
Trabajo de fin de grado
-

Seguridad en K8s, Protección 360º
K8s security, 360 º protection

Autor: Óscar Anadón Olalla
Director: Francisco Borja Buera
Tutor: Francisco Javier Zarazaga

Convocatoria 2022 / 2023

Seguridad en K8s, protección 360 º

Resumen
Durante el desarrollo del presente trabajo de fin de grado, Seguridad en K8s, protección
360º, se ha llevado a cabo un estudio sobre la seguridad que emplean los sistemas de
Kubernetes, comparando la seguridad nativa que dicha plataforma ofrece y las diferentes
herramientas disponibles en el mercado. Para lograr este objetivo se han ejecutado distintas
configuraciones, instalando el software pertinente y comparando diversos parámetros, así
como la experiencia general de uso.

La compañía NTT Data centra gran parte de sus medios en proporcionar servicios cloud,
diseñando e implementando aplicaciones alojadas en la nube. Debido a la facilidad que
muestra Kubernetes para gestionar los recursos disponibles, su empleo dentro de la
empresa es muy elevado, por lo que este trabajo facilitará la toma de decisiones a la hora
de llevar a cabo la estructura inicial de un proyecto o escoger las tecnologías que este
empleará, dependiendo de los requerimientos del mismo.

De primera instancia se puede pensar, como se ha hecho durante los últimos años, que
Kubernetes es una plataforma segura donde realizar los despliegues necesarios de
cualquier aplicación, sin embargo, aún implementando una configuración correcta y siendo
minucioso con cada parámetro relativo a la seguridad, es posible que existan brechas o
vulnerabilidades que podrían ser explotadas por un atacante.

Como se observa a lo largo del documento presente, es necesario el empleo de software
especializado que permita realizar análisis periódicos del estado del sistema y alertar en
caso de que exista un escenario defectuoso e incluso proporcionar nuevas herramientas y
capas de seguridad necesarias para que ningún usuario indebido pueda acceder a datos
que no le corresponden, manipularlos o impedir su utilización cuando se requiera.

Finalmente, se ha concluido qué herramientas son mejores para cada suceso, comparando
sus características y observando cómo trabajan en casos concretos. A pesar de que sí es
posible en ciertas ocasiones dar una respuesta certera sobre qué software es mejor, se ha
observado que en muchas de las ocasiones no es posible obtener un veredicto absoluto
que coloque a una por encima de otra, sino que dependerá mucho del contexto en el que se
encuentren.

2

Declaración de autoría

3

Índice

Índice 4

1. Introducción 6

1.1 Contexto del Trabajo 6

1.2 Contexto Tecnológico 7

1.3 Motivación y problema que se aborda 8

1.4 Alcance, objetivos y limitaciones 9

1.5 Herramientas de trabajo 9

1.6 Esquema general de la memoria del proyecto 10

2. Trabajo desarrollado 12
2.1 Análisis de la plataforma 12
2.2 Aplicación de políticas de seguridad 14
2.3 Seguridad activa 17
2.4 Seguridad en comunicaciones 19
Kubernetes Network Policies 21
2.5 Análisis estático de imágenes 22
2.6 Gestión de secretos 23

3. Lecciones aprendidas y conclusiones 26

3.1 Conocimientos adquiridos 26

3.2 Ideas Futuras 26

3.3 Conclusiones 26

4. Bibliografía 28

Anexo I 30

Anexo II 38

Anexo III 41

Anexo IV 48

Anexo V 52

Anexo VI 55

4

Agradecimientos
Aunque hay mucha gente que merece reconocimiento me gustaría mencionar entre todos
ellos a mis compañeros de NTT Data, que tantas cosas me han explicado una y otra vez.

A todos los profesores que presentan una gran vocación por el aprendizaje y la informática,
que logran crear interés para que incluso uno mismo siga investigando por su cuenta.

A mis amigo Sergio, sin ti todavía tendría algunas decenas de créditos pendientes. Gracias
amigo.

A Marina, que tanto me apoya y confía en mí y en mis sueños como pocos lo hacen,
además de haberse tragado 85 charlas sobre Kubernetes.

A mis yayas y yayos, con los que tanto he disfrutado y los cuales estarían ahora tan
orgullosos de mi.

Por último y en especial,a mi madre y a mi padre, los que siempre me han apoyado y
enseñado la importancia de los estudios, gracias por vuestros consejos y ayudas. Os quiero
mucho.

5

1. Introducción

1.1 Contexto del Trabajo
Este proyecto ha sido realizado en NTT DATA Co., compañía japonesa de comunicaciones
especializada en la integración de sistemas. NTT tiene actualmente diferentes sedes
repartidas por España, una de las cuales se ubica en Zaragoza y centra gran parte de su
operativa en el desarrollo de servicios en la nube, realizando diversos proyectos para
clientes, en muchos de los cuales se emplea Kubernetes.
Es innegable el crecimiento que ha tenido la demanda de servicios en la nube, como puede
ser el empleo de contenedores, microservicios y similares. Por ello, NTT ha decidido realizar
una apuesta clara por Kubernetes, uno de los mayores orquestadores de contenedores
actuales. Cada vez son más las compañías que emplean esta plataforma para desplegar
sus servicios, sin embargo, en muchas ocasiones se lleva a cabo dicha tarea sin
comprender a la perfección las implicaciones y características que porta, por ello existe una
preocupación incipiente de la existencia de brechas de seguridad. Es por esto que ha
decidido poner en marcha una línea de actuación dedicada a la evaluación de los riesgos
que puede haber y a la planificación de las estrategias de contingencia. En dicha línea se
encuentra este proyecto, en el que se investigarán posibles fallas de seguridad y
metodologías de actuación para las mismas.

1.2 Contexto Tecnológico
Lo primero de todo, ¿qué es Kubernetes? Kubernetes, de manera abreviada K8s, es una
plataforma portable y extensible de código abierto para administrar cargas de trabajo y
servicios [1]. Su empleo provee al usuario de numerosas y heterogéneas utilidades que
facilitan, en gran medida, la administración de sus aplicaciones. Así entonces, NTT realiza
una apuesta decisiva por su uso, siendo este una parte fundamental de su producto, por lo
que el desarrollo de este trabajo de fin de grado facilitará la toma de decisiones existente en
diferentes proyectos. Esta tecnología presenta dos motivos principalmente que la hacen
muy atractiva.

En primer lugar, el auge y crecimiento de los servicios cloud: Es creciente el número de
empresas (y particulares) que deciden utilizar recursos en la nube. Gran parte de ello se
debe a la economicidad de su uso y la adaptabilidad que proporciona. Por ejemplo, para
una empresa que requiera la utilización de máquinas con un sistema operativo (SO)
concreto únicamente en el desarrollo de un producto en particular, le sería muy ineficiente y
costoso comprar dichas máquinas. En lugar de ello despliega dichos SO en contenedores
mediante Kubernetes durante la duración que se necesite, ahorrando recursos y tiempo, lo
que directamente implica una disminución de los costes. Además de esto, otra gran ventaja
que posee es la escalabilidad, la potencia que ofrece K8s para aumentar sus capacidades
es muy elevada, tanto de forma periódica como para momentos puntuales, de igual manera
también es posible disminuir dichas capacidades de manera sencilla.

6

En segundo lugar Google, el desarrollador inicial de esta tecnología, la cual integra en su
plataforma de cloud, Google Cloud Platform (GPC). A pesar de que hay grandes
competidores en este sector como Amazon (AWS) o Microsoft (Azure), suele suceder que la
tecnología ofrecida por Google acaba siendo una de las más predominantes del mercado.
No se está afirmando rotundamente que vaya a ser el principal exponente de los servicios
cloud, pero sí uno de los más importantes. Todo esto se encuentra recogido en el Magic
Quadrant de Gartner [2] donde expone y explica los principales potenciales de servicios de
infraestructura y plataforma en la nube. En la figura 1 se puede observar que Google se
encuentra muy bien posicionado y con una espera de crecimiento notable.

Figura 1. Gráfico de los principales competidores en Cloud [2]

7

https://docs.google.com/document/d/1dO4T84AI2FZNZwSdvJrdRh3eUNYD6GhAmlvm2l-njW0/edit#bookmark=id.ik39x8bx3od9

1.3 Motivación y problema que se aborda
A la hora de escoger un tema sobre el trabajo de fin de grado han existido varias propuestas
interesantes, entre las cuales aparecían numerosas relacionadas con el entorno cloud. Para
poder establecer un primer contacto con el mundo laboral, se decidió realizarlo a través de
una empresa, entre las cuales destacó NTT DATA. Tras analizar varios proyectos surgió la
idea de gestionar la seguridad de un sistema que emplee Kubernetes, lo cual resultó
interesante y práctico debido a que la utilización actual de este orquestador es muy elevada.
Sumado a esto, se escogió NTT por el gran departamento (DAR, Digital Architecture) que
tienen relacionado con las tecnologías cloud, ya que de manera directa permitiría contar con
una amplia gama de recursos tanto materiales como de información y de personal.

El problema que se aborda es una cuestión de gestión de riesgos en la línea de lo visto en
las asignaturas de ingeniería del software, sistemas distribuidos y seguridad informática. La
dependencia creciente de la tecnología de Kubernetes para el despliegue de sistemas la
convierte en un punto de riesgo cada vez más alto. Es por ello que en el TFG se plantea el
estudio de los posibles riesgos, además de cómo elaborar estrategias de mitigación y
planes de contingencia.

1.4 Alcance, objetivos y limitaciones
En el presente documento se va a exponer el análisis realizado a diversas configuraciones
de Kubernetes(K8s), cuyo entendimiento total, logrará mediante el empleo de diferentes
herramientas una comprobación 360º en lo respectivo a su seguridad, con la finalidad de
intentar proteger al máximo el sistema pertinente, así como de comprender las vías que
llevan a ello.
Tras el estudio de herramientas empleadas para el monitoreo y mantenimiento de la
seguridad en sistemas sustentados por Kubernetes, se ha determinado cuál de ellas es
mejor en relación al ambiente en el que se desarrollan así como también si es necesario su
empleo en K8s o por si mismo genera intrínsecamente un sistema robusto.

1.5 Herramientas de trabajo
Durante la realización del proyecto se han empleado las siguientes herramientas:

Kubernetes: Utilizado como herramienta de gestión de contenedores, despliegues y
similares (link ¿Qué es Kubernetes?)
Docker: Empleado para el manejo de imágenes en contenedores (link
https://www.docker.com/)
Kubectl: Herramienta CLI para trabajar con K8s, desplegando y gestionando aplicaciones o
inspeccionando recursos del cluster (link Instalar herramientas | Kubernetes)
Kube-bench: Software para el análisis de configuración de plataformas, que comprueba si
K8s esta documentado de forma segura según el CIS Kubernetes Benchmark (link
https://github.com/aquasecurity/kube-bench)

8

https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/
https://www.docker.com/
https://kubernetes.io/es/docs/tasks/tools/
https://github.com/aquasecurity/kube-bench

Kube-Hunter: Software para el análisis de configuración de plataformas, que comprueba si
K8s esta documentado de forma segura según el CIS Kubernetes Benchmark (link
https://github.com/aquasecurity/kube-hunter)
Kyverno: Motor de políticas diseñado para K8s (link Kyverno)
OPA Gatekeeper: Motor de políticas para proyectos nativos en la nube (link Introduction |
Gatekeeper)
Falco: Herramienta utilizada para el manejo de seguridad activa dentro de contenedores,
K8s y Cloud (link Open Source Container Security Tools: Falco - Sysdig)
Istio: Software empleado para la gestión, observabilidad e implementación de seguridad de
comunicaciones. (link https://istio.io/)
Kubernetes Network Policies: Solución nativa de K8s para la aplicación de políticas en red
(link Network Policies | Kubernetes)
Trivy: Herramienta para el análisis de imágenes (link https://github.com/aquasecurity/trivy)
Grype: Herramienta para el análisis de imágenes (link https://github.com/anchore/grype)
SealedSecrets: Software utilizado para el cifrado de secretos (link
https://github.com/bitnami-labs/sealed-secrets)
Hashicorp-vault: Software empleado para el cifrado de secretos, generación y gestión de
los mismos (link https://github.com/bitnami-labs/sealed-secrets)

1.6 Esquema general de la memoria del proyecto
Con el objetivo de facilitar la comprensión y desglosar de manera práctica el contenido, se
han establecido las siguientes secciones.

