychicBoy/NETReactorSlayer/releases

[eziriz_deobfuscate]

enabled = yes

binary = data/NETReactorSlayer.CLI

extra_args = --no-pause True

timeout = 60

[office_one]

enabled = yes

timeout = 60

/opt/CAPEv2/custom/conf/auxiliary.conf

Requires dependencies of software in vm as by:

https://www.fireeye.com/blog/threat-research/2016/02/

↪→ greater_visibilityt.html

Windows 7 SP1, .NET at least 4.5, powershell 5 preferly over v4

KB3109118 - Script block logging back port update for WMF4

x64 - https://cuckoo.sh/vmcloak/Windows6.1-KB3109118-v4-x64.msu

x32 - https://cuckoo.sh/vmcloak/Windows6.1-KB3109118-v4-x86.msu

KB2819745 - WMF 4 (Windows Management Framework version 4)

↪→ update for Windows 7

x64 - https://cuckoo.sh/vmcloak/Windows6.1-KB2819745-x64-

↪→ MultiPkg.msu

x32 - https://cuckoo.sh/vmcloak/Windows6.1-KB2819745-x86-

↪→ MultiPkg.msu

KB3191566 - https://www.microsoft.com/en-us/download/details.

↪→ aspx?id=54616

You should create following registry entries

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\

↪→ PowerShell\ModuleLogging\ModuleNames" /v * /t REG_SZ /d * /f

↪→ /reg:64

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\

↪→ PowerShell\ScriptBlockLogging" /v EnableScriptBlockLogging /

↪→ t REG_DWORD /d 00000001 /f /reg:64

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\

↪→ PowerShell\Transcription" /v EnableTranscripting /t

↪→ REG_DWORD /d 00000001 /f /reg:64

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\

↪→ PowerShell\Transcription" /v OutputDirectory /t REG_SZ /d C

↪→ :\PSTranscipts /f /reg:64

69

reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\

↪→ PowerShell\Transcription" /v EnableInvocationHeader /t

↪→ REG_DWORD /d 00000001 /f /reg:64

Modules to be enabled or not inside of the VM

[auxiliary_modules]

browser = yes

curtain = no

digisig = yes

disguise = yes

evtx = no

human_windows = yes

human_linux = no

procmon = no

screenshots_windows = yes

screenshots_linux = no

sysmon = no

tlsdump = yes

usage = no

file_pickup = no

permissions = no

pre_script = no

during_script = no

stap = no

filecollector = yes

This is only useful in case you use KVM’s dnsmasq. You need to

↪→ change your range inside of analyzer/windows/modules/

↪→ auxiliary/disguise.py. Disguise must be enabled

windows_static_route = no

[sniffer]

Enable or disable the use of an external sniffer (tcpdump) [yes/

↪→ no].

enabled = yes

enable remote tcpdump support

remote = no

host = root@192.168.50.1

Specify the path to your local installation of tcpdump. Make

↪→ sure this

path is correct.

tcpdump = /usr/bin/tcpdump

Specify the network interface name on which tcpdump should

↪→ monitor the

traffic. Make sure the interface is active.

interface = virbr1

70

Specify a Berkeley packet filter to pass to tcpdump.

bpf = not arp

[gateways]

#RTR1 = 192.168.153.1

#RTR2 = 192.168.153.5

#INETSIM = 192.168.153.14

[virustotaldl]

adds an option in the web interface to upload samples via

↪→ VirusTotal

downloads for a comma-separated list of MD5/SHA1/SHA256 hashes

enabled = no

note that unlike the VirusTotal processing module, the key

↪→ required

here is a Intelligence API key, not a Public API key

#dlintelkey = SomeKeyWithDLAccess

dlpath = /tmp/

/etc/nginx/sites-available/capesite

map $http_upgrade $connection_upgrade {

default upgrade;

’’ close;

}

upstream nodeserver1 {

CAPE

#server 192.168.153.5:8000;

server 127.0.0.1:8000;

}

upstream nodeserver2 {

guac-session

server 127.0.0.1:8008;

}

server {

listen 192.168.153.5:3333;

client_max_body_size 1g;

#proxy_pass_header X-CSRFToken;

location / {

proxy_pass http://nodeserver1;

#proxy_set_header Host $host;
proxy_set_header Host $http_host;
proxy_set_header X-Remote-User $remote_user;
proxy_set_header X-Real-IP $remote_addr;

71

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for
↪→ ;

}

location /static/ {

alias /opt/CAPEv2/web/static/;

}

location /guac {

proxy_pass http://nodeserver2;

proxy_set_header Host $host;
#proxy_set_header Host $http_host;
proxy_set_header X-Real-IP $remote_addr;
proxy_buffering off;

proxy_http_version 1.1;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for
↪→ ;

proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $http_connection;
client_max_body_size 1g;

#access_log off;

}

location /guac/playback/recfile {

alias /var/www/guacrecordings/;

autoindex on;

autoindex_exact_size off;

autoindex_localtime on;

}

}

/etc/nginx/sites-available/default

##

You should look at the following URL’s in order to grasp a solid

↪→ understanding

of Nginx configuration files in order to fully unleash the power

↪→ of Nginx.

https://www.nginx.com/resources/wiki/start/

https://www.nginx.com/resources/wiki/start/topics/tutorials/

↪→ config_pitfalls/

https://wiki.debian.org/Nginx/DirectoryStructure

#

In most cases, administrators will remove this file from sites-

↪→ enabled/ and

leave it as reference inside of sites-available where it will

↪→ continue to be

updated by the nginx packaging team.

#

This file will automatically load configuration files provided

72

↪→ by other

applications, such as Drupal or Wordpress. These applications

↪→ will be made

available underneath a path with that package name, such as /

↪→ drupal8.

#

Please see /usr/share/doc/nginx-doc/examples/ for more detailed

↪→ examples.

##

Default server configuration

#

server {

listen 80 default_server;

listen [::]:80 default_server;

SSL configuration

#

listen 443 ssl default_server;

listen [::]:443 ssl default_server;

#

Note: You should disable gzip for SSL traffic.

See: https://bugs.debian.org/773332

#

Read up on ssl_ciphers to ensure a secure configuration.

See: https://bugs.debian.org/765782

#

Self signed certs generated by the ssl-cert package

Don’t use them in a production server!

#

include snippets/snakeoil.conf;

root /var/www/html;

Add index.php to the list if you are using PHP

index index.html index.htm index.nginx-debian.html;

server_name _;

#location / {

First attempt to serve request as file, then

as directory, then fall back to displaying a 404.

try_files $uri $uri/ =404;

#}

location /static/ {

alias /opt/CAPEv2/web/static/;

}

73

location /guac {

proxy_pass http://nodeserver2;

proxy_set_header Host $host;
#proxy_set_header Host $http_host;
proxy_set_header X-Real-IP $remote_addr;
proxy_buffering off;

proxy_http_version 1.1;

proxy_set_header X-Forwarded-For

↪→ $proxy_add_x_forwarded_for;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $http_connection;
client_max_body_size 1g;

#access_log off;

}

location /guac/playback/recfile {

alias /var/www/guacrecordings/;

autoindex on;

autoindex_exact_size off;

autoindex_localtime on;

}

pass PHP scripts to FastCGI server

#

#location ~ \.php$ {

include snippets/fastcgi-php.conf;

#

With php-fpm (or other unix sockets):

fastcgi_pass unix:/run/php/php7.4-fpm.sock;

With php-cgi (or other tcp sockets):

fastcgi_pass 127.0.0.1:9000;

#}

deny access to .htaccess files, if Apache’s document root

concurs with nginx’s one

#

#location ~ /\.ht {

deny all;

#}

}

Virtual Host configuration for example.com

#

You can move that to a different file under sites-available/ and

↪→ symlink that

to sites-enabled/ to enable it.

