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RESUMEN

En los últimos años, ha habido un aumento drástico en la cantidad de ciberataques,

lo que representa una seria amenaza para organizaciones de todo tipo. Las técnicas

de detección y prevención de malware han avanzado para tratar de contener este

crecimiento, pero los ciberdelincuentes también mejoran sus técnicas.

Este proyecto se centra en una técnica desarrollada por los atacantes llamada

Algoritmo de Generación de Dominios (Domain Generation Algorithm, DGA). Esta

técnica genera una gran cantidad de nombres de dominio que utilizan las muestras

de malware para lograr ponerse en contacto con los servidores de los atacantes. Los

métodos tradicionales para detectar DGAs, como las listas negras, no son efectivos y

se ha tenido que desarrollar otros métodos de detección.

Este trabajo explica cómo el aprendizaje automático es un método que aporta

buenos resultados en la detección de DGAs. Además, se centra en el desarrollo de

un sistema software que implementa una capa de detección basada en aprendizaje

automático mediante dos modelos de aprendizaje diferentes (aprendizaje no profundo y

aprendizaje profundo). Se ha logrado montar un sistema funcional que permite detectar

y bloquear los dominios generados por los DGAs. Además, debido a que el sistema está

muy desacoplado, permite que la incorporación de otras técnicas de detección o nuevos

modelos de aprendizaje automático sea fácilmente implementable.
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ABSTRACT

In recent years, there has been a drastic increase in the number of cyber attacks,

which represents a serious threat to organizations of all types. Malware detection

and prevention techniques have advanced in an attempt to contain this growth, but

cybercriminals are also improving their techniques.

This project focuses on a technique developed by attackers called Domain

Generation Algorithm (DGA). This technique generates a large number of domain

names that use malware samples to contact attackers’ servers. Traditional methods for

detecting DGAs, such as blacklisting, are not effective and other detection methods

have had to be developed.

This work explains how machine learning is a method that provides good results in

the detection of DGAs. In addition, it focuses on the development of a software system

that implements a detection layer based on machine learning through two different

learning models (no-deep learning and deep learning). A functional system has been set

up that allows the detection and blocking of domains generated by DGAs. In addition,

because the system is very decoupled, it allows the incorporation of other detection

techniques or new machine learning models to be easily implemented.
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2.3. Resolución DNS con servidor DNS recursivo. . . . . . . . . . . . . . . . 17

4.1. Clasificador Combinado. Fuente [21, p. 90] . . . . . . . . . . . . . . . . 26
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Caṕıtulo 1

Introducción

Cada año el número de ciberataques aumenta de forma masiva, al igual que la

adopción de Internet en la vida cotidiana. Aśı también, conlleva un gran coste a nivel

mundial, hasta el punto en el que se espera que en 2025 alcance un coste anual de 10.5

billones de dólares estadounidenses [11].

Los objetivos finales de los atacantes pueden ser diversos, desde robo de credenciales

hasta sustraer documentación confidencial. No obstante, se pueden definir las fases que

debe cumplir cualquier ataque para lograr lo que se propone. Para ello, Lockheed

Martin [12] desarrolló el framework Cyber Kill Chain® [13] en el cual se definen los

siete pasos que un ataque debe completar para cumplir su objetivo (Figura 1.1).

Figura 1.1: Los siete pasos de Cyber Kill Chain®
Fuente [14]

Tras las cinco primeras fases del ataque, se cuenta con el control del sistema de la
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v́ıctima, la instalación de software malicioso (malware) en este y se procede a ejecutar

las acciones maliciosas dirigidas desde un servidor conocido como servidor de mando y

control o, en inglés, Command and Control server (C2). Para recibir las instrucciones

del C2 se debe establecer un canal de comunicación entre el malware y este servidor.

Existen diversas técnicas para lograr dicha comunicación y se pueden clasificar

haciendo uso del framework MITRE ATT&CK [18]. En su matriz de ataques se pueden

observar 14 tácticas diferentes y más de 200 técnicas utilizadas por los atacantes.

Entre las tácticas se encuentra Command and Control [15]; en la cual se definen 16

técnicas para establecer la comunicación con el C2. Este trabajo se centrará en una de

ellas, conocida como Resolución Dinámica (Dynamic Resolution) [16] y en concreto,

en la sub-técnica llamada Algoritmos de Generación de Dominios (Domain Generation

Algorithms) [17].

Para evadir las técnicas de detección y prevención comunes, los atacantes se

aprovechan de la Resolución Dinámica [16], cuyo objetivo es ajustar dinámicamente

parámetros como el nombre de dominio, la dirección IP o el número de puerto que

se usan para establecer la conexión con el C2. Los atacantes pueden usar esta técnica

como canal de respaldo en caso de perder el contacto con el servidor principal y aśı

recuperar la conexión. Esto es posible mediante el uso de un algoritmo compartido por

el malware y el atacante.

En el caso de los algoritmos de generación de dominios (DGAs) [17], el parámetro

que se ajusta dinámicamente es el nombre de dominio. A través del algoritmo

compartido, se genera de manera pseudoaleatoria el dominio C2 al que establecer la

conexión, en vez de depender de una lista estática o de direcciones IP conocidas.

Habitualmente la detección y prevención de las conexiones con el C2 se han realizado

a través de los llamados sumideros DNS [6]. Estos sumideros son servidores DNS

intermedios que actúan como proxy de las peticiones DNS generadas dentro de una

red. Los sumideros poseen una lista negra que incluye nombres de dominio que se han

visto involucrados en ataques. Cuando se recibe una petición DNS, se comprueba si el

dominio existe en su lista negra. Si no se encuentra, el servidor realiza la resolución

DNS de la manera habitual. En caso contrario, el servidor responde con una resolución

falsa (normalmente la dirección IP virtual del interfaz loopback) o con una resolución

que incluye la dirección IP de un servidor falso para suplantar al C2 e investigar el

comportamiento del malware. De esta forma, si el malware depende de una lista estática

de dominios y todos ellos están incluidos en la lista negra, el malware pasa a estar

inactivo y su reactivación supone un proceso demasiado costoso para el atacante. En el

ámbito de esta detección es donde los DGAs toman ventaja, debido a su independencia

con respecto a las listas estáticas.
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Una de sus ventajas es que incluso si se ha bloqueado un nombre de dominio

generado y se ha desmantelado la infraestructura del ataque, el atacante tiene la

capacidad de registrar otro nombre de dominio que será generado por el algoritmo

y aśı conseguir desplegar fácilmente una nueva infraestructura. Por otro lado, debido

a que cada algoritmo puede generar una gran cantidad de dominios, imposibilita el

uso de listas negras. Si se tratase de obtener una lista con todos los posibles dominios

generados por uno de estos algoritmos, el tamaño seŕıa tan grande que impediŕıa su

uso en la práctica.

