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Abstract. A classical inequality by Grünbaum provides a sharp lower bound for
the ratio vol(K−)/vol(K), where K− denotes the intersection of a convex body with
non-empty interior K ⊂ Rn with a halfspace bounded by a hyperplane H passing
through the centroid g(K) of K.

In this paper we extend this result to the case in which the hyperplane H passes
by any of the points lying in a whole uniparametric family of r-powered centroids
associated to K (depending on a real parameter r ≥ 0), by proving a more general
functional result on concave functions.

The latter result further connects (and allows one to recover) various inequalities
involving the centroid, such as a classical inequality (due to Minkowski and Radon)
that relates the distance of g(K) to a supporting hyperplane of K, or a result for
volume sections of convex bodies proven independently by Makai Jr.&Martini and
Fradelizi.

1. Introduction

Let K ⊂ Rn be a compact set with positive volume vol(K), i.e., with positive n-
dimensional Lebesgue measure (along the paper, the k-dimensional Lebesgue measure
of M , provided that M is measurable, is denoted by volk(M) and we will omit the
index k when it is equal to the dimension n of the ambient space; furthermore, when
integrating dx will stand for dvol(x)). The centroid of K is the affine-covariant point

g(K) :=
1

vol(K)

∫
K
x dx.

According to a classical result by Grünbaum [9], if K is convex (from now on a
compact convex set with non-empty interior will be referred to as a convex body) with
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centroid at the origin, then

(1.1)
vol(K−)

vol(K)
≥
(

n

n+ 1

)n

,

where K− = K ∩{x ∈ Rn : ⟨x, u⟩ ≤ 0} and K+ = K ∩{x ∈ Rn : ⟨x, u⟩ ≥ 0} represent
the parts of K which are split by the (vector) hyperplane H = {x ∈ Rn : ⟨x, u⟩ = 0},
for any given u ∈ Sn−1. Here, ⟨·, ·⟩ denotes the standard scalar product.

There exists a classical inequality similar in spirit to Grünbaum’s result, attributed
to Minkowski for n = 2, 3 and Radon for general n, which bounds the distance from
g(K) to a supporting hyperplane of the convex body K (see [1, p. 57-58]). This result
asserts that whenK has centroid at the origin thenK ⊂ −nK, a fact that is equivalent
to the following statement (here M |E denotes the orthogonal projection of the subset
M ⊂ Rn onto a vector subspace E of Rn and E⊥ is the orthogonal complement of E):

Theorem A. Let K ⊂ Rn be a convex body with non-empty interior and let H be a
hyperplane. If K has centroid at the origin then

(1.2)
vol1

(
K−|H⊥)

vol1
(
K|H⊥

) ≥ 1

n+ 1
.

Another inequality of this type, but now involving volume sections instead of pro-
jections, is the following inequality (1.3). It was shown (independently) by [11], and
later by [6], who further proved this result when considering sections by planes of
arbitrary dimension.

Theorem B ([6, 11]). Let K ⊂ Rn be a convex body with non-empty interior,
let H be a hyperplane and let f : [a, b] −→ R≥0 be the function given by f(t) =
voln−1

(
K ∩ (tu+H)

)
, for some a < 0 < b. If K has centroid at the origin then

(1.3)
f(0)

∥f∥∞
≥
(

n

n+ 1

)n−1

.

Grünbaum’s result was extended to the case of sections [7, 15] and projections
[17] of compact convex sets, and generalized to the analytic setting of log-concave
functions [14] (see also [4, Lemma 2.2.6]) and p-concave functions [15], for p > 0.
Other Grünbaum type inequalities involving volumes of sections of compact convex
sets through their centroid, later generalized to the case of classical and dual quer-
massintegrals in [16], can be found in [6, 11].

Exploiting the original proof of Grünbaum in [9], the following extension of Grünba-
um’s inequality (1.1) to the case of compact sets with some concavity for the func-
tion which gives the volumes of cross-sections parallel to a given hyperplane (having
Grünbaum’s inequality as the particular case p = 1/(n − 1)) was shown in [12]. We
point out that this concavity condition on compact sets yields some additional restric-
tion on their mass distribution, since the set {x : f(x) > 0} is an interval for any given
p-concave function f .



A GENERAL FUNCTIONAL VERSION OF GRÜNBAUM’S INEQUALITY 3

Theorem C ([12]). Let K ⊂ Rn be a compact set with non-empty interior and with
centroid at the origin. Let H be a hyperplane such that the function f : H⊥ −→ R≥0

given by f(x) = voln−1

(
K ∩ (x+H)

)
is p-concave, for some p ∈ (0,∞). Then

(1.4)
vol(K−)

vol(K)
≥
(

p+ 1

2p+ 1

)(p+1)/p

.

The inequality is sharp.

Following the idea of the proof of the previous result, we will first show that an
analogous statement holds true when one replaces the centroid by the midpoint in a
direction u ∈ Sn−1, namely, the point

[
(a+ b)/2

]
· u, where [a, b] is the support of the

function f : R −→ R≥0 given by

f(t) = voln−1

(
K ∩ (tu+H)

)
(see Proposition 2.1).

In view of these results (Theorem C and Proposition 2.1), here we ask about the
possibility of finding other particular points that ensure a large enough amount of
mass in both subsets that are obtained when cutting the given compact set K ⊂ Rn

by a hyperplane passing through them. To figure out such a possible family of points
we notice that, fixed a unit direction u ∈ Sn−1, the corresponding components w.r.t.
u of both the centroid and the midpoint have a similar nature. Indeed, the component
of g(K) w.r.t. u is given by (see (2.2))

[g(K)]1 =
1

vol(K)

∫ b

a
tf(t) dt =

∫ b
a tf(t)1 dt∫ b
a f(t)1 dt

,

whereas the corresponding component of the midpoint is

a+ b

2
=

∫ b
a tf(t)0 dt∫ b
a f(t)0 dt

.

Thus, with the above-mentioned aim in mind, it seems reasonable to consider the
points gr · u, where

(1.5) gr :=

∫ b
a tf(t)r dt∫ b
a f(t)r dt

for any r ≥ 0. Here we show that such a uniparametric class of points allows us to
extend Grünbaum’s inequality (or more generally Theorem C) to the case in which
one replaces the classical centroid by any of them.