● Resumen: Contiene de forma sintetizada todo el trabajo realizado
● Introducción: Se define el objetivo y el alcance del proyecto, el contexto en el que

se realiza y la metodología llevada a cabo durante su desarrollo.
● Trabajo desarrollado: Se explica el procedimiento seguido durante el proyecto, así

como una explicación amplia de los problemas estudiados, las vías mediante las
cuales estos pueden ser resueltos y la comparativa de las mismas. Dentro de esta
sección se encuentran las siguientes categorías:

○ Análisis previo de plataforma: Se realiza un estudio previo del sistema a
emplear, comprobando que plantea una configuración correcta en situaciones
como directorios con permisos adecuados, conexiones permitidas o
similares.

○ Aplicación de políticas de seguridad: En esta sección se escribe sobre cómo
aplicar políticas en Kubernetes, entendidas estas como el establecimiento de
normas en cuanto a la utilización o acceso de recursos.

○ Seguridad activa: En dicho apartado se comprueba cómo mantener
asegurado el sistema, mediante el análisis activo de las acciones que “están”
ocurriendo.

○ Seguridad en comunicaciones: Esta sección estudia la interacción de
componentes, comprobando las posibilidades de asegurarla, cómo
monitorizar y otros empleos de utilidad en los sistemas distribuidos.

○ Análisis estático de imágenes: Se chequean algunas de las imágenes más
populares en el empleo de contenedores, observando vulnerabilidades que
pueden contener.

9

https://github.com/aquasecurity/kube-hunter
https://kyverno.io/
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://sysdig.com/opensource/falco/
https://istio.io/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://github.com/aquasecurity/trivy
https://github.com/anchore/grype
https://github.com/bitnami-labs/sealed-secrets
https://github.com/bitnami-labs/sealed-secrets

○ Gestión de secretos: En esta sección se trata el tema de los secretos, los
cuales se emplean de manera directa para limitar el acceso a los datos.

○ Ejemplo práctico: Se plantea un caso de uso real, aplicable al entorno de
NTT DATA Co. de cómo emplear lo estudiado anteriormente, viendo como
funciona Kubernetes y las herramientas externas en suceso de un desarrollo
real.

● Conocimientos adquiridos: En esta sección se describen las diferentes aptitudes
obtenidas.

● Ideas futuras: Se habla sobre los posibles trabajos o estudios realizables a partir de
este proyecto.

● Conclusiones: El último apartado en lo que respecta al trabajo, en él se aborda el
delimitar qué herramienta es necesaria y cuál de ellas es mejor para cada posible
caso que se plantee, así como el definir de manera amplia, si Kubernetes ofrece por
sí mismo el poder manejar una seguridad competente para según qué ocasiones.

● Bibliografía: Sección a parte en la que aparecen los enlaces y material consultado y
empleado

En los anexos se explican detalles a tener en cuenta sobre la realización del trabajo. En
estas secciones se podrán encontrar pruebas de ejecuciones realizadas, diferentes
procesos de instalación relacionados con las herramientas mencionadas anteriormente y
ejemplos de utilización que presentan cada una de estas.

● Anexo I: Información relacionada con la aplicación de políticas
● Anexo II: Información relacionada con la seguridad activa
● Anexo III: Información relacionada con la aseguración de comunicaciones
● Anexo IV: Información relacionada con el análisis de imágenes
● Anexo V: Información relacionada con el empleo de secretos
● Anexo VI: Ejemplo práctico

10

2. Trabajo desarrollado
En lo que respecta al estudio de la seguridad sobre un sistema en K8s se ha seguido una
metodología sustentada en los siguientes pasos:

1. Análisis del ámbito a estudiar
2. Estudio de las herramientas nativas de K8s
3. Estudio de las herramientas externas a utilizar
4. Explicación de vulnerabilidades
5. Comparativa y remediaciones

Así entonces se llevará a cabo de manera similar este esquema en cada uno de los flancos
a estudiar, comprendidos éstos como un conjunto de características cuya configuración está
relacionada, por lo que estas pueden ser gestionadas, observadas y controladas de manera
agregada.

2.1 Análisis de la plataforma
El primer paso para trabajar de forma segura es la previa comprobación de que todo está
configurado de manera correcta. Esta actividad es cuanto menos obligatoria y se ha de
tener muy en cuenta, ya que en determinadas distribuciones es posible que exista cierta
permisibilidad a la hora de realizar tareas concretas con el fin de que el usuario tenga
facilitada la experiencia. Un ejemplo de esto suelen ser los privilegios definidos al acceder a
directorios o archivos, en entornos de producción estos deben estar limitados al mínimo
posible [3].
Aunque esta tarea se nombra y se ha de ejecutar al inicio, puede ser también comprobada
de manera continua al introducir elementos nuevos, como nodos, pods o contenedores.

11

Para poder comprobar esto de forma nativa en K8s sería necesario revisar manualmente
cada parámetro de interés y chequear si tienen los valores correctos, lo cual resultaría una
tarea tediosa y compleja.

Este flanco inicial tiene la intención de hacer una comprobación amplia de la plataforma,
en la cual se comprobarán aspectos genéricos y de fallo común. Para lograr este paso
inicial se han planteado kube-bench y kube-hunter, ambas desarrolladas por la compañía
aquasecurity, una de las más importantes empresas de seguridad cloud.

2.1.1 Kube-Bench
En primer lugar se ha utilizado kube-bench, reconocido software creado por aquasecurity,
el cual se asegura de si Kubernetes ha sido implementado correctamente llevando a cabo
las comprobaciones documentadas en CIS Kuberntes Benchmark , organización sin animo
de lucro cuya misión es lograr un mundo digital seguro [4]. Cabe destacar que la
configuración de kube-bench se realiza con archivos en formato YAML, esto implica
directamente una buena base de actualización para que el desarrollo de las pruebas se
complete y avance.

Kube-Bench es cuanto menos sencillo de llevar a cabo. Primero será necesario escoger su
lugar de instalación, en este caso será el host que se conecta con minikube (el ordenador
personal), podría ejecutarse dentro de un POD en algún nodo del cluster pero esto complica
innecesariamente la labor, para observar las diferencias, dicho lugar de ejecución es usado
con la herramienta Kube-Hunter.

En el Anexo I sección I se muestran algunos ejemplos del trabajo que se puede realizar con
kube-bench, el explicar todos ellos en este documento resultaría inviable ya que se habla de
cientos de casos a analizar, de igual modo pasa con muchos de los programas empleados
durante este proyecto.

2.1.2 Kube-Hunter
Kube-Hunter es una herramienta open-source que encuentra debilidades en clusters de
Kubernetes, esta testea un dominio o rango de direcciones probando diferentes
configuraciones que puedan exponer al cluster.

Se encuentra disponible mediante contenedor, web, o ejecutando código en python.
Kube-Hunter es posible instalarlo en diferentes ubicaciones, en este se ha escogido un pod
dentro del propio cluster, ya que esto además indica que tan expuesto quedaría el cluster si
alguno de los pods quedará comprometido [5], puesto que te encuentras dentro del cluster
observando todas las vulnerabilidades con cierto nivel de permisos. De igual forma se
podría haber realizado antes con kube-bench, de este modo se prueban diferentes métodos
de instalación.
Al ejecutar Kube-Hunter este muestra opciones sobre qué se quiere analizar:

Choose one of the options below:
1. Remote scanning (scans one or more specific IPs or DNS names)
2. Interface scanning (scans subnets on all local network interfaces)

12

3. IP range scanning (scans a given IP range)

Esto permite escanear una máquina remota, las interfaces de red de la máquina o un CIDR
específico, respectivamente. Ya escogido el apartado a investigar, al empezar aparecen una
serie de mensajes que explican las vulnerabilidades que porta el sistema, en caso de que
estas existan.

Seguidamente se visualizan una serie de tablas indicando de manera desglosada y muy
clara la vulnerabilidad, donde ocurre y en qué consiste esta. Aunque aquí Kube-Hunter, al
contrario que Kube-Bench no resuelve dichas vulnerabilidades, emplea una plataforma web
[6] con un pequeño buscador en el que al introducir la vulnerabilidad enseña a como
solucionarlo.

Entendiendo más cuál es el potencial de Kube-Hunter se explicaran y solucionaran algunas
de las fallas encontradas. Para la ejecución de Kube-Hunter se ha empleado la misma
configuración cloud que con Kube-Bench, es decir la que viene por defecto al instalar
minikube. Dichas pruebas serán mostradas en el Anexo I sección II .

Tras absorber las pruebas aportadas es deducible afirmar que ambas herramientas tienen
una función similar (por no decir idéntica), tratando de encontrar distintos tipos de fallas.
Realmente no existen diferencias significativas entre ambas.
Los problemas mencionados anteriormente pueden ser resueltos de diferentes maneras:

- Manualmente: Tanto Kube-bench como Kube-hunter cuentan con una extensa
documentación en la que explican detenidamente cada uno de los test que se pasan
y cómo remediarlos. Tan solo sería necesario seguir los pasos.

- Automáticamente: Sería plausible programar scripts que realizarán la configuración
segura mediante la ejecución de comandos.

- Empleo de políticas: Existe software mediante el cual se aplican ciertas políticas
que pueden modificar o prevenir determinados comportamientos para lograr una
seguridad en K8s. Estas serán explicadas a continuación.

2.2 Aplicación de políticas de seguridad
El manejo de las políticas de seguridad es algo fundamental para controlar y delimitar la
actividad de usuarios y procesos en cualquier tipo de sistema. Este concepto se basa en
redactar una serie de normas que son chequeadas antes de realizar una acción, teniendo
en cuenta que si alguna de dichas acciones es impedida por una de las normas anteriores
se tomarán medidas en relación a esta.

En este apartado se habla de dos importantes herramientas empleadas para aplicar una
serie de políticas, según las mismas, en caso de que no se estén cumpliendo, se podrá
actuar en consonancia según desee el administrador, todo esto hará del sistema un lugar
mucho más seguro.
Es cierto que Kubernetes desarrolla de manera nativa políticas en el sistema, sin embargo
el empleo de estas se encuentra un tanto limitado, lo cual se puede solucionar trabajando
con aplicaciones externas como las que se verán a continuación.

13

Kyverno
En primer lugar Kyverno, es un motor de políticas diseñado exclusivamente para K8s. Este
se usa mediante el comando kubectl y su descripción con YAML, por lo que un usuario semi
acostumbrado a Kubernetes se encontrará con grandes facilidades a la hora de manejarlo
ya que únicamente deberá conocer los recursos que desee modelar.
Sobre estos se aplican tres acciones básicas a partir de las que se rige todo el
funcionamiento de Kyverno: Validar (allow), mutar (mutate) y generar (generate), lo que
permite eficazmente afirmar si un recurso está definido adecuadamente, modificarlo en caso
de que sea necesario o crear uno nuevo, respectivamente [7]. No obstante, además de esto,
Kyverno ofrece un servicio de validación de imágenes, el cual es comentado más adelante.

Siguiendo con el modelo de explicación del apartado anterior, se explican a continuación
una serie de políticas aplicables con Kyverno para comprobar las opciones que este ofrece
y sus posibles usos. Dichas políticas se podrán comprobar en el Anexo I sección III

OPA Gatekeeper
En segundo lugar se presenta Open Policy Agent (OPA) Gatekeeper, se define como un
motor de políticas de propósito general. Este permite validar o mutar(esta característica es
relativamente nueva) solicitudes de diversa índole. Emplea un lenguaje de programación
propio, Rego, utilizado para aplicar la lógica necesaria en el filtrado de las peticiones de
acciones.

Se pueden comprobar las pruebas realizadas mediante OPA Gatekeeper en el Anexo I
sección IV .