74

#

#server {

listen 80;

listen [::]:80;

#

server_name example.com;

#

root /var/www/example.com;

index index.html;

#

location / {

try_files $uri $uri/ =404;

}

#}

/etc/nginx/sites-available/capesite

map $http_upgrade $connection_upgrade {

default upgrade;

’’ close;

}

upstream nodeserver1 {

CAPE

#server 192.168.153.5:8000;

server 127.0.0.1:8000;

}

upstream nodeserver2 {

guac-session

server 127.0.0.1:8008;

}

server {

listen 192.168.153.5:3333;

client_max_body_size 1g;

#proxy_pass_header X-CSRFToken;

location / {

proxy_pass http://nodeserver1;

#proxy_set_header Host $host;
proxy_set_header Host $http_host;
proxy_set_header X-Remote-User $remote_user;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for

↪→ ;

}

location /static/ {

alias /opt/CAPEv2/web/static/;

75

}

location /guac {

proxy_pass http://nodeserver2;

proxy_set_header Host $host;
#proxy_set_header Host $http_host;
proxy_set_header X-Real-IP $remote_addr;
proxy_buffering off;

proxy_http_version 1.1;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for
↪→ ;

proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $http_connection;
client_max_body_size 1g;

#access_log off;

}

location /guac/playback/recfile {

alias /var/www/guacrecordings/;

autoindex on;

autoindex_exact_size off;

autoindex_localtime on;

}

}

/etc/libvirt/qemu/win10.xml

<!--

WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY

↪→ TO BE

OVERWRITTEN AND LOST. Changes to this xml configuration should be

↪→ made using:

virsh edit win10

or other application using the libvirt API.

-->

<domain type=’kvm’ xmlns:qemu=’http://libvirt.org/schemas/domain/

↪→ qemu/1.0’>

<name>win10</name>

<uuid>7617786b-7418-4029-a4ca-1930beeebb5d</uuid>

<metadata>

<libosinfo:libosinfo xmlns:libosinfo="http://libosinfo.org/

↪→ xmlns/libvirt/domain/1.0">

<libosinfo:os id="http://microsoft.com/win/10"/>

</libosinfo:libosinfo>

</metadata>

<memory unit=’KiB’>8388608</memory>

<currentMemory unit=’KiB’>8388608</currentMemory>

<vcpu placement=’static’>2</vcpu>

76

<sysinfo type=’smbios’>

<bios>

<entry name=’vendor’>SeaBIOS</entry>

<entry name=’version’>07.08</entry>

<entry name=’date’>12/25/2012</entry>

<entry name=’release’>2.8</entry>

</bios>

<system>

<entry name=’manufacturer’>ASUSTeK COMPUTER INC.</entry>

<entry name=’product’>CG8270</entry>

<entry name=’version’>Rev X.0x</entry>

<entry name=’serial’>MT7023012300339</entry>

<entry name=’uuid’>7617786b-7418-4029-a4ca-1930beeebb5d</

↪→ entry>

<entry name=’sku’>Not Specified</entry>

<entry name=’family’>ASUS</entry>

</system>

</sysinfo>

<os>

<type arch=’x86_64’ machine=’pc-q35-7.1’>hvm</type>

<boot dev=’hd’/>

</os>

<features>

<acpi/>

<apic/>

<hyperv mode=’custom’>

<relaxed state=’on’/>

<vapic state=’on’/>

<spinlocks state=’on’ retries=’8191’/>

</hyperv>

<vmport state=’off’/>

</features>

<cpu mode=’custom’ match=’exact’ check=’partial’>

<model fallback=’allow’>SandyBridge</model>

<topology sockets=’1’ dies=’1’ cores=’2’ threads=’1’/>

</cpu>

<clock offset=’localtime’>

<timer name=’rtc’ tickpolicy=’catchup’/>

<timer name=’pit’ tickpolicy=’delay’/>

<timer name=’hpet’ present=’no’/>

<timer name=’hypervclock’ present=’yes’/>

</clock>

<on_poweroff>destroy</on_poweroff>

<on_reboot>restart</on_reboot>

<on_crash>destroy</on_crash>

<pm>

<suspend-to-mem enabled=’no’/>

<suspend-to-disk enabled=’no’/>

77

</pm>

<devices>

<emulator>/usr/bin/qemu-system-x86_64</emulator>

<disk type=’file’ device=’disk’>

<driver name=’qemu’ type=’qcow2’ cache=’none’ discard=’unmap

↪→ ’/>

<source file=’/opt/VMs/win10.qcow2’/>

<target dev=’sda’ bus=’sata’/>

<address type=’drive’ controller=’0’ bus=’0’ target=’0’ unit

↪→ =’0’/>

</disk>

<controller type=’usb’ index=’0’ model=’qemu-xhci’ ports=’15’>

<address type=’pci’ domain=’0x0000’ bus=’0x02’ slot=’0x00’

↪→ function=’0x0’/>

</controller>

<controller type=’pci’ index=’0’ model=’pcie-root’/>

<controller type=’pci’ index=’1’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

<target chassis=’1’ port=’0x10’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x02’

↪→ function=’0x0’ multifunction=’on’/>

</controller>

<controller type=’pci’ index=’2’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

<target chassis=’2’ port=’0x11’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x02’

↪→ function=’0x1’/>

</controller>

<controller type=’pci’ index=’3’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

<target chassis=’3’ port=’0x12’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x02’

↪→ function=’0x2’/>

</controller>

<controller type=’pci’ index=’4’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

<target chassis=’4’ port=’0x13’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x02’

↪→ function=’0x3’/>

</controller>

<controller type=’pci’ index=’5’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

<target chassis=’5’ port=’0x14’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x02’

↪→ function=’0x4’/>

</controller>

<controller type=’pci’ index=’6’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

78

<target chassis=’6’ port=’0x15’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x02’

↪→ function=’0x5’/>

</controller>

<controller type=’pci’ index=’7’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

<target chassis=’7’ port=’0x16’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x02’

↪→ function=’0x6’/>

</controller>

<controller type=’pci’ index=’8’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

<target chassis=’8’ port=’0x17’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x02’

↪→ function=’0x7’/>

</controller>

<controller type=’pci’ index=’9’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

<target chassis=’9’ port=’0x18’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x03’

↪→ function=’0x0’ multifunction=’on’/>

</controller>

<controller type=’pci’ index=’10’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

<target chassis=’10’ port=’0x19’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x03’

↪→ function=’0x1’/>

</controller>

<controller type=’pci’ index=’11’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

<target chassis=’11’ port=’0x1a’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x03’

↪→ function=’0x2’/>

</controller>

<controller type=’pci’ index=’12’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

<target chassis=’12’ port=’0x1b’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x03’

↪→ function=’0x3’/>

</controller>

<controller type=’pci’ index=’13’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

<target chassis=’13’ port=’0x1c’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x03’

↪→ function=’0x4’/>

</controller>

<controller type=’pci’ index=’14’ model=’pcie-root-port’>

<model name=’pcie-root-port’/>

79

<target chassis=’14’ port=’0x1d’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x03’

↪→ function=’0x5’/>

</controller>

<controller type=’sata’ index=’0’>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x1f’

↪→ function=’0x2’/>

</controller>

<controller type=’virtio-serial’ index=’0’>

<address type=’pci’ domain=’0x0000’ bus=’0x03’ slot=’0x00’

↪→ function=’0x0’/>

</controller>

<interface type=’network’>

<mac address=’2a:41:86:69:34:da’/>

<source network=’hostonly’/>

<model type=’e1000e’/>

<address type=’pci’ domain=’0x0000’ bus=’0x01’ slot=’0x00’

