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RESUMEN

En los ultimos anos, ha habido un aumento drastico en la cantidad de ciberataques,
lo que representa una seria amenaza para organizaciones de todo tipo. Las técnicas
de deteccién y prevencién de malware han avanzado para tratar de contener este
crecimiento, pero los ciberdelincuentes también mejoran sus técnicas.

Este proyecto se centra en una técnica desarrollada por los atacantes llamada
Algoritmo de Generacion de Dominios (Domain Generation Algorithm, DGA). Esta
técnica genera una gran cantidad de nombres de dominio que utilizan las muestras
de malware para lograr ponerse en contacto con los servidores de los atacantes. Los
métodos tradicionales para detectar DGAs, como las listas negras, no son efectivos y
se ha tenido que desarrollar otros métodos de deteccién.

Este trabajo explica cémo el aprendizaje automético es un método que aporta
buenos resultados en la deteccion de DGAs. Ademas, se centra en el desarrollo de
un sistema software que implementa una capa de detecciéon basada en aprendizaje
automatico mediante dos modelos de aprendizaje diferentes (aprendizaje no profundo y
aprendizaje profundo). Se ha logrado montar un sistema funcional que permite detectar
y bloquear los dominios generados por los DGAs. Ademés, debido a que el sistema esta
muy desacoplado, permite que la incorporaciéon de otras técnicas de deteccién o nuevos

modelos de aprendizaje automatico sea facilmente implementable.



ABSTRACT

In recent years, there has been a drastic increase in the number of cyber attacks,
which represents a serious threat to organizations of all types. Malware detection
and prevention techniques have advanced in an attempt to contain this growth, but
cybercriminals are also improving their techniques.

This project focuses on a technique developed by attackers called Domain
Generation Algorithm (DGA). This technique generates a large number of domain
names that use malware samples to contact attackers’ servers. Traditional methods for
detecting DGAs, such as blacklisting, are not effective and other detection methods
have had to be developed.

This work explains how machine learning is a method that provides good results in
the detection of DGAs. In addition, it focuses on the development of a software system
that implements a detection layer based on machine learning through two different
learning models (no-deep learning and deep learning). A functional system has been set
up that allows the detection and blocking of domains generated by DGAs. In addition,
because the system is very decoupled, it allows the incorporation of other detection

techniques or new machine learning models to be easily implemented.
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Capitulo 1

Introduccion

Cada ano el nimero de ciberataques aumenta de forma masiva, al igual que la
adopcién de Internet en la vida cotidiana. Asi también, conlleva un gran coste a nivel
mundial, hasta el punto en el que se espera que en 2025 alcance un coste anual de 10.5
billones de ddlares estadounidenses [11].

Los objetivos finales de los atacantes pueden ser diversos, desde robo de credenciales
hasta sustraer documentaciéon confidencial. No obstante, se pueden definir las fases que
debe cumplir cualquier ataque para lograr lo que se propone. Para ello, Lockheed
Martin [12] desarrollé el framework Cyber Kill Chain(@®) [13] en el cual se definen los

siete pasos que un ataque debe completar para cumplir su objetivo (Figura 1.1).

RECONNAISSANCE

Harvesting email addresses,
conference information, etc.

WEAPONIZATION

Coupling exploit with backdoor
into deliverable payload

Delivering weaponized bundle to the
victim via email, web, USB, etc.

Exploiting a vulnerability to execute
code on victim’s system

COMMAND & CONTROL (C2)

.............. Command channel for remote
manipulation of victim

ACTIONS ON OB.JECTIVES

With ‘Hands on Keyboard’ access,
intruders accomplish their original goals

Figura 1.1: Los siete pasos de Cyber Kill Chain(®)
Fuente [14]

Tras las cinco primeras fases del ataque, se cuenta con el control del sistema de la

11



victima, la instalacién de software malicioso (malware) en este y se procede a ejecutar
las acciones maliciosas dirigidas desde un servidor conocido como servidor de mando y
control o, en inglés, Command and Control server (C2). Para recibir las instrucciones
del C2 se debe establecer un canal de comunicacion entre el malware y este servidor.

Existen diversas técnicas para lograr dicha comunicacion y se pueden clasificar
haciendo uso del framework MITRE ATTE&CK [18]. En su matriz de ataques se pueden
observar 14 téacticas diferentes y mas de 200 técnicas utilizadas por los atacantes.
Entre las tacticas se encuentra Command and Control [15]; en la cual se definen 16
técnicas para establecer la comunicacion con el C2. Este trabajo se centrara en una de
ellas, conocida como Resolucion Dindmica (Dynamic Resolution) [16] y en concreto,
en la sub-técnica llamada Algoritmos de Generacion de Dominios (Domain Generation
Algorithms) [17].

Para evadir las técnicas de deteccién y prevencion comunes, los atacantes se
aprovechan de la Resolucién Dindmica [16], cuyo objetivo es ajustar dindmicamente
parametros como el nombre de dominio, la direccién IP o el nimero de puerto que
se usan para establecer la conexion con el C2. Los atacantes pueden usar esta técnica
como canal de respaldo en caso de perder el contacto con el servidor principal y asi
recuperar la conexion. Esto es posible mediante el uso de un algoritmo compartido por
el malware y el atacante.

En el caso de los algoritmos de generacion de dominios (DGAs) [17], el parametro
que se ajusta dindmicamente es el nombre de dominio. A través del algoritmo
compartido, se genera de manera pseudoaleatoria el dominio C2 al que establecer la
conexion, en vez de depender de una lista estatica o de direcciones IP conocidas.

Habitualmente la deteccién y prevencion de las conexiones con el C2 se han realizado
a través de los llamados sumideros DNS [6]. Estos sumideros son servidores DNS
intermedios que actian como prozy de las peticiones DNS generadas dentro de una
red. Los sumideros poseen una lista negra que incluye nombres de dominio que se han
visto involucrados en ataques. Cuando se recibe una peticion DNS, se comprueba si el
dominio existe en su lista negra. Si no se encuentra, el servidor realiza la resolucién
DNS de la manera habitual. En caso contrario, el servidor responde con una resolucion
falsa (normalmente la direccién IP virtual del interfaz loopback) o con una resolucién
que incluye la direccion IP de un servidor falso para suplantar al C2 e investigar el
comportamiento del malware. De esta forma, si el malware depende de una lista estatica
de dominios y todos ellos estan incluidos en la lista negra, el malware pasa a estar
inactivo y su reactivacién supone un proceso demasiado costoso para el atacante. En el
ambito de esta deteccién es donde los DGAs toman ventaja, debido a su independencia

con respecto a las listas estaticas.