Con el tiempo, los atacantes han desarrollado e implementado diferentes algoritmos

para crear dinámicamente los dominios. Aún aśı, habitualmente estos algoritmos

tienen un comportamiento similar al de los algoritmos generadores de números

pseudoaleatorios (PRNG, de sus siglas en inglés) [20]. De esta forma, los valores tienen

una apariencia aleatoria pero son generados de forma determinista a partir de ciertos

valores iniciales. Con esto, el atacante puede predecir qué nombre de dominio debe

registrar para que los dispositivos infectados se conecten a él, ya que es capaz de

inicializar su generador de nombres del mismo modo que las muestras de malware. En

muchas ocasiones, además de un parámetro llamado semilla (seed), para la inicialización

se usa otro tipo de información que el atacante puede predecir como la fecha de

ejecución. Con esto se logra no repetir la misma secuencia de dominios cada vez que

se ejecuta el malware y, por tanto, dificultar la detección.

Debido al potencial de esta técnica y la gran variedad de posibles familias de

algoritmos, resulta complicado bloquear, rastrear o lograr tomar el control del canal

de comunicación que el malware trata de establecer con el C2. No obstante, se

han realizado diversos estudios para aplicar métodos de aprendizaje automático para

resolver este problema [4, 3, 1, 21]. Algunas investigaciones [4, 3] extraen datos del DNS

como el TTL (Time-to-Live) para determinar si el dominio puede haber sido generado

por un DGA. Otras se centran en el número de peticiones DNS fallidas [1], ya que los

DGAs pueden generar y probar una gran cantidad de dominios hasta encontrar alguno

que esté activo.

Para este trabajo se parte de la tesis doctoral de José F. Selvi Sabater [21], centrada

en técnicas de detección basadas únicamente en caracteŕısticas léxicas del nombre del

dominio. Como principal ventaja de esta aproximación, el autor sostiene que “los

nombres de dominio, al contrario de lo que sucede en otros campos de los mensajes

DNS, no cambian ya que son generados desde el lado cliente y no del servidor” [21, p.

50] y, por tanto, las caracteŕısticas empleadas no dependen de información volátil que

puede cambiar a lo largo del tiempo.
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1.1. Objetivos

El objetivo de este trabajo es implementar el sistema propuesto en [21, p. 90],

que contempla el uso de un modelo de aprendizaje no profundo y otro de aprendizaje

profundo para la detección y clasificación de nombres de dominio maliciosos generados

por DGAs. Este sistema se integrará en un servidor DNS para añadirle una nueva

capa de seguridad. La implementación del sistema se ha desacoplado totalmente del

software del servidor DNS, lo que permite que pueda ser usado junto con cualquier

servidor DNS. Esto aporta un mayor grado de flexibilidad e independencia a la hora de

incorporar el clasificador en entornos reales ya que no está ligado a un DNS espećıfico

ni a una versión concreta.

Todo el código desarrollado se ha liberado bajo licencia GNU/GPLv3 para que

pueda ser usado y mejorado por la comunidad [7].

1.2. Estructura del documento

Este documento se encuentra dividido en 6 caṕıtulos. En el caṕıtulo 2 se explica de

forma básica el protocolo DNS y los tipos y funcionamiento de los DGAs. A lo largo

del caṕıtulo 3 se explica el estado del arte presente en la literatura sobre detección de

DGAs. El caṕıtulo 4 detalla el sistema desarrollado. En el caṕıtulo 5 se explican las

pruebas que se han realizado y los resultados obtenidos. Por último, en el caṕıtulo 6

se realiza una conclusión del trabajo realizado y el trabajo a futuro.
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Caṕıtulo 2

Conceptos previos

En este caṕıtulo se introducen los conceptos y definiciones que son necesarios para

comprender el trabajo desarrollado. En primer lugar, se habla sobre el protocolo DNS

y los sus procesos de resolución. Seguidamente, se explican los algoritmos de generación

de dominios y sus clasificaciones.

2.1. Protocolo DNS

Los humanos recuerdan y reconocen mejor nombres que direcciones IP (e.g.,

unizar.es frente a 155.210.11.37). Dos dominios muy parecidos pueden tener direcciones

IP muy diferentes y podŕıa resultar demasiado costoso para los usuarios recordarlas.

Por otro lado, una dirección IP está ligada a una máquina concreta, y por tanto, si

se quiere cambiar el dominio de máquina, también cambiaŕıa su dirección pero no

se querŕıa cambiar su nombre. Por todo ello surge el protocolo DNS (Domain Name

System) [8], que establece un sistema de nombrado de máquinas y una correspondencia

entre dichos nombres y las direcciones IP de dichas máquinas.

El protocolo DNS describe los mecanismos necesarios para traducir los nombres de

dominio en direcciones IP. En el escenario habitual se encuentra el cliente DNS, quien

solicita la resolución de un dominio, y los servidores DNS, encargados de obtener la

dirección (o direcciones) IP asociada a dicho dominio. Existen dos tipos de servidores

DNS: servidores autorizados, que tienen la información necesaria para devolver la

asociación nombre-IP que se está buscando; y servidores recursivos, que no poseen

dicha asociación pero gestionan la petición DNS para obtenerla.

Una resolución DNS comienza con la petición del cliente a su servidor configurado.

Si este servidor tiene autoridad sobre el dominio por el cual se está preguntando, le

devuelve al cliente la asociación (véase la Figura 2.1). En caso contrario, si el servidor

tiene caché, consulta la petición en su caché. Si tiene almacenada la respuesta y no

ha expirado, esta será enviada al cliente (véase la Figura 2.2). Si la respuesta DNS no
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se encuentra en el servidor, comienza el proceso de resolución entre servidores. En la

Figura 2.3 se ha representado el proceso de consultas recursivas. En este proceso, el

primer servidor que ha recibido la consulta del cliente reenv́ıa la petición recursivamente

a otros servidores DNS hasta obtener la asociación nombre-IP y devolvérsela al cliente.