Theorem 1.1. Let r ∈ [0,∞) and let K ⊂ Rn be a compact set with non-empty
interior having the point gr · u, with respect to some direction u ∈ Sn−1, at the origin.
Let H = {x ∈ Rn : ⟨x, u⟩ = 0} be the hyperplane with normal vector u and assume
that the function f : H⊥ −→ R≥0 given by f(x) = voln−1

(
K ∩ (x+H)

)
is p-concave,

for some p ∈ (0,∞). If r ≥ 1 then

vol(K−)

vol(K)
≥
(

p+ 1

2p+ r

)(p+1)/p

,
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whereas if 0 ≤ r ≤ 1 then

vol(K−)

vol(K)
≥
(

p+ r

2p+ r

)(p+1)/p

.

Notice that the cases r = 1 and r = 0 correspond to Theorem C and Proposition
2.1, respectively.

Taking into account that, once a unit direction u ∈ Sn−1 is fixed, the above geomet-
ric results are reduced to the study of one variable functions with certain concavity,
here we deal with the corresponding functional counterpart of these statements (from
which the latter result will be obtained as a consequence of such an equivalent func-
tional one). To this aim, first we need to define the notion of functional α-centroid:
given a non-negative function h : [a, b] −→ [0,∞) with positive integral, for any α > 0
we will write

(1.6) gα(h) :=

∫ b
a thα(t) dt∫ b
a hα(t) dt

.

Now, the statement of our main result reads as follows.

Theorem 1.2. Let h : [a, b] −→ [0,∞) be a non-negative concave function, and let
α, β > 0. If β ≤ α then

(1.7)

∫ b
gα(h)

hβ(t) dt∫ b
a hβ(t) dt

≥
(
β + 1

α+ 2

)β+1

,

whereas if α ≤ β then

(1.8)

∫ b
gα(h)

hβ(t) dt∫ b
a hβ(t) dt

≥
(
α+ 1

α+ 2

)β+1

.

Remark 1.1. We observe that Theorem 1.1 is directly obtained from the previous re-
sult by just taking h = fp, β = 1/p and α = rβ (where the case r = 0 is derived when
doing α → 0+). Moreover, Theorem 1.2 can be shown from Theorem 1.1 by just consid-

ering the set of revolution K associated to the radius function r = (1/κn−1)f
1/(n−1),

where κn−1 is the (n − 1)-dimensional volume of the Euclidean unit ball in Rn−1,
f = hβ, p = 1/β and r = α/β. Therefore, in fact, both results (Theorems 1.1 and
1.2) are equivalent.

We would also like to point out that, apart from the already mentioned Theorem
1.1, and thus in particular Theorem C and Grünbaum’s inequality, both Theorems A
and B can be derived as direct applications of Theorem 1.2.

Indeed, on the one hand, applying Theorem 1.2 with h = f1/(n−1), which is con-
cave because of Brunn’s concavity principle (see e.g. [4, Section 1.2.1] and also [13,
Theorem 12.2.1]), and taking α = n− 1 and β → 0+, one gets b/(b− a) ≥ 1/(n+ 1),
which is exactly (1.2).
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On the other hand, applying Theorem 1.2 with h = f1/(n−1) and α = n − 1, and
then raising both sides of (1.8) to the power 1/β and taking β → ∞, one has

(1.9)

(
maxt∈[0,b] f(t)

∥f∥∞

)1/(n−1)

≥ n

n+ 1
.

Since we may assume without loss of generality that ∥f∥∞ > maxt∈[0,b] f(t) (consid-
ering otherwise the function t 7→ f(−t)), we then get maxt∈[0,b] f(t) = f(0) (since f is
(1/(n− 1))-concave and thus quasi-concave), and therefore (1.9) is nothing but (1.3).

The paper is organized as follows. In Section 2 we collect some preliminaries and
background, and we show some first results, such as Propositions 2.1 and 2.2. The
remaining section of the paper, Section 3, is devoted to the proof of Theorem 1.2,
which is also divided into another two subsections, one for each of both cases that are
distinguished in Theorem 1.2 (namely, β < α and α < β).

2. Preliminaries and first results

We recall that a function φ : Rn −→ R≥0 is p-concave, for p ∈ R ∪ {±∞}, if

φ
(
(1− λ)x+ λy

)
≥
(
(1− λ)φ(x)p + λφ(y)p

)1/p
for all x, y ∈ Rn such that φ(x)φ(y) > 0 and any λ ∈ (0, 1), where the cases p = 0,
p = ∞ and p = −∞ must be understood as the corresponding expressions that are
obtained by continuity, namely, the geometric mean, the maximum and the minimum
(of φ(x) and φ(y)), respectively. Note that if p > 0, then φ is p-concave if and only if
φp is concave on its support {x ∈ Rn : φ(x) > 0} and thus, in particular, 1-concave
is just concave (on its support) in the usual sense. A 0-concave function is usually
called log-concave whereas a (−∞)-concave function is referred to as quasi-concave.
Moreover, Jensen’s inequality for means (see e.g. [10, Section 2.9] and [5, Theorem 1
p. 203]) implies that a q-concave function is also p-concave, whenever q > p.