12



Una de sus ventajas es que incluso si se ha bloqueado un nombre de dominio
generado y se ha desmantelado la infraestructura del ataque, el atacante tiene la
capacidad de registrar otro nombre de dominio que serd generado por el algoritmo
y asi conseguir desplegar facilmente una nueva infraestructura. Por otro lado, debido
a que cada algoritmo puede generar una gran cantidad de dominios, imposibilita el
uso de listas negras. Si se tratase de obtener una lista con todos los posibles dominios
generados por uno de estos algoritmos, el tamano seria tan grande que impediria su

uso en la practica.

Con el tiempo, los atacantes han desarrollado e implementado diferentes algoritmos
para crear dindmicamente los dominios. Aun asi, habitualmente estos algoritmos
tienen un comportamiento similar al de los algoritmos generadores de nimeros
pseudoaleatorios (PRNG, de sus siglas en inglés) [20]. De esta forma, los valores tienen
una apariencia aleatoria pero son generados de forma determinista a partir de ciertos
valores iniciales. Con esto, el atacante puede predecir qué nombre de dominio debe
registrar para que los dispositivos infectados se conecten a él, ya que es capaz de
inicializar su generador de nombres del mismo modo que las muestras de malware. En
muchas ocasiones, ademas de un parametro llamado semilla (seed), para la inicializacién
se usa otro tipo de informacion que el atacante puede predecir como la fecha de
ejecucion. Con esto se logra no repetir la misma secuencia de dominios cada vez que

se ejecuta el malware y, por tanto, dificultar la deteccién.

Debido al potencial de esta técnica y la gran variedad de posibles familias de
algoritmos, resulta complicado bloquear, rastrear o lograr tomar el control del canal
de comunicaciéon que el malware trata de establecer con el C2. No obstante, se
han realizado diversos estudios para aplicar métodos de aprendizaje automatico para
resolver este problema [4, 3, 1, 21]. Algunas investigaciones [4, 3| extraen datos del DNS
como el TTL ( Time-to-Live) para determinar si el dominio puede haber sido generado
por un DGA. Otras se centran en el nimero de peticiones DNS fallidas [1], ya que los
DGASs pueden generar y probar una gran cantidad de dominios hasta encontrar alguno

que esté activo.

Para este trabajo se parte de la tesis doctoral de José F. Selvi Sabater [21], centrada
en técnicas de deteccién basadas unicamente en caracteristicas léxicas del nombre del
dominio. Como principal ventaja de esta aproximacién, el autor sostiene que “los
nombres de dominio, al contrario de lo que sucede en otros campos de los mensajes
DNS, no cambian ya que son generados desde el lado cliente y no del servidor” [21, p.
50] y, por tanto, las caracteristicas empleadas no dependen de informacién volatil que

puede cambiar a lo largo del tiempo.
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1.1. Objetivos

El objetivo de este trabajo es implementar el sistema propuesto en [21, p. 90],
que contempla el uso de un modelo de aprendizaje no profundo y otro de aprendizaje
profundo para la deteccion y clasificacién de nombres de dominio maliciosos generados
por DGAs. Este sistema se integrara en un servidor DNS para anadirle una nueva
capa de seguridad. La implementacién del sistema se ha desacoplado totalmente del
software del servidor DNS, lo que permite que pueda ser usado junto con cualquier
servidor DNS. Esto aporta un mayor grado de flexibilidad e independencia a la hora de
incorporar el clasificador en entornos reales ya que no esta ligado a un DNS especifico
ni a una versién concreta.

Todo el cddigo desarrollado se ha liberado bajo licencia GNU/GPLv3 para que

pueda ser usado y mejorado por la comunidad [7].

1.2. Estructura del documento

Este documento se encuentra dividido en 6 capitulos. En el capitulo 2 se explica de
forma basica el protocolo DNS y los tipos y funcionamiento de los DGAs. A lo largo
del capitulo 3 se explica el estado del arte presente en la literatura sobre deteccion de
DGAs. El capitulo 4 detalla el sistema desarrollado. En el capitulo 5 se explican las
pruebas que se han realizado y los resultados obtenidos. Por ultimo, en el capitulo 6

se realiza una conclusion del trabajo realizado y el trabajo a futuro.
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Capitulo 2

Conceptos previos

En este capitulo se introducen los conceptos y definiciones que son necesarios para
comprender el trabajo desarrollado. En primer lugar, se habla sobre el protocolo DNS
y los sus procesos de resolucion. Seguidamente, se explican los algoritmos de generacion

de dominios y sus clasificaciones.

2.1. Protocolo DNS

Los humanos recuerdan y reconocen mejor nombres que direcciones IP (e.g.,
unizar.es frente a 155.210.11.37). Dos dominios muy parecidos pueden tener direcciones
IP muy diferentes y podria resultar demasiado costoso para los usuarios recordarlas.
Por otro lado, una direccion IP esta ligada a una maquina concreta, y por tanto, si
se quiere cambiar el dominio de maquina, también cambiaria su direccién pero no
se querria cambiar su nombre. Por todo ello surge el protocolo DNS (Domain Name
System) [8], que establece un sistema de nombrado de méquinas y una correspondencia
entre dichos nombres y las direcciones IP de dichas maquinas.

El protocolo DNS describe los mecanismos necesarios para traducir los nombres de
dominio en direcciones IP. En el escenario habitual se encuentra el cliente DNS, quien
solicita la resolucién de un dominio, y los servidores DNS, encargados de obtener la
direccién (o direcciones) IP asociada a dicho dominio. Existen dos tipos de servidores
DNS: servidores autorizados, que tienen la informacion necesaria para devolver la
asociacion nombre-IP que se esta buscando; y servidores recursivos, que no poseen
dicha asociacion pero gestionan la peticion DNS para obtenerla.

Una resolucion DNS comienza con la peticion del cliente a su servidor configurado.
Si este servidor tiene autoridad sobre el dominio por el cual se estda preguntando, le
devuelve al cliente la asociacién (véase la Figura 2.1). En caso contrario, si el servidor
tiene caché, consulta la peticién en su caché. Si tiene almacenada la respuesta y no

ha expirado, esta serd enviada al cliente (véase la Figura 2.2). Si la respuesta DNS no
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se encuentra en el servidor, comienza el proceso de resolucién entre servidores. En la
Figura 2.3 se ha representado el proceso de consultas recursivas. En este proceso, el
primer servidor que ha recibido la consulta del cliente reenvia la peticion recursivamente

a otros servidores DNS hasta obtener la asociaciéon nombre-IP y devolvérsela al cliente.