↪→ function=’0x0’/>

</interface>

<serial type=’pty’>

<target type=’isa-serial’ port=’0’>

<model name=’isa-serial’/>

</target>

</serial>

<console type=’pty’>

<target type=’serial’ port=’0’/>

</console>

<channel type=’spicevmc’>

<target type=’virtio’ name=’com.redhat.spice.0’/>

<address type=’virtio-serial’ controller=’0’ bus=’0’ port

↪→ =’1’/>

</channel>

<input type=’tablet’ bus=’usb’>

<address type=’usb’ bus=’0’ port=’1’/>

</input>

<input type=’mouse’ bus=’ps2’/>

<input type=’keyboard’ bus=’ps2’/>

<graphics type=’spice’ autoport=’yes’>

<listen type=’address’/>

</graphics>

<graphics type=’vnc’ port=’-1’ autoport=’yes’ listen=’0.0.0.0’

↪→ passwd=’tfgadmin’>

<listen type=’address’ address=’0.0.0.0’/>

</graphics>

<sound model=’ich9’>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x1b’

↪→ function=’0x0’/>

</sound>

80

<audio id=’1’ type=’spice’/>

<video>

<model type=’qxl’ ram=’65536’ vram=’65536’ vgamem=’16384’

↪→ heads=’1’ primary=’yes’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x01’

↪→ function=’0x0’/>

</video>

<redirdev bus=’usb’ type=’spicevmc’>

<address type=’usb’ bus=’0’ port=’2’/>

</redirdev>

<redirdev bus=’usb’ type=’spicevmc’>

<address type=’usb’ bus=’0’ port=’3’/>

</redirdev>

<memballoon model=’virtio’>

<address type=’pci’ domain=’0x0000’ bus=’0x04’ slot=’0x00’

↪→ function=’0x0’/>

</memballoon>

</devices>

<qemu:commandline>

<qemu:arg value=’-cpu’/>

<qemu:arg value=’host,-hypervisor,kvm=off’/>

<qemu:arg value=’-L’/>

<qemu:arg value=’/usr/share/qemu/bios.bin’/>

</qemu:commandline>

</domain>

/etc/libvirt/qemu/win7.xml

<!--

WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY

↪→ TO BE

OVERWRITTEN AND LOST. Changes to this xml configuration should be

↪→ made using:

virsh edit win7

or other application using the libvirt API.

-->

<domain type=’kvm’ xmlns:qemu=’http://libvirt.org/schemas/domain/

↪→ qemu/1.0’>

<name>win7</name>

<uuid>9a01ddde-0eb1-4833-b76d-b517ae5bb623</uuid>

<metadata>

<libosinfo:libosinfo xmlns:libosinfo="http://libosinfo.org/

↪→ xmlns/libvirt/domain/1.0">

<libosinfo:os id="http://microsoft.com/win/7"/>

</libosinfo:libosinfo>

</metadata>

81

<memory unit=’KiB’>4194304</memory>

<currentMemory unit=’KiB’>4194304</currentMemory>

<vcpu placement=’static’>2</vcpu>

<sysinfo type=’smbios’>

<bios>

<entry name=’vendor’>SeaBIOS</entry>

<entry name=’version’>rel-1.14.0-0-g155821a1990b-prebuilt.

↪→ qemu.org</entry>

<entry name=’date’>04/01/2014</entry>

<entry name=’release’>2.8</entry>

</bios>

<system>

<entry name=’manufacturer’>QEMU</entry>

<entry name=’product’>Standard PC (i440FX + PIIX, 1996)</

↪→ entry>

<entry name=’version’>pc-i440fx-5.2</entry>

<entry name=’serial’>Not Specified</entry>

<entry name=’uuid’>9a01ddde-0eb1-4833-b76d-b517ae5bb623</

↪→ entry>

<entry name=’sku’>Not Specified</entry>

<entry name=’family’>Not Specified</entry>

</system>

</sysinfo>

<os>

<type arch=’x86_64’ machine=’pc-i440fx-7.1’>hvm</type>

<boot dev=’hd’/>

</os>

<features>

<acpi/>

<apic/>

<hyperv mode=’custom’>

<relaxed state=’on’/>

<vapic state=’on’/>

<spinlocks state=’on’ retries=’8191’/>

</hyperv>

<vmport state=’off’/>

</features>

<cpu mode=’custom’ match=’exact’ check=’partial’>

<model fallback=’allow’>SandyBridge</model>

<topology sockets=’1’ dies=’1’ cores=’2’ threads=’1’/>

</cpu>

<clock offset=’localtime’>

<timer name=’rtc’ tickpolicy=’catchup’/>

<timer name=’pit’ tickpolicy=’delay’/>

<timer name=’hpet’ present=’no’/>

<timer name=’hypervclock’ present=’yes’/>

</clock>

<on_poweroff>destroy</on_poweroff>

82

<on_reboot>restart</on_reboot>

<on_crash>destroy</on_crash>

<pm>

<suspend-to-mem enabled=’no’/>

<suspend-to-disk enabled=’no’/>

</pm>

<devices>

<emulator>/usr/bin/qemu-system-x86_64</emulator>

<disk type=’file’ device=’disk’>

<driver name=’qemu’ type=’qcow2’ cache=’none’ discard=’unmap

↪→ ’/>

<source file=’/opt/VMs/win7.qcow2’/>

<target dev=’hda’ bus=’ide’/>

<address type=’drive’ controller=’0’ bus=’0’ target=’0’ unit

↪→ =’0’/>

</disk>

<controller type=’usb’ index=’0’ model=’ich9-ehci1’>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’

↪→ function=’0x7’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci1’>

<master startport=’0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’

↪→ function=’0x0’ multifunction=’on’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci2’>

<master startport=’2’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’

↪→ function=’0x1’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci3’>

<master startport=’4’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’

↪→ function=’0x2’/>

</controller>

<controller type=’pci’ index=’0’ model=’pci-root’/>

<controller type=’ide’ index=’0’>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x01’

↪→ function=’0x1’/>

</controller>

<controller type=’virtio-serial’ index=’0’>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x06’

↪→ function=’0x0’/>

</controller>

<interface type=’network’>

<mac address=’00:0d:60:0d:0d:a1’/>

<source network=’hostonly’/>

<model type=’e1000e’/>

83

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x03’

↪→ function=’0x0’/>

</interface>

<serial type=’pty’>

<target type=’isa-serial’ port=’0’>

<model name=’isa-serial’/>

</target>

</serial>

<console type=’pty’>

<target type=’serial’ port=’0’/>

</console>

<channel type=’spicevmc’>

<target type=’virtio’ name=’com.redhat.spice.0’/>

<address type=’virtio-serial’ controller=’0’ bus=’0’ port

↪→ =’1’/>

</channel>

<input type=’tablet’ bus=’usb’>

<address type=’usb’ bus=’0’ port=’1’/>

</input>

<input type=’mouse’ bus=’ps2’/>

<input type=’keyboard’ bus=’ps2’/>

<graphics type=’spice’ autoport=’yes’>

<listen type=’address’/>

</graphics>

<sound model=’ich9’>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x04’

↪→ function=’0x0’/>

</sound>

<audio id=’1’ type=’spice’/>

<video>

<model type=’qxl’ ram=’65536’ vram=’65536’ vgamem=’16384’

↪→ heads=’1’ primary=’yes’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x02’

↪→ function=’0x0’/>

</video>

<redirdev bus=’usb’ type=’spicevmc’>

<address type=’usb’ bus=’0’ port=’2’/>

</redirdev>

<redirdev bus=’usb’ type=’spicevmc’>

<address type=’usb’ bus=’0’ port=’3’/>

</redirdev>

<memballoon model=’virtio’>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x07’

↪→ function=’0x0’/>

</memballoon>

</devices>

<qemu:commandline>

<qemu:arg value=’-cpu’/>

84

<qemu:arg value=’SandyBridge,-hypervisor,kvm=off’/>

<qemu:arg value=’-L’/>

<qemu:arg value=’/usr/share/qemu/bios.bin’/>

</qemu:commandline>

</domain>

A.3. Instalación en guest

En ambos guest, se instalan programas de uso común en un ordenador personal

(WinRAR, AdobeReader, Mozilla...). También se descarga una versión de Python de 32-

bits, puesto que es la soportada por CAPEv2. Adicionalmente se aplican las siguientes

poĺıticas tal y como explican en la documentación [2]:

Tanto en el equipo Windows 7, como en el equipo Windows 10 hay que desactivar

las utilidades Windows Defender y Windows Update. Además hay que asignarles una

dirección estática, cambiando la configuración por defecto del adaptador de red de cada

equipo.

