Trabajo de fin de grado

Seguridad en K8s, Proteccién 360°
K8s security, 360 ° protection

Autor: Oscar Anadén Olalla
Director: Francisco Borja Buera
Tutor: Francisco Javier Zarazaga

Convocatoria 2022 / 2023

F:;:ﬁlizgaey Arquitectura .."m.. UnlverSIdad
i Zaragoza

Universidad Zaragoza —_—




Seguridad en K8s, protecciéon 360 °

Resumen

Durante el desarrollo del presente trabajo de fin de grado, Seguridad en K8s, proteccién
360°, se ha llevado a cabo un estudio sobre la seguridad que emplean los sistemas de
Kubernetes, comparando la seguridad nativa que dicha plataforma ofrece y las diferentes
herramientas disponibles en el mercado. Para lograr este objetivo se han ejecutado distintas
configuraciones, instalando el software pertinente y comparando diversos parametros, asi
como la experiencia general de uso.

La compania NTT Data centra gran parte de sus medios en proporcionar servicios cloud,
disenando e implementando aplicaciones alojadas en la nube. Debido a la facilidad que
muestra Kubernetes para gestionar los recursos disponibles, su empleo dentro de la
empresa es muy elevado, por lo que este trabajo facilitara la toma de decisiones a la hora
de llevar a cabo la estructura inicial de un proyecto o escoger las tecnologias que este
empleara, dependiendo de los requerimientos del mismo.

De primera instancia se puede pensar, como se ha hecho durante los ultimos afos, que
Kubernetes es una plataforma segura donde realizar los despliegues necesarios de
cualquier aplicacién, sin embargo, aun implementando una configuracién correcta y siendo
minucioso con cada parametro relativo a la seguridad, es posible que existan brechas o
vulnerabilidades que podrian ser explotadas por un atacante.

Como se observa a lo largo del documento presente, es necesario el empleo de software
especializado que permita realizar analisis periddicos del estado del sistema y alertar en
caso de que exista un escenario defectuoso e incluso proporcionar nuevas herramientas y
capas de seguridad necesarias para que ningun usuario indebido pueda acceder a datos
que no le corresponden, manipularlos o impedir su utilizacién cuando se requiera.

Finalmente, se ha concluido qué herramientas son mejores para cada suceso, comparando
sus caracteristicas y observando cémo trabajan en casos concretos. A pesar de que si es
posible en ciertas ocasiones dar una respuesta certera sobre qué software es mejor, se ha
observado que en muchas de las ocasiones no es posible obtener un veredicto absoluto
que coloque a una por encima de otra, sino que dependera mucho del contexto en el que se
encuentren.



ra

e
=
<
=
W
Q
<
.
~
o
S
(L)
W
Q
<
.
W
Q
S
<
&
-

Declaracion de autoria

."'1 el DECLARACION DE
Universidad Zaragoza AUTORIA Y ORIGINALIDAD

[Eati docuifite dibi u Blusisaris & il ks i i

b/oe.  Oscar Anadén Olalla

en aplicacion de lo dispuesto en el art. 14 (Derechos de autor) del Acuerdo de
11 de septiembre de 2014, del Consejo de Gobierno, por el gue se
aprueba el Reglamento de los TFG y TFM de la Universidad de Zaragora,

Declaro que el presente Trabajo de Fin de Estudios de la titulacidn de
Grado en Ingenleria Informatica B {Titulo del Trabajo)

Seguridad en K8's. proteccidn 3602

es de mi autoria y es original, no habiéndose utilizado fuente sin ser

citada debidamente.

2aragoza, 02/11/2022

Fdo: Oscar Anaddn 0.



indice

indice

1. Introduccién

1.1 Contexto del Trabajo

1.2 Contexto Tecnoldgico

1.3 Motivacion y problema que se aborda

1.4 Alcance, objetivos y limitaciones

1.5 Herramientas de trabajo

1.6 Esquema general de la memoria del proyecto

2. Trabajo desarrollado
2.1 Analisis de la plataforma
2.2 Aplicacion de politicas de seguridad
2.3 Seguridad activa
2.4 Seguridad en comunicaciones
Kubernetes Network Policies
2.5 Andlisis estatico de imagenes
2.6 Gestion de secretos

3. Lecciones aprendidas y conclusiones
3.1 Conocimientos adquiridos

3.2 Ideas Futuras

3.3 Conclusiones

4. Bibliografia

Anexo |

Anexo Il

Anexo lll

Anexo IV

Anexo V

Anexo VI

o O O 0o N oo o

-—

N NN A A @A aa
WN-_ ONP~DNDN

a O A A W W DN DN DD DD
A N 00 = 00 O 00 O oo o o



Agradecimientos

Aunque hay mucha gente que merece reconocimiento me gustaria mencionar entre todos
ellos a mis compafieros de NTT Data, que tantas cosas me han explicado una y otra vez.

A todos los profesores que presentan una gran vocacion por el aprendizaje y la informéatica,
que logran crear interés para que incluso uno mismo siga investigando por su cuenta.

A mis amigo Sergio, sin ti todavia tendria algunas decenas de créditos pendientes. Gracias
amigo.

A Marina, que tanto me apoya y confia en mi y en mis suefios como pocos lo hacen,
ademas de haberse tragado 85 charlas sobre Kubernetes.

A mis yayas y yayos, con los que tanto he disfrutado y los cuales estarian ahora tan
orgullosos de mi.

Por ultimo y en especial,a mi madre y a mi padre, los que siempre me han apoyado y
ensefado la importancia de los estudios, gracias por vuestros consejos y ayudas. Os quiero
mucho.



1. Introduccion

1.1 Contexto del Trabajo

Este proyecto ha sido realizado en NTT DATA Co., compaiia japonesa de comunicaciones
especializada en la integracién de sistemas. NTT tiene actualmente diferentes sedes
repartidas por Espafa, una de las cuales se ubica en Zaragoza y centra gran parte de su
operativa en el desarrollo de servicios en la nube, realizando diversos proyectos para
clientes, en muchos de los cuales se emplea Kubernetes.

Es innegable el crecimiento que ha tenido la demanda de servicios en la nube, como puede
ser el empleo de contenedores, microservicios y similares. Por ello, NTT ha decidido realizar
una apuesta clara por Kubernetes, uno de los mayores orquestadores de contenedores
actuales. Cada vez son mas las compafias que emplean esta plataforma para desplegar
sus servicios, sin embargo, en muchas ocasiones se lleva a cabo dicha tarea sin
comprender a la perfeccion las implicaciones y caracteristicas que porta, por ello existe una
preocupacion incipiente de la existencia de brechas de seguridad. Es por esto que ha
decidido poner en marcha una linea de actuacién dedicada a la evaluacion de los riesgos
que puede haber y a la planificacion de las estrategias de contingencia. En dicha linea se
encuentra este proyecto, en el que se investigaran posibles fallas de seguridad y
metodologias de actuacién para las mismas.

1.2 Contexto Tecnoldgico

Lo primero de todo, ¢qué es Kubernetes? Kubernetes, de manera abreviada K8s, es una
plataforma portable y extensible de cdédigo abierto para administrar cargas de trabajo y
servicios W. Su empleo provee al usuario de numerosas y heterogéneas utilidades que
facilitan, en gran medida, la administracion de sus aplicaciones. Asi entonces, NTT realiza
una apuesta decisiva por su uso, siendo este una parte fundamental de su producto, por lo
que el desarrollo de este trabajo de fin de grado facilitara la toma de decisiones existente en
diferentes proyectos. Esta tecnologia presenta dos motivos principalmente que la hacen
muy atractiva.

En primer lugar, el auge y crecimiento de los servicios cloud: Es creciente el nimero de
empresas (y particulares) que deciden utilizar recursos en la nube. Gran parte de ello se
debe a la economicidad de su uso y la adaptabilidad que proporciona. Por ejemplo, para
una empresa que requiera la utilizacion de maquinas con un sistema operativo (SO)
concreto unicamente en el desarrollo de un producto en particular, le seria muy ineficiente y
costoso comprar dichas maquinas. En lugar de ello despliega dichos SO en contenedores
mediante Kubernetes durante la duracion que se necesite, ahorrando recursos y tiempo, lo
que directamente implica una disminucién de los costes. Ademas de esto, otra gran ventaja
que posee es la escalabilidad, la potencia que ofrece K8s para aumentar sus capacidades
es muy elevada, tanto de forma periédica como para momentos puntuales, de igual manera
también es posible disminuir dichas capacidades de manera sencilla.



En segundo lugar Google, el desarrollador inicial de esta tecnologia, la cual integra en su
plataforma de cloud, Google Cloud Platform (GPC). A pesar de que hay grandes
competidores en este sector como Amazon (AWS) o Microsoft (Azure), suele suceder que la
tecnologia ofrecida por Google acaba siendo una de las mas predominantes del mercado.
No se esta afirmando rotundamente que vaya a ser el principal exponente de los servicios
cloud, pero si uno de los mas importantes. Todo esto se encuentra recogido en el Magic
Quadrant de Gartner &' donde expone y explica los principales potenciales de servicios de
infraestructura y plataforma en la nube. En la figura 1 se puede observar que Google se
encuentra muy bien posicionado y con una espera de crecimiento notable.

Amazon Web Services

@ Microsoft

@ Google

@ Alibaba Cloud

@ Oracle

Tencent Cloud @
@ Bv

CAPACIDAD DE EJECUCION

INTEGRIDAD DE LA VISION A partir de julio de 2021 © Gartner, Inc
Figura 1. Gréfico de los principales competidores en Cloud @


https://docs.google.com/document/d/1dO4T84AI2FZNZwSdvJrdRh3eUNYD6GhAmlvm2l-njW0/edit#bookmark=id.ik39x8bx3od9

1.3 Motivacion y problema que se aborda

A la hora de escoger un tema sobre el trabajo de fin de grado han existido varias propuestas
interesantes, entre las cuales aparecian numerosas relacionadas con el entorno cloud. Para
poder establecer un primer contacto con el mundo laboral, se decidi6 realizarlo a través de
una empresa, entre las cuales destaco NTT DATA. Tras analizar varios proyectos surgio la
idea de gestionar la seguridad de un sistema que emplee Kubernetes, lo cual resulté
interesante y practico debido a que la utilizacion actual de este orquestador es muy elevada.
Sumado a esto, se escogidé NTT por el gran departamento (DAR, Digital Architecture) que
tienen relacionado con las tecnologias cloud, ya que de manera directa permitiria contar con
una amplia gama de recursos tanto materiales como de informacién y de personal.

El problema que se aborda es una cuestion de gestion de riesgos en la linea de lo visto en
las asignaturas de ingenieria del software, sistemas distribuidos y seguridad informatica. La
dependencia creciente de la tecnologia de Kubernetes para el despliegue de sistemas la
convierte en un punto de riesgo cada vez mas alto. Es por ello que en el TFG se plantea el
estudio de los posibles riesgos, ademas de como elaborar estrategias de mitigacion y
planes de contingencia.

1.4 Alcance, objetivos y limitaciones

En el presente documento se va a exponer el analisis realizado a diversas configuraciones
de Kubernetes(K8s), cuyo entendimiento total, lograra mediante el empleo de diferentes
herramientas una comprobacién 360° en lo respectivo a su seguridad, con la finalidad de
intentar proteger al maximo el sistema pertinente, asi como de comprender las vias que
llevan a ello.

Tras el estudio de herramientas empleadas para el monitoreo y mantenimiento de la
seguridad en sistemas sustentados por Kubernetes, se ha determinado cual de ellas es
mejor en relacién al ambiente en el que se desarrollan asi como también si es necesario su
empleo en K8s o por si mismo genera intrinsecamente un sistema robusto.

1.5 Herramientas de trabajo

Durante la realizacion del proyecto se han empleado las siguientes herramientas:

Kubernetes: Utilizado como herramienta de gestion de contenedores, despliegues vy
similares (link ;Qué es Kubernetes? )

Docker: Empleado para el manejo de imagenes en contenedores (link
https://www.docker.com/ )

Kubectl: Herramienta CLI para trabajar con K8s, desplegando y gestionando aplicaciones o
inspeccionando recursos del cluster (link Instalar herramientas | Kubernetes )

Kube-bench: Software para el analisis de configuracion de plataformas, que comprueba si
K8s esta documentado de forma segura segun el CIS Kubernetes Benchmark (link
https://github.com rity/kube-bench )



https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/
https://www.docker.com/
https://kubernetes.io/es/docs/tasks/tools/
https://github.com/aquasecurity/kube-bench

Kube-Hunter: Software para el analisis de configuracion de plataformas, que comprueba si
K8s esta documentado de forma segura segun el CIS Kubernetes Benchmark (link
https://github.com/aquasecurity/kube-hunter)

Kyverno: Motor de politicas disefiado para K8s (link Kyverno)

OPA Gatekeeper: Motor de politicas para proyectos nativos en la nube (link Introduction
Gatekeeper)

Falco: Herramienta utilizada para el manejo de seguridad activa dentro de contenedores,
K8s y Cloud (link Open Source Container Security Tools: Falco - Sysdig)

Istio: Software empleado para la gestion, observabilidad e implementacion de seguridad de
comunicaciones. (link https://istio.io/)

Kubernetes Network Policies: Solucién nativa de K8s para la aplicacion de politicas en red
(link Network Policies | Kubernetes)

Trivy: Herramienta para el analisis de imagenes (link https://github.com/aquasecurity/trivy)
Grype: Herramienta para el analisis de imagenes (link https://github.com/anchore/arype)
SealedSecrets: Software  utilizado para el «cifrado de secretos (link
https://github.com/bithnami-labs/sealed-secrets)

Hashicorp-vault: Software empleado para el cifrado de secretos, generacién y gestion de
los mismos (link https://github.com/bitnami-labs/sealed-secrets)