La comparativa entre Kyverno y OPA puede resultar muy útil ya que dependiendo de las
características del proyecto que se desee, claramente se deberá escoger entre una
herramienta u otra, a pesar de que ambas tengan un objetivo similar.

De primera instancia OPA no es exclusivo de Kubernetes, Kyverno si. Esto conlleva
ventajas e inconvenientes dependiendo de las necesidades del usuario. En caso de que se
trate de un proyecto abierto, o que puede escalar y comunicarse con distintos tipos de
plataformas cloud, sin duda sería necesario escoger OPA, sin embargo, en caso de que
dicha actividad fuera a llevarse a cabo únicamente en el entorno de K8s sería
recomendable el empleo de Kyverno, ya que está diseñado exclusivamente para este
sistema y no adaptado a él.

Seguidamente, Kyverno es un motor mucho más sencillo que OPA. Al igual que el punto
anterior esto presenta ventajas e inconvenientes. Esto es debido a que para aplicar la
operativa de Kyverno únicamente se emplean ficheros YAML que definen directamente la
lógica que se va a aplicar, mientras que OPA lo realiza mediante su propio lenguaje, Rego.
Esto hace que la curva de aprendizaje para el usuario sea mucho más extensa en OPA, sin
embargo, OPA permite describir políticas complejas, lo que en caso de requerir esquemas
muy específicos para el sistema, sería muy beneficioso. Nuevamente depende en este caso
de las necesidades demandadas.

14

En cuanto a las capacidades de cada uno, Kyverno aparece mucho mejor posicionado, ya
que este permite 3 tipos de actuación en base a las operaciones que se realicen: Permitir,
añadir y mutar, todo ello sumado a un verificador y registrador de imágenes. OPA
únicamente presenta la de permitir (o no) ciertas ejecuciones, si es cierto que han incluido la
opción de mutar, pero esta se encuentra en una etapa incipiente.
Analizando otros aspectos, OPA lleva más tiempo en el mercado contando con una
comunidad un tanto mayor, aunque Kyverno le sigue muy de cerca y con un crecimiento
muy amplio.

Como se ha explicado, la elección entre un motor de políticas u otro radica en las
necesidades que tenga el usuario, pero en este caso concreto, se trata de un cluster
exclusivo de Kubernetes que no emplea políticas excesivamente sofisticadas. Por lo que
particularmente escogería Kyverno. Las aptitudes de cada uno se recogen en la Tabla 1.

Sencillez Descripción de
políticas

Operaciones Plataformas

Kyverno Alta Limitada Permitir, mutar,
añadir, comprobar
imagenes

Únicamente
K8s

OPA Baja Alta Permitir,
mutar(beta)

Múltiples

Tabla 1. Comparación Kyverno VS. OPA

2.3 Seguridad activa
En cuanto a la seguridad activa es imprescindible hablar de Falco, desarrollada por la
empresa SYSDIG y donada a la Cloud Native Foundation (CNF), centro de código abierto e
independiente que aloja proyectos como Kubernetes y Prometheus para hacer que la nube
nativa sea universal y sostenible [8].

Falco usa las system calls o llamadas al sistema para monitorizar y asegurar al propio
sistema. Su actividad consiste, de manera resumida en:

- Análisis de las llamadas del sistema Linux desde el kernel en tiempo de ejecución
- Realizar “asserts” de las comunicaciones frente a un motor de reglas
- Alertar cuando una regla ha sido violada. [9]

Kubernetes ofrece de manera nativa opciones que permiten leer información sobre las
actividades del sistema. El componente Kube-apiserver lleva a cabo la auditoría. Cada
petición en cada fase de su ejecución genera un evento, que se pre-procesa según un cierto
reglamento y se escribe en un backend [10].

En cuanto a las políticas, como se ha visto anteriormente, en Kubernetes se definen en
formato YAML y dependiendo del evento ocurrido se pueden auditar o impedir. De manera
similar Falco realiza este contraste con las conocidas Falco rules, en las que además
distingue 3 tipos de elementos(Rules, Macros, Listas) que logran una gestión de las reglas

15

muy sencillo y práctico. Se puede observar el funcionamiento y diferencias de ambas en el
Anexo II Sección I .

Con los elementos anteriores se realiza un contrapunto frente a los diferentes eventos que
ocurren en el sistema, provenientes de las llamadas al sistema, los logs de kubernetes y
actividad cloud heterogénea, observable en la Figura 3.

Figura 3.Funcionamiento general de Falco (link Sysdig - Falco)

Para entender un poco mejor su funcionamiento se contempla un ejemplo práctico, se
puede pensar que teniendo nativamente a Kubernetes comprobando los distintos procesos
y generando logs de ellos no sería del todo necesario emplear Falco, sin embargo la
aportación que este hace a la seguridad y gestión de K8s es bastante elevada. Además de
observar y analizar los heterogéneos eventos que se ejecutan en Kubernetes, es capaz de
estudiar actividad proveniente de otros entornos, como puede ser AWS, Azure o Google
Cloud, lo que presenta gran utilidad en despliegues multiplataforma.
Falco recopila toda esta información y con aquella que hace match frente a alguna de las
Falco Rules podrá generar una alerta visible o actuar en consecuencia.
En cuanto a las alertas, Falco las puede mostrar por distintas salidas, estas pueden ser:

- salida estándar, como stdout, docker logs o kubectl logs; syslog;
- archivos, definidos a elección del usuario.
- entradas a programa, este punto resulta muy útil ya que dichas alertas pueden ser

enviadas a cualquier programa, como por ejemplo un email, y trabajar directamente
con ellas.

- http[s] methods / gRPC clientes, las cuales emplean formato JSON, lo que implica
que las aplicaciones podrían utilizar de primera mano dichos datos como por
ejemplo en dashboards, notificaciones u otras utilidades.

El empleo o no de estas salidas se escribe en el fichero /etc/falco/rules.d/falco.yaml, donde
aparece una configuración genérica de la vía que actuará Falco, se observará su uso en
Anexo II Sección II .

Se ha comprobado que Falco tiene grandes cualidades como motor de detección, se
marcan unas reglas que el sistema ha de cumplir y en caso de que no sea así, se genera
una alerta. Sin embargo, para asegurar realmente el sistema, es necesario responder frente
a esos despropósitos. De esta manera en conjunción con otras aplicaciones Falco se
comportará como un motor de respuesta, respondiendo cuando sea necesario si una o más

16

https://sysdig.com/opensource/falco/

reglas no se cumplen. Para lograr esto se emplea también la herramienta Falco Sidekick, se
define como un demonio simple que permite conectar Falco a tu ecosistema. Este toma los
eventos de Falco y sus diferentes salidas colocando todo en un punto único [11]. Junto con
esto es necesario un servicio que pueda actuar frente a los distintos eventos como pueden
ser Kubeless, OpenFass o Argo. Mediante estos servicios se definen funciones que son
capaces de desempeñar acciones concretas.

Figura 4. Ejemplo de funcionamiento Falco con remediación de incidencias

Se plantea un caso de uso en la Figura 4. Póngase el ejemplo de que en alguno de todos
los nodos visibles en los que corre Falco hay establecida una Falco Rule para impedir
ejecutar un SHELL dentro de un contenedor (por razones ya explicadas anteriormente). Si
en alguno de dichos contenedores se ejecuta un SHELL, saltará una alerta la cual será
enviada a OpenFaaS, invocando una función para solucionar dicho problema, por ejemplo
se podría terminar el pod donde corre el contenedor para evitar que este continuará
ejecutando comandos y una posible escalada de privilegios.
Dicha alerta se podría enviar a un sistema de incidencias como PagerDuty.

2.4 Seguridad en comunicaciones
El apartado relativo a las comunicaciones se entiende como la manera en la que unos
componentes interactúan con otros (o con sí mismos). Este es un aspecto muy importante
del desarrollo y puesta en funcionamiento de aplicaciones web. Por ello ha de estar
configurado de manera muy precisa atendiendo a cada detalle.
Para entenderlo mejor se expondrá con un ejemplo visible en Anexo III Sección I .

Istio
De manera muy eficaz la herramienta Istio logra resolver muchas de las necesidades. Istio
es una servicemesh de código abierto que se superpone de forma transparente a las
aplicaciones distribuidas existentes [12]. Posee potentes funciones que logran eficientemente
proteger, conectar y hacer monitoreo de servicios.

17

Las funciones de Istio básicamente se dividen en tres grandes grupos[12]:
- Gestión de tráfico
- Observabilidad
- Capacidad de seguridad

En cuanto a la gestión del tráfico, Istio permite, aplicando sus reglas de enrutamiento,
controlar el tráfico y las llamadas a la API realizadas entre los diferentes servicios. Esto se
entrelaza con las cuestiones de seguridad para lograr comunicaciones férreas.

Dividir una aplicación en microservicios sin duda puede traer grandes beneficios como
puede ser la escalabilidad, tan importante en entornos cloud, sin embargo estos
comprenden necesidades de seguridad.
En primer lugar es necesario encriptar el tráfico para evitar ataques de intermediarios así
como cualquier tipo de sniffing, además de ello es necesario el empleo de distintos
protocolos como TLS y mTLS (mutualTLS) que garanticen un control de accesos a cada
servicio, junto con el uso de políticas que regulen el empleo (o no) de dichos protocolos. Por
supuesto, siempre será necesario auditar cada acción que se realice para saber quien
realizó determinadas actividades en un momento concreto.

Istio categoriza distintos niveles de seguridad para una protección modelable, son:
- Secure by default no es necesario introducir cambios en la aplicación o la

estructura de la misma.
- Defense in depth, consiste en integrar el desarrollo con los sistemas de seguridad

ya existentes.
- Zero-trust network, comprende el crear avanzadas soluciones en redes de dudosa

seguridad.

Con el objetivo de comprender mejor el funcionamiento de la seguridad de Istio se explicará
seguidamente su arquitectura vista desde un nivel alto

Figura 5. Arquitectura de isito link (Istio Arq)

En el diagrama visto en la Figura 5 es posible observar distintos componentes.

18

https://betterprogramming.pub/how-istio-works-behind-the-scenes-on-kubernetes-aeb8003f2cb5?gi=1344ef0266b3

- Un CA (certificate authority) encargado de gestionar claves y certificados
- Un servidor API para la configuración, el cual distribuye políticas entre los proxies
- Proxies, llevando a cabo la comunicación entre cliente y servidor
- Extensiones que logran funciones extra como la auditoría.

En lo relativo a la gestión de identidades y el otorgar certificados, junto con cada proxy
Envoy aparece un istio agent, los cuales se comunican con istiod para obtener los
certificados y las claves pertinentes. El istio agent se ocupa de la caducidad del certificado.

Para la autenticación Istio plantea dos tipos. Autenticación de pares: esta es empleada entre
servicios. Se realiza mediante el protocolo TLS (Transport Layer Security)
Esto puede ser aplicado de distintas maneras según las necesidades del usuario,
concretamente mediante el empleo de 3 modos:

- Permissive: Los workloads permiten tráfico mTLS y texto sin formato.
- Strict: Únicamente se acepta mTLS
- Disable: mTLS se encuentra deshabilitado. Esto no se debe realizar a menos que el

usuario aporte su solución personal en cuanto a lo que seguridad se refiere.

A su vez, esto propicia una gran flexibilidad a la hora de configurar las comunicaciones. Por
ejemplo, si se tiene una organización ya existente y se desea migrar a Istio, mediante el
modo permisivo se podrá ir logrando que los distintos workloads comiencen a emplear
mTLS y aquellos que todavía no lo han podido instalar sigan enviado tráfico de la manera
previa.

Es cierto que cualquiera puede pensar ¿realmente necesito Istio para emplear TLS?
Obviamente la respuesta es no, pero la diferencia radica en que con el uso de Istio el
empleo de este protocolo se realiza de forma automática empleando el patrón sidecar y los
Envoy, mientras que si se quisiera realizar de manera manual sería necesario realizar
muchos certificate management. Esta redirección de tráfico se podría constatar en tiempo
real con el empleo de alguna de las herramientas de observabilidad siguientes, como
pueden ser Graphana o Kiali.