Por último en ambas máquinas virtuales hay que poner en marcha el agente que se

va a comunicar con CAPEv2, esto se realiza creando en la herramienta de Windows,

Tareas, una nueva tarea que se lanza con cada inicio de sesión. Esta tarea se configura

para que ejecute la utilidad proporcionada por el equipo de CAPEv2, agent.py. En este

proyecto se ha modificado la extensión de este script a .pyw, para que se ejecute en un

segundo plano.

En el equipo Windows 10, el servicio Update, se ha deshabilitado configurándolo tal

y como se muestra en la figura A.1, ya que el método explicado en la documentación

está obsoleto.

Figura A.1: Configuración del servicio Windows Update.

85

86

Anexos B

MONTAJE DE VPN

B.1. Instalación router virtual Mikrotik

La VPN desplegada sigue el esquema que se muestra en la figura B.1.

Figura B.1: Esquema que sigue el tráfico de un paquete en la VPN que se ha desplegado.

En el ordenador del alumno, haciendo uso de VirtualBox, se ha desplegado una

máquina virtual con el sistema que proporciona en su página webMikrotik. Tras instalar

el S.O, se ha aplicado la licencia gratuita que proporciona Mikrotik. Esta licencia se

consigue a través de una clave, proporcionada tras el registro de una cuenta en la

página oficial de Mikrotik. [21]

La el router virtual se despliega en el ordenador del alumno, puesto que, el router

del domicilio del alumno no tiene las funcionalidades necesarias para levantar un túnel

VPN.

87

B.2. Configuración túnel OVPN

B.2.1. Configuración desde el router Mikrotik

Tras introducir la clave de la licencia gratuita, en la máquina virtual con el siste-

ma operativo Mikrotik, se introducen las siguientes instrucciones en relación al túnel

OpenVPN que se va a levantar: Instrucciones relacionadas con la generación y firma

de certificados:

Se generan certificados

/certificate

add name=CA common-name=myCa key-usage=key-cert-sign,crl-sign

add name=VPNserver common-name=server

add name=VPNclient common-name=client

Firma de certificados

/certificate

sign CA ca-crl-host=IP_PUBLICA_ALUMNO name=myCa

sign VPNserver ca=myCa name=server

sign VPNclient ca=myCa name=client

Marcar confianza en los certificados

/certificate

set myCa trusted=yes

set server trusted=yes

Se exportan los certificados, con clave de seguridad, indicada como

PASSWORD en este anexo

/certificate export-certificate myCa

/certificate export-certificate client1 export-passphrase=PASSWORD

Para levantar el túnel OVPN se aplican, los ejecutan las siguientes instrucciones en

el router virtual:

/ip pool add name=ovpn-pool range=192.168.88.2-192.168.88.254

Se crea en conexiones ppp el perfil VPNtfg indicando que el extremo

del server tiene IP 192.168.88.1 y que los clientes se encuentran en

↪→ el

pool de direcciones 192.168.88.2-192.168.88.254 y se crea clave para

↪→ client

/ppp profile add name=VPNtfg local-address=192.168.88.1 remote-address=

↪→ ovpn-pool

/ppp secret

add name=client password=PASSWORD profile=VPNtfg

Se le asigna el certificado previamente creado

/interface ovpn-server server set enabled=yes certificate=server

88

B.2.2. Configuración desde el equipo CAPEv2 host

Desde el host de CAPEv2 se ejecutan las siguientes instrucciones, para iniciar la

conexión VPN y para redirigir el tráfico correspondiente a este, en la tabla de rutas,

con el identificador que ha sido especificado en el fichero de configuración routing.conf.

ip route add default via 192.168.88.1 proto static table 333

ip route add 192.168.50.0/24 dev virbr1 proto kernel scope link src

↪→ 192.168.50.1 table 333

openvpn --config config_casa.ovpn

El fichero config casa.ovpn es el siguiente:

dev tun

proto tcp-client

remote IP_PUBLICA_ALUMNO

port 1194

nobind

persist-key

persist-tun

tls-client

remote-cert-tls server

ca cert_export_CA.crt

cert cert_export_client.crt

key cert_export_client.key

verb 4

mute 10

cipher AES-256-CBC

auth SHA512

pull

auth-user-pass secret.auth

auth-nocache

Este fichero se encuentra en un directorio junto a los archivos cert export CA.crt

cert cert export client.crt key cert export client.key y secret.auth, que han sido genera-

dos por el servidor VPN.

B.3. Configuración firewall

En el firewall del router virtual, se aplica un MASQUERADE a las conexiones

provenientes de la VPN.

89

B.4. Configuración router de la operadora

Para que el tráfico, correspondiente a la VPN, pudiera comunicarse, a través del

router de la operadora del domicilio del alumno, con el router Mikrotik, se ha hecho

DNAT en el router de la operadora. Esto se ha realizado de tal modo que todo el

tráfico, entrante por el puerto 1194, se ha redirigido al puerto 1194 de la dirección IP

asociada al router Mikrotik virtual.

90

Anexos C

REPOSITORIOS DE MALWARE

A continuación se explican las distintas fuentes, utilizadas para la obtención de las

distintas muestras de malware.

C.1. TheZoo

El repositorio TheZoo es una colección de malware, compartida en un repositorio

público de Github, para fines didácticos. Algunas de las muestras que se han extráıdo de

este repositorio corresponden a WannaCry y Petya, que son conocidos por su impacto

global y sus técnicas de propagación avanzadas.

El malware WannaCry se propagó en mayo de 2017 y afectó a miles de sistemas en

todo el mundo mediante la explotación de una vulnerabilidad en el protocolo SMB de

Windows.

No es necesario ningún registro para acceder a estas.

C.2. Malware Bazar

Malware Bazar es un repositorio online donde se pueden encontrar y adquirir mues-

tras de malware para propósitos de investigación y análisis.

Este repositorio contiene muestras recientes de malware y no es necesario ningún

registro para acceder a estas.

C.3. VirusShare

VirusShare es un repositorio que proporciona una amplia colección de muestras de

software malicioso. A través de esta plataforma, los investigadores y profesionales de

seguridad pueden acceder a una gran cantidad de muestras de malware recopiladas de

forma colaborativa.

91

Para acceder a esta plataforma es necesario enviar un correo a la dirección Melis-

sa97@virusshare.com, indicando las razones por las que solicitas el acceso a su base de

datos.

92

Anexos D

SOLUCIONES EN PYTHON

En el repositorio deGithub, https: // github. com/ MarioRL0/ Client-Server-CAPEv2 ,

se encuentran todos los scripts desarrollados a lo largo de este proyecto, con la siguiente

organización:

En el directorio Agent se encuentran los scripts relativos al desarrollo del agente,

preparado para los equipos que se desea monitorizar.