Servidor DNS autorizado
sobre unizar.es.

Cliente
DNS

Consulta DNS

¿IP unizar.es?

Respuesta DNS
IP unizar.es


155.210.11.37

Figura 2.1: Resolución DNS con servidor DNS autorizado.

Servidor DNS con caché

Cliente
DNS

Consulta DNS

¿IP unizar.es?

Respuesta DNS
IP unizar.es


155.210.11.37

unizar.es ->155.210.11.37

CachéConsulta DNS

¿IP unizar.es?

Respuesta DNS
IP unizar.es


155.210.11.37

Figura 2.2: Resolución DNS con servidor DNS caché.

Otro proceso de resolución es el de consultas iterativas. En este proceso, el servidor

que recibe la consulta contesta con lo máximo que sepa de esa búsqueda sin preguntar

a ningún otro servidor. Si el servidor no tiene la respuesta de la consulta, suele devolver
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Servidor DNS recursivo

Cliente
DNS

Consulta DNS

¿IP unizar.es?

Servidor DNS .

Servidor DNS es.

Servidor DNS unizar.es.

1

Consulta DNS

¿IP unizar.es?

2 Respuesta DNS
IP DNS es.

3

Consulta DNS

¿IP unizar.es?

4

Respuesta DNS

IP DNS unizar.es.

5Consulta DNS

¿IP unizar.es?

6

Respuesta DNS
IP unizar.es


155.210.11.37

7

Respuesta DNS
IP unizar.es


155.210.11.37

8

Figura 2.3: Resolución DNS con servidor DNS recursivo.

la IP del servidor del siguiente subdominio en la cadena de búsqueda. Este proceso de

consulta es el que realiza aisladamente el servidor recursivo en la Figura 2.1 cuando

está tratando de obtener la respuesta de la consulta de su cliente.

Como se puede observar, el cliente únicamente es consciente del env́ıo de la consulta

a su servidor DNS configurado, sin importar si este es el autorizado, si tiene la respuesta

en caché o si ha realizado un consulta recursiva. Por último, cabe destacar que el

protocolo DNS funciona por defecto sobre el protocolo UDP [24] en el puerto 53.

2.2. Algoritmos de generación de dominios

Tal y como se menciona anteriormente, la sub-técnica DGA es utilizada para ajustar

dinámicamente el nombre de dominio a través de un algoritmo compartido por el

atacante y el software. Plohmann et al. [19] dividen la clasificación de los DGAs según

dos categoŕıas: la fuente de la semilla y el esquema de generación. Combinando estas

dos categoŕıas, se generan 16 posibles familias de algoritmos, aunque solo 6 de ellas se

han encontrado siendo implementadas por DGAs reales.

De esas dos categoŕıas, el esquema de generación es el único que influye de forma

directa en el aspecto de un nombre de dominio, y por tanto es la única categoŕıa

de interés para este trabajo. Dentro de esta categoŕıa se distinguen cuatro tipos de

esquemas [19]:

− Aritméticos: Calcula una secuencia de valores pseudoaleatorios que son

convertidos a caracteres ASCII para formar el nombre de dominio. Este esquema
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es el más común, encontrándose en 37 de los 43 DGAs analizados en [19]. Se

muestran ejemplos de DGAs obtenidos mediante este esquema en el Listado 2.1.

− Basados en hash: Emplean una función criptográfica de resumen (hash) en su

formato hexadecimal.

− Basados en diccionario: Concatenan una secuencia de palabras provenientes de

uno o más diccionarios embebidos en la propia muestra u obtenidos de Internet.

Es el segundo esquema más empleado (3 de los 43 DGAs analizados en [19]). Se

muestran ejemplos de DGAs obtenidos mediante este esquema en el Listado 2.2.

− Basados en permutaciones: Derivan todos los dominios posibles a partir de

permutar los caracteres de un dominio inicial.

4chij1xk8axsrite.ddns.net

alg81hc07rq4a6kdmnw.ddns.net

klkran5no83vwpotu8qxqro.ddns.net

u8kvadodg2evul5xsn3vgrk.ddns.net

54 kjo6sxe4qtwn7.ddns.net

Listado 2.1: Ejemplo de nombres generados mediante generación aritmética.

unuinstrumentation.com

missiondeveloped.com

contentfortheweiler.com

numberforscience.com

numberworkshop.com

surfacethetheandmissions.com

februaryrecent.com

spacesciencehopeseeking.com

provideatmoscomp.com

provenmeritspacecraftco.com

launchlauheldnathe.com

distkuideproposals.com

Listado 2.2: Ejemplo de nombres generados por DGAs basados en diccionario.

En los DGAs, al igual que en los PRNGs, una de las propiedades que muestra su

calidad es la cantidad de nombres pseudoaleatorios que puede generar sin producir

repeticiones. Si el algoritmo de generación de dominios no está bien diseñado, puede

producir pocos nombres únicos y aśı hacer que la estrategia para la que los DGAs

fueron pensados falle. Por ejemplo, Bader [2] publicó una reimplementación en Python

del DGA empleado por el malware Corebot para estudiar su repetibilidad. Este DGA se

basa en generación aritmética y su aspecto es muy similar al esperado en un algoritmo

PRNG. Las pruebas mostraron la capacidad de generar al menos 100 millones de

dominios sin producir ninguna repetición.
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Nótese que los nombres generados mediante DGAs basados en diccionario son

visualmente muy diferentes a los generados por el método aritmético (véase la diferencia

entre los dominios mostrados en el Listado 2.1 y Listado 2.2). Muchos de ellos podŕıan

haber sido registrados por un ser humano con fines leǵıtimos, y por ello resultan

mucho más dif́ıciles de detectar. Cabe destacar que su capacidad para generar una

gran cantidad de valores sin producir ningún bucle es mucho menor. Por ejemplo, el

malware Gozi [2] utiliza un DGA basado en diccionario y pruebas realizadas mostraron

que se produjeron un 14,26

2.3. Estándar UML

UML (Unified Modeling Language) [9] es un lenguaje de modelado estandarizado

desarrollado para ayudar a los desarrolladores de sistemas y programas informáticos a

especificar, visualizar, construir y documentar los elementos de los sistemas de software,

aśı como para el modelado comercial y otros sistemas no informáticos. Incluye aspectos

como la funcionalidad del sistema y expresiones concretas del lenguaje. En UML

se utilizan y asocian elementos de diferentes formas para desarrollar diagramas que

representan ciertos aspectos estructurales y estáticos de un sistema en particular, como

la colaboración de diferentes objetos dentro del sistema.