For the sake of simplicity, in the following we consider H = {x ∈ Rn : ⟨x, u⟩ = 0},
for a given direction u ∈ Sn−1 that we extend to an orthonormal basis (u1, u2, . . . , un)
of Rn, with u1 = u. Given a set M ⊂ Rn, and a real number c ∈ R, we will write
M−(u, c) = M ∩ {x ∈ Rn : ⟨x, u⟩ ≤ c} and M+(u, c) = M ∩ {x ∈ Rn : ⟨x, u⟩ ≥ c}.
When dealing with the above-mentioned prescribed hyperplane H we will just write
H− and H+ for the corresponding halfspaces determined by H. Moreover, for a
compact set with non-empty interior K ⊂ Rn, we denote by K(t) = K ∩ (tu + H)
for any t ∈ R. We notice that, if K|H⊥ ⊂ [au, bu], Fubini’s theorem applied to the
function f : R −→ R≥0 given by

f(t) = voln−1

(
K ∩ (tu+H)

)
yields (provided that a ≤ 0)

(2.1) vol(K) =

∫ b

a
f(t) dt and vol(K−) =

∫ 0

a
f(t) dt,

where, as usual, we are identifying the linear subspace spanned by u with R. Since
the set {t ∈ R : f(t) > 0} is convex whenever f is quasi-concave, from now on we will
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assume, without loss of generality, that f(t) > 0 for all t ∈ (a, b). Furthermore, by
Fubini’s theorem, we get

(2.2) [g(K)]1 =
1

vol(K)

∫ b

a
tf(t) dt

and thus, in particular, a < [g(K)]1 < b (cf. (2.1)).
It seems natural to wonder about the possibility of getting an analogue of Theorem

C by considering the midpoint in the direction u of K instead its centroid, that is, the
point

[
(a+ b)/2

]
· u. This is the content of the following result.

Proposition 2.1. Let K ⊂ Rn be a compact set with non-empty interior and with
midpoint, with respect to some direction u ∈ Sn−1, at the origin. Let H = {x ∈ Rn :
⟨x, u⟩ = 0} be the hyperplane with normal vector u and assume that the function f :
H⊥ −→ R≥0 given by f(x) = voln−1

(
K ∩ (x+H)

)
is p-concave, for some p ∈ (0,∞).

Then

vol(K−)

vol(K)
≥
(
1

2

)(p+1)/p

.

Proof. In the proof of [12, Theorem 1.1] it is shown that there exists a p-affine function

gp : [−γ, δ] −→ R≥0 given by gp(t) = c(t + γ)1/p, for some γ, δ, c > 0, such that
gp(0) = f(0), ∫ 0

−γ
gp(t) dt =

∫ 0

a
f(t) dt and

∫ δ

0
gp(t) dt =

∫ b

0
f(t) dt,

and further that −γ ≤ a < 0 < δ ≤ b.
Here, since K has its midpoint (w.r.t. u) at the origin, we have that a = −b and

then we get −γ + δ ≤ 0. Thus

vol(K−)

vol(K)
=

∫ 0
−γ gp(t) dt∫ δ
−γ gp(t) dt

≥
∫ (−γ+δ)/2
−γ gp(t) dt∫ δ

−γ gp(t) dt
=

(
1

2

)(p+1)/p

,

as desired. □

We collect here the following result, originally proved in [2] and [3] (see also [8] for
a detailed presentation), which can be regarded as the functional counterpart of the
Brunn-Minkowski inequality.

Theorem D (The Borell-Brascamp-Lieb inequality). Let λ ∈ (0, 1). Let −1/n ≤ p ≤
∞ and let f, g, h : Rn −→ R≥0 be measurable functions with positive integrals such
that

h((1− λ)x+ λy) ≥
(
(1− λ)f(x)p + λg(y)p

)1/p
for all x, y ∈ Rn with f(x)g(y) > 0. Then

(2.3)

∫
Rn

h(x) dx ≥
[
(1− λ)

(∫
Rn

f(x) dx

)q

+ λ

(∫
Rn

g(x) dx

)q]1/q
,

where q = p/(np+ 1).
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Now, considering the points gr · u, for any r > 0, where gr is given by (1.5), and
following the same idea as in [6, Theorem 3], we can get a first result concerning this
family of points. The statement reads as follows.

Corollary 2.1. Let r ∈ (0,∞) and let K ⊂ Rn be a compact set with non-empty
interior having the point gr · u, with respect to some direction u ∈ Sn−1, at the origin.
Let H = {x ∈ Rn : ⟨x, u⟩ = 0} be the hyperplane with normal vector u and assume
that the function f : R −→ R≥0 given by f(t) = voln−1

(
K ∩ (tu +H)

)
is p-concave,

for some p ∈ (0,∞). Then

(2.4)
vol(K−)

vol(K)
≥
(

p

2p+ r

)(p+1)/p

.

We will derive Corollary 2.1 as a simple application of the following (slightly more
general) functional result.

Proposition 2.2. Let K ⊂ Rn be a convex body. Let g : K −→ R≥0 be a concave
function and let f : K −→ R≥0 be a p-concave function, with p > 0. Then

g

(∫
K xf(x) dx∫
K f(x) dx

)
≥
(

p

(n+ 1)p+ 1

)
∥g∥∞.

Proof. Let µ be the probability measure whose density function is given by

dµ(x) =
f(x)∫

K f(x) dx
dx.

Since g is concave, using Jensen’s integral inequality (see e.g. [5, Theorem 1 p. 370])
we get that

g

(∫
K xf(x) dx∫
K f(x) dx

)
= g

(∫
K
x dµ(x)

)
≥
∫
K
g(x) dµ(x)

=

∫ ∥g∥∞

0
µ
(
{x ∈ K : g(x) ≥ t}

)
dt,

where in the last identity we have used Fubini’s theorem. Now, since the density of
µ, with respect to the Lebesgue measure, is p-concave, from the Borell-Brascamp-
Lieb inequality (2.3) we have that the function φ(t) := µ

(
{x ∈ K : g(x) ≥ t}

)
is(

p/(np+ 1)
)
-concave. Indeed, it is enough to apply Theorem D with the functions

f · χ{x∈K : g(x)≥t1}∫
K f(x) dx

,
f · χ{x∈K : g(x)≥t2}∫

K f(x) dx
and

f · χ{x∈K : g(x)≥(1−λ)t1+λt2}∫
K f(x) dx

for any t1, t2 ∈ R, where χM denotes the characteristic function of the set M , to check
that φ satisfies such a concavity. Hence, and taking into account that φ(0) = 1 and

φ
(
∥g∥∞

)
≥ 0, we may assure that φ(t)p/(np+1) ≥ (1 − t/∥g∥∞) for all t ∈ [0, ∥g∥∞].

So, by integrating we obtain that∫ ∥g∥∞

0
µ
(
{x ∈ K : g(x) ≥ t}

)
dt ≥

∫ ∥g∥∞

0
(1− t/∥g∥∞)(np+1)/p dt

=

(
p

(n+ 1)p+ 1

)
∥g∥∞,
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from where the result immediately follows. □

We conclude this section by showing Corollary 2.1.