Servidor DNS autorizado
sobre unizar.es. DNS

V)

—1
c—J

A

Consulta DNS
¢IP unizar.es?

Cliente
DNS

A

Respuesta DNS
IP unizar.es
155.210.11.37

Figura 2.1: Resolucién DNS con servidor DNS autorizado.

Servidor DNS con caché¢ | DN S Consulta DNS Caché
¢IP unizar.es?

‘Respuesta DNS
: IP unizar.es

C ) 155.210.11.37 unizar.es ->155.210.11.37

Consulta DNS
¢IP unizar.es?

Cliente
DNS

A

Respuesta DNS
IP unizar.es
155.210.11.37

Figura 2.2: Resolucién DNS con servidor DNS caché.

Otro proceso de resolucion es el de consultas iterativas. En este proceso, el servidor
que recibe la consulta contesta con lo maximo que sepa de esa btisqueda sin preguntar

a ningun otro servidor. Si el servidor no tiene la respuesta de la consulta, suele devolver
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Servidor DNS .

0}

—l
c—

A
Consulta DNS @Respuesta DNS

; i 2
Servidor DNS recursivo l DNS .:‘ ¢IP unizar.s’ IP DNS es.
@Consulta DNS Servidor DNS es.
O ¢ IP unizar.es?

>

<
«—
Consulta DNS (5)Respuesta DNS o
¢IP unizar.es? IP DNS unizar.es.

C—< —
—

@ Respuesta DNS
IP unizar.es
155.210.11.37 v

@Consulta DNS
¢IP unizar.es?

Cliente | DN | Servidor DNS unizar.es.
DNS
< V]
Respuesta DNS
IP unizar.es
155.210.11.37 |
| S

Figura 2.3: Resolucién DNS con servidor DNS recursivo.

la IP del servidor del siguiente subdominio en la cadena de busqueda. Este proceso de
consulta es el que realiza aisladamente el servidor recursivo en la Figura 2.1 cuando
esta tratando de obtener la respuesta de la consulta de su cliente.

Como se puede observar, el cliente tinicamente es consciente del envio de la consulta
a su servidor DNS configurado, sin importar si este es el autorizado, si tiene la respuesta
en caché o si ha realizado un consulta recursiva. Por ultimo, cabe destacar que el

protocolo DNS funciona por defecto sobre el protocolo UDP [24] en el puerto 53.

2.2. Algoritmos de generacién de dominios

Tal y como se menciona anteriormente, la sub-técnica DGA es utilizada para ajustar
dindmicamente el nombre de dominio a través de un algoritmo compartido por el
atacante y el software. Plohmann et al. [19] dividen la clasificacién de los DGAs segun
dos categorias: la fuente de la semilla y el esquema de generacion. Combinando estas
dos categorias, se generan 16 posibles familias de algoritmos, aunque solo 6 de ellas se
han encontrado siendo implementadas por DGASs reales.

De esas dos categorias, el esquema de generacién es el tinico que influye de forma
directa en el aspecto de un nombre de dominio, y por tanto es la tnica categoria
de interés para este trabajo. Dentro de esta categoria se distinguen cuatro tipos de

esquemas [19]:

— Aritméticos: Calcula una secuencia de valores pseudoaleatorios que son

convertidos a caracteres ASCII para formar el nombre de dominio. Este esquema
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es el mds comun, encontrandose en 37 de los 43 DGAs analizados en [19]. Se

muestran ejemplos de DGAs obtenidos mediante este esquema en el Listado 2.1.

— Basados en hash: Emplean una funcién criptografica de resumen (hash) en su

formato hexadecimal.

— Basados en diccionario: Concatenan una secuencia de palabras provenientes de
uno o mas diccionarios embebidos en la propia muestra u obtenidos de Internet.
Es el segundo esquema mas empleado (3 de los 43 DGAs analizados en [19]). Se

muestran ejemplos de DGAs obtenidos mediante este esquema en el Listado 2.2.

— Basados en permutaciones: Derivan todos los dominios posibles a partir de

permutar los caracteres de un dominio inicial.

4chijlxk8axsrite.ddns.net
alg81lhcO07rq4ab6kdmnw.ddns .net
klkranbno83vwpotu8qgxqro.ddns.net
u8kvadodg2evul5xsn3vgrk.ddns.net
54kjo6sxed4qtwn7 .ddns.net

Listado 2.1: Ejemplo de nombres generados mediante generacion aritmética.

unuinstrumentation.com
missiondeveloped.com
contentfortheweiler.com
numberforscience.com
numberworkshop.com
surfacethetheandmissions.com
februaryrecent.com
spacesciencehopeseeking.com
provideatmoscomp.com
provenmeritspacecraftco.com
launchlauheldnathe.com
distkuideproposals.com

Listado 2.2: Ejemplo de nombres generados por DGAs basados en diccionario.

En los DGAs, al igual que en los PRNGs, una de las propiedades que muestra su
calidad es la cantidad de nombres pseudoaleatorios que puede generar sin producir
repeticiones. Si el algoritmo de generacién de dominios no esta bien disenado, puede
producir pocos nombres unicos y asi hacer que la estrategia para la que los DGAs
fueron pensados falle. Por ejemplo, Bader [2] public6 una reimplementacién en Python
del DGA empleado por el malware Corebot para estudiar su repetibilidad. Este DGA se
basa en generaciéon aritmética y su aspecto es muy similar al esperado en un algoritmo
PRNG. Las pruebas mostraron la capacidad de generar al menos 100 millones de

dominios sin producir ninguna repeticion.
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Notese que los nombres generados mediante DGAs basados en diccionario son
visualmente muy diferentes a los generados por el método aritmético (véase la diferencia
entre los dominios mostrados en el Listado 2.1 y Listado 2.2). Muchos de ellos podrian
haber sido registrados por un ser humano con fines legitimos, y por ello resultan
mucho mas dificiles de detectar. Cabe destacar que su capacidad para generar una
gran cantidad de valores sin producir ningin bucle es mucho menor. Por ejemplo, el
malware Gozi [2] utiliza un DGA basado en diccionario y pruebas realizadas mostraron

que se produjeron un 14,26

2.3. Estandar UML

UML (Unified Modeling Language) [9] es un lenguaje de modelado estandarizado
desarrollado para ayudar a los desarrolladores de sistemas y programas informaticos a
especificar, visualizar, construir y documentar los elementos de los sistemas de software,
asi como para el modelado comercial y otros sistemas no informaticos. Incluye aspectos
como la funcionalidad del sistema y expresiones concretas del lenguaje. En UML
se utilizan y asocian elementos de diferentes formas para desarrollar diagramas que
representan ciertos aspectos estructurales y estaticos de un sistema en particular, como
la colaboracion de diferentes objetos dentro del sistema.