1.6 Esquema general de la memoria del proyecto

Con el objetivo de facilitar la comprension y desglosar de manera practica el contenido, se
han establecido las siguientes secciones.

e Resumen: Contiene de forma sintetizada todo el trabajo realizado

e Introduccién: Se define el objetivo y el alcance del proyecto, el contexto en el que
se realiza y la metodologia llevada a cabo durante su desarrollo.

e Trabajo desarrollado: Se explica el procedimiento seguido durante el proyecto, asi
como una explicacion amplia de los problemas estudiados, las vias mediante las
cuales estos pueden ser resueltos y la comparativa de las mismas. Dentro de esta
seccion se encuentran las siguientes categorias:

o Analisis previo de plataforma: Se realiza un estudio previo del sistema a
emplear, comprobando que plantea una configuracién correcta en situaciones
como directorios con permisos adecuados, conexiones permitidas o
similares.

o Aplicacion de politicas de seguridad: En esta seccidn se escribe sobre cémo
aplicar politicas en Kubernetes, entendidas estas como el establecimiento de
normas en cuanto a la utilizacion o acceso de recursos.

o Seguridad activa: En dicho apartado se comprueba cémo mantener
asegurado el sistema, mediante el analisis activo de las acciones que “estan”
ocurriendo.

o Seguridad en comunicaciones: Esta seccién estudia la interaccion de
componentes, comprobando las posibilidades de asegurarla, cémo
monitorizar y otros empleos de utilidad en los sistemas distribuidos.

o Analisis estatico de imagenes: Se chequean algunas de las imagenes mas
populares en el empleo de contenedores, observando vulnerabilidades que
pueden contener.


https://github.com/aquasecurity/kube-hunter
https://kyverno.io/
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://sysdig.com/opensource/falco/
https://istio.io/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://github.com/aquasecurity/trivy
https://github.com/anchore/grype
https://github.com/bitnami-labs/sealed-secrets
https://github.com/bitnami-labs/sealed-secrets

o Gestion de secretos: En esta seccion se trata el tema de los secretos, los
cuales se emplean de manera directa para limitar el acceso a los datos.

o Ejemplo practico: Se plantea un caso de uso real, aplicable al entorno de
NTT DATA Co. de como emplear lo estudiado anteriormente, viendo como
funciona Kubernetes y las herramientas externas en suceso de un desarrollo
real.

e Conocimientos adquiridos: En esta seccién se describen las diferentes aptitudes
obtenidas.

e Ideas futuras: Se habla sobre los posibles trabajos o estudios realizables a partir de
este proyecto.

e Conclusiones: El ultimo apartado en lo que respecta al trabajo, en él se aborda el
delimitar qué herramienta es necesaria y cual de ellas es mejor para cada posible
caso que se plantee, asi como el definir de manera amplia, si Kubernetes ofrece por
si mismo el poder manejar una seguridad competente para segun qué ocasiones.

e Bibliografia: Seccion a parte en la que aparecen los enlaces y material consultado y
empleado

En los anexos se explican detalles a tener en cuenta sobre la realizacién del trabajo. En
estas secciones se podran encontrar pruebas de ejecuciones realizadas, diferentes
procesos de instalacion relacionados con las herramientas mencionadas anteriormente y
ejemplos de utilizacién que presentan cada una de estas.

Anexo |: Informacién relacionada con la aplicacion de politicas

Anexo ll: Informacién relacionada con la seguridad activa

Anexo llI: Informacién relacionada con la aseguracién de comunicaciones

Anexo IV: Informacion relacionada con el analisis de imagenes

Anexo V: Informacion relacionada con el empleo de secretos

Anexo VI: Ejemplo practico

10



2. Trabajo desarrollado

En lo que respecta al estudio de la seguridad sobre un sistema en K8s se ha seguido una
metodologia sustentada en los siguientes pasos:

Analisis del ambito a estudiar

Estudio de las herramientas nativas de K8s
Estudio de las herramientas externas a utilizar
Explicacion de vulnerabilidades

Comparativa y remediaciones

akrwd-~

Asi entonces se llevara a cabo de manera similar este esquema en cada uno de los flancos
a estudiar, comprendidos éstos como un conjunto de caracteristicas cuya configuracion esta

relacionada, por lo que estas pueden ser gestionadas, observadas y controladas de manera
agregada.

/a\

" Analisis ‘ Politicas

&

dela
plataforma

de
seguridad

~,

Gestion
de
secretos

Seguridad activa

Analisis
Comunicaciones de
imagenes

Figura 2. Resumen grafico del proyecto
2.1 Analisis de la plataforma

El primer paso para trabajar de forma segura es la previa comprobacion de que todo esta
configurado de manera correcta. Esta actividad es cuanto menos obligatoria y se ha de
tener muy en cuenta, ya que en determinadas distribuciones es posible que exista cierta
permisibilidad a la hora de realizar tareas concretas con el fin de que el usuario tenga
facilitada la experiencia. Un ejemplo de esto suelen ser los privilegios definidos al acceder a
directorios o archivos, en entornos de produccion estos deben estar limitados al minimo
posible &,

Aunque esta tarea se nombra y se ha de ejecutar al inicio, puede ser también comprobada
de manera continua al introducir elementos nuevos, como nodos, pods o contenedores.

11



Para poder comprobar esto de forma nativa en K8s seria necesario revisar manualmente
cada parametro de interés y chequear si tienen los valores correctos, 1o cual resultaria una
tarea tediosa y compleja.

Este flanco inicial tiene la intencion de hacer una comprobacién amplia de la plataforma,
en la cual se comprobaran aspectos genéricos y de fallo comun. Para lograr este paso
inicial se han planteado kube-bench y kube-hunter, ambas desarrolladas por la compafiia
aquasecurity, una de las mas importantes empresas de seguridad cloud.

2.1.1 Kube-Bench

En primer lugar se ha utilizado kube-bench, reconocido software creado por aquasecurity,
el cual se asegura de si Kubernetes ha sido implementado correctamente llevando a cabo
las comprobaciones documentadas en CIS Kuberntes Benchmark , organizaciéon sin animo
de lucro cuya mision es lograr un mundo digital seguro 2. Cabe destacar que la
configuracién de kube-bench se realiza con archivos en formato YAML, esto implica
directamente una buena base de actualizacion para que el desarrollo de las pruebas se
complete y avance.

Kube-Bench es cuanto menos sencillo de llevar a cabo. Primero sera necesario escoger su
lugar de instalacion, en este caso sera el host que se conecta con minikube (el ordenador
personal), podria ejecutarse dentro de un POD en algun nodo del cluster pero esto complica
innecesariamente la labor, para observar las diferencias, dicho lugar de ejecucion es usado
con la herramienta Kube-Hunter.

En el Anexo | seccion | se muestran algunos ejemplos del trabajo que se puede realizar con
kube-bench, el explicar todos ellos en este documento resultaria inviable ya que se habla de
cientos de casos a analizar, de igual modo pasa con muchos de los programas empleados
durante este proyecto.

2.1.2 Kube-Hunter

Kube-Hunter es una herramienta open-source que encuentra debilidades en clusters de
Kubernetes, esta testea un dominio o rango de direcciones probando diferentes
configuraciones que puedan exponer al cluster.

Se encuentra disponible mediante contenedor, web, o ejecutando cddigo en python.
Kube-Hunter es posible instalarlo en diferentes ubicaciones, en este se ha escogido un pod
dentro del propio cluster, ya que esto ademas indica que tan expuesto quedaria el cluster si
alguno de los pods quedara comprometido ¥, puesto que te encuentras dentro del cluster
observando todas las vulnerabilidades con cierto nivel de permisos. De igual forma se
podria haber realizado antes con kube-bench, de este modo se prueban diferentes métodos
de instalacion.

Al ejecutar Kube-Hunter este muestra opciones sobre qué se quiere analizar:

Choose one of the options below:

1. Remote scanning  (scans one or more specific IPs or DNS names)
2. Interface scanning (scans subnets on all local network interfaces)

12



3. IP range scanning (scans a given IP range)

Esto permite escanear una maquina remota, las interfaces de red de la maquina o un CIDR
especifico, respectivamente. Ya escogido el apartado a investigar, al empezar aparecen una
serie de mensajes que explican las vulnerabilidades que porta el sistema, en caso de que
estas existan.

Seguidamente se visualizan una serie de tablas indicando de manera desglosada y muy
clara la vulnerabilidad, donde ocurre y en qué consiste esta. Aunque aqui Kube-Hunter, al
contrario que Kube-Bench no resuelve dichas vulnerabilidades, emplea una plataforma web
€l con un pequefio buscador en el que al introducir la vulnerabilidad ensefia a como
solucionarlo.

Entendiendo mas cual es el potencial de Kube-Hunter se explicaran y solucionaran algunas
de las fallas encontradas. Para la ejecucion de Kube-Hunter se ha empleado la misma
configuracion cloud que con Kube-Bench, es decir la que viene por defecto al instalar
minikube. Dichas pruebas seran mostradas en el Anexo | seccion 1l .

Tras absorber las pruebas aportadas es deducible afirmar que ambas herramientas tienen
una funcién similar (por no decir idéntica), tratando de encontrar distintos tipos de fallas.
Realmente no existen diferencias significativas entre ambas.

Los problemas mencionados anteriormente pueden ser resueltos de diferentes maneras:

- Manualmente: Tanto Kube-bench como Kube-hunter cuentan con una extensa
documentacién en la que explican detenidamente cada uno de los test que se pasan
y como remediarlos. Tan solo seria necesario seguir los pasos.

- Automaticamente: Seria plausible programar scripts que realizaran la configuraciéon
segura mediante la ejecucién de comandos.

- Empleo de politicas: Existe software mediante el cual se aplican ciertas politicas
que pueden modificar o prevenir determinados comportamientos para lograr una
seguridad en K8s. Estas seran explicadas a continuacion.

2.2 Aplicacion de politicas de seguridad

El manejo de las politicas de seguridad es algo fundamental para controlar y delimitar la
actividad de usuarios y procesos en cualquier tipo de sistema. Este concepto se basa en
redactar una serie de normas que son chequeadas antes de realizar una accion, teniendo
en cuenta que si alguna de dichas acciones es impedida por una de las normas anteriores
se tomaran medidas en relacion a esta.

En este apartado se habla de dos importantes herramientas empleadas para aplicar una
serie de politicas, segun las mismas, en caso de que no se estén cumpliendo, se podra
actuar en consonancia segun desee el administrador, todo esto hara del sistema un lugar
mucho mas seguro.

Es cierto que Kubernetes desarrolla de manera nativa politicas en el sistema, sin embargo
el empleo de estas se encuentra un tanto limitado, lo cual se puede solucionar trabajando
con aplicaciones externas como las que se veran a continuacion.

13



Kyverno

En primer lugar Kyverno, es un motor de politicas disefiado exclusivamente para K8s. Este
se usa mediante el comando kubectl y su descripcion con YAML, por lo que un usuario semi
acostumbrado a Kubernetes se encontrara con grandes facilidades a la hora de manejarlo
ya que unicamente debera conocer los recursos que desee modelar.

Sobre estos se aplican tres acciones basicas a partir de las que se rige todo el
funcionamiento de Kyverno: Validar (allow), mutar (mutate) v generar (generate), lo que
permite eficazmente afirmar si un recurso esta definido adecuadamente, modificarlo en caso
de que sea necesario o crear uno nuevo, respectivamente . No obstante, ademas de esto,
Kyverno ofrece un servicio de validacion de imagenes, el cual es comentado mas adelante.

Siguiendo con el modelo de explicacion del apartado anterior, se explican a continuacion
una serie de politicas aplicables con Kyverno para comprobar las opciones que este ofrece
y sus posibles usos. Dichas politicas se podran comprobar en el Anexo | seccion Il

OPA Gatekeeper

En segundo lugar se presenta Open Policy Agent (OPA) Gatekeeper, se define como un
motor de politicas de propésito general. Este permite validar o mutar(esta caracteristica es
relativamente nueva) solicitudes de diversa indole. Emplea un lenguaje de programacion
propio, Rego, utilizado para aplicar la légica necesaria en el filtrado de las peticiones de
acciones.

Se pueden comprobar las pruebas realizadas mediante OPA Gatekeeper en el Anexo |
seccion IV .

La comparativa entre Kyverno y OPA puede resultar muy util ya que dependiendo de las
caracteristicas del proyecto que se desee, claramente se debera escoger entre una
herramienta u otra, a pesar de que ambas tengan un objetivo similar.

De primera instancia OPA no es exclusivo de Kubernetes, Kyverno si. Esto conlleva
ventajas e inconvenientes dependiendo de las necesidades del usuario. En caso de que se
trate de un proyecto abierto, o que puede escalar y comunicarse con distintos tipos de
plataformas cloud, sin duda seria necesario escoger OPA, sin embargo, en caso de que
dicha actividad fuera a llevarse a cabo unicamente en el entorno de K8s seria
recomendable el empleo de Kyverno, ya que esta disefiado exclusivamente para este
sistema y no adaptado a él.

Seguidamente, Kyverno es un motor mucho mas sencillo que OPA. Al igual que el punto
anterior esto presenta ventajas e inconvenientes. Esto es debido a que para aplicar la
operativa de Kyverno unicamente se emplean ficheros YAML que definen directamente la
l6gica que se va a aplicar, mientras que OPA lo realiza mediante su propio lenguaje, Rego.
Esto hace que la curva de aprendizaje para el usuario sea mucho mas extensa en OPA, sin
embargo, OPA permite describir politicas complejas, o que en caso de requerir esquemas
muy especificos para el sistema, seria muy beneficioso. Nuevamente depende en este caso
de las necesidades demandadas.