Proof of Corollary 2.1. Denoting by [a, b] the support of f , let f̄ , g : [a, b] −→ R≥0 be
the functions given by

g(t) = vol
(
K ∩ (tu+H−)

)p/(p+1)
=

(∫ t

a
f(s) ds

)p/(p+1)

and

f̄(t) = voln−1

(
K ∩ (tu+H)

)r
= f(t)r.

By hypothesis, it is clear that f̄ is (p/r)-concave, whereas from the Borell-Brascamp-
Lieb inequality (2.3) we have that g is concave on [a, b]. So, from Proposition 2.2
applied to the functions f̄ and g, and taking into account that gr = 0, we get that

vol(K−) = g

(∫ b
a tf̄(t) dt∫ b
a f̄(t) dt

)(p+1)/p

≥
(

p

2p+ r

)(p+1)/p

∥g∥(p+1)/p
∞

=

(
p

2p+ r

)(p+1)/p

vol(K),

as desired. □

In the following section, the tighter inequalities collected in Theorem 1.1, which
improve the one that was obtained in Corollary 2.1, will be shown. More precisely, we

will prove that one may replace the constant given by (2.4), namely,
(
p/(2p+r)

)(p+1)/p
,

with two bigger constants (depending on whether r is either less than one or greater
than one). Furthermore, these new constants do fit well with (1.4), since, in fact, they
all coincide when r = 1, that is, when one considers the centroid of the set.

3. Proof of Theorem 1.2

Here we are going to slightly modify the approach followed in [17, Theorem 8]
(which yields our case β = n− 1) to cover all the cases for a general concave function
h, which will allow us to show Theorem 1.2. To this aim, we split the proof into
two steps, depending on whether β < α or α < β. Note also that the case α = β
is equivalent to the statement of Theorem C (by just taking p := 1/α = 1/β and
f = hα = hβ). Before distinguishing whether β < α or α < β, we make some general
considerations.

We may assume, without loss of generality, that a = 0 (namely, we deal with a
concave function h : [0, b] −→ [0,∞)). Now, let L ⊂ R2 be the convex body

L :=
{
(x, y) ∈ R2 : 0 ≤ x ≤ b, 0 ≤ y ≤ h(x)

}
and notice that, from Fubini’s theorem, we have

(3.1) gα(h) =

∫ b
0 th(t)α dt∫ b
0 h(t)α dt

=

∫
L⟨x, e1⟩⟨x, e2⟩

α−1 dx∫
L⟨x, e2⟩α−1 dx

.
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Let µβ be the measure on (0,∞)2 given by dµβ(x) = ⟨x, e2⟩β−1 dx. Then

gα(h) =

∫
L⟨x, e1⟩⟨x, e2⟩

α−β dµβ(x)∫
L⟨x, e2⟩α−β dµβ(x)

and ∫ b
gα(h)

h(t)β dt∫ b
0 h(t)β dt

=

∫
{x∈L : ⟨x,e1⟩≥gα(h)}⟨x, e2⟩

β−1 dx∫
L⟨x, e2⟩β−1 dx

=
µβ{x ∈ L : ⟨x, e1⟩ ≥ gα(h)}

µβ(L)
.

Next, we will compare the concave function h : [0, b] −→ [0,∞) with an auxiliary
affine function g passing through the point t = gα, which further encloses areas on its
support and to the right side of t = gα given by the values of the integrals of h on [0, b]
and [gα, b], respectively (cf. Figure 2). More precisely, we may assure that there exist
γ < δ and c > 0 in such a way that the affine decreasing function g : [γ, δ] −→ [0,∞)
given by

g(t) = c(δ − t)

satisfies

(3.2)

(i) g
(
gα(h)

)
= h

(
gα(h)

)
,

(ii)
∫ δ
γ g(t)β dt =

∫ b
0 h(t)β dt, and

(iii)
∫ δ
gα(h)

g(t)β dt =
∫ b
gα(h)

h(t)β dt.

Indeed, taking

δ =
β + 1

h
(
gα(h)

)β ∫ b

gα(h)
h(t)β dt+ gα(h), c =

h
(
gα(h)

)
δ − gα(h)

and

γ = δ −
(
β + 1

cβ

∫ b

0
h(t)β dt

)1/(β+1)

,

elementary computations show (3.2).

Then, denoting by Lg ⊂ R2 the triangle (see Figure 1) given by

Lg :=
{
(x, y) ∈ R2 : γ ≤ x ≤ δ, 0 ≤ y ≤ g(x)

}
,

from (ii) and (iii) in (3.2) (by using Fubini’s theorem), and the relative position of h
and g, given by the concavity of h and the relation g

(
gα(h)

)
= h

(
gα(h)

)
(see Figure

2), we have that

(3.3)

(i) µβ(L) = µβ(Lg),

(ii) µβ

(
{x ∈ L : ⟨x, e1⟩ ≥ gα(h)}

)
=µβ

(
{x ∈ Lg : ⟨x, e1⟩ ≥ gα(h)}

)
,

(iii) 0 ≤ γ ≤ gα(h) ≤ b ≤ δ.
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h

0 b

L

gα

g

γ δ

Lg

0 bgα

Figure 1. Sets L and Lg.

g
h

γ δ0 bgα

Figure 2. Relative position of the functions h and g.

Moreover, defining g(t) := 0 for all t ∈ [0, γ] and h(t) := 0 for any t ∈ [b, δ], there
exists x0 ∈ (gα(h), b] such that h(t) ≥ g(t) for all t ∈ [0, γ]∪ [gα(h), x0] and h(t) ≤ g(t)
otherwise (see Figure 2 -there, observe that x0 coincides with b). Hence, on the one
hand, for every s ∈ [gα(h), x0] (the case of s ≥ x0 immediately follows) we get that

∫ b

s
h(t)β dt =

∫ b

gα(h)
h(t)β dt−

∫ s

gα(h)
h(t)β dt

≤
∫ δ

gα(h)
g(t)β dt−

∫ s

gα(h)
g(t)β dt =

∫ δ

s
g(t)β dt.
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On the other hand, for every s ∈ [γ, gα(h)] (again, the case of s ≤ γ immediately
follows) we have that∫ b

s
h(t)β dt =

∫ b

gα(h)
h(t)β dt+

∫ gα(h)

s
h(t)β dt

≤
∫ δ

gα(h)
g(t)β dt+

∫ gα(h)

s
g(t)β dt =

∫ δ

s
g(t)β dt.