Se definen a continuación los diferentes tipos de diagramas usados en las fases de

análisis y diseño del sistema a desarrollar.

Diagrama de Clases

El diagrama de clases se utiliza para modelar el comportamiento estático de un

sistema. Además de incluir los atributos y las funciones de las clases a implementar,

se indica gráficamente cómo se relacionan las diferentes clases entre śı. Las relaciones

entre clases poseen una multiplicidad, que se indica gráficamente con un número en la

ĺınea de conexión al costado de cada clase. Cuando la relación es 1, significa que la clase

solo está relacionado con una sola instancia, mientras que si es N, * o 1..*, significa que

está relacionado un número N de veces que puede ser cualquier número de 0 a N, o en

el caso 1..*, puede ser de 1 a N (es decir, debe estar relacionado al menos una vez).

Diagrama de Secuencia

Un diagrama de secuencia es un tipo de diagrama que muestra cómo los

objetos interactúan entre śı en una secuencia determinada. Se utiliza para modelar

el comportamiento dinámico de un sistema. Se pueden utilizar para comprender

el comportamiento de un sistema, diseñar nuevos sistemas o documentar sistemas
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existentes.

Las interacciones se representan como mensajes entre los objetos, que están

representados en una ĺınea de vida vertical. Los mensajes se organizan en una secuencia,

de arriba a abajo, según el momento en que ocurren. Los mensajes entre los objetos

están representados por flechas.
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Caṕıtulo 3

Estado del arte

El ámbito de la detección de dominios generados por DGAs ha recibido una gran

atención en los últimos años. La gran mayoŕıa de investigaciones y soluciones que se

han realizado están basadas en técnicas de aprendizaje automático, el cual se puede

dividir en dos grandes grupos en función de su naturaleza: técnicas de aprendizaje no

profundo y técnicas de aprendizaje profundo. A continuación, se revisan algunas de

estas investigaciones que están más relacionadas con el trabajo desarrollado en este

TFG.

3.1. Técnicas de aprendizaje no profundo

Con respecto al estado del arte presente en la literatura sobre las técnicas de

aprendizaje no profundo, en 2011 Bilge et al. publicaron EXPOSURE [4], mejorado

más tarde en 2014 [3]. Este sistema de detección de dominios maliciosos emplea técnicas

de análisis pasivo de DNS. Las técnicas se basan en 15 caracteŕısticas organizadas en 4

grupos: relativas al tiempo, extráıdas de las respuestas DNS, basadas en el campo TTL

de los registros de recurso DNS y obtenidas del nombre de dominio en śı mismo. Muchas

de estas caracteŕısticas son altamente volátiles y pueden cambiar a lo largo del tiempo.

Los autores se centraron principalmente en dos valores de las caracteŕısticas léxicas: el

porcentaje de caracteres numéricos en el nombre y el porcentaje de la subcadena de

texto con significado de mayor tamaño con respecto a la longitud total del nombre. Sin

embargo, el sistema no proporciona un análisis léxico completo del dominio. Empleando

un árbol de decisión J48 [25], su sistema obtuvo un 98.4% de acierto en la detección

con alrededor de un 1

En 2021 Antonakakis et al. presentaron Pleiades [1] Su aproximación se basa en

que una muestra de malware que utiliza un DGA para establecer conexión con el C2

genera una cantidad significativa de peticiones fallidas relacionadas con la inexistencia

del dominio (respuestas NXDomain [5]). Esto es debido a que los DGAs pueden
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generar una gran cantidad de nombres pero solo unos pocos de ellos están registrados.

Además, también sostienen que una muestra diferente del mismo malware generaŕıa un

tráfico de respuestas NXDomain similar. El sistema utiliza algoritmos de agrupación

y clasificación, empleando además de algunas caracteŕısticas volátiles, estad́ısticas

extráıdas del nombre de dominio (como puede ser la longitud del nombre, nivel de

aleatoriedad y frecuencia en la distribución de carácteres). Finalmente, usan un modelo

oculto de Markov (Hidden Markov Model o HMM, del inglés) para agrupar los dominios

sospechosos.

3.2. Técnicas de aprendizaje profundo

Otros autores han realizado propuestas basadas en técnicas de aprendizaje

profundo. Estas técnicas no precisan de un proceso de ingenieŕıa de caracteŕısticas

tan complejo como en los modelos de aprendizaje no profundo.

Woodbridge et al. propuso en 2016 una red neuronal que inclúıa una capa de

codificación, una capa oculta LSTM con 128 unidades y una capa densa que combinaba

las salidas de la capa anterior en un único resultado de clasificación [26]. Compararon los

resultados de su modelo con los de otros tres modelos: un modelo HMM, una regresión

loǵıstica a partir de los 2-Grams y un modelo Random Forest utilizando caracteŕısticas

extráıdas manualmente similares a las propuestas por otros autores. Los resultados

obtenidos mostraron que el modelo propuesto clasificaba correctamente el 98% de los

nombres generados con DGA, con una tasa de falsos positivos (False Positive Rate o

FPR) de 0.001.

Unos años más tarde, Tran et al. propusieron en [22] una modificación con respecto

al trabajo de Woodbridge que utilizaba una capa LSTM with Multiclass Imbalance

en lugar de una capa LSTM. Esta red incluye la posibilidad de introducir un coste

más granular en el proceso de aprendizaje, haciendo que el impacto de los errores

de clasificación vaŕıe en función del tipo de error. Esta aproximación se plantea en

dos etapas. En la primera de ellas, se entrena una red para clasificar los dominios en

“generados por DGA” o “no generados por DGA”, con un coste mayor para el error de

clasificar un dominio un nombre de dominio leǵıtimo como generado por DGA que el

error opuesto. Esto evita que los dominios leǵıtimos se bloqueen por error. La segunda

etapa solo se ejecuta si la primera ha clasificado el dominio como “generado por DGA”.