14



En cuanto a las capacidades de cada uno, Kyverno aparece mucho mejor posicionado, ya
que este permite 3 tipos de actuacién en base a las operaciones que se realicen: Permitir,
anadir y mutar, todo ello sumado a un verificador y registrador de imagenes. OPA
unicamente presenta la de permitir (o no) ciertas ejecuciones, si es cierto que han incluido la
opcién de mutar, pero esta se encuentra en una etapa incipiente.

Analizando otros aspectos, OPA lleva mas tiempo en el mercado contando con una
comunidad un tanto mayor, aunque Kyverno le sigue muy de cerca y con un crecimiento
muy amplio.

Como se ha explicado, la eleccion entre un motor de politicas u otro radica en las
necesidades que tenga el usuario, pero en este caso concreto, se trata de un cluster
exclusivo de Kubernetes que no emplea politicas excesivamente sofisticadas. Por lo que
particularmente escogeria Kyverno. Las aptitudes de cada uno se recogen en la Tabla 1.

Sencillez | Descripciéon de Operaciones Plataformas
politicas
Kyverno Alta Limitada Permitir, mutar, Unicamente
afadir, comprobar K8s
imagenes
OPA Baja Alta Permitir, Multiples
mutar(beta)

Tabla 1. Comparacion Kyverno VS. OPA

2.3 Seguridad activa

En cuanto a la seguridad activa es imprescindible hablar de Falco, desarrollada por la
empresa SYSDIG y donada a la Cloud Native Foundation (CNF), centro de cddigo abierto e
independiente que aloja proyectos como Kubernetes y Prometheus para hacer que la nube
nativa sea universal y sostenible®,

Falco usa las system calls o llamadas al sistema para monitorizar y asegurar al propio
sistema. Su actividad consiste, de manera resumida en:

- Anadlisis de las llamadas del sistema Linux desde el kernel en tiempo de ejecucion

- Realizar “asserts” de las comunicaciones frente a un motor de reglas

- Alertar cuando una regla ha sido violada. &

Kubernetes ofrece de manera nativa opciones que permiten leer informacion sobre las
actividades del sistema. El componente Kube-apiserver lleva a cabo la auditoria. Cada
peticién en cada fase de su ejecucion genera un evento, que se pre-procesa segun un cierto
reglamento y se escribe en un backend "2,

En cuanto a las politicas, como se ha visto anteriormente, en Kubernetes se definen en
formato YAML y dependiendo del evento ocurrido se pueden auditar o impedir. De manera
similar Falco realiza este contraste con las conocidas Falco rules, en las que ademas
distingue 3 tipos de elementos(Rules, Macros, Listas) que logran una gestion de las reglas

15



muy sencillo y practico. Se puede observar el funcionamiento y diferencias de ambas en el
Anexo |l Seccion | .

Con los elementos anteriores se realiza un contrapunto frente a los diferentes eventos que
ocurren en el sistema, provenientes de las llamadas al sistema, los logs de kubernetes y
actividad cloud heterogénea, observable en la Figura 3.

@ syscalls //7 @

Kubernetes audit logs §/<‘ — _-/ ;,/ - @

k A
Cloud activity logs Falco @

aws CloudTrail K
2 Cloud Audit Logs @

/A Azure Activity Logs

Figura 3.Funcionamiento general de Falco (link Sysdig - Falco)

Para entender un poco mejor su funcionamiento se contempla un ejemplo practico, se

puede pensar que teniendo nativamente a Kubernetes comprobando los distintos procesos

y generando logs de ellos no seria del todo necesario emplear Falco, sin embargo la

aportacion que este hace a la seguridad y gestién de K8s es bastante elevada. Ademas de

observar y analizar los heterogéneos eventos que se ejecutan en Kubernetes, es capaz de
estudiar actividad proveniente de otros entornos, como puede ser AWS, Azure o Google

Cloud, lo que presenta gran utilidad en despliegues multiplataforma.

Falco recopila toda esta informacién y con aquella que hace match frente a alguna de las

Falco Rules podra generar una alerta visible o actuar en consecuencia.

En cuanto a las alertas, Falco las puede mostrar por distintas salidas, estas pueden ser:

salida estandar, como stdout, docker logs o kubectl logs; syslog;

archivos, definidos a eleccion del usuario.

- entradas a programa, este punto resulta muy util ya que dichas alertas pueden ser
enviadas a cualquier programa, como por ejemplo un email, y trabajar directamente
con ellas.

- http[s] methods / gRPC clientes, las cuales emplean formato JSON, lo que implica
que las aplicaciones podrian utilizar de primera mano dichos datos como por
ejemplo en dashboards, notificaciones u otras utilidades.

El empleo o no de estas salidas se escribe en el fichero /etc/falco/rules.d/falco.yaml, donde
aparece una configuracion genérica de la via que actuara Falco, se observara su uso en
Anexo 1l Seccidn Il .

Se ha comprobado que Falco tiene grandes cualidades como motor de deteccion, se
marcan unas reglas que el sistema ha de cumplir y en caso de que no sea asi, se genera
una alerta. Sin embargo, para asegurar realmente el sistema, es necesario responder frente
a esos despropositos. De esta manera en conjuncion con otras aplicaciones Falco se
comportara como un motor de respuesta, respondiendo cuando sea necesario si una o mas

16


https://sysdig.com/opensource/falco/

reglas no se cumplen. Para lograr esto se emplea también la herramienta Falco Sidekick, se
define como un demonio simple que permite conectar Falco a tu ecosistema. Este toma los
eventos de Falco y sus diferentes salidas colocando todo en un punto GnicoX. Junto con
esto es necesario un servicio que pueda actuar frente a los distintos eventos como pueden
ser Kubeless, OpenFass o Argo. Mediante estos servicios se definen funciones que son
capaces de desempefar acciones concretas.

/ N
invoca / \inveca
4 N
- Funcion fix Funcion show

N\ envia

PagerDuty

Figura 4. Ejemplo de funcionamiento Falco con remediacion de incidencias

P

Se plantea un caso de uso en la Figura 4. Pongase el ejemplo de que en alguno de todos
los nodos visibles en los que corre Falco hay establecida una Falco Rule para impedir
ejecutar un SHELL dentro de un contenedor (por razones ya explicadas anteriormente). Si
en alguno de dichos contenedores se ejecuta un SHELL, saltara una alerta la cual sera
enviada a OpenFaa$S, invocando una funcién para solucionar dicho problema, por ejemplo
se podria terminar el pod donde corre el contenedor para evitar que este continuara
ejecutando comandos y una posible escalada de privilegios.

Dicha alerta se podria enviar a un sistema de incidencias como PagerDuty.

2.4 Seguridad en comunicaciones

El apartado relativo a las comunicaciones se entiende como la manera en la que unos
componentes interactian con otros (o con si mismos). Este es un aspecto muy importante
del desarrollo y puesta en funcionamiento de aplicaciones web. Por ello ha de estar
configurado de manera muy precisa atendiendo a cada detalle.

Para entenderlo mejor se expondra con un ejemplo visible en Anexo |ll Seccion | .

Istio

De manera muy eficaz la herramienta Istio logra resolver muchas de las necesidades. Istio
es una servicemesh de codigo abierto que se superpone de forma transparente a las
aplicaciones distribuidas existentes "2, Posee potentes funciones que logran eficientemente
proteger, conectar y hacer monitoreo de servicios.

17



Las funciones de Istio basicamente se dividen en tres grandes grupos-4:
- Gestion de trafico
- Observabilidad
- Capacidad de seguridad

En cuanto a la gestion del trafico, Istio permite, aplicando sus reglas de enrutamiento,
controlar el trafico y las llamadas a la API realizadas entre los diferentes servicios. Esto se
entrelaza con las cuestiones de seguridad para lograr comunicaciones férreas.

Dividir una aplicaciéon en microservicios sin duda puede traer grandes beneficios como
puede ser la escalabilidad, tan importante en entornos cloud, sin embargo estos
comprenden necesidades de seguridad.

En primer lugar es necesario encriptar el trafico para evitar ataques de intermediarios asi
como cualquier tipo de sniffing, ademas de ello es necesario el empleo de distintos
protocolos como TLS y mTLS (mutualTLS) que garanticen un control de accesos a cada
servicio, junto con el uso de politicas que regulen el empleo (o0 no) de dichos protocolos. Por
supuesto, siempre sera necesario auditar cada accién que se realice para saber quien
realizé determinadas actividades en un momento concreto.

Istio categoriza distintos niveles de seguridad para una proteccion modelable, son:
- Secure by default no es necesario introducir cambios en la aplicacién o la
estructura de la misma.
- Defense in depth, consiste en integrar el desarrollo con los sistemas de seguridad
ya existentes.
- Zero-trust network, comprende el crear avanzadas soluciones en redes de dudosa
seguridad.

Con el objetivo de comprender mejor el funcionamiento de la seguridad de Istio se explicara
seguidamente su arquitectura vista desde un nivel alto

Istio Mesh

Data plane

4 | - Fy
:O’] >

Ingress

JWT+ TLS
mTLS

@
aa_ &
APIs

Content

JWT + TLS
mTLS

®
4 ma
External
APIL

I .

s
» » B s
Proxy « & > Proxy O —n—i O
» HTIP, gRPC, TCP »” o
1
I
!

->

--4+0 @
w1
;
2
n
=
wr
:
:
:
n
w

Control Plane Inter face

Control plane ]

Key: Data plane Control plane Local
traffic traffic aut horization Certificate

""" + »
Figura 5. Arquitectura de isito link (Istio Arq )

En el diagrama visto en la Figura 5 es posible observar distintos componentes.

18


https://betterprogramming.pub/how-istio-works-behind-the-scenes-on-kubernetes-aeb8003f2cb5?gi=1344ef0266b3

- Un CA (certificate authority) encargado de gestionar claves y certificados

- Un servidor API para la configuracion, el cual distribuye politicas entre los proxies
- Proxies, llevando a cabo la comunicacién entre cliente y servidor

- Extensiones que logran funciones extra como la auditoria.

En lo relativo a la gestion de identidades y el otorgar certificados, junto con cada proxy
Envoy aparece un istio agent, los cuales se comunican con istiod para obtener los
certificados y las claves pertinentes. El istio agent se ocupa de la caducidad del certificado.

Para la autenticacién Istio plantea dos tipos. Autenticacion de pares: esta es empleada entre
servicios. Se realiza mediante el protocolo TLS (Transport Layer Security)

Esto puede ser aplicado de distintas maneras segun las necesidades del usuario,
concretamente mediante el empleo de 3 modos:

- Permissive: Los workloads permiten trafico mTLS y texto sin formato.

- Strict: Unicamente se acepta mTLS

- Disable: mTLS se encuentra deshabilitado. Esto no se debe realizar a menos que el
usuario aporte su solucion personal en cuanto a lo que seguridad se refiere.

A su vez, esto propicia una gran flexibilidad a la hora de configurar las comunicaciones. Por
ejemplo, si se tiene una organizacion ya existente y se desea migrar a Istio, mediante el
modo permisivo se podra ir logrando que los distintos workloads comiencen a emplear
mTLS y aquellos que todavia no lo han podido instalar sigan enviado trafico de la manera
previa.

Es cierto que cualquiera puede pensar ;realmente necesito Istio para emplear TLS?
Obviamente la respuesta es no, pero la diferencia radica en que con el uso de lIstio el
empleo de este protocolo se realiza de forma automatica empleando el patrén sidecar y los
Envoy, mientras que si se quisiera realizar de manera manual seria necesario realizar
muchos certificate management. Esta redireccion de trafico se podria constatar en tiempo
real con el empleo de alguna de las herramientas de observabilidad siguientes, como
pueden ser Graphana o Kiali.

Respecto a la observabilidad Istio proporciona una telemetria detallada que permite atender
el comportamiento de los servicios, lo que facilita al usuario el poder mantener dichos
servicios funcionando correctamente. Con esta funcionalidad se podran leer métricas, hacer
seguimiento distribuido y observar un completo acceso de registros.

Para poder entender mejor la capacidad que tiene Istio se comenta un caso en el que se
han llevado a la practica los conceptos explicados anteriormente, visible en el Anexo Il
Seccion lll . Se observa que Istio ofrece una gran operatividad con herramientas muy utiles
para la administracion de cualquier despliegue.

Kubernetes Network Policies

No hay que olvidar la opcion nativa de Kubernetes, Kubernetes Network Policies (KNP), la
cual ofrece una gran potencia a la hora de aplicar politicas de red. KNP permite un control
del trafico de IP/port entre pods, espacios de nombres y bloques de IP.

19



Por supuesto dicho control se realiza aplicando ficheros en formato YAML. Se pueden
realizar multiples acciones como denegar todo el trafico de una fuente concreta, desviarlo
hacia un puerto determinado o aceptar Unicamente determinadas acciones. Se puede
observar su funcionamiento de manera sencilla en el Anexo Il Seccién lll

Tras un contundente analisis de ambas herramientas, se entiende que Istio es mucho mas
completo que KNP, ya que ofrece monitoreo, traza, aplicacion de politicas, observabilidad,
reparto de trafico, mTLS simplificado... Sin embargo no implica que KNP no tenga
escenario de uso, el empleo de esta es mucho mas sencillo ya que de primera instancia no
requiere instalacion alguna y admite crear politicas decisivas para la seguridad del sistema.
Para despliegues sencillos quizas no fuera necesario la instalacion de Istio y sus addons,
sin embargo, en cuanto aparezca un poco de complejidad se recomienda tajantemente su
uso, ya que ademas de lograr una mayor comprensién de las estructuras existentes,
ofrecera al operador una visién amplia de todas las comunicaciones que estan ocurriendo
en su sistema.