Este directorio contiene adicionalmente una carpeta con nombre old. En este

directorio se encuentran los diseños probados de manera previa al diseño final, en

los que la transferencia de archivos se trataba de hacer con métodos alternativos

al protocolo SFTP, sin éxito para archivos con tamaño del orden de MegaBytes.

En el directorio Report se encuentra el módulo de reporte geolookup.py, cuyo

funcionamiento se detalla en la sección 4.5.

En el directorio Server se encuentran los scripts relativos al desarrollo del servidor

preparado para recibir muestras, cuyo funcionamiento se desarrolla en el caṕıtulo

4.

Este directorio contiene adicionalmente una carpeta con nombre old. En este

directorio se encuentran los diseños probados de manera previa al diseño final,

en los que la recepción de archivos se trataba de hacer con métodos alternativos

al protocolo SFTP, sin éxito para archivos con tamaño del orden de MegaBytes.

Estos scripts se han ejecutado con la versión 3.10.6 de Python y se han utilizado las

siguientes libreŕıas, en las versiones que se indican a continuación:

Package Version

------------ -------

bcrypt 3.2.0

cffi 1.15.1

93

https://github.com/MarioRL0/Client-Server-CAPEv2

cryptography 39.0.0

paramiko 2.9.3

pip 22.2.1

pycparser 2.21

PyNaCl 1.5.0

pysftp 0.2.9

setuptools 63.2.0

six 1.16.0

94

Anexos E

CONFIGURACION ELASTIC

A continuación se incluyen los ficheros de configuración, correspondientes los pro-

gramas de la sección 3.1.2.

E.1. Configuración de Elasticsearch

Por pantalla se muestra el fichero de configuración elasticsearch.yml, ubicado en el

equipo Debian 11 :

By default Elasticsearch is only accessible on localhost. Set a

↪→ different

address here to expose this node on the network:

#

network.host: 192.168.153.2

#

By default Elasticsearch listens for HTTP traffic on the first free

↪→ port it

finds starting at 9200. Set a specific HTTP port here:

#

http.port: 9200

#

For more information, consult the network module documentation.

#

--------------------------------- Discovery

↪→ ----------------------------------

#

Pass an initial list of hosts to perform discovery when this node is

↪→ started:

The default list of hosts is ["127.0.0.1", "[::1]"]

#

#discovery.seed_hosts: ["host1", "host2"]

#

Bootstrap the cluster using an initial set of master-eligible nodes:

#

#cluster.initial_master_nodes: ["node-1", "node-2"]

95

#

For more information, consult the discovery and cluster formation

↪→ module documentation.

#

--------------------------------- Readiness

↪→ ----------------------------------

#

Enable an unauthenticated TCP readiness endpoint on localhost

#

#readiness.port: 9399

#

---------------------------------- Various

↪→ -----------------------------------

#

Allow wildcard deletion of indices:

#

#action.destructive_requires_name: false

#----------------------- BEGIN SECURITY AUTO CONFIGURATION

↪→ -----------------------

#

The following settings, TLS certificates, and keys have been

↪→ automatically

generated to configure Elasticsearch security features on 25-02-2023

↪→ 11:26:54

#

#

↪→ --

↪→

Enable security features

xpack.security.enabled: true

xpack.security.enrollment.enabled: true

Enable encryption for HTTP API client connections, such as Kibana,

↪→ Logstash, and Agents

xpack.security.http.ssl:

enabled: true

keystore.path: certs/http.p12

Enable encryption and mutual authentication between cluster nodes

xpack.security.transport.ssl:

enabled: true

verification_mode: certificate

keystore.path: certs/transport.p12

truststore.path: certs/transport.p12

Create a new cluster with the current node only

96

Additional nodes can still join the cluster later

cluster.initial_master_nodes: ["zeek-s0-IP"]

Allow HTTP API connections from anywhere

Connections are encrypted and require user authentication

http.host: 0.0.0.0

Allow other nodes to join the cluster from anywhere

Connections are encrypted and mutually authenticated

#transport.host: 0.0.0.0

#----------------------- END SECURITY AUTO CONFIGURATION

↪→ -------------------------

Por pantalla se muestra el mapping utilizado por el ı́ndice creado y la poĺıtica de

rotación aplicada al mismo:

{

"mappings": {

"_meta": {

"version": "8.0.1"

},

"dynamic_templates": [],

"date_detection": false,

"properties": {

"@timestamp": {

"type": "date"

},

"CAPEdata": {

"properties": {

"alert": {

"properties": {

"action": {

"type": "keyword",

"ignore_above": 1024

},

"category": {

"type": "keyword",

"ignore_above": 1024

},

"gid": {

"type": "long"

},

"metadata": {

"properties": {

"affected_product": {

"type": "text",

"fields": {

97

"keyword": {

"type": "keyword",

"ignore_above": 256

}

}

},

"attack_target": {

"type": "text",

"fields": {

"keyword": {

"type": "keyword",

"ignore_above": 256

}

}

},

"created_at": {

"type": "text",

"fields": {

"keyword": {

"type": "keyword",

"ignore_above": 256

}

}

},

"deployment": {

"type": "text",

"fields": {

"keyword": {

"type": "keyword",

"ignore_above": 256

}

}

},

"former_category": {

"type": "text",

"fields": {

"keyword": {

"type": "keyword",

"ignore_above": 256

}

}

},

"performance_impact": {

"type": "text",

"fields": {

"keyword": {

"type": "keyword",

"ignore_above": 256

98

}

}

},

"signature_severity": {

"type": "text",

"fields": {

"keyword": {

"type": "keyword",

"ignore_above": 256

}

}

},

"tag": {

"type": "text",

"fields": {

"keyword": {

"type": "keyword",

"ignore_above": 256

}

}

},

"updated_at": {

"type": "text",

"fields": {

"keyword": {

"type": "keyword",

"ignore_above": 256

}

}

}

}

},

"rev": {

"type": "long"

},

"severity": {

"type": "long"

},

"signature": {

"type": "keyword",

"ignore_above": 1024

},

"signature_id": {

"type": "long"

}

}

},

"analysis_id": {

99

"type": "long"

},

"app_proto": {

"type": "keyword",

"ignore_above": 1024

},

"dest_ip": {

"type": "ip"

},

"dest_port": {

"type": "long"

},

"event_type": {

"type": "keyword",

"ignore_above": 1024

},

"fileinfo": {

"properties": {

"end": {

"type": "long"

},

"filename": {

"type": "keyword",

"ignore_above": 1024

},

"gaps": {

"type": "boolean"

},

"size": {

"type": "long"

},

"start": {

"type": "long"

},

"state": {

"type": "keyword",

"ignore_above": 1024

},

"stored": {

"type": "boolean"

},

"tx_id": {

"type": "long"

}

}

},

"files": {

"properties": {

100

"end": {

"type": "long"

},

"filename": {

"type": "keyword",

"ignore_above": 1024

},

"gaps": {

"type": "boolean"

},

"size": {

"type": "long"

},

"start": {

"type": "long"

},

"state": {

"type": "keyword",

"ignore_above": 1024

},

"stored": {

"type": "boolean"

},

"tx_id": {

"type": "long"

}

}

},

"flow": {

"properties": {

"age": {

"type": "long"

},

"alerted": {

"type": "boolean"

},

"bytes_toclient": {

"type": "long"

},

"bytes_toserver": {

"type": "long"

},

"end": {

"type": "keyword",

"ignore_above": 1024

},

"pkts_toclient": {

"type": "long"

101

},

"pkts_toserver": {

"type": "long"

},

"reason": {

"type": "keyword",

"ignore_above": 1024

},

"start": {

"type": "keyword",

"ignore_above": 1024

},

"state": {

"type": "keyword",

"ignore_above": 1024

}

}

},

"flow_id": {

"type": "long"