En ella, otra red clasifica el nombre de dominio para obtener el tipo de DGA espećıfico

que lo ha generado.

Estos trabajos han servido de punto de partida para la tesis doctoral de José F.

Selvi Sabater [21] para proponer unos modelos que aprovechen las ventajas de ambos
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y mitiguen sus desventajas como por ejemplo, basar la clasificación y detección de los

dominios maliciosos en caracteŕısticas muy volátiles provenientes del tráfico en la red

en un momento puntual.
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Caṕıtulo 4

Sistema desarrollado

En este caṕıtulo se procede a explicar el sistema desarrollado en el trabajo junto

con todas las propuestas y decisiones de diseño, su arquitectura y su funcionamiento.

4.1. Análisis y propuestas de diseño

Inicialmente se parte del sistema propuesto en la Figura 4.1. Este sistema es un

clasificador combinado que aprovecha las ventajas de los modelos Random Forest

(aprendizaje no profundo) y LSTM (aprendizaje profundo) y mitiga sus desventajas.

Se comienza con una primera capa llamada frontend que recibe el dominio a

clasificar. Este frontend busca en su memoria caché si el dominio ya ha sido clasificado

con anterioridad, en cuyo caso responde con el resultado. Esto aumenta la eficiencia

debido a que evita tener que volver a realizar la clasificación. Si la información no se

encuentra en caché, el frontend solicita a Random Forest la clasificación. Este modelo

proporciona una rápida respuesta y una fácil explicabilidad en el caso de bloquear un

dominio leǵıtimo. Con esto se puede justificar el motivo de bloqueo y permite ajustar

el funcionamiento del modelo para posteriores peticiones. El resultado aportado se

almacena en la memoria caché para futuras peticiones. Tras haber respondido con la

clasificación, se ejecuta fuera de ĺınea la misma petición al modelo LSTM. Este modelo

tiene un tiempo de respuesta superior, pero no impacta en el tiempo de respuesta debido

a que se ejecuta fuera de ĺınea. En el caso de que LSTM clasifique un dominio como no

malicioso, se actualiza el valor en la memoria caché para que en sucesivas peticiones

no se clasifique el mismo dominio como malicioso. Esta combinación de modelos se

aprovecha de la mejor capacidad de LSTM para no producir falsos positivos.

En esta propuesta teórica se tuvo en cuenta principalmente un aspecto para

plantear su implementación real: el tiempo de clasificación. Si llegase a ser muy

elevado, repercutiŕıa en el tiempo de respuesta ante una petición DNS, haciendo que se

descartara. En [21] se puede ver como el modelo Random Forest es capaz de clasificar
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INTERNET
FRONTEND

CACHE

RANDOM

FOREST

LSTM

Figura 4.1: Clasificador Combinado.
Fuente [21, p. 90]

64.000 nombres de dominio en 2.569 segundos; por tanto, el tiempo de clasificación

de un solo dominio no será significativo en el tiempo total de resolución DNS. Por

otro lado, se observa en [21] como la velocidad de clasificación del modelo LSTM con el

mismo conjunto de datos es de 59 segundos, un tiempo muy superior al modelo anterior

pero que sigue sin tener un gran impacto en el tiempo total de resolución DNS.

Teniendo esto en cuenta se plantean esencialmente dos diseños; un módulo espećıfico

y un microservicio previo (Figura 4.2 y Figura 4.3, respectivamente). El módulo

espećıfico (Figura 4.2) es un diseño muy acoplado, ya que el clasificador combinado se

integra con un software DNS. La principal ventaja de esta opción es que la velocidad

de respuesta es mayor debido a la integración del clasificador en el propio servidor

DNS. Además, a la hora de desplegar el servidor DNS, se instala todo en conjunto

sin necesidad de incorporar el clasificador espećıficamente. Para el funcionamiento, el

usuario simplemente ha de tener configurado el sistema como su servidor principal

y al generar una petición DNS se env́ıa directamente a este. El servidor clasifica la

FRONTEND

CACHE

RANDOM


FOREST

CLASIFICADOR

COMBINADO

LSTM DNS
PORT 53


DNS QUERY

DNS RESPONSE

MALWARE

INTERNET

Figura 4.2: Módulo DNS espećıfico.
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CLASIFICADOR

COMBINADO

LSTM
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DNS QUERY

DNS RESPONSE

MALWARE

INTERNET

CLEAN DNS QUERY

DNS RESPONSE

Figura 4.3: Microservicio previo a DNS.

petición y si no se detecta como malware, se procede a una resolución habitual. En

caso contrario, el servidor responde con una resolución falsa (dirección IP virtual del

interfaz loopback o con dirección IP de un servidor falso para suplantar al C2).

Por otra parte, la arquitectura de microservicio previo al DNS (Figura 4.3), tiene un

tiempo de respuesta mayor ya que no está optimizado para un software DNS concreto.

En cambio, tiene un diseño modular que lo hace independiente del servidor DNS y ofrece

mayor versatilidad. Para el funcionamiento, el usuario tiene configurado el microservicio

previo como su servidor DNS principal. Cuando el microservicio recibe una petición, se

comprueba si se detecta el dominio como malicioso. Si es aśı, el microservicio responde

de la misma forma que en el caso anterior (es decir, con una resolución falsa). Por el

contrario, si no se detecta como malware, la petición DNS es reenviada a un servidor

DNS para su resolución habitual. Al recibir la respuesta del servidor, el microservicio

la reenv́ıa al usuario. En este escenario, el microservicio actúa como un proxy para las

peticiones que no son clasificadas como malware.

Teniendo en cuenta la velocidad global del clasificador que se ha comentado

anteriormente, la ventaja en el tiempo de respuesta del módulo espećıfico no es

una razón suficiente para su elección. En cambio, el microservicio previo ofrece una

flexibilidad e independencia sobre el software DNS utilizado que es muy significativa a

la hora de una implementación real. Este diseño no solo permite incorporar una capa de

seguridad adicional a cualquier servidor DNS local en una red interna, sino que puede

implementarse sin necesidad de un servidor local y reenviar las peticiones a cualquier

otro servidor público. Con todo ello, el diseño elegido para este proyecto ha sido el de

un microservicio previo.