2.5 Analisis estatico de imagenes

Una imagen puede definirse como un paquete software ejecutable. Esta contiene los datos
binarios de una aplicacién y todas las dependencias software de la misma. Se consideran
como una parte fundamental en la orquestacion de K8s, ya que basicamente es lo que va a
correr dentro de un contenedor. Por ello mismo, en estas no puede haber fallo alguno, ya
que una brecha de seguridad en alguna imagen podria suponer el acceso a datos
confidenciales o una escalada de privilegios.

Kubernetes de forma nativa no ofrece un medio, comandos o similar que permita analizar
una imagen en busca de fallas, por ello se ha realizado el estudio de dos herramientas
conocidas que han permitido obtener conclusiones sobre el estado de las imagenes, Grype
y Trivy.

Trivy

Esta herramienta es de la conocida empresa Aqua, la cual provee de numerosas opciones
que aportan seguridad a K8s, como la nombrada anteriormente kube-bench. Trivy es un
escaner que permite analizar imagenes de contenedores, sistemas de ficheros e incluso
repositorios de git con el objetivo de encontrar brechas de seguridad relativas a
vulnerabilidades en la constitucién de la imagen, configuraciones o secretos.

Para contemplar el ambiente de trabajo de Trivy se ha empleado uno de los ejemplos
mostrados anteriormente, concretamente la imagen del POD de reviews usado para Istio,
observable en el_Anexo |V Secciéon IV. Cualquier imagen con un minimo de complejidad
bastaria para observar de manera general los aspectos que Trvy ofrece.

A pesar de que esta herramienta corre en una gran cantidad de sistemas operativos y busca
en multitud de lenguajes especificos, no funciona con JAVA, algo a tener en cuenta ya que
es uno de los lenguajes mas usados de la actualidad. Por contra, esta su competidor,
Grype, el cual es explicado a continuacion.

20



Grype

Se trata de un escaner para contenedores de imagenes y sistemas de archivos 22\ Este es
compatible con multitud de SO. Una vez instalado Grype, su empleo es muy visible en el
Anexo |V Seccion Il.

Para estudiar cual de las dos se comporta mejor, se ha hecho una comparativa con 4

imagenes, analizadas con ambas herramientas. Dicho estudio se encuentra en el Anexo IV
ion .

Por ultimo se tendra en cuenta la actividad que ambas herramientas tienen actualmente, se

puede comprobar que Trivy tiene alrededor de 1200 forks y 12.900 stars en GitHub 14

mientras que Grype cuenta con 278 forks y 4000 starts "2,

Como conclusion en el analisis de imagenes, se escogeria Trivy, la manera que tiene de
arrojar los resultados mas completa y clara, el apoyo de la comunidad y el pertenecer a una
empresa que dedica gran parte de su operativa a la seguridad en K8s hacen que sea la
herramienta a escoger. No ostenta, como es de suponer, en caso de utilizar proyectos con
Java (lo cual puede ser bastante comun), se debera utilizar Grype u otro escaneador como
Clair o similar.

2.6 Gestion de secretos

Se trata de una de las partes mas importantes en lo que respecta a la seguridad de forma
directa, ya que es uno de los mecanismos que permite limitar de manera intrinseca el
acceso a determinados datos. Mediante esta forma se deben guardar credenciales,
contrasefas, tokens, claves, certificados ssh y demas.

Para comprender su funcionamiento se propone un ejemplo de uso basico en el Anexo V
Seccion |

Respecto al uso de secretos existe un problema muy importante, K8s no cifra la
informacion empleada para autenticacion en los secretos, Unicamente lo codifica en base64
para que “no sea visible al ojo humano”, lo que se puede revertir facilmente con un
comando que transcribe dicha cadena a texto de nuevo. Sin esfuerzo se entiende que esto
no puede ser implementado cuando se estén tratando datos personales, contrasefias o
ficheros clasificados. Para solucionar esto, se han desarrollado diferentes soluciones, de las
cuales se ha llevado a cabo el estudio de Sealed Secrets y Hashicorp Vault.

SealedSecrets

De primera instancia SealedSecrets puede verse como la solucion mas simple. Su trabajo
se basa en el empleo de kubeseal que encripta el secreto o Secret en un SealedSecret, el
cual solo podra ser desencriptado por el controlador, el cual se encuentra corriendo en el
cluster objetivo.

Comenzando con la instalacion del mismo, al terminar esta se crearan 2 llaves. La clave
publica, la cual se utilizarda para cifrar los secretos y enviarlos al target cluster. La clave
privada, esta se emplea para descifrar el secreto cifrado anteriormente y poder usar dichas
credenciales (ya unicamente en base64) para acceder a la aplicacion que se desee. Este

21



proceso aparece bien resumido en la Figura 6. Los algoritmos de cifrado empleados son
AES-256-GCM, RSA-OAEP con SHA-256 y x509.

Sealed Kubernetes
BRCrers levCHyptE) Secrets (not encrypted)
decrypt
password PO d
(i e b o o e et o S S 1
I 1
1 1
1 Y :
controller certificate e : ccess i
1 secrets :
i as regular 1
- 1
H files 1
private key : :
1 1
decrypt Mount under i e e J

/secrets/
during runtime

Figura 6. Funcionamiento Sealed Secrets (link Codefresh.io)

De esto se deduce una utilidad extra que aporta gran cantidad de facilidades: subir las
credenciales a GitHub. Gracias al hecho de emplear Sealed Secrets se podran subir dichos
archivos al repositorio, y en el momento que el cluster desee emplearlo para acceder a una
aplicacion solo tendra que hacer pull y desencriptar. Este caso presenta mayor utilidad aun
con el empleo de pipelines.

Para hacerse una idea de lo sencillo que resulta emplear esta herramienta, teniendo un
secreto existente, el Unico trabajo que habria que realizar para obtener un sealed secret
seria el siguiente:

$ kubeseal <secretohackeable.json> secretonohackeable.json

Partiendo de un secreto creado anteriormente secretohackeable.json, se obtendra en el
mismo directorio secretonohackeable.json, el cual aparecera cifrado, ilegible e
indescriptible(en tiempo util y sin poseer la clave privada).

Hashicorp Vault

Por otra parte se encuentra Vault de Hashicorp, este presenta una complicacién un tanto
mayor, ademas de tener que partir con un conocimiento y abstraccion mayor sobre
seguridad en lo que respecta a Kubeseal. Sin embargo, ofrece una gran variedad de
recursos que facilitan y permiten la operatividad de un gran contexto de aplicaciones.

De manera general Vault consiste en un software que permite almacenar y gestionar
secretos, todo ello realizando un control de acceso estricto sobre ellos.
Para entender mas eficazmente el funcionamiento de Vault se ha analizado este a alto nivel

en el Anexo V Seccion |l .

Tras examinar ambas herramientas se deduce que tanto SealedSecrets como Vault
resuelven uno de los grandes problemas de Kubernetes, que es el acceso a contrasefas,

22


https://codefresh.io/

tokens o datos sensibles sin complicaciones. Ambos cifran la informacién logrando que esta
sea practicamente inaccesible. Sin embargo, muestran grandes diferencias.

Vault aporta un numero de aplicaciones muy superior a SealedSecrets. Mediante su uso se
puede autenticar usuarios, auditar accesos, definir politicas, conectar con servicios, emplear
distintos motores de secretos y otras muchas, mientras que SealedSecrets unicamente
permite encriptar los secretos con el uso de una clave publica y otra privada.

Si que es cierto que puede que para distintos casos no sea necesario todo el util que
expone Vault, y unicamente con el empleo de SealedSecrets sea suficiente. A pesar de ello,
Vault es un claro ganador, cumple con la funcién realizada por SealedSecrets y muchas
mas, todo ello con una curva de aprendizaje no demasiado alta.

Sencillez | Operaciones Plataformas
Hashicorp Media Autenticacion, autorizacion, Multiples
Vault validacion, encriptacion de

secretos, distintos
SecretEngines, auditoria,
secretos dinamicos, cifrado como
servicio

(...)

SealedSecrets | Alta Encriptacion de secretos Unicamente K8s

Tabla 3. Comparacion Hashicorp Vault VS. SealedSecrets

23



3. Lecciones aprendidas y conclusiones

3.1 Conocimientos adquiridos

En lo que concierne a la elaboracién de este proyecto, era imperativo comprender en
profundidad una gran cantidad de conceptos relacionados con los sistemas distribuidos y la
seguridad, algunos de ellos genéricos y otros mas profundos. Junto con esto, al intentar
encontrar la mejor solucion para cuestiones muy diversas como pueden ser las
comunicaciones o el acceso autorizado a determinados datos, se han aprendido gran
cantidad de tecnologias y programas diversos, por lo que se ha logrado abarcar una
cantidad razonable de herramientas actuales del mercado, asi como el conocer otras que
también podrian ser de gran utilidad.

3.2 ldeas Futuras

Al tratarse el tema principal de la seguridad, es entendible que este proyecto podria
prolongarse practicamente en la medida que se desease, puesto que la cantidad de
conceptos, capas Yy niveles que podrian ser estudiados son muy extensos. No obstante se
plantean varios de ellos que podrian tener especial interés.

Se podria investigar sobre las posibilidades de encriptar etcd con distintos métodos. Etcd es
un almacén que contiene todo el estado del cluster, incluyendo los secretos, por lo que el
contenido de este deberia estar encriptado siempre que sea posible. Existen distintos
algoritmos y aplicaciones que podrian realizar esta tarea, decidir cual seria el mas
conveniente para cada caso podria ser una buena continuacion para este proyecto.

Ademas se podria incluir el analisis y comprobacion de codigo, tanto estatico como
dinamico, como se ha ensefiado en la asignatura de Seguridad Informatica de 4° curso.
Pueden existir multitud de vulnerabilidades escritas en el cédigo, como desbordamientos,
empleo de funciones no seguras o demas.

Junto con esto seria posible profundizar mas en los aspectos ya comentados anteriormente,
a pesar de que se ha hecho un analisis bastante completo en cada uno de los flancos,
todavia quedan detalles que podrian requerir aplicaciones y contextos de seguridad
especificos

3.3 Conclusiones

Se ha llevado a cabo el estudio e implementacion de una defensa 360° en Kubernetes,
evaluando la seguridad nativa que ofrece K8s y comparando la misma con la presentada
por herramientas externas. Se considera que se han cumplido los objetivos de manera
satisfactoria ya que ha sido posible dotar de una seguridad consistente a un sistema
distribuido basado en Kubernetes por todos los flancos que este presenta; analisis general
de la plataforma, aplicacion de politicas de seguridad, empleo de seguridad activa,
comunicaciones, analisis de imagenes y gestion de secretos.

24



A pesar de haber comprendido cada una de estas secciones y haber podido desempefiar en
ellas un trabajo que evite un funcionamiento erroneo se considera que la seguridad de estos
sistemas abarca mucho mas, pudiendo realizar gran cantidad de estudios, como se ha
mencionado anteriormente.

No obstante la labor desempefiada resulta de gran utilidad para las distintas partes; el
alumno propio, ya que se ha adquirido una abstraccion concisa del funcionamiento de
Kubernetes y plataformas cloud asi como también de los aspectos mas importantes en lo
que a seguridad concierne; la empresa supervisora, debido a que NTT DATA lleva a cabo
abundantes y amplios trabajos relacionados con sistemas distribuidos, microservicios,
comunicacion y seguridad en si, el desarrollo y conclusiones de este TFG le permitiran
llegar de manera breve a deducciones sobre la cantidad de tiempo dedicada a asegurar un
sistema, que herramientas son necesarias aplicar y el por qué de dichos actos; cualquier
persona o compania interesada en plataformas cloud, por las mismas razones que para el
caso concreto de NTT DATA, ya que se encontrara en el presente documento de manera
clara y breve todo lo necesario para realizar una securizacion alta de su sistema o
Unicamente comprender los conceptos clave de la misma.

Con respecto a las dificultades encontradas, no ha existido un gran nimero de incidencias
que hayan imposibilitado el desarrollo del trabajo, sin duda la parte de mayor envergadura
fue el conseguir una comprension competente sobre como funciona cada componente en
los sistemas cloud, Kubernetes y el desarrollo de cada aplicacion a emplear, sin embargo,
leyendo gran cantidad de documentacion, con paciencia y examinando cada proceso se ha
podido realizar sin problemas.

En cuanto a Kubernetes, se trata de un sistema muy potente para la automatizacién de
despliegues, escalado y configuracién de contenedores, sin embargo, en lo que respecta a
la seguridad deja mucho que desear, presenta graves fallas, tanto en su configuracion inicial
al levantar cualquier cluster como en lo que a comunicacion respecta.

Al ser este un trabajo que compara resultados entre distintas herramientas es necesario
llegar a conclusiones sobre cual es mejor que la otra. Sin embargo, desde un punto de vista
personal y tras toda la documentacién estudiada, se puede concluir que no es posible
afirmar categoéricamente que hay herramientas mejores que otras de una manera
generalista en la mayoria de los casos, debido a que cada una tiene su contexto y espacio
de actuacion. Por supuesto hay aplicaciones mucho mas completas que otras, ofreciendo
mas funcionalidades, abarcando mas sistemas operativos o con una interfaz mas simple,
pero esto no quiere decir que sean mejor que la solucibn mas sencilla para un caso
concreto, ya que si esta se adapta al problema y lo hace empleando menos recursos sera
imperativo optar por la misma.

Se puede concluir que cada herramienta se adecua a su espacio de trabajo y a la forma en
la que esta ha sido contemplada, pueden existir preferencias sobre una u otra, pero solo se
definirda una como superior en el contexto de implementacion pertinente.

25



4. Bibliografia

1. Definicion de Kubernetes y razones de uso. Escrito por Kubernetes ©.
Fecha ultima modificacion: 17/ 07 / 22
;.Qué es Kubernetes?