},

"geo_dst": {

"type": "geo_point"

},

"geo_src": {

"type": "geo_point"

},

"http": {

"properties": {

"content_range": {

"properties": {

"end": {

"type": "long"

},

"raw": {

"type": "keyword",

"ignore_above": 1024

},

"size": {

"type": "long"

},

"start": {

"type": "long"

}

}

},

"hostname": {

"type": "keyword",

102

"ignore_above": 1024

},

"http_content_type": {

"type": "keyword",

"ignore_above": 1024

},

"http_method": {

"type": "keyword",

"ignore_above": 1024

},

"http_user_agent": {

"type": "keyword",

"ignore_above": 1024

},

"length": {

"type": "long"

},

"protocol": {

"type": "keyword",

"ignore_above": 1024

},

"redirect": {

"type": "text",

"fields": {

"keyword": {

"type": "keyword",

"ignore_above": 256

}

}

},

"status": {

"type": "long"

},

"url": {

"type": "keyword",

"ignore_above": 1024

}

}

},

"icmp_code": {

"type": "long"

},

"icmp_type": {

"type": "long"

},

"metadata": {

"properties": {

"flowbits": {

103

"type": "keyword",

"ignore_above": 1024

},

"flowints": {

"properties": {

"tcp": {

"properties": {

"retransmission": {

"properties": {

"count": {

"type": "long"

}

}

}

}

},

"tls": {

"properties": {

"anomaly": {

"properties": {

"count": {

"type": "long"

}

}

}

}

}

}

}

}

},

"pcap_cnt": {

"type": "long"

},

"proto": {

"type": "keyword",

"ignore_above": 1024

},

"response_icmp_code": {

"type": "long"

},

"response_icmp_type": {

"type": "long"

},

"src_ip": {

"type": "ip"

},

"src_port": {

104

"type": "long"

},

"tcp": {

"properties": {

"ack": {

"type": "boolean"

},

"fin": {

"type": "boolean"

},

"psh": {

"type": "boolean"

},

"rst": {

"type": "boolean"

},

"state": {

"type": "keyword",

"ignore_above": 1024

},

"syn": {

"type": "boolean"

},

"tcp_flags": {

"type": "keyword",

"ignore_above": 1024

},

"tcp_flags_tc": {

"type": "keyword",

"ignore_above": 1024

},

"tcp_flags_ts": {

"type": "keyword",

"ignore_above": 1024

}

}

},

"timestamp": {

"type": "keyword",

"ignore_above": 1024

},

"tls": {

"properties": {

"fingerprint": {

"type": "keyword",

"ignore_above": 1024

},

"issuerdn": {

105

"type": "keyword",

"ignore_above": 1024

},

"ja3": {

"properties": {

"hash": {

"type": "keyword",

"ignore_above": 1024

},

"string": {

"type": "keyword",

"ignore_above": 1024

}

}

},

"ja3s": {

"properties": {

"hash": {

"type": "keyword",

"ignore_above": 1024

},

"string": {

"type": "keyword",

"ignore_above": 1024

}

}

},

"notafter": {

"type": "keyword",

"ignore_above": 1024

},

"notbefore": {

"type": "keyword",

"ignore_above": 1024

},

"serial": {

"type": "keyword",

"ignore_above": 1024

},

"session_resumed": {

"type": "boolean"

},

"sni": {

"type": "keyword",

"ignore_above": 1024

},

"subject": {

"type": "keyword",

106

"ignore_above": 1024

},

"version": {

"type": "keyword",

"ignore_above": 1024

}

}

},

"tx_id": {

"type": "long"

}

}

},

"tags": {

"type": "text",

"fields": {

"keyword": {

"type": "keyword",

"ignore_above": 256

}

}

}

}

}

}

{

"settings": {

"index": {

"lifecycle": {

"name": "politica-prueba",

"rollover_alias": "reportes.soc"

},

"routing": {

"allocation": {

"include": {

"_tier_preference": "data_content"

}

}

},

"mapping": {

"total_fields": {

"limit": "10000"

}

},

"refresh_interval": "5s",

"number_of_shards": "1",

"provided_name": "reportes.soc-000006",

107

"creation_date": "1682091745159",

"priority": "100",

"number_of_replicas": "1",

"uuid": "rYGp5USoQ4e_Ej6MwbSSrQ",

"version": {

"created": "8060299"

}

}

},

"defaults": {

"index": {

"flush_after_merge": "512mb",

"time_series": {

"end_time": "9999-12-31T23:59:59.999Z",

"start_time": "-9999-01-01T00:00:00Z"

},

"final_pipeline": "_none",

"max_inner_result_window": "100",

"unassigned": {

"node_left": {

"delayed_timeout": "1m"

}

},

"max_terms_count": "65536",

"rollup": {

"source": {

"name": "",

"uuid": ""

}

},

"lifecycle": {

"parse_origination_date": "false",

"step": {

"wait_time_threshold": "12h"

},

"indexing_complete": "false",

"origination_date": "-1"

},

"mode": "standard",

"routing_partition_size": "1",

"force_memory_term_dictionary": "false",

"max_docvalue_fields_search": "100",

"merge": {

"scheduler": {

"max_thread_count": "2",

"auto_throttle": "true",

"max_merge_count": "7"

},

108

"policy": {

"floor_segment": "2mb",

"max_merge_at_once_explicit": "30",

"max_merge_at_once": "10",

"max_merged_segment": "5gb",

"expunge_deletes_allowed": "10.0",

"segments_per_tier": "10.0",

"deletes_pct_allowed": "33.0"

}

},

"max_refresh_listeners": "1000",

"max_regex_length": "1000",

"load_fixed_bitset_filters_eagerly": "true",

"number_of_routing_shards": "1",

"write": {

"wait_for_active_shards": "1"

},

"verified_before_close": "false",

"mapping": {

"coerce": "false",

"nested_fields": {

"limit": "50"

},

"depth": {

"limit": "20"

},

"field_name_length": {

"limit": "9223372036854775807"

},

"nested_objects": {

"limit": "10000"

},

"ignore_malformed": "false",

"dimension_fields": {

"limit": "16"

}

},

"source_only": "false",

"soft_deletes": {

"enabled": "true",

"retention": {

"operations": "0"

},

"retention_lease": {

"period": "12h"

}

},

"max_script_fields": "32",

109

"query": {

"default_field": [

"*"

],

"parse": {

"allow_unmapped_fields": "true"

}

},

"format": "0",

"frozen": "false",

"sort": {

"missing": [],

"mode": [],

"field": [],

"order": []

},

"routing_path": [],

"version": {

"compatibility": "8060299"

},

"codec": "default",

"max_rescore_window": "10000",

"bloom_filter_for_id_field": {

"enabled": "true"

},

"max_adjacency_matrix_filters": "100",

"analyze": {

"max_token_count": "10000"

},

"gc_deletes": "60s",

"top_metrics_max_size": "10",

"optimize_auto_generated_id": "true",

"max_ngram_diff": "1",

"hidden": "false",

"translog": {

"generation_threshold_size": "64mb",

"flush_threshold_size": "512mb",

"sync_interval": "5s",

"retention": {

"size": "-1",

"age": "-1"

},

"durability": "REQUEST"

},

"auto_expand_replicas": "false",

"recovery": {

"type": ""

},

110

"requests": {

"cache": {

"enable": "true"

}

},

"data_path": "",

"highlight": {

"max_analyzed_offset": "1000000"

},

"routing": {

"rebalance": {

"enable": "all"

},

"allocation": {

"disk": {

"watermark": {

"ignore": "false"

}

},

"enable": "all",

"total_shards_per_node": "-1"

}

},

"search": {

"slowlog": {

"level": "TRACE",

"threshold": {

"fetch": {

"warn": "-1",

"trace": "-1",

"debug": "-1",

"info": "-1"