Además, se ha realizado un pequeño cambio con respecto al clasificador combinado.

En este sistema la petición al modelo LSTM no se hace fuera de ĺınea sino

simultáneamente junto con la petición al modelo Random Forest. La primera

clasificación que recibe el frontEnd es la que se usa para enviar al usuario. La principal

ventaja de este cambio es que, en caso de que Random Forest tardase demasiado o

dejase de funcionar por alguna razón, se puede usar la clasificación de LSTM para
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devolver la resolución al usuario.

4.2. Arquitectura del sistema propuesto

Se han realizado diagramas UML [9] para comprender mejor la arquitectura del

sistema. Para proporcionar una visión global de todo el sistema y sus componentes se

diseña primero un diagrama de clases. Además, también se han realizado diagramas de

secuencia para ilustrar las interacciones entre todos los componentes involucrados en

el sistema.

En la Figura 4.4 se puede observar el diagrama de clases del sistema. Como clase

principal se encuentra el FrontEnd que actúa de orquestador. Esta clase recibe las

peticiones DNS y se encarga de su resolución. Otros elementos que ya se han visto en los

esquemas anteriores son la caché y los clasificadores. La caché no solo busca y almacena

las clasificaciones de forma simple, sino que tiene inteligencia para gestionar elementos

duplicados, almacenar los dominios maliciosos para notificar al administrador y borrar

clasificaciones antiguas. Por otro lado, cada clasificador tiene un algoritmo. La clase

Algorithm representa los modelos de aprendizaje automático que clasifican los nombres

de dominio. Para el diseño de esta clase se ha usado el Patrón Estrategia (Strategy

pattern) [10]. De esta forma se ha desacoplado el modelo de aprendizaje usado para

la clasificación, haciendo posible que en un futuro puedan añadirse nuevos modelos.

La clase IPAddress se ha creado para representar algunos parámetros de configuración

necesarios para el FrontEnd. Por último, la clase SharedMemory representa la memoria

compartida entre los clasificadores y el FrontEnd para cada petición DNS que recibe el

FrontEnd.

4.3. Funcionamiento

El funcionamiento del sistema de forma detallada se explica a continuación haciendo

uso de los diagramas de secuencia. En la Figura 4.5 se observa la inicialización de todos

los objetos y cómo comienza el sistema a funcionar. El objeto FrontEnd es el encargado

de inicializar la caché y los clasificadores. También crea un socket en el que escuchará

las peticiones DNS de los usuarios. Una vez que todos los objetos están inicializados,

el FrontEnd queda a la espera de recibir una petición de resolución DNS por parte

de un usuario. Cuando llega, lanza un hilo de ejecución con la función handleQuery

encargada de resolver la petición a partir de los bytes del datagrama UDP recibido

y el dirección IP del usuario. Tras lanzar este hilo de ejecución, el FrontEnd vuelve a

quedar a la espera de recibir nuevos datagramas UDP.
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La función handleQuery se detalla en la Figura 4.6. En primer lugar, se extrae la

petición DNS de los bytes del datagrama UDP para obtener el dominio por el cual se

está preguntando. Con esto se busca la clasificación en la caché y si la clasificación está

almacenada, se ejecuta la función sendResponse. En caso contrario, se crea un objeto

SharedMemory que pasará junto con otros elementos como parámetro de la función

classify de cada clasificador. Esta función será ejecutada en un hilo de ejecución, creando

aśı tantos hilos como clasificadores tenga el sistema. Una vez solicitada la clasificación

a los modelos, el FrontEnd queda a la espera de la respuesta de esta función. En esta

respuesta, además de la clasificación, se incluye información con respecto al algoritmo

usado y acerca de si ha sido el primero de los clasificadores en acabar. Saber si la

respuesta de un clasificador es la primera sirve para no enviar la resolución de manera

repetida al usuario, ya que la clasificación del primer clasificador en acabar es la usada

para enviar la respuesta al usuario. Por último, haya sido o no el primer clasificador

en acabar, se lanza en un hilo de ejecución la función store del objeto Cache para que

este gestione la información a almacenar para las siguientes peticiones.

La Figura 4.7 representa cómo el FrontEnd env́ıa la resolución DNS mediante la

función sendResponse. En esta lo primero que se comprueba es la clasificación del

modelo. Si el dominio no se ha detectado como malicioso, la petición se reenv́ıa al

servidor DNS configurado para resolverla y enviar dicha resolución al usuario. En

caso contrario, se env́ıa una resolución falsa al usuario y se ejecuta en un hilo la

función storeForReport del objeto Cache para almacenar esta petición como maliciosa

y reportarla al administrador.

Por otro lado, en la Figura 4.8 se muestra la forma en la que los clasificadores

realizan la clasificación. Primero, detectan si el dominio es malicioso. Una vez que han

terminado, acceden a la SharedMemory en exclusión mutua para comprobar si han

sido los primeros en realizar la clasificación y, en ese caso, aśı responderlo al FrontEnd.

Antes de liberar la memoria compartida y en caso de haber sido los primeros, realizan

las actualizaciones oportunas en ella para que los demás clasificadores sepan que otro

modelo ha acabado antes.

Por último, en la Figura 4.9 se observa de manera detallada cómo el objeto Cache

realiza la función store para almacenar las clasificaciones. Primero se obtiene la marca

de tiempo actual (timestamp), útil para guardar junto con la clasificación y eliminar

clasificaciones antiguas en un futuro. Seguidamente se comprueba qué clasificador ha

aportado la información a almacenar. En este TFG, el resultado de clasificación del

modelo LSTM tiene prioridad con respecto al resultado del resto de clasificadores. De

esta forma, si el algoritmo usado es LSTM, se almacena o actualiza el registro en caché;

mientras que si es Random Forest, únicamente trata de almacenarlo y en caso de que
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ya exista un registro relacionado con ese dominio no se actualiza.