Respecto a la observabilidad Istio proporciona una telemetría detallada que permite atender
el comportamiento de los servicios, lo que facilita al usuario el poder mantener dichos
servicios funcionando correctamente. Con esta funcionalidad se podrán leer métricas, hacer
seguimiento distribuido y observar un completo acceso de registros.

Para poder entender mejor la capacidad que tiene Istio se comenta un caso en el que se
han llevado a la práctica los conceptos explicados anteriormente, visible en el Anexo III
Sección III . Se observa que Istio ofrece una gran operatividad con herramientas muy útiles
para la administración de cualquier despliegue.

Kubernetes Network Policies
No hay que olvidar la opción nativa de Kubernetes, Kubernetes Network Policies (KNP), la
cual ofrece una gran potencia a la hora de aplicar políticas de red. KNP permite un control
del tráfico de IP/port entre pods, espacios de nombres y bloques de IP.

19

Por supuesto dicho control se realiza aplicando ficheros en formato YAML. Se pueden
realizar múltiples acciones como denegar todo el tráfico de una fuente concreta, desviarlo
hacia un puerto determinado o aceptar únicamente determinadas acciones. Se puede
observar su funcionamiento de manera sencilla en el Anexo III Sección III

Tras un contundente análisis de ambas herramientas, se entiende que Istio es mucho más
completo que KNP, ya que ofrece monitoreo, traza, aplicación de políticas, observabilidad,
reparto de tráfico, mTLS simplificado… Sin embargo no implica que KNP no tenga
escenario de uso, el empleo de esta es mucho más sencillo ya que de primera instancia no
requiere instalación alguna y admite crear políticas decisivas para la seguridad del sistema.
Para despliegues sencillos quizás no fuera necesario la instalación de Istio y sus addons,
sin embargo, en cuanto aparezca un poco de complejidad se recomienda tajantemente su
uso, ya que además de lograr una mayor comprensión de las estructuras existentes,
ofrecerá al operador una visión amplia de todas las comunicaciones que están ocurriendo
en su sistema.

2.5 Análisis estático de imágenes
Una imagen puede definirse como un paquete software ejecutable. Esta contiene los datos
binarios de una aplicación y todas las dependencias software de la misma. Se consideran
como una parte fundamental en la orquestación de K8s, ya que básicamente es lo que va a
correr dentro de un contenedor. Por ello mismo, en estas no puede haber fallo alguno, ya
que una brecha de seguridad en alguna imagen podría suponer el acceso a datos
confidenciales o una escalada de privilegios.
Kubernetes de forma nativa no ofrece un medio, comandos o similar que permita analizar
una imagen en busca de fallas, por ello se ha realizado el estudio de dos herramientas
conocidas que han permitido obtener conclusiones sobre el estado de las imágenes, Grype
y Trivy.

Trivy
Esta herramienta es de la conocida empresa Aqua, la cual provee de numerosas opciones
que aportan seguridad a K8s, como la nombrada anteriormente kube-bench. Trivy es un
escáner que permite analizar imágenes de contenedores, sistemas de ficheros e incluso
repositorios de git con el objetivo de encontrar brechas de seguridad relativas a
vulnerabilidades en la constitución de la imagen, configuraciones o secretos.

Para contemplar el ambiente de trabajo de Trivy se ha empleado uno de los ejemplos
mostrados anteriormente, concretamente la imagen del POD de reviews usado para Istio,
observable en el Anexo IV Sección IV. Cualquier imagen con un mínimo de complejidad
bastaría para observar de manera general los aspectos que Trvy ofrece.

A pesar de que esta herramienta corre en una gran cantidad de sistemas operativos y busca
en multitud de lenguajes específicos, no funciona con JAVA, algo a tener en cuenta ya que
es uno de los lenguajes más usados de la actualidad. Por contra, está su competidor,
Grype, el cual es explicado a continuación.

20

Grype
Se trata de un escáner para contenedores de imágenes y sistemas de archivos [13]. Este es
compatible con multitud de SO. Una vez instalado Grype, su empleo es muy visible en el
Anexo IV Sección II.

Para estudiar cuál de las dos se comporta mejor, se ha hecho una comparativa con 4
imágenes, analizadas con ambas herramientas. Dicho estudio se encuentra en el Anexo IV
Sección III.
Por último se tendrá en cuenta la actividad que ambas herramientas tienen actualmente, se
puede comprobar que Trivy tiene alrededor de 1200 forks y 12.900 stars en GitHub [14]

mientras que Grype cuenta con 278 forks y 4000 starts [13].

Como conclusión en el análisis de imágenes, se escogería Trivy, la manera que tiene de
arrojar los resultados más completa y clara, el apoyo de la comunidad y el pertenecer a una
empresa que dedica gran parte de su operativa a la seguridad en K8s hacen que sea la
herramienta a escoger. No ostenta, como es de suponer, en caso de utilizar proyectos con
Java (lo cual puede ser bastante común), se deberá utilizar Grype u otro escaneador como
Clair o similar.

2.6 Gestión de secretos
Se trata de una de las partes más importantes en lo que respecta a la seguridad de forma
directa, ya que es uno de los mecanismos que permite limitar de manera intrínseca el
acceso a determinados datos. Mediante esta forma se deben guardar credenciales,
contraseñas, tokens, claves, certificados ssh y demás.
Para comprender su funcionamiento se propone un ejemplo de uso básico en el Anexo V
Sección I

Respecto al uso de secretos existe un problema muy importante, K8s no cifra la
información empleada para autenticación en los secretos, únicamente lo codifica en base64
para que “no sea visible al ojo humano”, lo que se puede revertir fácilmente con un
comando que transcribe dicha cadena a texto de nuevo. Sin esfuerzo se entiende que esto
no puede ser implementado cuando se estén tratando datos personales, contraseñas o
ficheros clasificados. Para solucionar esto, se han desarrollado diferentes soluciones, de las
cuales se ha llevado a cabo el estudio de Sealed Secrets y Hashicorp Vault.

SealedSecrets
De primera instancia SealedSecrets puede verse como la solución más simple. Su trabajo
se basa en el empleo de kubeseal que encripta el secreto o Secret en un SealedSecret, el
cual solo podrá ser desencriptado por el controlador, el cual se encuentra corriendo en el
cluster objetivo.

Comenzando con la instalación del mismo, al terminar esta se crearán 2 llaves. La clave
pública, la cual se utilizará para cifrar los secretos y enviarlos al target cluster. La clave
privada, esta se emplea para descifrar el secreto cifrado anteriormente y poder usar dichas
credenciales (ya únicamente en base64) para acceder a la aplicación que se desee. Este

21

proceso aparece bien resumido en la Figura 6. Los algoritmos de cifrado empleados son
AES-256-GCM, RSA-OAEP con SHA-256 y x509.

Figura 6. Funcionamiento Sealed Secrets (link Codefresh.io)

De esto se deduce una utilidad extra que aporta gran cantidad de facilidades: subir las
credenciales a GitHub. Gracias al hecho de emplear Sealed Secrets se podrán subir dichos
archivos al repositorio, y en el momento que el cluster desee emplearlo para acceder a una
aplicación solo tendrá que hacer pull y desencriptar. Este caso presenta mayor utilidad aún
con el empleo de pipelines.

Para hacerse una idea de lo sencillo que resulta emplear esta herramienta, teniendo un
secreto existente, el único trabajo que habría que realizar para obtener un sealed secret
seria el siguiente:

$ kubeseal <secretohackeable.json> secretonohackeable.json

Partiendo de un secreto creado anteriormente secretohackeable.json, se obtendrá en el
mismo directorio secretonohackeable.json, el cual aparecerá cifrado, ilegible e
indescriptible(en tiempo útil y sin poseer la clave privada).

Hashicorp Vault
Por otra parte se encuentra Vault de Hashicorp, este presenta una complicación un tanto
mayor, además de tener que partir con un conocimiento y abstracción mayor sobre
seguridad en lo que respecta a Kubeseal. Sin embargo, ofrece una gran variedad de
recursos que facilitan y permiten la operatividad de un gran contexto de aplicaciones.

De manera general Vault consiste en un software que permite almacenar y gestionar
secretos, todo ello realizando un control de acceso estricto sobre ellos.
Para entender más eficazmente el funcionamiento de Vault se ha analizado este a alto nivel
en el Anexo V Sección II .

Tras examinar ambas herramientas se deduce que tanto SealedSecrets como Vault
resuelven uno de los grandes problemas de Kubernetes, que es el acceso a contraseñas,

22

https://codefresh.io/

tokens o datos sensibles sin complicaciones. Ambos cifran la información logrando que esta
sea prácticamente inaccesible. Sin embargo, muestran grandes diferencias.

Vault aporta un número de aplicaciones muy superior a SealedSecrets. Mediante su uso se
puede autenticar usuarios, auditar accesos, definir políticas, conectar con servicios, emplear
distintos motores de secretos y otras muchas, mientras que SealedSecrets únicamente
permite encriptar los secretos con el uso de una clave pública y otra privada.

Si que es cierto que puede que para distintos casos no sea necesario todo el útil que
expone Vault, y únicamente con el empleo de SealedSecrets sea suficiente. A pesar de ello,
Vault es un claro ganador, cumple con la función realizada por SealedSecrets y muchas
más, todo ello con una curva de aprendizaje no demasiado alta.

Sencillez Operaciones Plataformas

Hashicorp
Vault

Media Autenticación, autorización,
validación, encriptación de
secretos, distintos
SecretEngines, auditoría,
secretos dinámicos, cifrado como
servicio
(...)

Múltiples

SealedSecrets Alta Encriptación de secretos Únicamente K8s

Tabla 3. Comparación Hashicorp Vault VS. SealedSecrets

23

3. Lecciones aprendidas y conclusiones

3.1 Conocimientos adquiridos
En lo que concierne a la elaboración de este proyecto, era imperativo comprender en
profundidad una gran cantidad de conceptos relacionados con los sistemas distribuidos y la
seguridad, algunos de ellos genéricos y otros más profundos. Junto con esto, al intentar
encontrar la mejor solución para cuestiones muy diversas como pueden ser las
comunicaciones o el acceso autorizado a determinados datos, se han aprendido gran
cantidad de tecnologías y programas diversos, por lo que se ha logrado abarcar una
cantidad razonable de herramientas actuales del mercado, así como el conocer otras que
también podrían ser de gran utilidad.

3.2 Ideas Futuras
Al tratarse el tema principal de la seguridad, es entendible que este proyecto podría
prolongarse prácticamente en la medida que se desease, puesto que la cantidad de
conceptos, capas y niveles que podrían ser estudiados son muy extensos. No obstante se
plantean varios de ellos que podrían tener especial interés.

Se podría investigar sobre las posibilidades de encriptar etcd con distintos métodos. Etcd es
un almacén que contiene todo el estado del cluster, incluyendo los secretos, por lo que el
contenido de este debería estar encriptado siempre que sea posible. Existen distintos
algoritmos y aplicaciones que podrían realizar esta tarea, decidir cuál sería el más
conveniente para cada caso podria ser una buena continuación para este proyecto.

Además se podria incluir el análisis y comprobación de código, tanto estático como
dinámico, como se ha enseñado en la asignatura de Seguridad Informática de 4º curso.
Pueden existir multitud de vulnerabilidades escritas en el código, como desbordamientos,
empleo de funciones no seguras o demás.

Junto con esto sería posible profundizar más en los aspectos ya comentados anteriormente,
a pesar de que se ha hecho un análisis bastante completo en cada uno de los flancos,
todavía quedan detalles que podrían requerir aplicaciones y contextos de seguridad
específicos

3.3 Conclusiones
Se ha llevado a cabo el estudio e implementación de una defensa 360º en Kubernetes,
evaluando la seguridad nativa que ofrece K8s y comparando la misma con la presentada
por herramientas externas. Se considera que se han cumplido los objetivos de manera
satisfactoria ya que ha sido posible dotar de una seguridad consistente a un sistema
distribuido basado en Kubernetes por todos los flancos que este presenta; análisis general
de la plataforma, aplicacion de politicas de seguridad, empleo de seguridad activa,
comunicaciones, análisis de imágenes y gestión de secretos.