2. Explicacion cuadrante magico de Gartner para servicios Cloud. Escrito por Raj Bala, Bob
Gill, Dennis Smith, Kevin Ji, David Wright.

Fecha ultima modificacion: 21/ 07 / 21

Cuadrante Gartner

3. Ejemplos teoria de minimo privilegio. Escrito por Cyberak®.
Principio del Minimo Privilegio (PoLP)

4. Definicion y finalidad del CIS. Escrito por Danilla Kirillov.
Fecha de ultima modificacion: 27 / 01 / 22

Kubernetes cluster security assessment with kube-bench and kube-hunter — Flant blog

5. Kube-hunter, guia de instalacién y modos de uso. Escrito por aquasecurity.
Fecha de ultima modificacion: 04 / 07 / 22
itHub - rity/kube-hunter: Hunt for rity weakn in Kubernet luster:

6. Explicacién de vulnerabilidades kube-hunter. Escrito por aquasecurity
Fecha de ultima modificacion: 04 / 07 / 22
Welcome to kube-hunter documentation

7. Definicién de Kyverno. Escrito por Kyverno authors ©
Fecha de ultima modificacion: 19/02 / 22

Kyverno

8. Web de la Cloud Native Computing Foundation. Escrito por The Linux Foundation®.
Fecha de ultima modificacion: 02 /11 / 22
I Nativ mputing Foundation

9. Web oficial de Falco. Escrito por Sysdig®.
Fecha de ultima modificacion: 08 / 08 / 22
https://falco.org/

10. Explicacion sobre la monitorizacion en K8s. Escrito por Kubernetes ©
Fecha de ultima modificacion: 2022

https://kubernetes.io/es/docs/tasks/debug-application-cluster/ print/

11. Documentacion sobre Falco Sidekick. Escrito por Thomas Labarussias.
Fecha de ultima modificacion: 02 / 11 / 2022
https://qgithub.com/falcosecurity/falcosidekick

26


https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/
https://www.gartner.com/technology/media-products/reprints/AWS/1-271W1OTA-ESP.html
https://www.cyberark.com/es/what-is/least-privilege/
https://blog.flant.com/kubernetes-security-with-kube-bench-and-kube-hunter/
https://github.com/aquasecurity/kube-hunter
https://aquasecurity.github.io/kube-hunter
https://kyverno.io/
https://www.cncf.io/
https://falco.org/
https://kubernetes.io/es/docs/tasks/debug-application-cluster/_print/
https://github.com/falcosecurity/falcosidekick

12. Web oficial de Istio. Escrito por Istio Authors.
Fecha de ultima modificacion: 02 / 11 / 2022

https://istio.io/latest/about/service-mesh/

13. Escaner de imagenes Grype. Escrito por Anchor Inc.
Fecha de ultima modificacion: 02 / 11 / 2022

https://github.com/anchore/grype

14. Escaner de imagenes Trivy. Escrito por aquasecurity.
Fecha de ultima modificacién: 31 /10 / 2022

https://github.com/aquasecurity/trivy

27


https://istio.io/latest/about/service-mesh/
https://github.com/anchore/grype
https://github.com/aquasecurity/trivy

Anexo |

1. Pruebas realizadas con kube-bench

Para comenzar,, en la terminal del host se ejecuta:
$ kubectl apply -f job.yaml
Siendo job.yaml el archivo suministrado por el repositorio en GitHub de Kube-Bench que

contiene todo lo necesario para pasar los test deseados.
(link kube-bench/job.yaml at main )

A continuacién se obtienen los PODS existentes en el cluster para leer lo creado por
kube-bench, y por ultimo, con el nombre del pod obtenido se muestran los logs con el
comando

& kubectl logs kube-bench-dksgc

Lo que inmediatamente mostrara todas las pruebas realizadas y la categorizacién de su
resultado. Similar a:

[INFO] 1 Control Plane Security Configuration

[INFO] 1.1 Control Plane Node Configuration Files

[PASS] 1.1.1 Ensure that the API server pod specification file permissions are set to 644 or
more restrictive (Automated)

[PASS] 1.1.2 Ensure that the API server pod specification file ownership is set to root:root
(Automated)

Asi entonces cada mensaje se explica como <Categoria> <ldentificador> <Descripcion>
Siendo las categorias

- PASS: Cuando el test se ha superado correctamente

- WARN: Avisa de posibles inseguridades que son necesarias comprobar manualmente
- FAIL: Informa de test que no han sido superados correctamente

- INFO: Empleado para seleccionar los test llevados a cabo

Tras visualizar todos estos avisos se muestra en los logs las opciones para revisar y
solucionar cada uno de los problemas encontrados, lo cual puede resultar francamente (util.
Kube-bench muestra una gran cantidad de pruebas realizadas, para lograr una idea de su
funcionamiento se explicaran algunas de ellas y su proceso de remediacion.

El primer mensaje que con el término FAIL al comienzo dice lo siguiente:
[FAIL] 1.1.11 Ensure that the etcd data directory permissions are set to 700 or more
restrictive (Automated)

etcd es un almacén de valores clave de alta disponibilidad utilizado por las

implementaciones de Kubernetes para el almacenamiento persistente de todos sus objetos
de la APl REST. Este directorio de datos debe estar protegido contra cualquier lectura o

28


https://github.com/aquasecurity/kube-bench/blob/main/job.yaml

escritura no autorizada. No debe ser legible ni escribible por ningun miembro del grupo ni
por el mundo. (link etcd data directory permissions are set to 700 or more restrictive )

Para solucionarlo kube-bench dice

1.1.11 On the etcd server node, get the etcd data directory, passed as an argument
--data-dir, from the command 'ps -ef | grep etcd'.

Run the below command (based on the etcd data directory found above). For example,
chmod 700 /var/lib/etcd

Con el objetivo de solucionar el problema se accede al cluster de minikube ejecutando el
siguiente comando

$ minikube ssh

Con el comando mencionado anteriormente por kube-bench, la ubicacién del directorio
pertinente:
/var/lib/minikube/etcd

Ejecutando con sudo el comando chmod previo, seran modificados sus permisos. Una vez
realizado esto se comprueba los permisos de dicho directorio con /s -/ verificando que son
los deseados. Si se desea se puede volver a pasar kube-bench y comprobar que en esta
ocasion la categoria del mensaje sera PASS.

Finalmente se muestra un recuento de todo lo ocurrido, indicando la cantidad total de test
corridos y el resultado que ha devuelto el sistema con estos.

Como se ha podido observar es relativamente facil solucionar las vulnerabilidades que
kube-bench muestra. Presenta una gran infraestructura con apoyo detras que logra una
buena experiencia al usuario.

Entre otros de los mensajes que aparecen es posible destacar

[FAIL] 1.1.19 Ensure that the Kubernetes PKI directory and file ownership is set to root:root
(Automated)

Esto tiene vital importancia ya que Kubernetes emplea certificados PKI para la autenticacion
mediante TLS, muchos de ellos generados automaticamente y almacenados en
/etc/kubernetes/pki/. La propiedad de todos los archivos y directorios debe estar establecida
para root:root (link PKI certificates and requirements | Kubernetes, link Kubernetes PKI
directory and file ownership is set to root:root ). Para solucionar esto unicamente se
ejecutara

$ chown -R root:root /etc/kubernetes/pki/

[FAIL] 1.2.19 Ensure that the --audit-log-path argument is set (Automated)

Para el correcto funcionamiento y la deteccion de Kubernetes es necesario saber lo que
esta ocurriendo en el sistema, por lo que es necesaria la existencia de una auditoria
minima. Si este parametro no esta habilitado seguia imposible desempenar un seguimiento.
Si se ejecuta el comando se comprobara el estado de la variable

29


https://docs.datadoghq.com/security_platform/default_rules/cis-kubernetes-1.5.1-1.1.11/
https://kubernetes.io/docs/setup/best-practices/certificates/
https://docs.datadoghq.com/security_platform/default_rules/cis-kubernetes-1.5.1-1.1.19/
https://docs.datadoghq.com/security_platform/default_rules/cis-kubernetes-1.5.1-1.1.19/

$ ps -ef | grep kube-apiserver

Con el objetivo de solucionar este problema, en caso de que exista, se establecera el
parametro —audit-log-path de /etc/kubernetes/manifests/kube-apiserver.yaml en una ruta y
un archivo validos.

2. Pruebas realizadas con Kube-Hunter

La primera de todas las vulnerabilidades tras ejecutarlo es observable en la figura 7
"CAP_NET_RAW Enabled" in Local to Pod (kube-hunter-Irzzz)

e TR T B i T Tt +
| ID LOCATION | MITRE CATEGORY VULNERABILITY DESCRIPTION EVIDENCE
e e et S S
None Local to Pod (kube- | Lateral Movement // CAP_NET_RAW Enabled CAP_NET_RAW is
hunter-lrzzz) | ARP poisoning and IP enabled by default
| spoofing for pods.
If an attacker
manages to

they could
potentially take
advantage of this
capability to
perform network

attacks on other
pods running on the
same node

—_—_——— e ——  — —  — 4

+
|
+
|
|
|
|
|
I compromise a pod,
|
|
|
|
|
|
|

_— —

Figura 7. Vulnerabilidad mostrada por Kube-Hunter

La informacién que obtiene de dicho fallo contiene las siguientes secciones:
- Localizacion: En este caso es el propio POD de Kube-Hunter

- Categoria: El dano que podria ocurrir si esta permanece

- Vulnerabilidad: Su nombre

- Descripcion: En qué consiste

- Evidence: Las pruebas que lo refutan, en este caso no aparecen.

Esta vulnerabilidad consiste en que con el parametro CAP_NET _RAW esta activado, lo cual
ocurre por defecto, un usuario malintencionado podria atacar otros pods dentro del mismo
nodo ya que permite que los procesos falsifiquen cualquier tipo de paquete o se vinculen a
cualquier direccion.

(link Mitigating CVE-2020-10749 in Kubernetes Environments | StackRox Community )

Para resolver este problema se emplea la herramienta Kyverno, que mediante la aplicacion
de politicas permite que en ciertos ambientes como PODS se cumplan unas determinadas
reglas, lo que sera explicado mas tarde.

Asi entonces ejecutando un archivo yaml (link Drop CAP_NET RAW | Kyverno ) con la
previa instalacion de Kyverno evitara que esta opcion se active nuevamente.

Otra de las fallas de importancia es la relativa a los accesos de cuentas de servicio,
observables en la figura 8.

30


https://www.stackrox.io/blog/mitigating-kubernetes-cve-2020-10749/
https://kyverno.io/policies/best-practices/require_drop_cap_net_raw/require_drop_cap_net_raw/

KHV@58 | Local to Pod (kube-— | | Credential Access /f Read access to pod's Accessing the pod eyJhbGci0iJSUzIINiTIs
| hunter-lrzzz) | Access container service account service account ImtpZCIGILQ4TVpOX2IT
| service account token token gives an Y1lxdktFVDIvZGtyY2st

attacker the option R3gxMjItWSIWMHLVUHRI
to use the server NXQwM2sifQ.eylhdwW(i0

Figura 8. Vulnerabilidad mostrada por Kube-Hunter

Cada pod tiene asociada una cuenta de servicio, la cual de manera preestablecida tiene
acceso a la API de K8s, dicho acceso se puede realizar a partir de un token. Por lo tanto se
comprende que si se tiene acceso a dicho token es posible acceder a la API, que es
precisamente la informacion que ofrece la imagen anterior en el fallo KHV050.

Esto tendria terribles consecuencias ya que la API es la base de configuracion de
Kubernetes.

Para solucionar esto se recomienda tener una cuenta de servicio para cada workload y
mantener el principio de minimo privilegio, comentado anteriormente (link KHV050 - Read
access to Pod service account token) .

3. Pruebas realizadas con Kyverno

De primer modo se ve el funcionamiento de una politica tipo Allow/Deny (deny en este
caso). El nombre de esta policy en Kyverno es allowed-label-changes, esta impide que se
modifiquen etiquetas que no estén con la key breakglass. En algunas operaciones es
necesario impedir la modificacion de determinados recursos por cuestiones especificas, uno
de ellos pueden ser las labels.

Seguidamente se ha creado un sencillo pod cuya tarea es comportarse como un servidor de
tipo nginx, uno de los mas empleados actualmente en el sector web.

apiVersion: v1
kind: Pod
metadata:

name: nginx

labels:
name: nginxCambiolmposible

spec:

containers:

- name: nginx
image: nginx
ports:

- containerPort: 80

Una vez aplicado se pueden comprobar sus caracteristicas a estudiar, en este caso lo que
interesa es la etiqueta

$ kubectl get pod nginx --show-labels

NAME READY STATUS RESTARTS AGE LABELS
nginx 1/1  Running 0 84s name=nginx

31


https://aquasecurity.github.io/kube-hunter/kb/KHV050.html
https://aquasecurity.github.io/kube-hunter/kb/KHV050.html

Se observa que esta es nginx, como ahora no hay ninguna politica establecida, se puede
modificar a su gusto.

No obstante, una vez instaladas las politicas mediante el comando
$ kubectl apply -f allowed-label-changes.yaml
clusterpolicy.kyverno.io/allowed-label-changes created

Sera imposible modificar ninguna de estas, intentandolo aparece un mensaje similar al
siguiente indicando que existe una politica que lo impide
$ kubectl apply -f pod-label.yaml

Error from server: error when applying patch:
{"metadata":{"annotations":{"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\"
A"V \"Kind\":\"Pod\" \"metadata\":{\"annotations\":{},\"labels\":{\"name\":\"nginxCambiolmpos
ible\"},\"name\":\"nginx\" \"namespace\":\"default\"} \"spec\":{\"containers\":[{\"image\":\"nginx\
"\"name\":\"nginx\"\"ports\":[{\"containerPort\":80}]}]}}\n"},"labels":{"name":"nginxCambiolmp
osible"}}}

to:

Resource: "/v1, Resource=pods", GroupVersionKind: "/v1, Kind=Pod"

Name: "nginx", Namespace: "default"

for: "pod-label.yaml": admission webhook "validate.kyverno.svc-fail" denied the request:

resource Pod/default/nginx was blocked due to the following policies
allowed-label-changes:
safe-label: The only label that may be removed or changed is “breakglass’.