Therefore,

µβ

(
L+(e1, s)

)
= µβ

(
{x ∈ L : ⟨x, e1⟩ ≥ s}

)
=

∫ b

s
h(t)β dt

≤
∫ δ

s
g(t)β dt = µβ

(
{x ∈ Lg : ⟨x, e1⟩ ≥ s}

)
= µβ

(
L+
g (e1, s)

)(3.4)

for every s ∈ [0, δ], where we are using the notation L+
g (u, c) to represent the set(

Lg

)+
(u, c), for a given direction u ∈ Sn−1 and a real number c ∈ R.

3.1. The case of β < α. We devote this section to proving the first part of Theorem
1.2, namely, we show (1.7) provided that β < α.

We will first prove that there exists a non-negative and concave function φ :
[γ, δ] −→ [0, ∥h∥∞] such that

(3.5) gα(h) ≤

∫
Lg
⟨x, e1⟩φ(⟨x, e1⟩)α−β dµβ(x)∫
Lg

φ(⟨x, e1⟩)α−β dµβ(x)
.

To this aim, we consider the function W : [0, ∥h∥∞] −→ [0, µβ(L)] given by

W (s) = µβ

(
{x ∈ L : ⟨x, e2⟩ ≥ s}

)
,

which is clearly both strictly decreasing and surjective. We may then define the non-
negative function w : [0, ∥h∥∞] −→ [γ, δ] that satisfies

W (s) = µβ

(
{x ∈ Lg : ⟨x, e1⟩ ≥ w(s)}

)
for any s ∈ [0, ∥h∥∞]. Indeed, since

W (s) =
cβ(δ − w(s))β+1

β(β + 1)
,

we get that

w(s) = δ −
(
β(β + 1)

cβ
W (s)

)1/(β+1)

.

Notice that, from the Borell-Brascamp-Lieb inequality (2.3), we have that the function

W 1/(β+1) is concave (since the density of µβ, with respect to the Lebesgue measure, is(
1/(β − 1)

)
-concave). Therefore, w is strictly increasing, surjective and convex, and

then there exists the function φ = w−1 : [γ, δ] −→ [0, ∥h∥∞], which is further (strictly
increasing and) concave.
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Now, we will start by bounding from above the right-hand side of (3.1). By using
Fubini’s theorem, (iii) in (3.3) and (3.4), we have

1

α− β

∫
L
⟨x, e1⟩⟨x, e2⟩α−β dµβ(x)

=

∫
L

∫ ⟨x,e1⟩

0
ds1

∫ ⟨x,e2⟩

0
sα−β−1
2 ds2 dµβ(x)

=

∫ b

0

∫ ∥h∥∞

0
sα−β−1
2 µβ

(
L+(e1, s1) ∩ L+(e2, s2)

)
ds2 ds1

≤
∫ b

0

∫ ∥h∥∞

0
sα−β−1
2 min

{
µβ

(
L+(e1, s1)

)
, µβ

(
L+(e2, s2)

)}
ds2 ds1

≤
∫ b

0

∫ ∥h∥∞

0
sα−β−1
2 min

{
µβ

(
L+
g (e1, s1)

)
, µβ

(
L+(e2, s2)

)}
ds2 ds1

≤
∫ δ

0

∫ ∥h∥∞

0
sα−β−1
2 min

{
µβ

(
L+
g (e1, s1)

)
, µβ

(
L+(e2, s2)

)}
ds2 ds1.

(3.6)

So, on the one hand, from (3.6) we get

1

α− β

∫
L
⟨x, e1⟩⟨x, e2⟩α−β dµβ(x)

≤
∫ δ

0

∫ ∥h∥∞

0
sα−β−1
2 min

{
µβ

(
L+
g (e1, s1)

)
, µβ

(
L+(e2, s2)

)}
ds2 ds1

=

∫ δ

0

∫ ∥h∥∞

0
sα−β−1
2 min

{
µβ

(
L+
g (e1, s1)

)
, µβ

(
L+
g

(
e1, w(s2)

))}
ds2 ds1

=

∫ δ

0

∫ ∥h∥∞

0
sα−β−1
2 µβ

(
L+
g (e1, s1) ∩ L+

g

(
e1, w(s2)

))
ds2 ds1

=
1

α− β

∫
Lg

⟨x, e1⟩φ(⟨x, e1⟩)α−β dµβ(x),

(3.7)

where in the last equality above we have used that ⟨x, e1⟩ ≥ w(s2) if and only if
φ(⟨x, e1⟩) ≥ s2.

On the other hand, since α− β > 0, from Fubini’s theorem we have that

1

α− β

∫
L
⟨x, e2⟩α−β dµβ(x) =

∫ ∥h∥∞

0
sα−β−1µβ

(
{x ∈ L : ⟨x, e2⟩ ≥ s}

)
ds

=

∫ ∥h∥∞

0
sα−β−1µβ

(
{x ∈ Lg : ⟨x, e1⟩ ≥ w(s)}

)
ds

=

∫ ∥h∥∞

0
sα−β−1µβ

(
{x ∈ Lg : φ(⟨x, e1⟩) ≥ s}

)
ds

=

∫
Lg

φ(⟨x, e1⟩)α−β dµβ(x).

(3.8)
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Hence, from (3.7) and (3.8) (and using (3.1)) we obtain (3.5), as desired.

Now we will prove that for any concave function φ : [γ, δ] −→ [0,∞) we have that

(3.9)

∫
Lg
⟨x, e1⟩φ(⟨x, e1⟩)α−β dµβ(x)∫
Lg

φ(⟨x, e1⟩)α−β dµβ(x)
≤

∫
Lg
⟨x, e1⟩ (⟨x, e1⟩ − γ)α−β dµβ(x)∫
Lg

(⟨x, e1⟩ − γ)α−β dµβ(x)
.