Se definen a continuacion los diferentes tipos de diagramas usados en las fases de

analisis y disenio del sistema a desarrollar.
Diagrama de Clases

El diagrama de clases se utiliza para modelar el comportamiento estatico de un
sistema. Ademds de incluir los atributos y las funciones de las clases a implementar,
se indica graficamente cémo se relacionan las diferentes clases entre si. Las relaciones
entre clases poseen una multiplicidad, que se indica graficamente con un niimero en la
linea de conexién al costado de cada clase. Cuando la relacién es 1, significa que la clase
solo esté relacionado con una sola instancia, mientras que si es N, * o 1..*, significa que
estd relacionado un nimero N de veces que puede ser cualquier nimero de 0 a N, o en

el caso 1..*, puede ser de 1 a N (es decir, debe estar relacionado al menos una vez).
Diagrama de Secuencia

Un diagrama de secuencia es un tipo de diagrama que muestra cémo los
objetos interactian entre si en una secuencia determinada. Se utiliza para modelar
el comportamiento dindmico de un sistema. Se pueden utilizar para comprender

el comportamiento de un sistema, disenar nuevos sistemas o documentar sistemas
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existentes.

Las interacciones se representan como mensajes entre los objetos, que estan
representados en una linea de vida vertical. Los mensajes se organizan en una secuencia,
de arriba a abajo, segin el momento en que ocurren. Los mensajes entre los objetos

estan representados por flechas.
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Capitulo 3

Estado del arte

El ambito de la deteccién de dominios generados por DGAs ha recibido una gran
atencién en los 1ltimos anos. La gran mayoria de investigaciones y soluciones que se
han realizado estan basadas en técnicas de aprendizaje automatico, el cual se puede
dividir en dos grandes grupos en funciéon de su naturaleza: técnicas de aprendizaje no
profundo y técnicas de aprendizaje profundo. A continuacién, se revisan algunas de

estas investigaciones que estan mas relacionadas con el trabajo desarrollado en este
TFG.

3.1. Técnicas de aprendizaje no profundo

Con respecto al estado del arte presente en la literatura sobre las técnicas de
aprendizaje no profundo, en 2011 Bilge et al. publicaron EXPOSURE [4], mejorado
més tarde en 2014 [3]. Este sistema de deteccién de dominios maliciosos emplea técnicas
de analisis pasivo de DNS. Las técnicas se basan en 15 caracteristicas organizadas en 4
grupos: relativas al tiempo, extraidas de las respuestas DNS, basadas en el campo TTL
de los registros de recurso DNS y obtenidas del nombre de dominio en si mismo. Muchas
de estas caracteristicas son altamente volatiles y pueden cambiar a lo largo del tiempo.
Los autores se centraron principalmente en dos valores de las caracteristicas léxicas: el
porcentaje de caracteres numéricos en el nombre y el porcentaje de la subcadena de
texto con significado de mayor tamano con respecto a la longitud total del nombre. Sin
embargo, el sistema no proporciona un analisis 1éxico completo del dominio. Empleando
un arbol de decisién J48 [25], su sistema obtuvo un 98.4 % de acierto en la deteccién
con alrededor de un 1

En 2021 Antonakakis et al. presentaron Pleiades [1] Su aproximacién se basa en
que una muestra de malware que utiliza un DGA para establecer conexién con el C2
genera una cantidad significativa de peticiones fallidas relacionadas con la inexistencia

del dominio (respuestas NXDomain [5]). Esto es debido a que los DGAs pueden
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generar una gran cantidad de nombres pero solo unos pocos de ellos estan registrados.
Ademas, también sostienen que una muestra diferente del mismo malware generaria un
trafico de respuestas NXDomain similar. El sistema utiliza algoritmos de agrupacién
y clasificacién, empleando ademads de algunas caracteristicas volatiles, estadisticas
extraidas del nombre de dominio (como puede ser la longitud del nombre, nivel de
aleatoriedad y frecuencia en la distribucién de carédcteres). Finalmente, usan un modelo
oculto de Markov (Hidden Markov Model o HMM, del inglés) para agrupar los dominios

sospechosos.

3.2. Técnicas de aprendizaje profundo

Otros autores han realizado propuestas basadas en técnicas de aprendizaje
profundo. Estas técnicas no precisan de un proceso de ingenieria de caracteristicas
tan complejo como en los modelos de aprendizaje no profundo.

Woodbridge et al. propuso en 2016 una red neuronal que incluia una capa de
codificacién, una capa oculta LSTM con 128 unidades y una capa densa que combinaba
las salidas de la capa anterior en un unico resultado de clasificacién [26]. Compararon los
resultados de su modelo con los de otros tres modelos: un modelo HMM, una regresién
logistica a partir de los 2-Grams y un modelo Random Forest utilizando caracteristicas
extraidas manualmente similares a las propuestas por otros autores. Los resultados
obtenidos mostraron que el modelo propuesto clasificaba correctamente el 98 % de los
nombres generados con DGA, con una tasa de falsos positivos (False Positive Rate o
FPR) de 0.001.

Unos anos mas tarde, Tran et al. propusieron en [22] una modificacién con respecto
al trabajo de Woodbridge que utilizaba una capa LSTM with Multiclass Imbalance
en lugar de una capa LSTM. Esta red incluye la posibilidad de introducir un coste
mas granular en el proceso de aprendizaje, haciendo que el impacto de los errores
de clasificacion varie en funcién del tipo de error. Esta aproximacion se plantea en
dos etapas. En la primera de ellas, se entrena una red para clasificar los dominios en
“generados por DGA” o “no generados por DGA”, con un coste mayor para el error de
clasificar un dominio un nombre de dominio legitimo como generado por DGA que el
error opuesto. Esto evita que los dominios legitimos se bloqueen por error. La segunda
etapa solo se ejecuta si la primera ha clasificado el dominio como “generado por DGA”.
En ella, otra red clasifica el nombre de dominio para obtener el tipo de DGA especifico

que lo ha generado.

Estos trabajos han servido de punto de partida para la tesis doctoral de José F.