En caso de querer revocar la politica pertinente unicamente habra que realizar el comando
posterior

$ kubectl -f <policy-name>.yaml

Como se atiende, el implementar politicas con Kyverno es cuanto menos sencillo.

Para observar un ejemplo de politica empleada en la mutacién de recursos se va a
comentar la llamada mutate-large-termination-gps. Esta muta todos los PODS entrantes
para que tengan un periodo de gracia en segundos o tGPS como maximo de 50 segundos.
Esto se hace para evitar que los nodos "se agoten", si existen numerosos PODS en un
estado de terminacion y ninguno de ellos sale puede acabar provocando un cluster
inestable. No obstante el tGPS puede ser escogido por el usuario editando el fichero
mutate-large-termination-gps.yaml.

Dentro del fichero mutate-large-termination-gps.yaml se encuentra
match:
resources:
kinds:
- Pod
preconditions:
all:

32



- key: "{{request.object.spec.terminationGracePeriodSeconds || 0" }}"
operator: GreaterThan
value: 50 # maximum tGPS allowed by cluster admin
mutate:
patchStrategicMerge:
spec:
terminationGracePeriodSeconds: 50

Se observa que en la especificacibon de los pods, la calve/valor
request.object.spec.terminationGracePeriodSeconds/<value>, establece como maximo 50 el
periodo de gracia, y para aquellos que lo sobrepase, mutara dicho valor a 50. Cabe
destacar que este fichero contiene mas informacién necesaria para la aplicacién de la
politica.

En lo relativo a la utilizacion de Kyverno, en lo concerniente a imagenes, una utilidad de
gran importancia es la verificacion de imagenes. Desde hace un tiempo es posible firmar
imagenes con el objetivo de garantizar la seguridad a lo largo de toda la cadena de
desarrollo y produccién, asegurando la autoria de la imagen. Dichas firmas pueden ser
comprobadas antes de ser introducidas en un cluster. En la siguiente politica (link Verify
Image | Kyverno ) se verifica que exista una firma correcta proveniente de un directorio
determinado, con el objetivo de comprobar si se ha realizado con su clave publica
proporcionada. Es posible modificar el directorio y la clave para la utilizacién de unos
personales.

rules:
- name: verify-image
match:
any:
- resources:
kinds:
- Pod
verifylmages:
- image: "ghcr.io/kyverno/test-verify-image:
key: |-
----- BEGIN PUBLIC KEY-----
MFkwEwWYHKo0ZIzj0CAQY1KoZIzj0DAQcDQgAE8NXRh9501ZbRj8Ra/N9sbqOPZrfM
5/KAQNO/KjHcorm/J5yctVd7iEcnessRQjU917hmKO6JWVGHpDgulyakZA==
----- END PUBLIC KEY-----

*n

Para ensenar el funcionamiento de una politica relacionada con el aspecto de “generar”, se
va poner un caso de uso tan importante como los backups o copias de seguridad.
Imaginese una empresa que tiene un unico despliegue las facturas pendientes de todos sus
clientes. Si este se pierde por algun motivo no podria recuperar la informacién y por tanto
estaria expuesto a perder grandes cantidades de dinero por reclamar. Se podria establecer
una politica que creara por defecto una de estas copias de seguridad, por ejemplo al
observar una determinada etiqueta (link Generate Gold Backup Policy | Kyverno ). Aqui se

33


https://kyverno.io/policies/other/verify_image/
https://kyverno.io/policies/other/verify_image/
https://kyverno.io/policies/kasten/k10-data-protection-by-label/k10-generate-gold-backup-policy/

pueden realizar distintas configuraciones como la frecuencia con la que se realiza dicha
copia de seguridad, durante cuanto tiempo se retiene etc.

4. Pruebas realizadas con OPA Gatekeeper

A diferencia de Kyverno, son necesarios dos archivos para aplicar OPA en su Kubernetes.
En primer lugar es necesario definir el archivo ConstraintTemplate, que se ve con el
siguiente ejemplo, proporcionado por OPA (link How to use Gatekeeper ):

apiVersion: templates.gatekeeper.sh/v1
kind: ConstraintTemplate
metadata:
name: k8srequiredlabels
spec:
crd:
spec:
names:
kind: K8sRequiredLabels
validation:
# Schema for the “parameters’ field
openAPIV3Schema:
type: object
properties:
labels:
type: array
items:
type: string
targets:
- target: admission.k8s.gatekeeper.sh
rego: |
package k8srequiredlabels

violation[{"msg": msg, "details": {"missing_labels": missing}}] {
provided := {label | input.review.object.metadata.labels[label]}
required := {label | label := input.parameters.labels[ ]}
missing := required - provided
count(missing) > 0
msg := sprintf("you must provide labels: %Vv", [missing])

}

Al comienzo de este fichero se definen los parametros que van a ser usados en las
politicas, en properties aparece escrito labels, ya que esta politica concreta revisara que se
tengan unas etiquetas minimas.
Seguidamente, entre mas datos, aparece la descripcion de la politica implementada por
Rego. En ella aparecen varios campos de interés:

- Provided: Son las etiquetas escritas en los recursos a analizar

34


https://open-policy-agent.github.io/gatekeeper/website/docs/howto#constraints

- Required: Son las etiquetas minimas que se espera que tengan los recursos a
analizar
- Missing: Es la diferencia existente entre las etiquetas requeridas y las dadas.

A continuacion se hace una comparacion légica que si se cumple se mostrara un mensaje
junto con el impedimento de la accidon que se quiera realizar.

Previo a aplicar esta politica se debe informar a OPA Gatekeeper de que se desea aplicar
una ConstraintTemplate, definiendo cual de estas es, que se va a usar como comparacion,
y donde se va a realizar la busqueda
apiVersion: constraints.gatekeeper.sh/v1ibeta1
kind: K8sRequiredLabels
metadata:
name: ns-must-have-gk
spec:
match:
kinds:
- apiGroups: ["]
kinds: ["Namespace"]
parameters:
labels: ["gatekeeper"]

Asi entonces continuando con el ejemplo anterior, se indica a Gatekeeper que se va a

aplicar la politica, K8sRequiredLabels logrando que en todos los espacios de nombre
aparezca la etiqueta gatekeeper.

35



Anexo ||

1. Comparacion de politicas de K8s y Falco

La siguiente politica de K8s (link Configure Minimum and Maximum CPU Constraints for a
Namespace | Kubernetes ) evitara crear pods cuyo uso de CPU se encuentre fuera de un
rango determinado:

apiVersion: v1

kind: LimitRange

metadata:
name: cpu-min-max-demo-Ir
spec:
limits:
- max:

cpu: "800m"

min:
cpu: "200m"

type: Container
Respecto a las politicas nativas de Falco, estan compuestas por los siguientes elementos

Rules: Situacion en la cual se debera generar una alerta acompafiada de una descripcion
de la misma en la salida.

Ejemplo (link Rules | Falco):

rule: shell_in_container
desc: notice shell activity within a container
condition: evt.type = execve and evt.dir=< and container.id != host and proc.name =
bash
output: shell in a container (user=%user.name container_id=%container.id
container_name=%container.name shell=%proc.name parent=%proc.pname
cmdline=%proc.cmdline)
priority: WARNING

Esta regla avisa de cuando se esta ejecutando un BASH dentro de un contenedor. Esto
tiene gran importancia debido a que mediante este se podrian ejecutar comandos que
lograra una escalada de privilegios, obtener informacion a la que no se deberia tener
acceso etc

Macros: Son reglas o fragmentos de las mismas que pueden ser utilizadas dentro de otras
reglas o macros. Estas se emplean cuando aparecen patrones comunes a detectar.
macro: open_write

condition: (evt.type=open or evt.type=openat) and evt.is_open_write=true and
fd.typechar="f" and fd.num>=0

36


https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/cpu-constraint-namespace/
https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/cpu-constraint-namespace/
https://falco.org/docs/rules/

La macro anterior (link Default Macros | Falco ) sirve para identificar cuando un archivo esta
abierto, lo que se podria emplear para numerosos casos, por ejemplo, para detectar si esta
abierto el fichero /etc/passwd que contiene informacion sobre las cuentas de usuarios del
sistema.

Listas: Colecciones de elementos incluibles en reglas, macros u otras listas.
Por ejemplo, la siguiente lista seria una coleccién de los distintos binarios de shell (link

Default Macros | Falco ).

list: shell_binaries
items: [bash, csh, ksh, sh, tcsh, zsh, dash]

2. Ejemplo de ejecucion Falco

Uno de los casos de interés seria para activar la salida por programa, para la cual seria
necesario utilizar la siguiente conformacion:

program_output:
enabled: true
keep_alive: true
program: "<programa a emplear>"

Si keep_alive ha sido establecido a true el programa sera iniciado una vez y escrito de
manera continua, en caso contrario se reiniciard con cada mensaje.

Si se ejecutase Falco, con las salidas de stdout y programas activadas (por ejemplo un
servicio web), tras esperar un breve inciso de tiempo apareceran por terminal todos aquellos
errores encontrados ademas de un resumen bastante indicativo:

$ falco

vents detected: 39

Rule counts by severity:
ERROR: 22
WARNING: 6
NOTICE: 9
DEBUG: 2

Triggered rules by rule name:
Write below binary dir: 3
Write below etc: 2
Read sensitive file trusted after startup: 2
Read sensitive file untrusted: 4
Write below rpm database: 2
DB program spawned process: 3
Modify binary dirs: 11
Mkdir binary dirs: 2
Run shell untrusted: 2
System procs network activity: 3
Non sudo setuid: 3

37


https://falco.org/docs/rules/default-macros/
https://falco.org/docs/rules/default-macros/

Create files below dev: 2

Syscall event drop monitoring:
- event drop detected: 0 occurrences
- num times actions taken: 0

De la informacion arrojada se alcanza a distinguir informacion importante, como el total de
infracciones encontradas categorizadas por niveles o los tipos de reglas que han sido
ejecutadas.

La informacién pertinente obtenida en el programa se observa en la Figura 9.
{

"took™ : 11,
"timed_out™ : false,
"_shards” : {
"total™ : 1,
"successful” : 1,
"skipped” : @,
"failed” : @
T
"hits" : {
"total™ : {
"value™ : 6,
"relation™ : "eq”
Is
"max_score™ : 1.8,
"hits" : [
{
"_index” : "falco™,
" _type™ : " _doc”,
"_id" @ "_NofOHeB3mCkICNTxIus",
"_score” : 1.8,
"_dgnored” : [
"output. keyword™
1.
" _source” : {

"output™ : "12:15:45.475898855: Warning Sensitive file opened for reading by non-trusted program
(user=root user_loginuid=-1 program=httpd command=httpd --loglevel info run
~syscall.ReadSensitiveFileUntrusted$ --sleep 6s file=/etc/shadow parent=event-generator gparent=containerd-shim
ggparent=systemd gggparent=<NA> container_id=59b596082e65 image=falcosecurity/event-generator)”,

"priority™ : "Warning”,

"rule” : "Read sensitive file untrusted”,

"source” : "syscall”,

"tags" @ [

"filesystem”,
"mitre_credential_access”,
"mitre_discovery”

1,

"time" : "2821-11-19T12:15:45.475898855Z",

"output_fields" : {

“container.id™ : "59b596082e65",

"container.image.repository”™ : "falcosecurity/event-generator™,
"evt.time™ : 1637324145475898855,

"fd.name™ : "/etc/shadow",

"proc.aname[2]" : "containerd-shim™,
"proc.aname[3]" : "systemd”,
"proc.aname[4]" : null,
"proc.cmdline™ : "httpd --loglewel info run "syscall.ReadSensitiveFileUntrusted$ --sleep 6s”,
"proc.name” : "httpd”,
"proc.pname” : “event-generator”,
"user.loginuid"” : -1,
"user.name” : "root”
¥

Figura 9. Informacién en formato JSON obtenida en el programa

Aqui aparecen también detalles de gran valor como la regla que ha detectado la falla, la
prioridad de esta, de donde venia el fallo, cuando ha ocurrido etc.

38



Anexo |l

1. Ejemplo de la importancia en comunicaciones

Imaginese un usuario que realiza una compra online, en el momento en el que se realiza el
usuario unicamente ve un alerta confirmando su pedido, pero detras de todo el proceso sus
distintas peticiones habran pasado por multitud de servicios diferentes comunicandose unos
con otros, como pueden ser un webserver, un servicio de pagos, el carrito de compra, un
gestor de inventario, la base de datos y otros muchos.

De anadido, lo habitual es que la empresa pertinente desee obtener mayores beneficios,
afiadiendo mas funciones que le hagan vender mas, cdmo podria ser una seccion de
productos relacionados, lo cual hara introducir nuevos servicios que complican el trasfondo
de la aplicacion.

Cada uno de estos servicios requiere una configuracion y una légica de comunicaciones
que permitan su correcto funcionamiento, asi como el realizar estudios, obtencién de
métricas y otras practicidades.