24

A pesar de haber comprendido cada una de estas secciones y haber podido desempeñar en
ellas un trabajo que evite un funcionamiento erróneo se considera que la seguridad de estos
sistemas abarca mucho más, pudiendo realizar gran cantidad de estudios, como se ha
mencionado anteriormente.
No obstante la labor desempeñada resulta de gran utilidad para las distintas partes; el
alumno propio, ya que se ha adquirido una abstracción concisa del funcionamiento de
Kubernetes y plataformas cloud así como también de los aspectos más importantes en lo
que a seguridad concierne; la empresa supervisora, debido a que NTT DATA lleva a cabo
abundantes y amplios trabajos relacionados con sistemas distribuidos, microservicios,
comunicación y seguridad en sí, el desarrollo y conclusiones de este TFG le permitirán
llegar de manera breve a deducciones sobre la cantidad de tiempo dedicada a asegurar un
sistema, que herramientas son necesarias aplicar y el por qué de dichos actos; cualquier
persona o compañía interesada en plataformas cloud, por las mismas razones que para el
caso concreto de NTT DATA, ya que se encontrará en el presente documento de manera
clara y breve todo lo necesario para realizar una securización alta de su sistema o
únicamente comprender los conceptos clave de la misma.

Con respecto a las dificultades encontradas, no ha existido un gran número de incidencias
que hayan imposibilitado el desarrollo del trabajo, sin duda la parte de mayor envergadura
fue el conseguir una comprensión competente sobre cómo funciona cada componente en
los sistemas cloud, Kubernetes y el desarrollo de cada aplicación a emplear, sin embargo,
leyendo gran cantidad de documentación, con paciencia y examinando cada proceso se ha
podido realizar sin problemas.

En cuanto a Kubernetes, se trata de un sistema muy potente para la automatización de
despliegues, escalado y configuración de contenedores, sin embargo, en lo que respecta a
la seguridad deja mucho que desear, presenta graves fallas, tanto en su configuración inicial
al levantar cualquier cluster como en lo que a comunicación respecta.

Al ser este un trabajo que compara resultados entre distintas herramientas es necesario
llegar a conclusiones sobre cual es mejor que la otra. Sin embargo, desde un punto de vista
personal y tras toda la documentación estudiada, se puede concluir que no es posible
afirmar categóricamente que hay herramientas mejores que otras de una manera
generalista en la mayoría de los casos, debido a que cada una tiene su contexto y espacio
de actuación. Por supuesto hay aplicaciones mucho más completas que otras, ofreciendo
más funcionalidades, abarcando más sistemas operativos o con una interfaz más simple,
pero esto no quiere decir que sean mejor que la solución más sencilla para un caso
concreto, ya que si esta se adapta al problema y lo hace empleando menos recursos será
imperativo optar por la misma.
Se puede concluir que cada herramienta se adecua a su espacio de trabajo y a la forma en
la que esta ha sido contemplada, pueden existir preferencias sobre una u otra, pero solo se
definirá una como superior en el contexto de implementación pertinente.

25

4. Bibliografía
1. Definición de Kubernetes y razones de uso. Escrito por Kubernetes ©.
Fecha última modificación: 17/ 07 / 22
¿Qué es Kubernetes?

2. Explicación cuadrante mágico de Gartner para servicios Cloud. Escrito por Raj Bala, Bob
Gill, Dennis Smith, Kevin Ji, David Wright.
Fecha última modificación: 21/ 07 / 21
Cuadrante Gartner

3. Ejemplos teoría de mínimo privilegio. Escrito por Cyberak®.
Principio del Mínimo Privilegio (PoLP)

4. Definición y finalidad del CIS. Escrito por Danilla Kirillov.
Fecha de última modificación: 27 / 01 / 22
Kubernetes cluster security assessment with kube-bench and kube-hunter – Flant blog

5. Kube-hunter, guía de instalación y modos de uso. Escrito por aquasecurity.
Fecha de última modificación: 04 / 07 / 22
GitHub - aquasecurity/kube-hunter: Hunt for security weaknesses in Kubernetes clusters

6. Explicación de vulnerabilidades kube-hunter. Escrito por aquasecurity
Fecha de última modificación: 04 / 07 / 22
Welcome to kube-hunter documentation

7. Definición de Kyverno. Escrito por Kyverno authors ©
Fecha de última modificación: 19 / 02 / 22
Kyverno

8. Web de la Cloud Native Computing Foundation. Escrito por The Linux Foundation®.
Fecha de última modificación: 02 / 11 / 22
Cloud Native Computing Foundation

9. Web oficial de Falco. Escrito por Sysdig®.
Fecha de última modificación: 08 / 08 / 22
https://falco.org/

10. Explicación sobre la monitorización en K8s. Escrito por Kubernetes ©
Fecha de última modificación: 2022
https://kubernetes.io/es/docs/tasks/debug-application-cluster/_print/

11. Documentación sobre Falco Sidekick. Escrito por Thomas Labarussias.
Fecha de última modificación: 02 / 11 / 2022
https://github.com/falcosecurity/falcosidekick

26

https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/
https://www.gartner.com/technology/media-products/reprints/AWS/1-271W1OTA-ESP.html
https://www.cyberark.com/es/what-is/least-privilege/
https://blog.flant.com/kubernetes-security-with-kube-bench-and-kube-hunter/
https://github.com/aquasecurity/kube-hunter
https://aquasecurity.github.io/kube-hunter
https://kyverno.io/
https://www.cncf.io/
https://falco.org/
https://kubernetes.io/es/docs/tasks/debug-application-cluster/_print/
https://github.com/falcosecurity/falcosidekick

12. Web oficial de Istio. Escrito por Istio Authors.
Fecha de última modificación: 02 / 11 / 2022
https://istio.io/latest/about/service-mesh/

13. Escáner de imágenes Grype. Escrito por Anchor Inc.
Fecha de última modificación: 02 / 11 / 2022
https://github.com/anchore/grype

14. Escáner de imágenes Trivy. Escrito por aquasecurity.
Fecha de última modificación: 31 / 10 / 2022
https://github.com/aquasecurity/trivy

27

https://istio.io/latest/about/service-mesh/
https://github.com/anchore/grype
https://github.com/aquasecurity/trivy

Anexo I

1. Pruebas realizadas con kube-bench
Para comenzar,, en la terminal del host se ejecuta:

$ kubectl apply -f job.yaml

Siendo job.yaml el archivo suministrado por el repositorio en GitHub de Kube-Bench que
contiene todo lo necesario para pasar los test deseados.
(link kube-bench/job.yaml at main)

A continuación se obtienen los PODS existentes en el cluster para leer lo creado por
kube-bench, y por último, con el nombre del pod obtenido se muestran los logs con el
comando

$ kubectl logs kube-bench-dksgc

Lo que inmediatamente mostrará todas las pruebas realizadas y la categorización de su
resultado. Similar a:

[INFO] 1 Control Plane Security Configuration
[INFO] 1.1 Control Plane Node Configuration Files
[PASS] 1.1.1 Ensure that the API server pod specification file permissions are set to 644 or
more restrictive (Automated)
[PASS] 1.1.2 Ensure that the API server pod specification file ownership is set to root:root
(Automated)

Así entonces cada mensaje se explica cómo <Categoría> <Identificador> <Descripción>
Siendo las categorías
- PASS: Cuando el test se ha superado correctamente
- WARN: Avisa de posibles inseguridades que son necesarias comprobar manualmente
- FAIL: Informa de test que no han sido superados correctamente
- INFO: Empleado para seleccionar los test llevados a cabo

Tras visualizar todos estos avisos se muestra en los logs las opciones para revisar y
solucionar cada uno de los problemas encontrados, lo cual puede resultar francamente útil.
Kube-bench muestra una gran cantidad de pruebas realizadas, para lograr una idea de su
funcionamiento se explicaran algunas de ellas y su proceso de remediación.

El primer mensaje que con el término FAIL al comienzo dice lo siguiente:
[FAIL] 1.1.11 Ensure that the etcd data directory permissions are set to 700 or more
restrictive (Automated)

etcd es un almacén de valores clave de alta disponibilidad utilizado por las
implementaciones de Kubernetes para el almacenamiento persistente de todos sus objetos
de la API REST. Este directorio de datos debe estar protegido contra cualquier lectura o

28

https://github.com/aquasecurity/kube-bench/blob/main/job.yaml

escritura no autorizada. No debe ser legible ni escribible por ningún miembro del grupo ni
por el mundo. (link etcd data directory permissions are set to 700 or more restrictive)

Para solucionarlo kube-bench dice
1.1.11 On the etcd server node, get the etcd data directory, passed as an argument
--data-dir, from the command 'ps -ef | grep etcd'.
Run the below command (based on the etcd data directory found above). For example,
chmod 700 /var/lib/etcd

Con el objetivo de solucionar el problema se accede al cluster de minikube ejecutando el
siguiente comando

$ minikube ssh

Con el comando mencionado anteriormente por kube-bench, la ubicación del directorio
pertinente:
/var/lib/minikube/etcd

Ejecutando con sudo el comando chmod previo, serán modificados sus permisos. Una vez
realizado esto se comprueba los permisos de dicho directorio con ls -l verificando que son
los deseados. Si se desea se puede volver a pasar kube-bench y comprobar que en esta
ocasión la categoría del mensaje será PASS.

Finalmente se muestra un recuento de todo lo ocurrido, indicando la cantidad total de test
corridos y el resultado que ha devuelto el sistema con estos.
Como se ha podido observar es relativamente fácil solucionar las vulnerabilidades que
kube-bench muestra. Presenta una gran infraestructura con apoyo detrás que logra una
buena experiencia al usuario.

Entre otros de los mensajes que aparecen es posible destacar

[FAIL] 1.1.19 Ensure that the Kubernetes PKI directory and file ownership is set to root:root
(Automated)

Esto tiene vital importancia ya que ​​Kubernetes emplea certificados PKI para la autenticación
mediante TLS, muchos de ellos generados automáticamente y almacenados en
/etc/kubernetes/pki/. La propiedad de todos los archivos y directorios debe estar establecida
para root:root (link PKI certificates and requirements | Kubernetes, link Kubernetes PKI
directory and file ownership is set to root:root). Para solucionar esto únicamente se
ejecutará
$ chown -R root:root /etc/kubernetes/pki/

[FAIL] 1.2.19 Ensure that the --audit-log-path argument is set (Automated)
Para el correcto funcionamiento y la detección de Kubernetes es necesario saber lo que
está ocurriendo en el sistema, por lo que es necesaria la existencia de una auditoría
mínima. Si este parámetro no está habilitado seguía imposible desempeñar un seguimiento.
Si se ejecuta el comando se comprobará el estado de la variable

29

https://docs.datadoghq.com/security_platform/default_rules/cis-kubernetes-1.5.1-1.1.11/
https://kubernetes.io/docs/setup/best-practices/certificates/
https://docs.datadoghq.com/security_platform/default_rules/cis-kubernetes-1.5.1-1.1.19/
https://docs.datadoghq.com/security_platform/default_rules/cis-kubernetes-1.5.1-1.1.19/

$ ps -ef | grep kube-apiserver

Con el objetivo de solucionar este problema, en caso de que exista, se establecerá el
parámetro –audit-log-path de /etc/kubernetes/manifests/kube-apiserver.yaml en una ruta y
un archivo válidos.

2. Pruebas realizadas con Kube-Hunter
La primera de todas las vulnerabilidades tras ejecutarlo es observable en la figura 7
"CAP_NET_RAW Enabled" in Local to Pod (kube-hunter-lrzzz)

Figura 7. Vulnerabilidad mostrada por Kube-Hunter

La información que obtiene de dicho fallo contiene las siguientes secciones:
- Localización: En este caso es el propio POD de Kube-Hunter
- Categoría: El daño que podría ocurrir si esta permanece
- Vulnerabilidad: Su nombre
- Descripción: En qué consiste
- Evidence: Las pruebas que lo refutan, en este caso no aparecen.