Selvi Sabater [21] para proponer unos modelos que aprovechen las ventajas de ambos
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y mitiguen sus desventajas como por ejemplo, basar la clasificacién y deteccién de los
dominios maliciosos en caracteristicas muy volatiles provenientes del trafico en la red

en un momento puntual.
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Capitulo 4

Sistema desarrollado

En este capitulo se procede a explicar el sistema desarrollado en el trabajo junto

con todas las propuestas y decisiones de diseno, su arquitectura y su funcionamiento.

4.1. Analisis y propuestas de diseno

Inicialmente se parte del sistema propuesto en la Figura 4.1. Este sistema es un
clasificador combinado que aprovecha las ventajas de los modelos Random Forest
(aprendizaje no profundo) y LSTM (aprendizaje profundo) y mitiga sus desventajas.

Se comienza con una primera capa llamada frontend que recibe el dominio a
clasificar. Este frontend busca en su memoria caché si el dominio ya ha sido clasificado
con anterioridad, en cuyo caso responde con el resultado. Esto aumenta la eficiencia
debido a que evita tener que volver a realizar la clasificacion. Si la informacién no se
encuentra en caché, el frontend solicita a Random Forest la clasificacion. Este modelo
proporciona una rapida respuesta y una facil explicabilidad en el caso de bloquear un
dominio legitimo. Con esto se puede justificar el motivo de bloqueo y permite ajustar
el funcionamiento del modelo para posteriores peticiones. El resultado aportado se
almacena en la memoria caché para futuras peticiones. Tras haber respondido con la
clasificacion, se ejecuta fuera de linea la misma peticién al modelo LSTM. Este modelo
tiene un tiempo de respuesta superior, pero no impacta en el tiempo de respuesta debido
a que se ejecuta fuera de linea. En el caso de que LSTM clasifique un dominio como no
malicioso, se actualiza el valor en la memoria caché para que en sucesivas peticiones
no se clasifique el mismo dominio como malicioso. Esta combinacién de modelos se
aprovecha de la mejor capacidad de LSTM para no producir falsos positivos.

En esta propuesta tedrica se tuvo en cuenta principalmente un aspecto para
plantear su implementacion real: el tiempo de clasificacién. Si llegase a ser muy
elevado, repercutiria en el tiempo de respuesta ante una peticion DNS, haciendo que se

descartara. En [21] se puede ver como el modelo Random Forest es capaz de clasificar
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Figura 4.1: Clasificador Combinado.
Fuente [21, p. 90]

64.000 nombres de dominio en 2.569 segundos; por tanto, el tiempo de clasificacién
de un solo dominio no sera significativo en el tiempo total de resoluciéon DNS. Por
otro lado, se observa en [21] como la velocidad de clasificacién del modelo LSTM con el
mismo conjunto de datos es de 59 segundos, un tiempo muy superior al modelo anterior
pero que sigue sin tener un gran impacto en el tiempo total de resolucién DNS.
Teniendo esto en cuenta se plantean esencialmente dos disenos; un médulo especifico
y un microservicio previo (Figura 4.2 y Figura 4.3, respectivamente). El médulo
especifico (Figura 4.2) es un diseio muy acoplado, ya que el clasificador combinado se
integra con un software DNS. La principal ventaja de esta opcién es que la velocidad
de respuesta es mayor debido a la integracion del clasificador en el propio servidor
DNS. Ademaés, a la hora de desplegar el servidor DNS, se instala todo en conjunto
sin necesidad de incorporar el clasificador especificamente. Para el funcionamiento, el
usuario simplemente ha de tener configurado el sistema como su servidor principal

y al generar una peticién DNS se envia directamente a este. El servidor clasifica la

;F MALWARE

", DNS

DNS QUERY
PORT 53

CLASIFICADOR {=rfc
COMBINADO |

DNS RESPONSE

Figura 4.2: Médulo DNS especifico.
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Figura 4.3: Microservicio previo a DNS.

peticién y si no se detecta como malware, se procede a una resolucién habitual. En
caso contrario, el servidor responde con una resolucion falsa (direccion IP virtual del
interfaz loopback o con direccién IP de un servidor falso para suplantar al C2).

Por otra parte, la arquitectura de microservicio previo al DNS (Figura 4.3), tiene un
tiempo de respuesta mayor ya que no esta optimizado para un software DNS concreto.
En cambio, tiene un disenio modular que lo hace independiente del servidor DNS y ofrece
mayor versatilidad. Para el funcionamiento, el usuario tiene configurado el microservicio
previo como su servidor DNS principal. Cuando el microservicio recibe una peticion, se
comprueba si se detecta el dominio como malicioso. Si es asi, el microservicio responde
de la misma forma que en el caso anterior (es decir, con una resolucion falsa). Por el
contrario, si no se detecta como malware, la peticion DNS es reenviada a un servidor
DNS para su resolucién habitual. Al recibir la respuesta del servidor, el microservicio
la reenvia al usuario. En este escenario, el microservicio actiia como un proxy para las
peticiones que no son clasificadas como malware.

Teniendo en cuenta la velocidad global del clasificador que se ha comentado
anteriormente, la ventaja en el tiempo de respuesta del moédulo especifico no es
una razon suficiente para su eleccién. En cambio, el microservicio previo ofrece una
flexibilidad e independencia sobre el software DNS utilizado que es muy significativa a
la hora de una implementacion real. Este diseno no solo permite incorporar una capa de
seguridad adicional a cualquier servidor DNS local en una red interna, sino que puede
implementarse sin necesidad de un servidor local y reenviar las peticiones a cualquier
otro servidor publico. Con todo ello, el diseno elegido para este proyecto ha sido el de
un microservicio previo.

Ademas, se ha realizado un pequeno cambio con respecto al clasificador combinado.
En este sistema la peticion al modelo LSTM no se hace fuera de linea sino
simultaneamente junto con la peticion al modelo Random Forest. La primera
clasificacion que recibe el frontEnd es la que se usa para enviar al usuario. La principal
ventaja de este cambio es que, en caso de que Random Forest tardase demasiado o

dejase de funcionar por alguna razon, se puede usar la clasificacion de LSTM para
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devolver la resoluciéon al usuario.

4.2. Arquitectura del sistema propuesto

Se han realizado diagramas UML [9] para comprender mejor la arquitectura del
sistema. Para proporcionar una visiéon global de todo el sistema y sus componentes se
disena primero un diagrama de clases. Ademas, también se han realizado diagramas de
secuencia para ilustrar las interacciones entre todos los componentes involucrados en
el sistema.