4.4. Implementación del sistema

El sistema ha sido desarrollado en Python y su código fuente se ha liberado bajo

licencia GNU/GPLv3 para que pueda ser usado y mejorado por la comunidad [7].
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sd [ handleQuery]

[else]

r e f

store

a l t

[if cacheResponse is not None]

r e f

classify

op t

r e f

sendResponse

r e f

sendResponse

[firstResponse]

User

f : FrontEnd c : Cache cl : Classifier

sM : SharedMemory4: create

2: domain <- Extract domain from dnsQuery

1: dnsQuery <- Extract DNS query from bytes

6: store(domain : string, isMalicious :

boolean, address : IPAddress, classOfCl :

string)

5.1: firstResponse: boolean, malicious:boolean, class_of_cl: string

5: classify(domain : string, sharedMemory : SharedMemory, response : dict)

3.1: cacheResponse: boolean

3: search(domain : string) : boolean

Figura 4.6: Diagrama de secuencia Handle Query.
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sd [ classify]

op t

[if firstResponse]

cl : Classifier

5: sharedMemory.lock.release()

4: sharedMemory.firstReply <- True

3: firstResponse <- !sharedMemory.firstReply

2: sharedMemory.lock.acquire()

1: isMalicious <- predict(domain: string)

Figura 4.8: Diagrama de secuencia Classify.
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sd [ store]

[if classOfCl == LSTM]

a l t

[except DuplicateKeyError]

[ t ry : ]

[except DuplicateKeyError]

[ t ry : ]

a l t

a l t

c : Cache

1: t imestamp <- datetime.now()

3: domainsCol.insert_one()

2: domainsLock.acquire()

4: domainsLock.release()

5: domainsLock.acquire()

6: domainsCol.update_one()

7: domainsLock.release()

8: domainsLock.acquire()

9: domainsCol.insert_one()

10: domainsLock.release()

Figura 4.9: Diagrama de secuencia Store.
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Caṕıtulo 5

Experimentos y resultados

Para obtener las conclusiones del sistema desarrollado en este trabajo, se han

realizado una serie de experimentos teniendo en cuenta varios aspectos. Lo primero

que se ha estudiado ha sido el tiempo de resolución para una petición DNS. También

se han obtenido las métricas necesarias para evaluar el rendimiento de los dos modelos

del clasificador, una vez implementados en el sistema. Por último, se ha evaluado la

mejora que supone tener el componente Cache en el sistema.

5.1. Entorno de experimentación

El estudio del tiempo de resolución es posible únicamente para los dominios

leǵıtimos y por tanto su entorno de experimentación ha sido diferente. Esto es debido

a que para los dominios leǵıtimos śı que es posible evaluar su resolución, ya que están

correctamente registrados. Por el contrario, la resolución de la mayoŕıa de los dominios

maliciosos no es posible puesto que no están registrados o son bloqueados por los

servidores DNS.

5.2. Tiempo de resolución de dominios leǵıtimos

El dataset escogido para la experimentación es el que ofrece de forma gratuita

Tranco [23]. Esta lista está orientada a la investigación y ofrece un ranking de las

principales páginas web visitadas.

El sistema desarrollado en este trabajo tiene una alta dependencia de la velocidad

de Internet, ya que para obtener la resolución del dominio necesita reenviar la petición

a un servidor DNS. Esta dependencia influye en el tiempo de respuesta, que es una

de las caracteŕısticas a analizar. Para obtener unos resultados válidos a pesar de esta

dependencia, la forma de realizar la experimentación ha sido la siguiente:

1. Se extrae el dominio de la lista [23] para realizar la petición.
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2. Se realiza la consulta a un servidor DNS sin pasar por el microservicio.

3. Se realiza la consulta al microservicio y éste la reenv́ıa al mismo servidor DNS

en caso de no ser clasificado como malicioso.

Este procedimiento está enfocado a evaluar bajo la misma velocidad de Internet una

petición directa al servidor frente a una petición a ese mismo servidor, pero pasando

antes por el sistema desarrollado en este trabajo.

Además de los tiempos de resolución, se ha obtenido el resultado de la clasificación

del microservicio. Realmente, teniendo en cuenta la implementación del sistema y la

mayor velocidad de Random Forest frente a LSTM, la clasificación en una primera

instancia es únicamente de Random Forest. Por ello, los pasos anteriores se han repetido

para, no solo obtener la clasificación de LSTM, sino ver la mejora del tiempo de

resolución gracias al elemento Cache.

La Figura 5.1 muestra el resultado de estos experimentos. Realizando la clasificación

de 15.000 dominios leǵıtimos de la manera mencionada se ha visto que el tiempo medio

de una resolución DNS pasando por el microservicio previo es de 0.1768 segundos,

mientras que enviando directamente la petición al servidor es de 0.1334 segundos.

Esto implica que el sistema hace que la resolución DNS sea un 32,55% más lenta

que si se enviase directamente al servidor. Tras la primera resolución de los 15.000

dominios, la clasificación ya se encuentra almacenada en el objeto Cache y por tanto

se ha vuelto a estudiar la media de los tiempos. En este caso, el tiempo medio cuando

se env́ıa la petición al sistema desarrollado es de 0.1162 segundos, mientras que cuando

es enviada directamente es de 0.1274 segundos. Cabe destacar que el microservicio ha

sido un 8,78% más rápido que preguntando directamente al servidor. Este resultado

se discutirá a continuación.

5.3. Rendimiento de los modelos

Para la evaluación del rendimiento de los modelos se ha utilizado un dataset formado

por 30.000 dominios, siendo la mitad de ellos dominios leǵıtimos de la lista Tranco y

la otra mitad dominios maliciosos obtenidos del dataset generado en [21]. Además,

se han obtenido las métricas de precisión (precision), exhaustividad (recall), valor-F

(F1-score) y la matriz de confusión (confusion matrix).

Los valores de la clasificación binaria utilizados son los siguientes:

− 0: dominio leǵıtimo

− 1: dominio malicioso
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Primera resolución

Segunda resolución

0,00 0,05 0,10 0,15 0,20

Microservicio previo Servidor DNS

Tiempo medio de una resolución DNS (segundos)

Figura 5.1: Gráfico del tiempo medio de una resolución DNS.