Esta vulnerabilidad consiste en que con el parámetro CAP_NET_RAW está activado, lo cual
ocurre por defecto, un usuario malintencionado podría atacar otros pods dentro del mismo
nodo ya que permite que los procesos falsifiquen cualquier tipo de paquete o se vinculen a
cualquier dirección.
(link Mitigating CVE-2020-10749 in Kubernetes Environments | StackRox Community)

Para resolver este problema se emplea la herramienta Kyverno, que mediante la aplicación
de políticas permite que en ciertos ambientes como PODS se cumplan unas determinadas
reglas, lo que será explicado más tarde.

Así entonces ejecutando un archivo yaml (link Drop CAP_NET_RAW | Kyverno) con la
previa instalación de Kyverno evitará que esta opción se active nuevamente.

Otra de las fallas de importancia es la relativa a los accesos de cuentas de servicio,
observables en la figura 8.

30

https://www.stackrox.io/blog/mitigating-kubernetes-cve-2020-10749/
https://kyverno.io/policies/best-practices/require_drop_cap_net_raw/require_drop_cap_net_raw/

Figura 8. Vulnerabilidad mostrada por Kube-Hunter

Cada pod tiene asociada una cuenta de servicio, la cual de manera preestablecida tiene
acceso a la API de K8s, dicho acceso se puede realizar a partir de un token. Por lo tanto se
comprende que si se tiene acceso a dicho token es posible acceder a la API, que es
precisamente la información que ofrece la imagen anterior en el fallo KHV050.
Esto tendría terribles consecuencias ya que la API es la base de configuración de
Kubernetes.
Para solucionar esto se recomienda tener una cuenta de servicio para cada workload y
mantener el principio de mínimo privilegio, comentado anteriormente (link KHV050 - Read
access to Pod service account token) .

3. Pruebas realizadas con Kyverno
De primer modo se ve el funcionamiento de una política tipo Allow/Deny (deny en este
caso). El nombre de esta policy en Kyverno es allowed-label-changes, esta impide que se
modifiquen etiquetas que no estén con la key breakglass. En algunas operaciones es
necesario impedir la modificación de determinados recursos por cuestiones específicas, uno
de ellos pueden ser las labels.

Seguidamente se ha creado un sencillo pod cuya tarea es comportarse como un servidor de
tipo nginx, uno de los más empleados actualmente en el sector web.

apiVersion: v1
kind: Pod
metadata:
name: nginx
labels:

name: nginxCambioImposible
spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 80

Una vez aplicado se pueden comprobar sus características a estudiar, en este caso lo que
interesa es la etiqueta
$ kubectl get pod nginx --show-labels

NAME READY STATUS RESTARTS AGE LABELS
nginx 1/1 Running 0 84s name=nginx

31

https://aquasecurity.github.io/kube-hunter/kb/KHV050.html
https://aquasecurity.github.io/kube-hunter/kb/KHV050.html

Se observa que esta es nginx, como ahora no hay ninguna política establecida, se puede
modificar a su gusto.

No obstante, una vez instaladas las políticas mediante el comando
$ kubectl apply -f allowed-label-changes.yaml
clusterpolicy.kyverno.io/allowed-label-changes created

Será imposible modificar ninguna de estas, intentándolo aparece un mensaje similar al
siguiente indicando que existe una política que lo impide
$ kubectl apply -f pod-label.yaml

Error from server: error when applying patch:
{"metadata":{"annotations":{"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\"
:\"v1\",\"kind\":\"Pod\",\"metadata\":{\"annotations\":{},\"labels\":{\"name\":\"nginxCambioImpos
ible\"},\"name\":\"nginx\",\"namespace\":\"default\"},\"spec\":{\"containers\":[{\"image\":\"nginx\
",\"name\":\"nginx\",\"ports\":[{\"containerPort\":80}]}]}}\n"},"labels":{"name":"nginxCambioImp
osible"}}}
to:
Resource: "/v1, Resource=pods", GroupVersionKind: "/v1, Kind=Pod"
Name: "nginx", Namespace: "default"
for: "pod-label.yaml": admission webhook "validate.kyverno.svc-fail" denied the request:

resource Pod/default/nginx was blocked due to the following policies
allowed-label-changes:
safe-label: The only label that may be removed or changed is `breakglass`.

En caso de querer revocar la política pertinente únicamente habrá que realizar el comando
posterior
$ kubectl -f <policy-name>.yaml
Como se atiende, el implementar políticas con Kyverno es cuanto menos sencillo.

Para observar un ejemplo de política empleada en la mutación de recursos se va a
comentar la llamada mutate-large-termination-gps. Esta muta todos los PODS entrantes
para que tengan un periodo de gracia en segundos o tGPS como máximo de 50 segundos.
Esto se hace para evitar que los nodos "se agoten", si existen numerosos PODS en un
estado de terminación y ninguno de ellos sale puede acabar provocando un cluster
inestable. No obstante el tGPS puede ser escogido por el usuario editando el fichero
mutate-large-termination-gps.yaml.

Dentro del fichero mutate-large-termination-gps.yaml se encuentra
match:

resources:
kinds:
- Pod

preconditions:
all:

32

- key: "{{request.object.spec.terminationGracePeriodSeconds || `0` }}"
operator: GreaterThan
value: 50 # maximum tGPS allowed by cluster admin

mutate:
patchStrategicMerge:
spec:
terminationGracePeriodSeconds: 50

Se observa que en la especificación de los pods, la calve/valor
request.object.spec.terminationGracePeriodSeconds/<value>, establece como máximo 50 el
periodo de gracia, y para aquellos que lo sobrepase, mutará dicho valor a 50. Cabe
destacar que este fichero contiene más información necesaria para la aplicación de la
política.

En lo relativo a la utilización de Kyverno, en lo concerniente a imágenes, una utilidad de
gran importancia es la verificación de imágenes. Desde hace un tiempo es posible firmar
imágenes con el objetivo de garantizar la seguridad a lo largo de toda la cadena de
desarrollo y producción, asegurando la autoría de la imagen. Dichas firmas pueden ser
comprobadas antes de ser introducidas en un clúster. En la siguiente política (link Verify
Image | Kyverno) se verifica que exista una firma correcta proveniente de un directorio
determinado, con el objetivo de comprobar si se ha realizado con su clave pública
proporcionada. Es posible modificar el directorio y la clave para la utilización de unos
personales.

rules:
- name: verify-image
match:
any:
- resources:

kinds:
- Pod

verifyImages:
- image: "ghcr.io/kyverno/test-verify-image:*"
key: |-
-----BEGIN PUBLIC KEY-----
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8nXRh950IZbRj8Ra/N9sbqOPZrfM
5/KAQN0/KjHcorm/J5yctVd7iEcnessRQjU917hmKO6JWVGHpDguIyakZA==
-----END PUBLIC KEY-----

Para enseñar el funcionamiento de una política relacionada con el aspecto de “generar”, se
va poner un caso de uso tan importante como los backups o copias de seguridad.
Imagínese una empresa que tiene un único despliegue las facturas pendientes de todos sus
clientes. Si este se pierde por algún motivo no podría recuperar la información y por tanto
estaría expuesto a perder grandes cantidades de dinero por reclamar. Se podría establecer
una política que creará por defecto una de estas copias de seguridad, por ejemplo al
observar una determinada etiqueta (link Generate Gold Backup Policy | Kyverno). Aquí se

33

https://kyverno.io/policies/other/verify_image/
https://kyverno.io/policies/other/verify_image/
https://kyverno.io/policies/kasten/k10-data-protection-by-label/k10-generate-gold-backup-policy/

pueden realizar distintas configuraciones como la frecuencia con la que se realiza dicha
copia de seguridad, durante cuánto tiempo se retiene etc.

4. Pruebas realizadas con OPA Gatekeeper
A diferencia de Kyverno, son necesarios dos archivos para aplicar OPA en su Kubernetes.
En primer lugar es necesario definir el archivo ConstraintTemplate, que se ve con el
siguiente ejemplo, proporcionado por OPA (link How to use Gatekeeper):

apiVersion: templates.gatekeeper.sh/v1
kind: ConstraintTemplate
metadata:
name: k8srequiredlabels

spec:
crd:
spec:
names:
kind: K8sRequiredLabels

validation:
Schema for the `parameters` field
openAPIV3Schema:
type: object
properties:
labels:
type: array
items:
type: string

targets:
- target: admission.k8s.gatekeeper.sh
rego: |
package k8srequiredlabels

violation[{"msg": msg, "details": {"missing_labels": missing}}] {
provided := {label | input.review.object.metadata.labels[label]}
required := {label | label := input.parameters.labels[_]}
missing := required - provided
count(missing) > 0
msg := sprintf("you must provide labels: %v", [missing])

}

Al comienzo de este fichero se definen los parámetros que van a ser usados en las
políticas, en properties aparece escrito labels, ya que esta política concreta revisará que se
tengan unas etiquetas mínimas.
Seguidamente, entre más datos, aparece la descripción de la política implementada por
Rego. En ella aparecen varios campos de interés:

- Provided: Son las etiquetas escritas en los recursos a analizar

34

https://open-policy-agent.github.io/gatekeeper/website/docs/howto#constraints

- Required: Son las etiquetas mínimas que se espera que tengan los recursos a
analizar

- Missing: Es la diferencia existente entre las etiquetas requeridas y las dadas.

A continuación se hace una comparación lógica que si se cumple se mostrará un mensaje
junto con el impedimento de la acción que se quiera realizar.

Previo a aplicar esta política se debe informar a OPA Gatekeeper de que se desea aplicar
una ConstraintTemplate, definiendo cuál de estas es, que se va a usar como comparación,
y donde se va a realizar la búsqueda
apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sRequiredLabels
metadata:
name: ns-must-have-gk

spec:
match:
kinds:
- apiGroups: [""]
kinds: ["Namespace"]

parameters:
labels: ["gatekeeper"]

Así entonces continuando con el ejemplo anterior, se indica a Gatekeeper que se va a
aplicar la política, K8sRequiredLabels logrando que en todos los espacios de nombre
aparezca la etiqueta gatekeeper.

35

Anexo II

1. Comparación de políticas de K8s y Falco
La siguiente política de K8s (link Configure Minimum and Maximum CPU Constraints for a
Namespace | Kubernetes) evitará crear pods cuyo uso de CPU se encuentre fuera de un
rango determinado:
apiVersion: v1
kind: LimitRange
metadata:
name: cpu-min-max-demo-lr
spec:
limits:
- max:

cpu: "800m"
min:
cpu: "200m"

type: Container

Respecto a las políticas nativas de Falco, están compuestas por los siguientes elementos

Rules: ​​Situación en la cual se deberá generar una alerta acompañada de una descripción
de la misma en la salida.
Ejemplo (link Rules | Falco):

rule: shell_in_container
desc: notice shell activity within a container
condition: evt.type = execve and evt.dir=< and container.id != host and proc.name =
bash
output: shell in a container (user=%user.name container_id=%container.id
container_name=%container.name shell=%proc.name parent=%proc.pname
cmdline=%proc.cmdline)
priority: WARNING

Esta regla avisa de cuando se está ejecutando un BASH dentro de un contenedor. Esto
tiene gran importancia debido a que mediante este se podrían ejecutar comandos que
lograra una escalada de privilegios, obtener información a la que no se debería tener
acceso etc

Macros: Son reglas o fragmentos de las mismas que pueden ser utilizadas dentro de otras
reglas o macros. Estas se emplean cuando aparecen patrones comunes a detectar.

macro: open_write
condition: (evt.type=open or evt.type=openat) and evt.is_open_write=true and

fd.typechar='f' and fd.num>=0

36

https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/cpu-constraint-namespace/
https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/cpu-constraint-namespace/
https://falco.org/docs/rules/

La macro anterior (link Default Macros | Falco) sirve para identificar cuando un archivo está
abierto, lo que se podría emplear para numerosos casos, por ejemplo, para detectar si está
abierto el fichero /etc/passwd que contiene información sobre las cuentas de usuarios del
sistema.