En la Figura 4.4 se puede observar el diagrama de clases del sistema. Como clase
principal se encuentra el FrontEnd que actia de orquestador. Esta clase recibe las
peticiones DNS y se encarga de su resolucion. Otros elementos que ya se han visto en los
esquemas anteriores son la caché y los clasificadores. La caché no solo busca y almacena
las clasificaciones de forma simple, sino que tiene inteligencia para gestionar elementos
duplicados, almacenar los dominios maliciosos para notificar al administrador y borrar
clasificaciones antiguas. Por otro lado, cada clasificador tiene un algoritmo. La clase
Algorithm representa los modelos de aprendizaje automatico que clasifican los nombres
de dominio. Para el diseno de esta clase se ha usado el Patrén Estrategia (Strategy
pattern) [10]. De esta forma se ha desacoplado el modelo de aprendizaje usado para
la clasificacién, haciendo posible que en un futuro puedan anadirse nuevos modelos.
La clase IPAddress se ha creado para representar algunos parametros de configuracion
necesarios para el FrontEnd. Por ultimo, la clase SharedMemory representa la memoria
compartida entre los clasificadores y el FrontEnd para cada peticion DNS que recibe el
FrontEnd.

4.3. Funcionamiento

El funcionamiento del sistema de forma detallada se explica a continuacién haciendo
uso de los diagramas de secuencia. En la Figura 4.5 se observa la inicializacién de todos
los objetos y como comienza el sistema a funcionar. El objeto FrontEnd es el encargado
de inicializar la caché y los clasificadores. También crea un socket en el que escuchara
las peticiones DNS de los usuarios. Una vez que todos los objetos estan inicializados,
el FrontEnd queda a la espera de recibir una peticién de resolucion DNS por parte
de un usuario. Cuando llega, lanza un hilo de ejecucion con la funcién handleQuery
encargada de resolver la peticion a partir de los bytes del datagrama UDP recibido
y el direccion IP del usuario. Tras lanzar este hilo de ejecucién, el FrontEnd vuelve a

quedar a la espera de recibir nuevos datagramas UDP.
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La funcion handleQuery se detalla en la Figura 4.6. En primer lugar, se extrae la
peticién DNS de los bytes del datagrama UDP para obtener el dominio por el cual se
esta preguntando. Con esto se busca la clasificacién en la caché y si la clasificacién esta
almacenada, se ejecuta la funcién sendResponse. En caso contrario, se crea un objeto
SharedMemory que pasard junto con otros elementos como parametro de la funcién
classify de cada clasificador. Esta funcion sera ejecutada en un hilo de ejecucion, creando
asi tantos hilos como clasificadores tenga el sistema. Una vez solicitada la clasificacién
a los modelos, el FrontEnd queda a la espera de la respuesta de esta funciéon. En esta
respuesta, ademas de la clasificacion, se incluye informacién con respecto al algoritmo
usado y acerca de si ha sido el primero de los clasificadores en acabar. Saber si la
respuesta de un clasificador es la primera sirve para no enviar la resolucion de manera
repetida al usuario, ya que la clasificacion del primer clasificador en acabar es la usada
para enviar la respuesta al usuario. Por 1ltimo, haya sido o no el primer clasificador
en acabar, se lanza en un hilo de ejecucion la funcion store del objeto Cache para que
este gestione la informacién a almacenar para las siguientes peticiones.

La Figura 4.7 representa cémo el FrontEnd envia la resolucién DNS mediante la
funcién sendResponse. En esta lo primero que se comprueba es la clasificacion del
modelo. Si el dominio no se ha detectado como malicioso, la peticion se reenvia al
servidor DNS configurado para resolverla y enviar dicha resolucién al usuario. En
caso contrario, se envia una resolucién falsa al usuario y se ejecuta en un hilo la
funcién storeForReport del objeto Cache para almacenar esta peticion como maliciosa
y reportarla al administrador.

Por otro lado, en la Figura 4.8 se muestra la forma en la que los clasificadores
realizan la clasificacion. Primero, detectan si el dominio es malicioso. Una vez que han
terminado, acceden a la SharedMemory en exclusion mutua para comprobar si han
sido los primeros en realizar la clasificacion y, en ese caso, asi responderlo al FrontEnd.
Antes de liberar la memoria compartida y en caso de haber sido los primeros, realizan
las actualizaciones oportunas en ella para que los demaés clasificadores sepan que otro
modelo ha acabado antes.

Por 1ltimo, en la Figura 4.9 se observa de manera detallada cémo el objeto Cache
realiza la funcién store para almacenar las clasificaciones. Primero se obtiene la marca
de tiempo actual (timestamp), ttil para guardar junto con la clasificacién y eliminar
clasificaciones antiguas en un futuro. Seguidamente se comprueba qué clasificador ha
aportado la informacion a almacenar. En este TFG, el resultado de clasificacion del
modelo LSTM tiene prioridad con respecto al resultado del resto de clasificadores. De
esta forma, si el algoritmo usado es LSTM, se almacena o actualiza el registro en caché;

mientras que si es Random Forest, inicamente trata de almacenarlo y en caso de que
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ya exista un registro relacionado con ese dominio no se actualiza.

4.4. Implementaciéon del sistema

El sistema ha sido desarrollado en Python y su cédigo fuente se ha liberado bajo

licencia GNU/GPLv3 para que pueda ser usado y mejorado por la comunidad [7].
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[
o
=

sd T:m_J:

f : FrontEnd

b
- R

1: create c : Cache

4: UDPServerSocket <- UDPSocket()

2: create

RF : Classifier

3: create

LSTM : Classifier

loop

[while True]

6: Sends UDP Datagram

5: UDPServerSocket.recvfrom()

7: handleQuery(datagramBytes :
bytes, address : IPAddress)

handleQuery

Figura 4.5: Diagrama de secuencia Main.
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sd [handleQuery] l

)

f : FrontEnd ¢ : Cache cl : Classifier
T T ——
User | | |
]‘__\ 1: dnsQuery <- Extract DNS query from bytes : :
| |
| |
| | |
| | |
;I‘__\ 2: domain <- Extract domain from dnsQuery : :
| |
| |
| | |
: 3: search(domain : string) : boolean : :
" [
I
3.1: cacheResponse: boolean |
________________________ |
|
| | |
1 1 1
alt | | |
| | |
[if cacheResponse is not None] : : :
T T [
4 I I I
: sendResponse : :
| | |
T T |
| | |
I Y A 1 — L
| | |
[else] | | |
: 4: create sM : SharedMemory : :
T I I
I | I I
| | |
I ! I I
| i 1 |
: 5: classify(domain : string, sharedMemory : lSharedMemory, response : dict) :
| | gl
| | :
| A P
: | : ref) classify function is
! : ! classify executed on a thread
I : I
| | |
| | |
: 5.1: firstReIsponse: boolean, malicious:boolean, class_of_cl: string
________________________ S
Ij< : | ~
| | | |
t t |
|oPY I I I
. [ [ [
[firstResponse] | | |
| | |
|re) | | |
: sendResponse : :
[ [ [
| | |
] : ] |
: 6: store(domain : string, isMalicious : : :
: boolean, address : IPAddress, classOfCl : : :
| stnr:g) | |
|
t : ’ﬂ I
: ! ref) store function is :
: i store executed on a thread :
I : i I
! | ! !
| | |
| | | |