Las métricas precision, recall, y F1-score se calculan como se muestran en las

ecuaciones 5.1, 5.2 y 5.3, respectivamente. True Negative (TN) y True Positive

(TP) son, respectivamente, el número de predicciones correctas de dominios leǵıtimos

y maliciosos. Por el contrario, False Negative (FN) y False Positive (FP) son,

respectivamente, el número de predicciones incorrectas de dominios leǵıtimos y

maliciosos.

precision =
TP

TP + FP
(5.1)

recall =
TP

TP + FN
(5.2)

F1− score = 2× precision× recall

precision+ recall
(5.3)

La matriz de confusión indica qué tipos de errores se cometen. La métrica de

precisión representa qué porcentaje de los dominios que se predicen como maliciosos, en

realidad lo son. El recall indica qué porcentaje de dominios maliciosos ha sido capaz de

identificar correctamente el modelo. El valor F1-score combina las medidas de precisión

y recall en un único porcentaje para que sea más fácil comparar el rendimiento entre

varios modelos.

La Tabla 5.1 muestra la matriz de confusión de los modelos Random Forest y

LSTM, mientras que los resultados de las métricas para ambos modelos se muestran

39



en la Tabla 5.2.

Random Forest LSTM
0 1 0 1

0 13560 1440 14345 655
Realidad

1 498 14502 337 14663

Tabla 5.1: Confusion matrix de los modelos Random Forest y LSTM.

Métricas Random Forest LSTM
Precision 0.9097 0.9572
Recall 0.9668 0.9775
F1-score 0.9374 0.9673

Tabla 5.2: Métricas de los modelos Random Forest y LSTM.

5.4. Discusión de resultados

Con respecto al tiempo, el sistema ofrece unos resultados bastante óptimos. En un

entorno con una velocidad de Internet suficiente como para navegar de forma fluida,

la ralentización de la resolución en un 32,55% es una demora asumible para que no se

descarte la petición DNS y el usuario la de como perdida o no resuelta. Por otra parte,

la caché hace que esa demora sea inexistente e incluso se consigue que la resolución se

haga en un menor tiempo que cuando no existe el sistema clasificador. Las razones de

que este tiempo sea menor pueden ser variadas (por ejemplo, la velocidad de Internet

puede haber sido mayor en un momento puntual o el servidor DNS ha almacenado en

su propia caché la resolución). No obstante, una de las razones principales por las que

esto sucede se debe a que cuando un dominio es clasificado como malicioso no se realiza

su resolución y, por tanto, el tiempo que el usuario tarda en recibir la resolución del

microservicio es menor que si la hubiera reenviado al servidor DNS.

Con esto se puede observar que ambos modelos tienen un desempeño aceptable,

aunque claramente destaca LSTM sobre Random Forest. Los dos modelos identifican

los dominios maliciosos con un alto porcentaje: Random Forest con un 96,68% y

LSTM con un 97,75%. En cambio, la métrica de precisión de Random Forest y su

matriz de confusión muestran que se produce una cantidad de falsos positivos muy

relevante, lo que provocaŕıa el entorpecimiento de un usuario o dispositivo cuyos fines

no son maliciosos. Esta conclusión está en ĺınea con la expresada en [21]. El número de

falsos negativos de ambos modelos también es considerable, teniendo en cuenta que los

dominios no identificados como maliciosos pueden servir para establecer la conexión

con el C2, lo cual causaŕıa la consecución de las acciones maliciosas del atacante. Por
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último, la métrica F1-score muestra que el rendimiento del modelo LSTM frente al de

Random Forest es aproximadamente un 3% mejor.
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Caṕıtulo 6

Conclusiones y trabajo a futuro

Este caṕıtulo contiene las conclusiones obtenidas de este trabajo y se sugieren una

serie de trabajos futuros. Comienza con los objetivos logrados y un análisis de los

resultados obtenidos en relación a estos objetivos, y termina proponiendo una serie

de acciones como trabajo a futuro para mejorar el sistema y realizar un análisis más

realista del mismo.

6.1. Conclusiones

Se puede concluir que el trabajo ha logrado los objetivos que se propusieron en

un inicio. Se ha desarrollado un sistema que añade de forma funcional una capa

de seguridad adicional a cualquier servidor DNS para la detección y prevención de

malware que emplee la técnica DGA para establecer conexión con el C2. Además, el

sistema es lo suficientemente desacoplado como para que la inserción de otras técnicas

de detección o nuevos modelos de aprendizaje automático sean fácilmente incorporados

al microservicio.

A la vista de los resultados, se puede decir que el tiempo que añade el interponer el

microservicio entre el usuario y el servidor DNS no es tan alto como para hacer que el

servicio de resolución falle. Incluso disponer de una caché en el microservicio hace que el

retardo llegue a ser inexistente, debido a no tener que realizar de nuevo la clasificación

del dominio. Por otra parte, los modelos usados en el clasificador combinado ofrecen

un desempeño correcto y funcional para el propósito de este trabajo. Las métricas

indican un alto porcentaje de acierto a la hora de identificar los dominios maliciosos

generados por DGAs, pero también un alto número de falsos positivos que suponen un

entorpecimiento de la experiencia del usuario en entornos reales al bloquear nombres

de dominio leǵıtimos. Además, a pesar de que el número de falsos negativos es muy

bajo, idealmente este número tendŕıa que ser lo más cercano a 0 ya que se evitaŕıa a

toda costa la conexión del malware con el C2.
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6.2. Trabajo a futuro

Uno de los principales aspectos a mejorar son las métricas de clasificación. Se pueden

ajustar los parámetros de los modelos para obtener unos mejores resultados o incluso

proponer nuevos modelos para incorporarse al microservicio.

Por otra parte, y para obtener unos resultados más realistas, se debeŕıa de evaluar el

sistema con tráfico real de una red. Para ello, puede redirigirse una copia del tráfico DNS

de una red real para que se clasificara y resolviera. Con esto se obtendŕıan resultados

con una carga de red y una implementación más realista, lo que aportaŕıa una visión

más detallada de los factores a mejorar.

Por último, se propone estudiar la incorporación de otros tipos de detección

que trabajasen junto con el clasificador para obtener unos resultados más óptimos.

Estas detecciones pueden apoyarse en caracteŕısticas más volátiles como el número de

peticiones fallidas o el valor del TTL, tal y como se ha realizado en otros estudios. De

esta forma, se puede desarrollar un sistema de detección combinada que aprovecha las

ventajas del análisis basado en caracteŕısticas volátiles (tráfico de red) y persistentes

(nombres de dominio).
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