Listas: Colecciones de elementos incluibles en reglas, macros u otras listas.
Por ejemplo, la siguiente lista sería una colección de los distintos binarios de shell (link
Default Macros | Falco).

list: shell_binaries
items: [bash, csh, ksh, sh, tcsh, zsh, dash]

2. Ejemplo de ejecución Falco
Uno de los casos de interés sería para activar la salida por programa, para la cual sería
necesario utilizar la siguiente conformación:

program_output:
enabled: true
keep_alive: true
program: "<programa a emplear>"

Si keep_alive ha sido establecido a true el programa será iniciado una vez y escrito de
manera continua, en caso contrario se reiniciará con cada mensaje.

Si se ejecutase Falco, con las salidas de stdout y programas activadas (por ejemplo un
servicio web), tras esperar un breve inciso de tiempo aparecerán por terminal todos aquellos
errores encontrados además de un resumen bastante indicativo:

$ falco
vents detected: 39
Rule counts by severity:

ERROR: 22
WARNING: 6
NOTICE: 9
DEBUG: 2

Triggered rules by rule name:
Write below binary dir: 3
Write below etc: 2
Read sensitive file trusted after startup: 2
Read sensitive file untrusted: 4
Write below rpm database: 2
DB program spawned process: 3
Modify binary dirs: 11
Mkdir binary dirs: 2
Run shell untrusted: 2
System procs network activity: 3
Non sudo setuid: 3

37

https://falco.org/docs/rules/default-macros/
https://falco.org/docs/rules/default-macros/

Create files below dev: 2
Syscall event drop monitoring:

- event drop detected: 0 occurrences
- num times actions taken: 0

De la información arrojada se alcanza a distinguir información importante, como el total de
infracciones encontradas categorizadas por niveles o los tipos de reglas que han sido
ejecutadas.

La información pertinente obtenida en el programa se observa en la Figura 9.

Figura 9. Información en formato JSON obtenida en el programa

Aquí aparecen también detalles de gran valor como la regla que ha detectado la falla, la
prioridad de esta, de donde venia el fallo, cuando ha ocurrido etc.

38

Anexo III

1. Ejemplo de la importancia en comunicaciones
Imagínese un usuario que realiza una compra online, en el momento en el que se realiza el
usuario únicamente ve un alerta confirmando su pedido, pero detrás de todo el proceso sus
distintas peticiones habrán pasado por multitud de servicios diferentes comunicándose unos
con otros, como pueden ser un webserver, un servicio de pagos, el carrito de compra, un
gestor de inventario, la base de datos y otros muchos.
De añadido, lo habitual es que la empresa pertinente desee obtener mayores beneficios,
añadiendo más funciones que le hagan vender más, cómo podría ser una sección de
productos relacionados, lo cual hará introducir nuevos servicios que complican el trasfondo
de la aplicación.
Cada uno de estos servicios requiere una configuración y una lógica de comunicaciones
que permitan su correcto funcionamiento, así como el realizar estudios, obtención de
métricas y otras practicidades.

2. Ejemplo de ejecución empleando Istio
Isito ofrece en su web un ejemplo muy claro de funcionamiento en el que guía paso a paso
mientras enseña las distintas opciones aplicables al sistema (link Istio / Getting Started). En
primer lugar es necesario instalar Istio e Ioctl (comando para interactuar con Istio) en el
host, en este caso en particular será en local. Este proceso no resulta muy complicado.
Seguidamente se hará deployment de la aplicación de ejemplo Bookinfo (link Istio Bookinfo),
al igual que con cualquier otro caso ejecutando

$ kubecetl apply -f samples/bookinfo/platform/kube/bookinfo.yaml

Comprobando como está distribuida la aplicación se observan sus PODS y servicios, los
cuales serán explicados más adelante

$ kubectl get pods

Figura 10. Pods de Bookinfo

$ kubectl get services

Figura 11. Servicios de Bookinfo

39

https://istio.io/latest/docs/setup/getting-started/
https://raw.githubusercontent.com/istio/istio/release-1.14/samples/bookinfo/platform/kube/bookinfo.yaml

Para hacer accesible desde el exterior Bookinfo se instalará Istio Ingress Gateway,
encargado de mapear cada ruta en el borde de la malla. Consiste en un load-balancer
situado en el límite de la servicemesh recibiendo continuamente peticiones HTTP/TCP. Este
trabaja de manera muy similar a Kubernetes Ingress, pero ofreciendo más personalización y
flexibilidad. (Link Istio / Ingress Gateways). Para ello es necesario ejecutar
$kubectl apply -f samples/bookinfo/networking/bookinfo-gateway.yaml.

Por último, se abrirá un acceso para que Minikube envíe su tráfico al Istio Ingress Gateway
mediante
$ minikube tunnel

Tras asegurarse de que se han asignado correctamente las direcciones IP y puertos, ya es
posible trabajar en Bookinfo. En la Figura 12 se observa la que es la página de inicio de la
aplicación.

Figura 12. Página principal de Bookinfo

Para explotar toda la operativa que ofrece Istio se instalarán 4 addons o complementos
Kiali, Prometheus, Grafana y Jaeger, mediante los cuales se llevará a cabo un seguimiento
del despliegue logrando que el operador sea consciente de cómo está trabajando cada
elemento.

En primer lugar, Kiali, es una consola de observabilidad con capacidades para validar y
configurar parámetros en la malla de servicios. Kiali ayuda a comprender la estructura y el
estado de la red de servicios al monitorear el flujo de tráfico para inferir la topología e
informar errores (link Istio / Kiali). Empleando Grafana y Jaeger proporciona métricas
detalladas y monitoreo de tráfico.

40

https://istio.io/latest/docs/tasks/traffic-management/ingress/ingress-control/
https://istio.io/latest/docs/ops/integrations/kiali/

Así entonces en la siguiente Figura 13 se observa la estructura de Bookinfo

Figura 13. Despliegue de Bookinfo observado en Kiali

Contemplando detalladamente a la izquierda del esquema aparece el Istio Ingress Gateway
como entrada hacia la aplicación. Este se conecta directamente con la página principal
productpages, a través de la cual se accede al apartado de details y a los reviews. Este
servicio tiene disponibles tres versiones v1, v2 y v3. Actualmente el tráfico pasa a través de
la versión v3.

Aquí se comprobará una de las características que hacen de Istio una herramienta tan
atractiva. Únicamente mediante la aplicación, como se ha visto anteriormente, de un fichero
YAML es posible redistribuir el tráfico a gusto del operador, pudiendo enviar peticiones
concretas a una versión u otra, esto tiene grandes ventajas ya que si, por ejemplo, una
versión desarrollada comienza a dar problemas se puede volver rápidamente a una anterior
sin causar una caída alargada del servicio. para probarlo, se desviará todo el tráfico de la v3
a la v1, a la vez que las peticiones a secciones concretas irán a v2 (link Istio / Virtual Service
Istio / Virtual Service). Para ver el tráfico se realizan peticiones desde el host a la dirección
deseada empleando curl:

$ for i in $(seq 1 100); do curl -s -o /dev/null "http://$GATEWAY_URL/productpage"; done

Observando el tráfico en el último minuto (figura 14) se observa como en la zona de reviews
todas las peticiones pasan ahora a v1

41

https://istio.io/latest/docs/reference/config/networking/virtual-service/
https://istio.io/latest/docs/reference/config/networking/virtual-service/

Figura 14. Tráfico de Bookinfo redirigido a v1

Aunque esto es de gran utilidad Istio va más lejos, ya que da la posibilidad de repartir dichas
peticiones de manera ponderada. Para entender la funcionalidad de esto se propondrá un
ejemplo.Imagínese un servicio de streaming que posee una versión inicial 1.0, para que el
usuario tenga una mejor experiencia han desarrollado una versión 2.0, sin embargo, a pesar
de haberla testeado correctamente no tienen la certeza de que se comporte a la perfección
en producción, así que para ello han decidido presentarla y pasarle únicamente un 25% del
tráfico real, mientras que el otro 75% lo mantienen en la versión 1.0. En el momento de que
hayan comprobado en su totalidad que trabaja de manera óptima se migrará al 100%.

Además de este esquema en el dashboard de Kiali se pueden observar cada componente
así como diversas métricas relacionadas con estos, en la Figura 15 se ven las peticiones
dirigidas al servicio Reviews en los últimos 10 minutos cada 15 segundos.

42

Figura 15. Graficas del servicio reviews

A pesar de estar integradas de cierta manera en Kiali, los dashboard de Prometheus y
Graphite posibilitan el realizar acciones más específicas. Por ejemplo en Prometheus se
pueden realizar queries complejas y observar las peticiones que se han realizado
empleando un parámetro concreto, así como su sus gráficas, como se observa en la Figura
15, en la que se muestra una query realizada a un servicio concreto con una versión
concreta. Se podría concretar mucho más como detallar tiempos, clientes etc.

Figura 15. Peticiones realizadas al servicio reviews con versión v3 mediante Prometheus

43

Figura 16. Dashboard de Graphana

Finalmente, otra cualidad importante que permite Istio es el seguir las peticiones a través de
la red, también conocido como tracing system.

Para ello se emplea la herramienta Jaeger mediante la cual se puede seguir todo el
recorrido de una request a través de los diferentes servicios. Este a su vez muestra
información de interés como la profundidad de la petición, duración o comienzo y fin de la
petición.
En la figura 17 aparece una petición hecha al servicio productpage. Explicando la operación
de esta, como es normal comienza en el Istio Ingress Gateway para luego entrar en
productpage.default. A su vez se realizan dos peticiones a details y reviews ya que la
información de estas se encuentra integrada en productpage como se ha visto
anteriormente..

Figura 17. Seguimiento de petición a productpage en Jaeger

44

3. Aplicación de Kubernetes Network Policies
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: hollow-db-policy #policy name

spec:
podSelector:
matchLabels:
app: hollowdb #pod applied to

policyTypes:
- Ingress #Ingress and/or Egress
ingress:
- from:
- podSelector:

matchLabels:
app: hollowapp #pod allowed

ports:
- protocol: TCP
port: 3306 #port allowed

En este ejemplo, el cual es uno de los casos más comunes, se permite únicamente el tráfico
a unos pods con MySQL desde otros que estén realizando la ejecución de una API. Es
decir, únicamente los pods ejecutando la API, podrán acceder a la base de datos que
explotan.

Figura 18. Bloqueo de uso de base de datos mediante el empleo de políticas

45

En la imagen anterior, se observa cómo se bloquea el tráfico proveniente del pod notWatned
por no disponer de la etiqueta hollowapp, ya que se ha establecido en el yaml superior que
solo estos podrán acceder a los pods de tipo hollowdb.

Anexo IV

1. Análisis de imagen con Trivy
En primer lugar el pod escogido es
reviews-v3-6c98f9d7d7-swmv4 y su imagen, situada en Docker
http://docker.io/istio/examples-bookinfo-reviews-v3:1.16.4.

Generalmente el uso de Trivy es cuanto menos sencillo, el comando a ejecutar sigue el
siguiente patrón

$ trivy <target> [--security-checks <scanner1,scanner2>] TARGET_NAME

Dónde target es el recurso a analizar, por ejemplo si es una imagen se utilizará "image",
--security-checks son especificaciones que se pueden usar si se desean para casos más
concretos y finalmente TARGET_NAME el nombre del recurso, particularmente el nombre
escrito anteriormente, por lo que quedaria asi el comienzo del análisis

$ trivy image http://docker.io/istio/examples-bookinfo-reviews-v3:1.16.4

Tras ejecutar el comando, y procesar la información, aparece un recuento de todas las
vulnerabilidades encontradas y a continuación una tabla con toda la información útil,
observable en la Figura 19.

Figura 19. Resultados obtenidos al aplicar Trivy

Como se puede observar, leyendo de izquierda a derecha, especifica el nombre de la
librería que se trata, un código de vulnerabilidad (o varios) estándar relativo al Common
Vulnerabilities and Exposures, la importancia de la brecha encontrada, las versiones, tanto
la instalada como en la que aparece solucionada dicha falla (si existe). Finalmente un
pequeño título o descripción junto con un enlace a la web de aqua security donde aportan
más información sobre el error.