To this aim, let C1 > 0 be such that

(3.10)

∫
Lg

(
C1(⟨x, e1⟩ − γ)

)α−β
dµβ(x) =

∫
Lg

φ(⟨x, e1⟩)α−β dµβ(x).

Since the latter identity is equivalent (by Fubini’s theorem) to∫ δ

γ

((
C1(t− γ)

)α−β − φ(t)α−β
)
g(t)β dt = 0,

we may assert, taking into account that φ is concave, that there exists t0 ∈ (γ, δ) such
that

(3.11)

(i) C1(t− γ) ≤ φ(t) for every γ ≤ t ≤ t0, and

(ii) C1(t− γ) ≥ φ(t) for every t0 ≤ t ≤ δ.

Then, from (3.10) and (3.11) (and using Fubini’s theorem), we get

β

(∫
Lg

⟨x, e1⟩φ(⟨x, e1⟩)α−β dµβ(x)−
∫
Lg

⟨x, e1⟩
(
C1(⟨x, e1⟩ − γ)

)α−β
dµβ(x)

)
=

∫ δ

γ
t
(
φ(t)α−β −

(
C1(t− γ)

)α−β
)
g(t)β dt

=

∫ t0

γ
t
(
φ(t)α−β −

(
C1(t− γ)

)α−β
)
g(t)β dt

+

∫ δ

t0

t
(
φ(t)α−β −

(
C1(t− γ)

)α−β
)
g(t)β dt

≤ t0

∫ t0

γ

(
φ(t)α−β −

(
C1(t− γ)

)α−β
)
g(t)β dt

+ t0

∫ δ

t0

(
φ(t)α−β −

(
C1(t− γ)

)α−β
)
g(t)β dt

= t0

∫ δ

γ

(
φ(t)α−β −

(
C1(t− γ)

)α−β
)
g(t)β dt

=βt0

∫
Lg

(
φ(⟨x, e1⟩)α−β −

(
C1(⟨x, e1⟩ − γ)

)α−β
)
dµβ(x) = 0.

Thus, we have∫
Lg

⟨x, e1⟩φ(⟨x, e1⟩)α−β dµβ(x) ≤
∫
Lg

⟨x, e1⟩
(
C1(⟨x, e1⟩ − γ)

)α−β
dµβ(x),
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which, together with (3.10), yields (3.9).

Now, we will compute the right-hand side of (3.9). On the one hand,∫
Lg

(⟨x, e1⟩ − γ)α−β dµβ(x) =
cβ

β

∫ δ

γ
(t− γ)α−β(δ − t)β dt

=
cβ

β
(δ − γ)α+1

∫ 1

0
sα−β(1− s)β ds

=
cβ

β
(δ − γ)α+1Γ (α− β + 1)Γ (β + 1)

Γ (α+ 2)
,

whereas, on the other hand, we obtain∫
Lg

⟨x, e1⟩ (⟨x, e1⟩ − γ)α−β dµβ(x) =
cβ

β

∫ δ

γ
t(t− γ)α−β(δ − t)β dt

= γ
cβ

β
(δ − γ)α+1

∫ 1

0
sα−β(1− s)β ds+

cβ

β
(δ − γ)α+2

∫ 1

0
sα−β+1(1− s)β ds

=
cβ

β
(δ − γ)α+1Γ (α− β + 1)Γ (β + 1)

Γ (α+ 2)

(
γ + (δ − γ)

α− β + 1

α+ 2

)
.

Hence, we have∫
Lg
⟨x, e1⟩ (⟨x, e1⟩ − γ)α−β dµβ(x)∫
Lg

(⟨x, e1⟩ − γ)α−β dµβ(x)
= γ + (δ − γ)

α− β + 1

α+ 2
,

and therefore, this together with (3.5) and (3.9) yields

gα(h) ≤ γ + (δ − γ)
α− β + 1

α+ 2
=: g0.

Finally, the latter relation jointly with (ii) and (iii) in (3.2) gives us∫ b
gα(h)

h(t)β dt∫ b
a h(t)β dt

=

∫ δ
gα(h)

g(t)β dt∫ δ
γ g(t)β dt

≥
∫ δ
g0
g(t)β dt∫ δ

γ g(t)β dt
=

(
δ − g0
δ − γ

)β+1

=

(
1− α− β + 1

α+ 2

)β+1

=

(
β + 1

α+ 2

)β+1

,

as desired. This finishes the proof of (1.7).

3.2. The case of α < β. Now we show the second part of Theorem 1.2, namely,
(1.8) provided that α < β. We point out that here we use an approach similar to
the one followed in Subsection 3.1, but with the main difference that we need to
truncate the sets L and Lg due to certain integrability issues, since now the exponent
of some functions under the integral sign (vanishing at some points of the domains of
integration) is α− β < 0.

We start by considering the function W1 : [0, ∥h∥∞] −→ [0, µβ(L)] given by

W1(s) = µβ

(
{x ∈ L : ⟨x, e2⟩ ≤ s}

)
,
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which is clearly both strictly increasing and surjective. We may then define the func-
tion w1 : [0, ∥h∥∞] −→ [γ, δ] that satisfies

W1(s) = µβ

(
{x ∈ Lg : ⟨x, e1⟩ ≥ w1(s)}

)
for any s ∈ [0, ∥h∥∞]. Indeed, since

W1(s) =
cβ
(
δ − w1(s)

)β+1

β(β + 1)
,

we get that

w1(s) = δ −
(
β(β + 1)

cβ
W1(s)

)1/(β+1)

.

Note that, from the Borell-Brascamp-Lieb inequality (2.3), we have that the function

W
1/(β+1)
1 is concave (since the density of µβ, with respect to the Lebesgue measure,

is
(
1/(β − 1)

)
-concave). Therefore, w1 is strictly decreasing, surjective and convex,

and then there exists the function φ1 = w−1
1 : [γ, δ] −→ [0, ∥h∥∞], which is further

(strictly decreasing and) concave.