2. Ejemplo de ejecucion empleando Istio

Isito ofrece en su web un ejemplo muy claro de funcionamiento en el que guia paso a paso
mientras ensefia las distintas opciones aplicables al sistema ( link Istio / Getting Started). En
primer lugar es necesario instalar Istio e loctl (comando para interactuar con lIstio) en el
host, en este caso en particular sera en local. Este proceso no resulta muy complicado.
Seguidamente se hara deployment de la aplicacién de ejemplo Bookinfo (link Istio Bookinfo),
al igual que con cualquier otro caso ejecutando

$ kubecetl apply -f samples/bookinfo/platform/kube/bookinfo.yaml

Comprobando como esta distribuida la aplicaciéon se observan sus PODS y servicios, los
cuales seran explicados mas adelante

$ kubectl get pods
NAME
details-v1-7f4669bdd3-181gf
productpage-v1-5586cddd f F-mdkhg
ratings-vl-6cfébcTcB5-45648

=
5
=

STATUS

Running
Runmning
Running
Runring
Running
Runmning

reviews-v1-7598cc3867 - 56596
reviews-vZ -ebdd859457 -mdpqt
reviews-v3-ec38fadrds-nfpta

Figura 10. Pods de Bookinfo

Pud Pod Pd Pd Pl Pod
L S g S
Pd Pd Pd Pd Pd Pl

$ kubectl get services

MAME TYPE CLUSTER-IP EXTERMAL-IP  PORT(S)
details ClusterIP 18.96.128. <P 9a88/TCP
kubernetes ClusterIP 18.96.8.1 <NOres 443/TCP

productpage  ClusterIP  18.97.186. <MOres S888/TCP
ratings ClusterIP 18.187.88. <FHOne:> 9@38,TCP
FEVLENS ClusterIP 18.111.71. <PRONE> 9888, TCP

Figura 11. Servicios de Bookinfo

39


https://istio.io/latest/docs/setup/getting-started/
https://raw.githubusercontent.com/istio/istio/release-1.14/samples/bookinfo/platform/kube/bookinfo.yaml

Para hacer accesible desde el exterior Bookinfo se instalara Istio Ingress Gateway,
encargado de mapear cada ruta en el borde de la malla. Consiste en un load-balancer
situado en el limite de la servicemesh recibiendo continuamente peticiones HTTP/TCP. Este
trabaja de manera muy similar a Kubernetes Ingress, pero ofreciendo mas personalizacion y
flexibilidad. (Link Istio / Ingress Gateways). Para ello es necesario ejecutar

$kubectl apply -f samples/bookinfo/networking/bookinfo-gateway.yaml.

Por ultimo, se abrird un acceso para que Minikube envie su trafico al Istio Ingress Gateway
mediante
$ minikube tunnel

Tras asegurarse de que se han asignado correctamente las direcciones IP y puertos, ya es
posible trabajar en Bookinfo. En la Figura 12 se observa la que es la pagina de inicio de la
aplicacion.

The Comedy of Errors

Summary: Wikipedia Summary: The Comedy of Errors is one of William Shakespeare's early plays. It is his shortest and one of his most farcical comedies, with a major
part of the humour coming from slapstick and mistaken identity, in addition to puns and word play.

Book Details Book Reviews
Type: .
paperback An extremely entertaining play by Shakespeare. The
Pages: slapstick humour is refreshing!
200
Publisher:
PublisherA
Language:
English
ISBN-10: Absolutely fun and entertaining. The play lacks thematic
1234567890 depth when compared to other plays by Shakespeare.
ISBN-13:
123-1234567890 — Reviewer2

LB B . s

Figura 12. Pagina principal de Bookinfo

Para explotar toda la operativa que ofrece Istio se instalaran 4 addons o complementos
Kiali, Prometheus, Grafana y Jaeger, mediante los cuales se llevara a cabo un seguimiento
del despliegue logrando que el operador sea consciente de como esta trabajando cada
elemento.

En primer lugar, Kiali, es una consola de observabilidad con capacidades para validar y
configurar parametros en la malla de servicios. Kiali ayuda a comprender la estructura y el
estado de la red de servicios al monitorear el flujo de trafico para inferir la topologia e
informar errores (link |stio / Kiali). Empleando Grafana y Jaeger proporciona métricas
detalladas y monitoreo de trafico.

40


https://istio.io/latest/docs/tasks/traffic-management/ingress/ingress-control/
https://istio.io/latest/docs/ops/integrations/kiali/

Asi entonces en la siguiente Figura 13 se observa la estructura de Bookinfo

= O k|a|| a @ anonymous
it Namespace: default « Traffic « Versioned app graph  ~ D Last30m ~ Everylss « E
Graph
= Display ~ v hd @8
Applications
Jul19,09:47:20 AM .. 10:17:20 AM Namespace
Workloads default @

1 4apps (6 versions)
@ Sservices
. Bedges

Services

Istio Config

Inbound Outbound Total
HTTP (requests per second):

Total %Success %Error

@ / productpage | Y
b [ @ productpage | vi 000 100.00 0.00
-

[

o

istio-ingressgateway
latest
(istio-system)
P
v2 ratings vl

.
o

[+] 25 50 75 100
S m | OK 3xx W axx H5x ENR
af

reviews v3

® # default 3
»

Figura 13. Despliegue de Bookinfo observado en Kiali

Contemplando detalladamente a la izquierda del esquema aparece el Istio Ingress Gateway
como entrada hacia la aplicacion. Este se conecta directamente con la pagina principal
productpages, a través de la cual se accede al apartado de details y a los reviews. Este
servicio tiene disponibles tres versiones v1, v2 y v3. Actualmente el trafico pasa a través de
la version v3.

Aqui se comprobara una de las caracteristicas que hacen de Istio una herramienta tan
atractiva. Unicamente mediante la aplicacién, como se ha visto anteriormente, de un fichero
YAML es posible redistribuir el trafico a gusto del operador, pudiendo enviar peticiones
concretas a una version u otra, esto tiene grandes ventajas ya que si, por ejemplo, una
version desarrollada comienza a dar problemas se puede volver rapidamente a una anterior
sin causar una caida alargada del servicio. para probarlo, se desviara todo el trafico de la v3
alav1, ala vez que las peticiones a secciones concretas iran a v2 (link Istio / Virtual Service
Istio / Virtual Service). Para ver el trafico se realizan peticiones desde el host a la direccion
deseada empleando curl:

$ foriin $(seq 1 100); do curl -s -o /dev/null "http.//$GATEWAY _URL/productpage”; done

Observando el trafico en el ultimo minuto (figura 14) se observa como en la zona de reviews
todas las peticiones pasan ahora a v1

41


https://istio.io/latest/docs/reference/config/networking/virtual-service/
https://istio.io/latest/docs/reference/config/networking/virtual-service/

Figura 14. Tréafico de Bookinfo redirigido a v1

Aunque esto es de gran utilidad Istio va mas lejos, ya que da la posibilidad de repartir dichas
peticiones de manera ponderada. Para entender la funcionalidad de esto se propondra un
ejemplo.Imaginese un servicio de streaming que posee una version inicial 1.0, para que el
usuario tenga una mejor experiencia han desarrollado una version 2.0, sin embargo, a pesar
de haberla testeado correctamente no tienen la certeza de que se comporte a la perfeccion
en produccion, asi que para ello han decidido presentarla y pasarle unicamente un 25% del
trafico real, mientras que el otro 75% lo mantienen en la versién 1.0. En el momento de que
hayan comprobado en su totalidad que trabaja de manera éptima se migrara al 100%.

Ademas de este esquema en el dashboard de Kiali se pueden observar cada componente

asi como diversas métricas relacionadas con estos, en la Figura 15 se ven las peticiones
dirigidas al servicio Reviews en los ultimos 10 minutos cada 15 segundos.

42



Services > MNamespace: default > reviews Last1Om =« Everyl5s = E

_— Actions =
Overview Traffic Inbound Metrics = Traces
Metrics Settings Reported from Destination = Spans Trendlines
Request volume o Request duration HH Request size HH Response size HH
ops E s s B E kB s
0 o 8 0 0 L} 0 o 8 0
6 a8 20 22 24 20 25 20 25 20 25
Request throughput o Response throughput HH gRPC received HH gRPC sent HH
bit/s s bit/s s
No data available No data available
0
TCP opened H TCP closed H TCP received HH TCP sent HH
No data available No data available No data available No data available

Figura 15. Graficas del servicio reviews

A pesar de estar integradas de cierta manera en Kiali, los dashboard de Prometheus y
Graphite posibilitan el realizar acciones mas especificas. Por ejemplo en Prometheus se
pueden realizar queries complejas y observar las peticiones que se han realizado
empleando un pardmetro concreto, asi como su sus graficas, como se observa en la Figura
15, en la que se muestra una query realizada a un servicio concreto con una versién
concreta. Se podria concretar mucho mas como detallar tiempos, clientes etc.

Prometheus Alerts Graph Status~ Help Classic Ul

@ Use localtime @ Enable query history &

istio_requests_total{

[o} @  Execute

< 2022-07-12 09:01:21 [ Show Exemplars

Figura 15. Peticiones realizadas al servicio reviews con version v3 mediante Prometheus

43



88 istio / Istio Mesh Dashboard <2 & (@ Last 30 minutes

datas: default v

Istio

Istio is an open platform that provides a uniform way to sec connect, and monitor microservices.

Global Request Volume Global Success Rate (non-5xx responses) 4xxs Sxxs

0.00733 ops/s 66.8% O ops/s 0.00817 ops/s

Virtual Services Destination Rules Gateways Workload Entries

6 N/A 1 N/A

Service Entries PeerAuthentication Policies RequestAuthentication Policies Authorization Policies

N/A N/A N/A N/A

HTTP/GRPC Workloads

unknown.unknown - 281.25ps 1.40 ms 4.64ms 0%
productpage.default.sve.cluster.local productpage-v1.default 0.07 ops/s 37.50 ms 80.00 ms 98.00 ms 100.00%
ratings.default.svc.cluster.local ratings-v1.default O ops/s NaN

reviews.default.sve.cluster.local reviews-v3.default D ops/s NaN

reviews.default.sve.cluster.local reviews-v2.default D ops/s NaN

Figura 16. Dashboard de Graphana

Finalmente, otra cualidad importante que permite Istio es el seguir las peticiones a través de
la red, también conocido como fracing system.

Para ello se emplea la herramienta Jaeger mediante la cual se puede seguir todo el
recorrido de una request a través de los diferentes servicios. Este a su vez muestra
informacién de interés como la profundidad de la peticion, duracion o comienzo y fin de la
peticion.

En la figura 17 aparece una peticion hecha al servicio productpage. Explicando la operacion
de esta, como es normal comienza en el Istio Ingress Gateway para luego entrar en
productpage.default. A su vez se realizan dos peticiones a details y reviews ya que la
informacién de estas se encuentra integrada en productpage como se ha visto
anteriormente..

M~ < localhost Mt + 88

JAEGER Ul Search Compare System Architecture Q About Jaeger -

< istio-ingressgateway.istio-system: productpage. 3¢ Trace Tmelne
default.svc.cluster.local:9080/productpage
July 19 2022, 10:35:18. 126.4ms 4 4 6
31.6ms 63.2ms 94.8ms 26.4ms
Service & Operation v o> Y » Ops 31.6ms 63.2ms 94.8ms 126.4ms

~ | istio-ingressgateway.istio-system prod

~  productpage.default pro

uctpage.defa

~  productpage.defaull
details.default «
~  productpage.default v

reviews.default reu

Figura 17. Seguimiento de peticion a productpage en Jaeger

44



3. Aplicacion de Kubernetes Network Policies

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: hollow-db-policy #policy name
spec:
podSelector:
matchLabels:
app: hollowdb #pod applied to
policyTypes:
- Ingress #Ingress and/or Egress
ingress:
- from:
- podSelector:
matchLabels:
app: hollowapp #pod allowed
ports:
- protocol: TCP
port: 3306 #port allowed

En este ejemplo, el cual es uno de los casos mas comunes, se permite Unicamente el trafico
a unos pods con MySQL desde otros que estén realizando la ejecucion de una API. Es
decir, unicamente los pods ejecutando la API, podran acceder a la base de datos que
explotan.

Labels: Labels:
AP 1 - Container app:haliowapp AP1 2 - Contalner appinotWanted

HollowApp pod notWanted pod

BLOCKED

o

Labels:
MySQL container app:hollowdb

MySQL pod

Network Policy

Figura 18. Bloqueo de uso de base de datos mediante el empleo de politicas

45



En la imagen anterior, se observa cémo se bloquea el trafico proveniente del pod notWatned
por no disponer de la etiqueta hollowapp, ya que se ha establecido en el yaml superior que
solo estos podran acceder a los pods de tipo hollowdb.

Anexo |V

1. Analisis de imagen con Trivy

En primer lugar el pod escogido es
reviews-v3-6c98f9d7d7-swmv4 y su imagen, situada en Docker
http://docker.io/istio/examples-bookinfo-reviews-v3:1.16.4.

Generalmente el uso de Trivy es cuanto menos sencillo, el comando a ejecutar sigue el
siguiente patron

& trivy <target> [--security-checks <scanner1,scanner2>] TARGET _NAME

Dénde target es el recurso a analizar, por ejemplo si es una imagen se utilizara "image",
--security-checks son especificaciones que se pueden usar si se desean para casos mas
concretos y finalmente TARGET_NAME el nombre del recurso, particularmente el nombre
escrito anteriormente, por lo que quedaria asi el comienzo del analisis

$ trivy image http://docker.io/istio/examples-bookinfo-reviews-v3:1.16.4

Tras ejecutar el comando, y procesar la informacién, aparece un recuento de todas las

vulnerabilidades encontradas y a continuacion una tabla con toda la informacion dutil,
observable en la Figura 19.

apt CVE-2020-27358 1.8.2.1 1.8.2.2 apt: integer overflows and underflows while parsing .deb
packages
https://avd. aquasec. com/nvd/cve-2020-27358
CVE-2811-3374 LowW It was found that apt—key in apt, all versions, do not
correctly...
https://avd. aquasec. con/nvd/cve-2811-3374

Figura 19. Resultados obtenidos al aplicar Trivy

Como se puede observar, leyendo de izquierda a derecha, especifica el hombre de la
libreria que se trata, un cddigo de vulnerabilidad (o varios) estandar relativo al Common
Vulnerabilities and Exposures, la importancia de la brecha encontrada, las versiones, tanto
la instalada como en la que aparece solucionada dicha falla (si existe). Finalmente un
pequeno titulo o descripcion junto con un enlace a la web de aqua security donde aportan
mas informacion sobre el error.