46

2. Análisis de imagen con Grype
Para comenzar el análisis de imágenes con grype, es necesario ejecutar

$ grype <image>

Siendo image la imagen que se desea analizar, en caso de existir más de una con el mismo
nombre será necesario especificar su etiqueta para diferenciar(comprobar)
Cada uno de los paquetes escaneados que contengan la imagen especificada serán
listados con los siguientes campos:

- Name: Nombre del paquete
- Installed: Version de la imagen
- Fixed-In: Version en la que la vulnerabilidad se ha arreglado
- Type: Tipo del paquete
- Vulnerability: El listado del CVE (Common Vulnerabilities and Exposures) de cada

vulnerabilidad.
- Severity: La severidad de la vulnerabilidad

Además Grype ofrece especificaciones de filtrado para enfocar el escáner hacia donde
desee el usuario.

Como se puede comprobar en la Figura 20 la información que aporta Grype es cuanto
menos similar a la de Trivy, quizás un poco menos visual, pero a lo que respecta en
contenido son muy similares

Figura 20. Resultados obtenidos tras ejecutar Grype

47

3. Comparativa Trivy vs Grype
Las variedad de imágenes escogidas son Ubuntu, Nginx, Redis y Alpine, todas ellas en su
última versión, es decir, con etiqueta “latest”. A pesar de que había una gran cantidad de
ellas para elegir, estas son unas de las más usadas en el ambiente de los contenedores. Así
entonces los resultados se comprueban en la Tabla 2.

Herramienta Imagen Fallos
Trivy Ubuntu 24

Grype Ubuntu 24

Trivy Nginx 147

Grype Nginx 149

Trivy Nginx: 1.17.2 334

Grype Nging: 1.17.2 338

Trivy Redis 80

Grype Redis 81

Trivy Alpine 2

Grype Alpine 2

Tabla 2.Resultados en formato tabla

Figura 21. Resultados en formato gráfica

Examinando la gráfica anterior (Figura 21) se observa que los datos obtenidos por ambas
herramientas son muy similares. Salvo en las distribuciones Nginx y Redis las
vulnerabilidades encontradas han sido idénticas, e incluso en estas no ha diferido en más
de dos unidades. Se puede pensar que se podía haber realizado una categorización de las

48

vulnerabilidades mayor, sin embargo la forma que tienen Trivy y Grype de clasificar las
debilidades no es idéntica, por lo que podría haber llevado a confusiones el desempeño de
otro modo.

Con el objetivo de observar la importancia de mantener una imagen actualizada que cubra
todas las posibles vulnerabilidades que aparecen a medida que avanza el tiempo, se ha
analizado la versión de una imagen Nginx anterior, concretamente nginx:1.17.2. Durante su
examen, se han obtenido 324 y 328 vulnerabilidades por parte de Trivy y Grype
respectivamente. La diferencia frente a las casi 150 extraídas de nginx:latest es cuanto
menos notable, ya que de este nicho un atacante tendría el doble de puntos de acceso para
poder acometer contra el sistema.

Puede sorprender al estudiar la gráfica Alpine el desigual bajo número de vulnerabilidades
que tiene en comparación con las otras imágenes, esto es debido a que Alpine es una
distribución de Linux sin apenas paquetes instalados pesando únicamente 5 Mb. Estas
imágenes son empleadas en entornos de producción ya que la superficie de ataque resulta
muy pequeña en relación, por ejemplo, a Ubuntu, que almacena gran cantidad de
funcionalidades.

49

Anexo V

1. Ejemplo de la necesidad del empleo de secretos
Imagínese una imagen que se encuentra en un contenedor privado de docker. Si desde un
cluster externo se intenta acceder y descargar dicha imagen dará error de acceso
denegado, ya que dicho repositorio es privado y no se ha realizado ningún intento de
autenticación. Por el contrario, si en la imagen se especifica que se puede acceder a esta
mediante el uso de secretos, al intentar acceder especificando el secreto pertinente se
podrá descargar la imagen y emplearla como se desee. Este mecanismo es empleado para
no tener que tratar información crítica en múltiples ficheros, outputs o peticiones.

2. Análisis de arquitectura y funcionalidades Hashicorp
VAULT

Figura 22. Vault Architecture by Hashicorp (link The HashiCorp Vault Adoption Guide)

Como se observa en la Figura 22 aparecen tres grandes grupos. Una API Rest sustentada
por HTTP/S. Una barrera o Barrier que contiene prácticamente toda la operativa de
Hashicorp Vault y un Storage Backend, lugar en el que se almacenan los secretos.

Cuando arranca Vault este aparece en estado sealed o sellado, desde este punto no es
posible acceder a los secretos guardados, por lo que para configurarlo será necesario hacer
un unsealed. Para modelar como va ser el funcionamiento de Vault hay que desbloquearlo,
Vault emplea un esquema Shamir (link Esquema de Shamir - Wikipedia, la enciclopedia
libre) el cual divide el que podría ser un solo acceso para un recurso en varios. Al iniciar
Vault este crea varias llaves (5 por defecto), mediante las cuales, disponiendo de un número

50

https://www.hashicorp.com/resources/adopting-hashicorp-vault
https://es.wikipedia.org/wiki/Esquema_de_Shamir
https://es.wikipedia.org/wiki/Esquema_de_Shamir

concreto de ellas (3 por defecto), se podrá realizar la apertura de Vault y configurarlo según
las necesidades pertinentes. Estas llaves no tienen que estar almacenadas en la misma
ubicación ni se debe encargar de ello una sola persona, esta es la base del esquema de
Shamir.

Así entonces, cualquier usuario que goce de los permisos adecuados podrá beneficiarse de
las múltiples herramientas de Vault.

De manera general, todo el intento de interactuar con Vault pasa por el siguiente workflow
de 4 etapas bien definidas:

1. Autenticar: Se comprueba si el cliente es quien dice ser
2. Validar: Se asegura la identidad del cliente con terceros confiables
3. Autorizar: Se compara la acción deseada por el cliente con las políticas existentes

(dar acceso o no a endpoint de la API)
4. Acceso: Consiste en otorgar la entrada a los recursos requeridos, esto se realiza con

un token formado por políticas y la identidad.

En cuanto a sus características, ya se puede observar en este punto que su operativa
funciona de una forma mucho más amplia que SealedSecrets.

Al igual que SealedSecretes, Vault ofrece un almacenamiento seguro de secretos ya que
los que son almacenados de forma persistente pasan primero por una encriptación
empleando Cifrado AES 256-bit en GCM con 96-bit nonces, debido a que K8s únicamente
los codifica en base64. Esto implica directamente que aunque una persona pudiera acceder
al directorio donde se encuentran dichos secretos no podría acceder a su lectura y
comprensión.

A pesar de que el principio base para evitar la lectura de secretos es muy similar con
SealedSecrets, encriptando los campos necesarios, Vault tiene más características
explotables, entre ellas destaca los Secrets Engines o motores de secretos. Este es el
comienzo del empleo de secretos, tras configurar uno de estos como Microsoft Azure, AWS
o Google Cloud Platform se podrá ya entonces guardar un secreto.

Los motores de secretos son componentes de Vault que almacenan, generan o cifran
secretos. Algunos motores de secretos, como el motor de secretos de clave/valor,
simplemente almacenan y leen datos. Otros motores de secretos se conectan a otros
servicios y generan credenciales dinámicas bajo demanda. Otros motores de secretos
proporcionan cifrado como servicio. (link Secrets Engines | Vault - HashiCorp Learn)

Si un usuario (o boot) desea realizar alguna acción con uno de estos motores, se deberá
haber autenticado y disponer de las credenciales necesarias para emplear dicho motor.

Para comprobar si un usuario determinado posee las credenciales aptas para un recurso,
Vault lo chequea contra las políticas de dicho recurso. Estas se crean en HCL, siendo
también compatibles con JSON.

51

https://learn.hashicorp.com/tutorials/vault/getting-started-secrets-engines?in=vault/getting-started

Por otra parte aparece el término de secretos dinámicos, un caso de uso de estos sería si
por ejemplo un usuario desea acceder a una base de datos de forma temporal,Vault
generará unas credenciales con los permisos pertinentes (un secreto). Después de esto,
pasado un tiempo concreto especificado, Vault eliminará automáticamente dicho acceso.

Otra característica con una gran utilidad es el llamado cifrado de datos al vuelo, esto
permite encriptar (y desencriptar) datos sin guardarlos. Esta propiedad permite ahorrar una
gran cantidad de tiempo, por ejemplo, si un desarrollador desea cifrar las contraseñas y
almacenarlas en su base SQL, logrará encriptar dichos datos sin tener que definir sus
políticas de encriptación.
Todos los secretos cuentan con un tiempo de expiración, sin embargo el usuario puede
pedir renovarlo a través de la API. (link Introduction | Vault by HashiCorp)

Junto con todo ello Vault proporciona servicios de auditoría que almacenan un registro de
cada solicitud y respuesta realizadas a la API

Anexo VI

Ejemplo práctico
Con el objetivo de producir una demostración práctica aplicable de todo lo contado
anteriormente se ha llevado a cabo el levantamiento de un sistema cloud similar al de la
Figura 23.

Figura 23. Arquitectura del ejemplo a probar

Explicando la Figura 23 se observan tres principales actores que interactúan entre ellos de
manera segura.

52

https://www.vaultproject.io/docs/what-is-vault

En primer lugar se encuentra el llamado Development Organization, en este caso sería el
ordenador personal, podría ser referido a cualquier ordenador de la empresa o, en caso de
que se realizará el desarrollo con un equipo (como suele suceder) de varios.

Nada más comenzar se ha llevado a cabo un análisis de la plataforma utilizando
Kube-Bench, el cual muestra los posibles riesgos preexistentes en el entorno a utilizar.
Así entonces se observa un flujo de trabajo en el cual, los desarrolladores escriben el
código, hacen commit del mismo en un repositorio, se construye una imagen y se almacena
en un registro, para finalmente hacer un despliegue en el cluster que se desee, por
supuesto, después de haber escaneado la imagen.
Dependiendo del resultado de este escaneo, se decidirá si la imagen está preparada o no,
para su despliegue. La decisión de esto puede ser subjetiva en cierta manera, ya que
dependiendo del nivel de seguridad que se necesite se pueden abrir más o menos las
restricciones a cumplir. En este caso, se consideraría que una imagen puede pasar si no
contiene ningún tipo de vulnerabilidad.

La intención de todo esto es realizarlo mediante prácticas de CI / CD, integración y entrega
continua, todo ello claramente de forma automática.

En todo este proceso, se debe realizar distintos taggeos que expliquen el estado en el que
se encuentra la imagen a desplegar, por ejemplo:

- Al escribir la imagen: untagged
- Tras analizar con Trivy:

- Si se puede desplegar: cleanImage
- Si no se puede desplegar: dirtyImage

Ya en el Kubernetes Cluster, previo a correr la imagen mencionada anteriormente, esta es
verificada por un Admission Controler, que verifica si sus características se atañen a las
políticas y configuración deseada. En este caso, por lo comentado anteriormente, Kyverno
seria la herramienta idónea.

En caso de que contradiga en algún aspecto las políticas establecidas, dependiendo de cual
incumpla, podría ser rechazado el deployment o únicamente registrada la incidencia, por el
contrario, si se han chequeado las políticas correctamente pasará a realizarse el despliegue
del sistema.
Con el objetivo de lograr una mayor seguridad se puede realizar un firmado de imágenes,
empleando por ejemplo Notary, que logren verificar la legitimidad de una imagen.

Para un mantenimiento del sistema adecuado, se monitorearán las actividades que ocurren
en el mismo, empleando Falco, el cual realizará la función de Runtime Protection.

Sumado a esto, se emplea SealedSecrets, para permitir a los desarrolladores subir sus
aportaciones con los secretos pertinentes a los repositorios, ya que estos se encuentran
cifrados y no hay un riesgo alto de que puedan ser leídos, lo que facilita mucho la tarea.

53