Now, for any 0 < ε ≤ ∥h∥∞ we define the sets

Lε := {x ∈ L : ⟨x, e2⟩ ≥ ε}

and

Lg,ε := {x ∈ Lg : ⟨x, e1⟩ ≤ w1(ε)}.

ε

h

0 b

Lε

gα w1(ε)

g

γ δ

Lg,ε

0 bgα

Figure 3. Sets Lε and Lg,ε.

Notice that, from the definition of W1 and w1 (jointly with (i) in (3.3)) we have
that

(3.12)

(i) µβ(Lε) = µβ(Lg,ε), and

(ii) µβ

(
{x ∈ Lε : ⟨x, e2⟩ ≤ s}

)
=µβ

(
{x ∈ Lg,ε : ⟨x, e1⟩ ≥ w1(s)}

)
,

for all ε ≤ s ≤ ∥h∥∞.
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We will first prove that, for any 0 < ε ≤ ∥h∥∞, we have∫
Lε
⟨x, e1⟩⟨x, e2⟩α−β dµβ(x)∫
Lε
⟨x, e2⟩α−β dµβ(x)

<

∫
Lg,ε

⟨x, e1⟩φ1(⟨x, e1⟩)α−β dµβ(x)∫
Lg,ε

φ1(⟨x, e1⟩)α−β dµβ(x)

+
bδεα∫

Lε
⟨x, e2⟩α dx

.

(3.13)

To this aim, we will observe that, denoting by bε = max
{
x ∈ R : (x, y) ∈ Lε

}
, for

any 0 ≤ s ≤ bε we have that

(3.14) µβ

(
{x ∈ Lε : ⟨x, e1⟩ ≥ s}

)
≤ µβ

(
{x ∈ Lg,ε : ⟨x, e1⟩ ≥ s}

)
+W1(ε).

Indeed, taking into account that if s ≤ w1(ε) then

µβ

(
{x ∈ Lg : ⟨x, e1⟩ ≥ s}

)
= µβ

(
{x ∈ Lg,ε : ⟨x, e1⟩ ≥ s}

)
+W1(ε),

and if s > w1(ε) then

µβ

(
{x ∈ Lg : ⟨x, e1⟩ ≥ s}

)
≤ W1(ε),

we get, from (3.4), that

µβ

(
{x ∈ Lε : ⟨x, e1⟩ ≥ s}

)
≤ µβ

(
{x ∈ L : ⟨x, e1⟩ ≥ s}

)
≤ µβ

(
{x ∈ Lg : ⟨x, e1⟩ ≥ s}

)
≤ µβ

(
{x ∈ Lg,ε : ⟨x, e1⟩ ≥ s}

)
+W1(ε)

for all 0 ≤ s ≤ bε, which shows (3.14). This, together with

W1(ε) ≤
∫ b

0

∫ ε

0
yβ−1 dy dx =

b

β
εβ

and (ii) in (3.12), implies that

min
{
µβ

(
L+
ε (e1, s1)

)
, µβ

(
L−
ε (e2, 1/s2)

)}
≤ min

{
µβ

(
L+
g,ε(e1, s1)

)
+W1(ε), µβ

(
L+
g,ε

(
e1, w1(1/s2)

))}
≤ W1(ε) + min

{
µβ

(
L+
g,ε(e1, s1)

)
, µβ

(
L+
g,ε

(
e1, w1(1/s2)

))}
≤ b

β
εβ +min

{
µβ

(
L+
g,ε(e1, s1)

)
, µβ

(
L+
g,ε

(
e1, w1(1/s2)

))}
for all 0 ≤ s1 ≤ bε and all 0 < 1/s2 ≤ ∥h∥∞, where again the notations L+

ε (u, c)

and L+
g,ε(u, c) represent the sets

(
Lε

)+
(u, c) and

(
Lg,ε

)+
(u, c), respectively, for a given

direction u ∈ Sn−1 and a real number c ∈ R.
So, defining w1(s) := γ if s ≥ ∥h∥∞, and taking into account that bε ≤ b ≤ δ (by

(iii) in (3.3)), from the fact that α < β and using Fubini’s theorem we have on the
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one hand that
1

β − α

∫
Lε

⟨x, e1⟩⟨x, e2⟩α−β dµβ(x)

=

∫
Lε

∫ ⟨x,e1⟩

0
ds1

∫ 1/⟨x,e2⟩

0
sβ−α−1
2 ds2 dµβ(x)

=

∫ bε

0

∫ 1/ε

0
sβ−α−1
2 µβ

(
L+
ε (e1, s1) ∩ L−

ε (e2, 1/s2)
)
ds2 ds1

<

∫ bε

0

∫ 1/ε

0
sβ−α−1
2 min

{
µβ

(
L+
ε (e1, s1)

)
, µβ

(
L−
ε (e2, 1/s2)

)}
ds2 ds1

≤
∫ δ

0

∫ 1/ε

0
sβ−α−1
2

b

β
εβ ds2 ds1

+

∫ δ

0

∫ 1/ε

0
sβ−α−1
2 min

{
µβ

(
L+
g,ε(e1, s1)

)
, µβ

(
L+
g,ε

(
e1, w1(1/s2)

))}
ds2 ds1

=
bδ

β − α
εα +

∫ δ

0

∫ 1/ε

0
sβ−α−1
2 µβ

(
L+
g,ε(e1, s1) ∩ L+

g,ε

(
e1, w1(1/s2)

))
ds2 ds1

=
bδ

β − α
εα +

1

β − α

∫
Lg,ε

⟨x, e1⟩φ1(⟨x, e1⟩)α−β dµβ(x),

(3.15)

where in the last equality above we have also used that ⟨x, e1⟩ ≥ w1(1/s2) if and only
if 1/φ1(⟨x, e1⟩) ≥ s2 (since φ1 is decreasing).