Figura 4.6: Diagrama de secuencia Handle Query.
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sd Hmmsammmco:mmi

f : FrontEnd

User

4: response

|
_
I

c : Cache

alt
, _

| [if malicious]
_

1: response <- sinkholeResponse(query)

2: storeForReport(domain : string,

timestamp : datetime, address : IPAddress)

<

storeForReport
function is executed
on a thread

Figura 4.7: Diagrama de secuencia Send Response.
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sd [classify] )

cl : Classifier

1: isMalicious <- predict(domain: string)

2: sharedMemory.lock.acquire()

3: firstResponse <- IsharedMemory.firstReply

[if firstResponse]

4: sharedMemory.firstReply <- True

5: sharedMemory.lock.release()

Figura 4.8: Diagrama de secuencia Classify.
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sd [store] J

c : Cache

|
I
|:|<—_\ 1: timestamp <- datetime.now()

alt |
[if classOfCI |L= LSTM]
]
alt |
I
[try:] |
i 2: domainsLock.acquire()
|
3: domainsCol.insert_one()
n
4: domainsLock.release()
______________ b e e
[except DuplicateKeyError]
|
i 5: domainsLock.acquire()
4
L
i 6: domainsCol.update_one()
L]
|
7: domainsLock.release()
]
I
L S -
I
alt :
ftry: |
8: domainsLock.acquire()
L
9: domainsCol.insert_one()
.
10: domainsLock.release()
.
______________ Sy
[except DuplicateKeyError]

Figura 4.9: Diagrama de secuencia Store.
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Capitulo 5

Experimentos y resultados

Para obtener las conclusiones del sistema desarrollado en este trabajo, se han
realizado una serie de experimentos teniendo en cuenta varios aspectos. Lo primero
que se ha estudiado ha sido el tiempo de resolucién para una peticion DNS. También
se han obtenido las métricas necesarias para evaluar el rendimiento de los dos modelos
del clasificador, una vez implementados en el sistema. Por ultimo, se ha evaluado la

mejora que supone tener el componente Cache en el sistema.

5.1. Entorno de experimentacion

El estudio del tiempo de resolucion es posible tnicamente para los dominios
legitimos y por tanto su entorno de experimentacion ha sido diferente. Esto es debido
a que para los dominios legitimos si que es posible evaluar su resolucion, ya que estan
correctamente registrados. Por el contrario, la resolucién de la mayoria de los dominios

maliciosos no es posible puesto que no estan registrados o son bloqueados por los
servidores DNS.

5.2. Tiempo de resolucién de dominios legitimos

El dataset escogido para la experimentacion es el que ofrece de forma gratuita
Tranco [23]. Esta lista estd orientada a la investigacion y ofrece un ranking de las
principales paginas web visitadas.

El sistema desarrollado en este trabajo tiene una alta dependencia de la velocidad
de Internet, ya que para obtener la resolucion del dominio necesita reenviar la peticién
a un servidor DNS. Esta dependencia influye en el tiempo de respuesta, que es una
de las caracteristicas a analizar. Para obtener unos resultados validos a pesar de esta

dependencia, la forma de realizar la experimentacion ha sido la siguiente:

1. Se extrae el dominio de la lista [23] para realizar la peticién.
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2. Se realiza la consulta a un servidor DNS sin pasar por el microservicio.

3. Se realiza la consulta al microservicio y éste la reenvia al mismo servidor DNS

en caso de no ser clasificado como malicioso.

Este procedimiento estd enfocado a evaluar bajo la misma velocidad de Internet una
peticion directa al servidor frente a una peticién a ese mismo servidor, pero pasando
antes por el sistema desarrollado en este trabajo.

Ademas de los tiempos de resolucién, se ha obtenido el resultado de la clasificaciéon
del microservicio. Realmente, teniendo en cuenta la implementacion del sistema y la
mayor velocidad de Random Forest frente a LSTM, la clasificacién en una primera
instancia es inicamente de Random Forest. Por ello, los pasos anteriores se han repetido
para, no solo obtener la clasificacion de LSTM, sino ver la mejora del tiempo de
resolucion gracias al elemento Cache.

La Figura 5.1 muestra el resultado de estos experimentos. Realizando la clasificacion
de 15.000 dominios legitimos de la manera mencionada se ha visto que el tiempo medio
de una resolucion DNS pasando por el microservicio previo es de 0.1768 segundos,
mientras que enviando directamente la peticion al servidor es de 0.1334 segundos.

Esto implica que el sistema hace que la resolucién DNS sea un 32,55 % maés lenta
que si se enviase directamente al servidor. Tras la primera resolucion de los 15.000
dominios, la clasificaciéon ya se encuentra almacenada en el objeto Cache y por tanto
se ha vuelto a estudiar la media de los tiempos. En este caso, el tiempo medio cuando
se envia la peticion al sistema desarrollado es de 0.1162 segundos, mientras que cuando
es enviada directamente es de 0.1274 segundos. Cabe destacar que el microservicio ha
sido un 8,78 % maés rapido que preguntando directamente al servidor. Este resultado

se discutird a continuacion.

5.3. Rendimiento de los modelos

Para la evaluacion del rendimiento de los modelos se ha utilizado un dataset formado
por 30.000 dominios, siendo la mitad de ellos dominios legitimos de la lista Tranco y
la otra mitad dominios maliciosos obtenidos del dataset generado en [21]. Ademas,
se han obtenido las métricas de precision (precision), exhaustividad (recall), valor-F
(F'1-score) y la matriz de confusion (confusion matriz).

Los valores de la clasificacién binaria utilizados son los siguientes:
— 0: dominio legitimo
— 1: dominio malicioso
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Tiempo medio de una resolucion DNS (segundos)

@ Microservicio previo [l Servidor DNS

Primera resolucion

Segunda resolucién

0,00 0,05 0,10 0,15 0,20
Figura 5.1: Grafico del tiempo medio de una resolucién DNS.