},

"query": {

"warn": "-1",

"trace": "-1",

"debug": "-1",

"info": "-1"

}

}

},

"idle": {

"after": "30s"

},

"throttled": "false"

},

"fielddata": {

"cache": "node"

111

},

"look_ahead_time": "2h",

"default_pipeline": "_none",

"max_slices_per_scroll": "1024",

"shard": {

"check_on_startup": "false"

},

"xpack": {

"watcher": {

"template": {

"version": ""

}

},

"version": "",

"ccr": {

"following_index": "false"

}

},

"percolator": {

"map_unmapped_fields_as_text": "false"

},

"allocation": {

"max_retries": "5",

"existing_shards_allocator": "gateway_allocator"

},

"indexing": {

"slowlog": {

"reformat": "true",

"threshold": {

"index": {

"warn": "-1",

"trace": "-1",

"debug": "-1",

"info": "-1"

}

},

"source": "1000",

"level": "TRACE"

}

},

"compound_format": "0.1",

"blocks": {

"metadata": "false",

"read": "false",

"read_only_allow_delete": "false",

"read_only": "false",

"write": "false"

},

112

"max_result_window": "10000",

"store": {

"stats_refresh_interval": "10s",

"type": "",

"fs": {

"fs_lock": "native"

},

"preload": [],

"snapshot": {

"snapshot_name": "",

"index_uuid": "",

"cache": {

"prewarm": {

"enabled": "true"

},

"enabled": "true",

"excluded_file_types": []

},

"repository_uuid": "",

"uncached_chunk_size": "-1b",

"delete_searchable_snapshot": "false",

"index_name": "",

"partial": "false",

"blob_cache": {

"metadata_files": {

"max_length": "64kb"

}

},

"repository_name": "",

"snapshot_uuid": ""

}

},

"queries": {

"cache": {

"enabled": "true"

}

},

"shard_limit": {

"group": "normal"

},

"warmer": {

"enabled": "true"

},

"downsample": {

"source": {

"name": "",

"uuid": ""

},

113

"status": "unknown"

},

"override_write_load_forecast": "0.0",

"max_shingle_diff": "3",

"query_string": {

"lenient": "false"

}

}

}

}

E.2. Configuración de Kibana

Se muestra por pantalla el fichero de configuración de Kibana, correspondiente al

archivo kibana.yml, ubicado en el equipo Debian 11 :

For more configuration options see the configuration guide for Kibana

↪→ in

https://www.elastic.co/guide/index.html

=================== System: Kibana Server ===================

Kibana is served by a back end server. This setting specifies the

↪→ port to use.

server.port: 5601

Specifies the address to which the Kibana server will bind. IP

↪→ addresses and host names are both valid values.

The default is ’localhost’, which usually means remote machines will

↪→ not be able to connect.

To allow connections from remote users, set this parameter to a non-

↪→ loopback address.

server.host: "192.168.153.2"

Enables you to specify a file where Kibana stores log output.

logging:

appenders:

file:

type: file

fileName: /var/log/kibana/kibana.log

layout:

type: json

root:

appenders:

- default

- file

114

=================== System: Other ===================

The path where Kibana stores persistent data not saved in

↪→ Elasticsearch. Defaults to data

#path.data: data

Specifies the path where Kibana creates the process ID file.

pid.file: /run/kibana/kibana.pid

This section was automatically generated during setup.

elasticsearch.hosts: [’https://localhost:9200’]

elasticsearch.serviceAccountToken: TOKENGENERADOPARALAAUTENTIFICACION

elasticsearch.ssl.certificateAuthorities: [/var/lib/kibana/

↪→ ca_1677325714158.crt]

xpack.fleet.outputs: [{id: fleet-default-output, name: default,

↪→ is_default: true, is_default_monitoring: true, type:

↪→ elasticsearch, hosts: [’https://192.168.153.2:9200’],

↪→ ca_trusted_fingerprint:

↪→ b966dc6425a6f1ae5717e1dc7aa274f9d6d36688b06263dbad6485436dd57ebc

↪→ }]

Además, para mantener una comunicación cifrada con elasticsearch, se ha copia-

do al directorio /etc/kibana/certs/ el certificado generado por elasticsearch. Con las

siguientes instrucciones se ha generado un token, que hace necesario el usuario y con-

traseña generados por elasticsearch en su instalación, para acceder a la interfaz web de

Kibana:

/usr/share/elasticsearch/bin/elasticsearch-create-enrollment-token -s

↪→ node

E.3. Configuración y filtros de Logstash

El código que se visualiza a continuación corresponde con el archivo con ruta /et-

c/logstash/conf.d/capereports.conf. Este archivo permite ingerir y filtrar los datos ge-

nerados por Ubuntu Server . Se ubica en el equipo Debian 11 .

input {

beats {

port => "5050"

type => "filestream"

enable_metric => true

}

}

filter {

115

json{

skip_on_invalid_json => true

source => "message"

target => "CAPEdata"

add_tag => ["_message_json_parsed"]

}

if [CAPEdata][event_type] == "dns" or [CAPEdata][event_type] == "

↪→ stats"

or [CAPEdata][app_proto] == "dns"{

mutate{

remove_field => "CAPEdata"

}

}

mutate {

remove_field => ["message","agent", "event", "original", "ecs", "

↪→ type",

"prospector", "input", "beat", "host", "offset", "source", "log",

↪→ "@version"]

}

}

output {

stdout { codec => rubydebug }

elasticsearch {

hosts => ["https://localhost:9200"]

user => "elastic"

password => "tosdkA1AnO_VTWBcWa2A"

ssl => true

cacert => "/etc/logstash/conf.d/certs/http_ca.crt"

ilm_rollover_alias => "reportes.soc"

ilm_pattern => "000001"

ilm_policy => "politica-prueba"

index => "reportes.soc"

}

}

E.4. Configuración de Filebeat

Las siguientes ĺıneas corresponden al fichero de configuración, que corresponde con

el fichero /etc/filebeat/filebeat.yml, ubicado en el equipo Ubuntu Server :

116

IPv6 addresses should always be defined as: https://[2001:db8

↪→ ::1]:5601

#host: "localhost:5601"

Kibana Space ID

ID of the Kibana Space into which the dashboards should be loaded.

↪→ By default,

the Default Space will be used.

#space.id:

=============================== Elastic Cloud

↪→ ================================

These settings simplify using Filebeat with the Elastic Cloud (https

↪→ ://cloud.elastic.co/).

The cloud.id setting overwrites the ‘output.elasticsearch.hosts‘ and

‘setup.kibana.host‘ options.

You can find the ‘cloud.id‘ in the Elastic Cloud web UI.

#cloud.id:

The cloud.auth setting overwrites the ‘output.elasticsearch.username

↪→ ‘ and

‘output.elasticsearch.password‘ settings. The format is ‘<user>:<

↪→ pass>‘.

#cloud.auth:

================================== Outputs

↪→ ===================================

Configure what output to use when sending the data collected by the

↪→ beat.

---------------------------- Elasticsearch Output

↪→ ----------------------------

#output.elasticsearch:

Array of hosts to connect to.

hosts: ["localhost:9200"]

Protocol - either ‘http‘ (default) or ‘https‘.

#protocol: "https"

Authentication credentials - either API key or username/password.

#api_key: "id:api_key"

#username: "elastic"

#password: "changeme"

117

------------------------------ Logstash Output

↪→ -------------------------------

output.logstash:

The Logstash hosts

hosts: ["192.168.153.2:5050"]

Optional SSL. By default is off.