46



2. Analisis de imagen con Grype

Para comenzar el analisis de imagenes con grype, es necesario ejecutar

$ grype <image>

Siendo image la imagen que se desea analizar, en caso de existir mas de una con el mismo
nombre sera necesario especificar su etiqueta para diferenciar(comprobar)

Cada uno de los paquetes escaneados que contengan la imagen especificada seran
listados con los siguientes campos:

Name: Nombre del paquete

Installed: Version de la imagen

Fixed-In: Version en la que la vulnerabilidad se ha arreglado

Type: Tipo del paquete

Vulnerability: El listado del CVE (Common Vulnerabilities and Exposures) de cada
vulnerabilidad.

Severity: La severidad de la vulnerabilidad

Ademas Grype ofrece especificaciones de filtrado para enfocar el escaner hacia donde
desee el usuario.

Como se puede comprobar en la Figura 20 la informacién que aporta Grype es cuanto
menos similar a la de Trivy, quizas un poco menos visual, pero a lo que respecta en
contenido son muy similares

FIXED-IN VULMERABILITY SEVERITY |
CVE-2811-3374 Megligible

1.8.2.2 CVE-2828-27358 Medium

47

CVE-2819-18276 Megligible

Figura 20. Resultados obtenidos tras ejecutar Grype



3. Comparativa Trivy vs Grype

Las variedad de imagenes escogidas son Ubuntu, Nginx, Redis y Alpine, todas ellas en su
ultima version, es decir, con etiqueta “latest”. A pesar de que habia una gran cantidad de
ellas para elegir, estas son unas de las mas usadas en el ambiente de los contenedores. Asi
entonces los resultados se comprueban en la Tabla 2.

Herramienta Imagen Fallos

Trivy Ubuntu 24
Grype Ubuntu 24
Trivy Nginx 147
Grype Nginx 149
Trivy Nginx: 1.17.2 334
Grype Nging: 1.17.2 338
Trivy Redis 80
Grype Redis 81
Trivy Alpine 2
Grype Alpine 2

Tabla 2.Resultados en formato tabla

400

300

200

100

Ubuntu Ubuntu Nginx  Nginx Nginx: Nging: Redis Redis Alpine Alpine
1172 1.17.2

Figura 21. Resultados en formato gréfica

Examinando la gréafica anterior (Figura 21) se observa que los datos obtenidos por ambas
herramientas son muy similares. Salvo en las distribuciones Nginx y Redis las
vulnerabilidades encontradas han sido idénticas, e incluso en estas no ha diferido en mas
de dos unidades. Se puede pensar que se podia haber realizado una categorizacion de las

48



vulnerabilidades mayor, sin embargo la forma que tienen Trivy y Grype de clasificar las
debilidades no es idéntica, por lo que podria haber llevado a confusiones el desempefo de
otro modo.

Con el objetivo de observar la importancia de mantener una imagen actualizada que cubra
todas las posibles vulnerabilidades que aparecen a medida que avanza el tiempo, se ha
analizado la versién de una imagen Nginx anterior, concretamente nginx:1.17.2. Durante su
examen, se han obtenido 324 y 328 vulnerabilidades por parte de Trivy y Grype
respectivamente. La diferencia frente a las casi 150 extraidas de nginx:latest es cuanto
menos notable, ya que de este nicho un atacante tendria el doble de puntos de acceso para
poder acometer contra el sistema.

Puede sorprender al estudiar la grafica Alpine el desigual bajo niumero de vulnerabilidades
que tiene en comparacion con las otras imagenes, esto es debido a que Alpine es una
distribucion de Linux sin apenas paquetes instalados pesando unicamente 5 Mb. Estas
imagenes son empleadas en entornos de produccién ya que la superficie de ataque resulta
muy pequeia en relacién, por ejemplo, a Ubuntu, que almacena gran cantidad de
funcionalidades.

49



Anexo V

1. Ejemplo de la necesidad del empleo de secretos

Imaginese una imagen que se encuentra en un contenedor privado de docker. Si desde un
cluster externo se intenta acceder y descargar dicha imagen dara error de acceso
denegado, ya que dicho repositorio es privado y no se ha realizado ningun intento de
autenticacion. Por el contrario, si en la imagen se especifica que se puede acceder a esta
mediante el uso de secretos, al intentar acceder especificando el secreto pertinente se
podra descargar la imagen y emplearla como se desee. Este mecanismo es empleado para
no tener que tratar informacion critica en multiples ficheros, outputs o peticiones.

2. Analisis de arquitectura y funcionalidades Hashicorp

VAULT
HTTP/S API
Token Store Policy Store
Core Audit Broker
Rollback Mgr. Expiration Mgr.
ko
E Path Routing Audit Device
m
System Secret . .
Backend Engine Auth Method Audit Device
Storage Backend

Figura 22. Vault Architecture by Hashicorp (link The HashiCorp Vault Adoption Guide )

Como se observa en la Figura 22 aparecen tres grandes grupos. Una API Rest sustentada
por HTTP/S. Una barrera o Barrier que contiene practicamente toda la operativa de
Hashicorp Vault y un Storage Backend, lugar en el que se almacenan los secretos.

Cuando arranca Vault este aparece en estado sealed o sellado, desde este punto no es
posible acceder a los secretos guardados, por lo que para configurarlo sera necesario hacer
un unsealed. Para modelar como va ser el funcionamiento de Vault hay que desbloquearlo,
Vault emplea un esquema Shamir (link Esquema de Shamir - Wikipedia, la enciclopedia
libre) el cual divide el que podria ser un solo acceso para un recurso en varios. Al iniciar
Vault este crea varias llaves (5 por defecto), mediante las cuales, disponiendo de un niumero

50


https://www.hashicorp.com/resources/adopting-hashicorp-vault
https://es.wikipedia.org/wiki/Esquema_de_Shamir
https://es.wikipedia.org/wiki/Esquema_de_Shamir

concreto de ellas (3 por defecto), se podra realizar la apertura de Vault y configurarlo segun
las necesidades pertinentes. Estas llaves no tienen que estar almacenadas en la misma
ubicacién ni se debe encargar de ello una sola persona, esta es la base del esquema de
Shamir.

Asi entonces, cualquier usuario que goce de los permisos adecuados podra beneficiarse de
las multiples herramientas de Vault.

De manera general, todo el intento de interactuar con Vault pasa por el siguiente workflow
de 4 etapas bien definidas:

1. Autenticar: Se comprueba si el cliente es quien dice ser

2. Validar: Se asegura la identidad del cliente con terceros confiables

3. Autorizar: Se compara la accién deseada por el cliente con las politicas existentes
(dar acceso o no a endpoint de la API)

4. Acceso: Consiste en otorgar la entrada a los recursos requeridos, esto se realiza con
un token formado por politicas y la identidad.

En cuanto a sus caracteristicas, ya se puede observar en este punto que su operativa
funciona de una forma mucho mas amplia que SealedSecrets.

Al igual que SealedSecretes, Vault ofrece un almacenamiento seguro de secretos ya que
los que son almacenados de forma persistente pasan primero por una encriptacion
empleando Cifrado AES 256-bit en GCM con 96-bit nonces, debido a que K8s unicamente
los codifica en base64. Esto implica directamente que aunque una persona pudiera acceder
al directorio donde se encuentran dichos secretos no podria acceder a su lectura y
comprension.

A pesar de que el principio base para evitar la lectura de secretos es muy similar con
SealedSecrets, encriptando los campos necesarios, Vault tiene mas caracteristicas
explotables, entre ellas destaca los Secrets Engines 0 motores de secretos. Este es el
comienzo del empleo de secretos, tras configurar uno de estos como Microsoft Azure, AWS
0 Google Cloud Platform se podra ya entonces guardar un secreto.

Los motores de secretos son componentes de Vault que almacenan, generan o cifran
secretos. Algunos motores de secretos, como el motor de secretos de clave/valor,
simplemente almacenan y leen datos. Otros motores de secretos se conectan a otros
servicios y generan credenciales dinamicas bajo demanda. Otros motores de secretos
proporcionan cifrado como servicio. (link Secrets Engines | Vault - HashiCorp Learn )

Si un usuario (o boot) desea realizar alguna accidon con uno de estos motores, se debera
haber autenticado y disponer de las credenciales necesarias para emplear dicho motor.

Para comprobar si un usuario determinado posee las credenciales aptas para un recurso,

Vault lo chequea contra las politicas de dicho recurso. Estas se crean en HCL, siendo
también compatibles con JSON.

51


https://learn.hashicorp.com/tutorials/vault/getting-started-secrets-engines?in=vault/getting-started

Por otra parte aparece el término de secretos dinamicos, un caso de uso de estos seria si
por ejemplo un usuario desea acceder a una base de datos de forma temporal,Vault
generara unas credenciales con los permisos pertinentes (un secreto). Después de esto,
pasado un tiempo concreto especificado, Vault eliminara automaticamente dicho acceso.

Otra caracteristica con una gran utilidad es el llamado cifrado de datos al vuelo, esto
permite encriptar (y desencriptar) datos sin guardarlos. Esta propiedad permite ahorrar una
gran cantidad de tiempo, por ejemplo, si un desarrollador desea cifrar las contrasefias y
almacenarlas en su base SQL, lograra encriptar dichos datos sin tener que definir sus
politicas de encriptacién.

Todos los secretos cuentan con un tiempo de expiracion, sin embargo el usuario puede

pedir renovarlo a través de la API. (link Introduction | Vault by HashiCorp)

Junto con todo ello Vault proporciona servicios de auditoria que almacenan un registro de
cada solicitud y respuesta realizadas a la API

Anexo VI

Ejemplo practico

Con el objetivo de producir una demostracién practica aplicable de todo lo contado
anteriormente se ha llevado a cabo el levantamiento de un sistema cloud similar al de la
Figura 23.

Container Security

3

— mm &E—

000

w000 Contenedor de
: runtime
potection

Contenedor del
Image Scanner

Contenedor del
Admission
Control policy

I|III I
°
|

Development Image Scanner

Organization i
| i m@

%Commn—bemid» ofStore—b i *D?D‘D)’;f—’@ Run—»@

K8 admission Nodo de

Desarrollador Repostorio del Compilzacién Registro del i controller Kubernetes
codigo fuente automatica contenedor ; |

Figura 23. Arquitectura del ejemplo a probar

Explicando la Figura 23 se observan tres principales actores que interactuan entre ellos de
manera segura.

52


https://www.vaultproject.io/docs/what-is-vault

En primer lugar se encuentra el llamado Development Organization, en este caso seria el
ordenador personal, podria ser referido a cualquier ordenador de la empresa o, en caso de
que se realizara el desarrollo con un equipo (como suele suceder) de varios.

Nada mas comenzar se ha llevado a cabo un andlisis de la plataforma utilizando
Kube-Bench, el cual muestra los posibles riesgos preexistentes en el entorno a utilizar.

Asi entonces se observa un flujo de trabajo en el cual, los desarrolladores escriben el
codigo, hacen commit del mismo en un repositorio, se construye una imagen y se almacena
en un registro, para finalmente hacer un despliegue en el cluster que se desee, por
supuesto, después de haber escaneado la imagen.

Dependiendo del resultado de este escaneo, se decidira si la imagen esta preparada o no,
para su despliegue. La decision de esto puede ser subjetiva en cierta manera, ya que
dependiendo del nivel de seguridad que se necesite se pueden abrir mas o menos las
restricciones a cumplir. En este caso, se consideraria que una imagen puede pasar si no
contiene ningun tipo de vulnerabilidad.

La intencion de todo esto es realizarlo mediante practicas de C// CD, integracion y entrega
continua, todo ello claramente de forma automatica.

En todo este proceso, se debe realizar distintos taggeos que expliquen el estado en el que
se encuentra la imagen a desplegar, por ejemplo:
- Al escribir la imagen: untagged
- Tras analizar con Trivy:
- Sise puede desplegar: cleanimage
- Sino se puede desplegar: dirtylmage

Ya en el Kubernetes Cluster, previo a correr la imagen mencionada anteriormente, esta es
verificada por un Admission Controler, que verifica si sus caracteristicas se atanen a las
politicas y configuracion deseada. En este caso, por lo comentado anteriormente, Kyverno
seria la herramienta idénea.

En caso de que contradiga en algun aspecto las politicas establecidas, dependiendo de cual
incumpla, podria ser rechazado el deployment o unicamente registrada la incidencia, por el
contrario, si se han chequeado las politicas correctamente pasara a realizarse el despliegue
del sistema.

Con el objetivo de lograr una mayor seguridad se puede realizar un firmado de imagenes,
empleando por ejemplo Notary, que logren verificar la legitimidad de una imagen.

Para un mantenimiento del sistema adecuado, se monitorearan las actividades que ocurren
en el mismo, empleando Falco, el cual realizara la funcién de Runtime Protection.

Sumado a esto, se emplea SealedSecrets, para permitir a los desarrolladores subir sus

aportaciones con los secretos pertinentes a los repositorios, ya que estos se encuentran
cifrados y no hay un riesgo alto de que puedan ser leidos, lo que facilita mucho la tarea.

53