Las métricas precision, recall, y Fl-score se calculan como se muestran en las
ecuaciones 5.1, 5.2 y 5.3, respectivamente. True Negative (TN) y True Positive
(TP) son, respectivamente, el nimero de predicciones correctas de dominios legitimos
y maliciosos. Por el contrario, False Negative (FN) y False Positive (FP) son,
respectivamente, el nimero de predicciones incorrectas de dominios legitimos y

maliciosos.

TP

precision = TP+ FP (5.1)
TP
= ——— 5.2
T TP FN (5:2)
Pl — score — 92 x preciston X recall (5.3)

precision + recall
La matriz de confusion indica qué tipos de errores se cometen. La métrica de

precisién representa qué porcentaje de los dominios que se predicen como maliciosos, en
realidad lo son. El recall indica qué porcentaje de dominios maliciosos ha sido capaz de
identificar correctamente el modelo. El valor F1-score combina las medidas de precisién
y recall en un tnico porcentaje para que sea mas facil comparar el rendimiento entre
varios modelos.

La Tabla 5.1 muestra la matriz de confusién de los modelos Random Forest y

LSTM, mientras que los resultados de las métricas para ambos modelos se muestran
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en la Tabla 5.2.

Random Forest LSTM

0 1 0 1
0 13560 1440 14345 655
1 498 14502 337 14663

Realidad

Tabla 5.1: Confusion matrix de los modelos Random Forest y LSTM.

Métricas Random Forest LSTM

Precision 0.9097 0.9572
Recall 0.9668 0.9775
Fl-score 0.9374 0.9673

Tabla 5.2: Métricas de los modelos Random Forest y LSTM.

5.4. Discusion de resultados

Con respecto al tiempo, el sistema ofrece unos resultados bastante éptimos. En un
entorno con una velocidad de Internet suficiente como para navegar de forma fluida,
la ralentizacién de la resolucién en un 32,55 % es una demora asumible para que no se
descarte la peticion DNS y el usuario la de como perdida o no resuelta. Por otra parte,
la caché hace que esa demora sea inexistente e incluso se consigue que la resolucién se
haga en un menor tiempo que cuando no existe el sistema clasificador. Las razones de
que este tiempo sea menor pueden ser variadas (por ejemplo, la velocidad de Internet
puede haber sido mayor en un momento puntual o el servidor DNS ha almacenado en
su propia caché la resolucién). No obstante, una de las razones principales por las que
esto sucede se debe a que cuando un dominio es clasificado como malicioso no se realiza
su resolucion y, por tanto, el tiempo que el usuario tarda en recibir la resolucién del
microservicio es menor que si la hubiera reenviado al servidor DNS.

Con esto se puede observar que ambos modelos tienen un desempeno aceptable,
aunque claramente destaca LSTM sobre Random Forest. Los dos modelos identifican
los dominios maliciosos con un alto porcentaje: Random Forest con un 96,68 % vy
LSTM con un 97,75 %. En cambio, la métrica de precisién de Random Forest y su
matriz de confusién muestran que se produce una cantidad de falsos positivos muy
relevante, lo que provocaria el entorpecimiento de un usuario o dispositivo cuyos fines
no son maliciosos. Esta conclusién estd en linea con la expresada en [21]. El nimero de
falsos negativos de ambos modelos también es considerable, teniendo en cuenta que los
dominios no identificados como maliciosos pueden servir para establecer la conexién

con el C2, lo cual causaria la consecucién de las acciones maliciosas del atacante. Por
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ultimo, la métrica Fl-score muestra que el rendimiento del modelo LSTM frente al de

Random Forest es aproximadamente un 3 % mejor.
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Capitulo 6

Conclusiones y trabajo a futuro

Este capitulo contiene las conclusiones obtenidas de este trabajo y se sugieren una
serie de trabajos futuros. Comienza con los objetivos logrados y un analisis de los
resultados obtenidos en relacion a estos objetivos, y termina proponiendo una serie
de acciones como trabajo a futuro para mejorar el sistema y realizar un analisis mas

realista del mismo.

6.1. Conclusiones

Se puede concluir que el trabajo ha logrado los objetivos que se propusieron en
un inicio. Se ha desarrollado un sistema que anade de forma funcional una capa
de seguridad adicional a cualquier servidor DNS para la deteccion y prevencién de
malware que emplee la técnica DGA para establecer conexién con el C2. Ademas, el
sistema es lo suficientemente desacoplado como para que la insercion de otras técnicas
de deteccion o nuevos modelos de aprendizaje automatico sean facilmente incorporados
al microservicio.

A la vista de los resultados, se puede decir que el tiempo que anade el interponer el
microservicio entre el usuario y el servidor DNS no es tan alto como para hacer que el
servicio de resolucion falle. Incluso disponer de una caché en el microservicio hace que el
retardo llegue a ser inexistente, debido a no tener que realizar de nuevo la clasificacién
del dominio. Por otra parte, los modelos usados en el clasificador combinado ofrecen
un desempeno correcto y funcional para el propdsito de este trabajo. Las métricas
indican un alto porcentaje de acierto a la hora de identificar los dominios maliciosos
generados por DGAs, pero también un alto nimero de falsos positivos que suponen un
entorpecimiento de la experiencia del usuario en entornos reales al bloquear nombres
de dominio legitimos. Ademas, a pesar de que el nimero de falsos negativos es muy
bajo, idealmente este niimero tendria que ser lo mas cercano a 0 ya que se evitaria a

toda costa la conexién del malware con el C2.

43



6.2. Trabajo a futuro

Uno de los principales aspectos a mejorar son las métricas de clasificacion. Se pueden
ajustar los parametros de los modelos para obtener unos mejores resultados o incluso
proponer nuevos modelos para incorporarse al microservicio.

Por otra parte, y para obtener unos resultados mas realistas, se deberia de evaluar el
sistema con trafico real de una red. Para ello, puede redirigirse una copia del trafico DNS
de una red real para que se clasificara y resolviera. Con esto se obtendrian resultados
con una carga de red y una implementacion mas realista, lo que aportaria una visién
mas detallada de los factores a mejorar.

Por ultimo, se propone estudiar la incorporacion de otros tipos de deteccion
que trabajasen junto con el clasificador para obtener unos resultados méas optimos.
Estas detecciones pueden apoyarse en caracteristicas mas volatiles como el niimero de
peticiones fallidas o el valor del TTL, tal y como se ha realizado en otros estudios. De
esta forma, se puede desarrollar un sistema de detecciéon combinada que aprovecha las
ventajas del andlisis basado en caracteristicas volatiles (trafico de red) y persistentes

(nombres de dominio).
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