List of root certificates for HTTPS server verifications

#ssl.certificate_authorities: ["/etc/pki/root/ca.pem"]

Certificate for SSL client authentication

#ssl.certificate: "/etc/pki/client/cert.pem"

Client Certificate Key

#ssl.key: "/etc/pki/client/cert.key"

================================= Processors

↪→ =================================

processors:

- add_host_metadata:

when.not.contains.tags: forwarded

- add_cloud_metadata: ~

- add_docker_metadata: ~

- add_kubernetes_metadata: ~

118

Anexos F

Anexo de términos y siglas

Anti-VM : Técnica o herramienta utilizada para detectar y evitar la ejecución de

código malicioso en un entorno virtualizado.

Host : Equipo f́ısico o servidor que aloja una o varias máquinas virtuales.

Guest : Máquina virtual que se ejecuta dentro de un entorno de virtualización.

DLL: Biblioteca de enlace dinámico (Dynamic Link Library), que contiene código

y datos que múltiples programas pueden usar al mismo tiempo.

Snapshot : Estado o imagen guardada de una máquina virtual en un momento

espećıfico, que permite volver a ese estado.

Iptables : Herramienta de filtrado de paquetes y configuración de firewall en sis-

temas basados en Linux.

Índice: En Elasticsearch puede verse como una base de datos que contiene varios

tipos, cada uno de los cuales contiene documentos con propiedades, de manera

similar a las tablas en una base de datos relacional.

Dashboards : Paneles de control visual que muestran información y métricas.

Logs : Archivos que registran actividades, errores o información importante en un

sistema o aplicación.

API : Interfaz de programación de aplicaciones (Application Programming Inter-

face), que define los métodos y protocolos para la comunicación entre diferentes

componentes de software.

VNC : Virtual Network Computing, es un protocolo que permite controlar y ac-

ceder a escritorios de forma remota.

119

Interfaz localhost : Interfaz de red local que se refiere a la propia máquina o equipo

en el que se ejecuta el software.

Proxy-web: Servidor intermediario que actúa como intermediario entre los clientes

y los servidores web.

Hipervisor: Software o firmware que permite la creación y gestión de máquinas

virtuales.

Open-source: Software cuyo código fuente es público y está disponible para su

inspección, modificación y distribución.

VPN : Red privada virtual (Virtual Private Network), que permite establecer una

conexión segura y cifrada a través de una red pública.

Firewall : Sistema de seguridad que controla y filtra el tráfico de red basado en

reglas predefinidas.

Script : Conjunto de instrucciones o comandos escritos en un lenguaje de progra-

mación para realizar una tarea espećıfica.

Reglas YARA: Reglas utilizadas en la detección y clasificación de malware basa-

das en patrones y caracteŕısticas.

InetSim: Herramienta utilizada para simular servicios de Internet en un entorno

controlado para pruebas de seguridad.

Sockets : Punto final de una conexión de red que permite la comunicación entre

dos programas en diferentes nodos de una red.

Cookies : Pequeños archivos almacenados en el navegador que contienen informa-

ción sobre la interacción del usuario con un sitio web.

TOR: The Onion Router, una red anónima que permite acceder a Internet de

forma privada y segura.

Sección Issues : Sección o área dedicada a informar problemas, errores o sugeren-

cias en un proyecto.

GitHub: Plataforma de desarrollo colaborativo basada en Git que permite el

almacenamiento y seguimiento de versiones de proyectos.

debugger : Herramienta o programa utilizado para encontrar y solucionar errores

y problemas en el código durante el desarrollo de software.

120

Archivo .pcap: Archivo que contiene datos de captura de paquetes de red.

Archivo .conf : Archivo de configuración utilizado por aplicaciones o sistemas para

personalizar su funcionamiento.

Archivo .xml : Archivo de lenguaje de marcado extensible (eXtensible Markup

Language) utilizado para almacenar y transportar datos.

TalosIntelligence: Organización de inteligencia de amenazas que investiga y pro-

porciona información sobre amenazas de seguridad.

Windows Update: Servicio de actualización deMicrosoft para mantener el sistema

operativo Windows actualizado.

IOCs : Indicadores de compromiso (Indicators of Compromise), que son eviden-

cias que indican una posible violación de seguridad.

MD5 hash: Resumen criptográfico obtenido mediante el algoritmoMD5, utilizado

para verificar la integridad y autenticidad de datos.

Mutex : Objeto de sincronización, utilizado para asegurar el acceso exclusivo a un

recurso compartido en programación concurrente.

Wannacry : Es un tipo de ransomware que se propagó a nivel mundial en 2017.

Infectaba computadoras aprovechando una vulnerabilidad en los sistemas opera-

tivos Microsoft Windows conocida como EternalBlue.

Petya: Es un ransomware que surgió en 2016.

Emotet : Es un troyano bancario, que se hizo conocido en 2014, propagado a través

de correos electrónicos de phishing.

POST : Es un método de solicitud utilizado en el protocolo HTTP (Hypertext

Transfer Protocol). Se utiliza para enviar datos al servidor para que sean proce-

sados.

GET : Es un método de solicitud utilizado en el protocolo HTTP. Se utiliza para

solicitar datos del servidor.

.html : Los archivos con la extensión .html contienen el código fuente de una

página web y se pueden ver en los navegadores web.

121

Suricata: Es un sistema de detección de intrusiones y prevención de amenazas en

redes de computadoras. Es capaz de analizar el tráfico de red en busca de patrones

maliciosos y comportamientos sospechosos que podŕıan indicar un ataque o una

intrusión.

ANTI-DEBUG : Técnicas y herramientas utilizadas para evitar o dificultar la

depuración y el análisis de programas o procesos.

Adloader : Software maliciosos que se infiltra en un sistema y cargan anuncios no

deseados o potencialmente peligrosos.

Nymaim: Un tipo de malware que se clasifica como un troyano de acceso remoto

(RAT). suele ser utilizado para actividades maliciosas como el robo de informa-

ción o el despliegue de ataques adicionales.

122

	Lista de Figuras
	Introducción
	Motivación
	Objetivos

	Detección y análisis de Malware
	Categorías más comunes de malware
	Virus
	Ransomware
	Gusano
	Troyano

	Análisis de malware
	Desensambladores
	Depuradores
	Sandboxing

	Técnicas ANTI-VM

	Entorno de trabajo
	Herramientas utilizadas
	CAPEv2
	Elastic
	VirusTotal
	Guacamole
	NGINX

	Software de virtualización
	KVM

	Escenario de trabajo
	Ubuntu Server
	Ubuntu Desktop
	Debian 11

	Diseño de la solución
	Enfoque del problema a resolver
	Programación en Python
	Medidas ANTI-VM aplicadas en los guest
	Solución planteada
	Flujo de trabajo
	Servidor
	Agente

	Reporte de los datos generados

	Pruebas realizadas y resultados
	Formato de los resultados de un análisis
	Puesta en marcha previa a análisis
	Análisis con malware real
	Malware detectado
	WannaCry
	Emotet

	Malware no detectado

	Conclusiones y líneas futuras
	Conclusiones
	Líneas futuras

	Bibliografía
	Anexos
	INSTALACIÓN DE CAPEv2
	Instalación en host
	Ficheros de configuración del host
	Instalación en guest

	MONTAJE DE VPN
	Instalación router virtual Mikrotik
	Configuración túnel OVPN
	Configuración desde el router Mikrotik
	Configuración desde el equipo CAPEv2 host

	Configuración firewall
	Configuración router de la operadora

	REPOSITORIOS DE MALWARE
	TheZoo
	Malware Bazar
	VirusShare

	SOLUCIONES EN PYTHON
	CONFIGURACION ELASTIC
	Configuración de Elasticsearch
	Configuración de Kibana
	Configuración y filtros de Logstash
	Configuración de Filebeat

	Anexo de términos y siglas