On the other hand, since α < β, from Fubini’s theorem (jointly with (ii) in (3.12))
we have that

1

β − α

∫
Lε

⟨x, e2⟩α−β dµβ(x) =

∫
Lε

∫ 1/⟨x,e2⟩

0
sβ−α−1 ds dµβ(x)

=

∫ 1/ε

0
sβ−α−1µβ

(
L−
ε (e2, 1/s)

)
ds

=

∫ 1/ε

0
sβ−α−1µβ

(
L+
g,ε

(
e1, w1(1/s)

))
ds

=
1

β − α

∫
Lg,ε

φ1(⟨x, e1⟩)α−β dµβ(x),

(3.16)

where in the last equality above we have used again that ⟨x, e1⟩ ≥ w1(1/s) if and only
if 1/φ1(⟨x, e1⟩) ≥ s. Hence, from (3.15) and (3.16), we obtain (3.13), as desired.

Now we will prove that for any concave function φ1 : [γ, δ] −→ [0,∞) we have that

(3.17)

∫
Lg,ε

⟨x, e1⟩φ1(⟨x, e1⟩)α−β dµβ(x)∫
Lg,ε

φ1(⟨x, e1⟩)α−β dµβ(x)
≤

∫
Lg,ε

⟨x, e1⟩ (δ − ⟨x, e1⟩)α−β dµβ(x)∫
Lg,ε

(δ − ⟨x, e1⟩)α−β dµβ(x)
.

To this aim, let C1 > 0 be such that

(3.18)

∫
Lg,ε

(
C1(ε)(δ − ⟨x, e1⟩)

)α−β
dµβ(x) =

∫
Lg,ε

φ1(⟨x, e1⟩)α−β dµβ(x).
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Since the latter identity is equivalent (by Fubini’s theorem) to∫ w1(ε)

γ

((
C1(ε)(δ − t)

)α−β − φ1(t)
α−β

)
gβ(t) dt = 0,

we may assert, taking into account that φ1 is concave, that there exists t0(ε) ∈ (γ, δ)
such that

(3.19)

(i) C1(ε)(δ − t) ≥ φ1(t) for every γ ≤ t ≤ t0(ε), and

(ii) C1(ε)(δ − t) ≤ φ1(t) for every t0(ε) ≤ t ≤ w1(ε).

Then, from (3.18) and (3.19) (taking into account that α < β), and using Fubini’s
theorem, we obtain∫

Lg,ε

⟨x, e1⟩φ1(⟨x, e1⟩)α−β dµβ(x)−
∫
Lg,ε

⟨x, e1⟩
(
C1(ε)(δ − ⟨x, e1⟩)

)α−β
dµβ(x)

=
1

β

∫ w1(ε)

γ
t
(
φ1(t)

α−β −
(
C1(ε)(δ − t)

)α−β
)
gβ(t) dt

=
1

β

∫ t0(ε)

γ
t
(
φ1(t)

α−β −
(
C1(ε)(δ − t)

)α−β
)
gβ(t) dt

+
1

β

∫ w1(ε)

t0

t
(
φ1(t)

α−β −
(
C1(ε)(δ − t)

)α−β
)
gβ(t) dt

≤ t0(ε)

β

∫ t0(ε)

γ

(
φ1(t)

α−β −
(
C1(ε)(δ − t)

)α−β
)
gβ(t) dt

+
t0(ε)

β

∫ w1(ε)

t0(ε)

(
φ1(t)

α−β −
(
C1(ε)(δ − t)

)α−β
)
gβ(t) dt

=
t0(ε)

β

∫ w1(ε)

γ

(
φ1(t)

α−β −
(
C1(ε)(δ − t)

)α−β
)
gβ(t) dt

= t0(ε)

∫
Lg,ε

(
φ1(⟨x, e1⟩)α−β −

(
C1(ε)(δ − ⟨x, e1⟩)

)α−β
)
dµβ(x) = 0.

Thus, we have∫
Lg,ε

⟨x, e1⟩φ1(⟨x, e1⟩)α−β dµβ(x) ≤
∫
Lg,ε

⟨x, e1⟩
(
C1(ε)(δ − ⟨x, e1⟩)

)α−β
dµβ(x),

which, together with (3.18), yields (3.17).

Hence, from (3.13) and (3.17), for every 0 < ε ≤ ∥h∥∞ we get∫
Lε
⟨x, e1⟩⟨x, e2⟩α−β dµβ(x)∫
Lε
⟨x, e2⟩α−β dµβ(x)

<

∫
Lg,ε

⟨x, e1⟩ (δ − ⟨x, e1⟩)α−β dµβ(x)∫
Lg,ε

(δ − ⟨x, e1⟩)α−β dµβ(x)

+
bδεα∫

Lε
⟨x, e2⟩α dx

.
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Now, taking limits as ε → 0+ in the above inequality, we have that the left-hand
side, namely, ∫

Lε
⟨x, e1⟩⟨x, e2⟩α−β dµβ(x)∫
Lε
⟨x, e2⟩α−β dµβ(x)

=

∫
Lε
⟨x, e1⟩⟨x, e2⟩α−1 dx∫
Lε
⟨x, e2⟩α−1 dx

,

tends to ∫
L⟨x, e1⟩⟨x, e2⟩

α−1 dx∫
L⟨x, e2⟩α−1 dx

= gα(h)

as ε → 0+ (see (3.1)). Furthermore, the first term in the right-hand side,∫
Lg,ε

⟨x, e1⟩ (δ − ⟨x, e1⟩)α−β dµβ(x)∫
Lg,ε

(δ − ⟨x, e1⟩)α−β dµβ(x)
=

cβ

β

∫ w1(ε)
γ t(δ − t)α dt

cβ

β

∫ w1(ε)
γ (δ − t)α dt

,

tends to

gα(g) =

∫ δ
γ t(δ − t)α dt∫ δ
γ (δ − t)αdt

=

(
δ − (α+ 1)(δ − γ)

α+ 2

)
for ε → 0+, whereas the second term in the right-hand side,

bδεα∫
Lε
⟨x, e2⟩α dx

,

clearly tends to

0∫
L⟨x, e2⟩α dx

= 0

for ε → 0+. Therefore, we have that

gα(h) ≤ gα(g).

Finally, the latter relation jointly with (ii) and (iii) in (3.2) gives us∫ b
gα(h)

h(t)β dt∫ b
0 h(t)β dt

=

∫ δ
gα(h)

g(t)β dt∫ δ
γ g(t)β dt

≥

∫ δ
gα(g)

g(t)β dt∫ δ
γ g(t)β dt

=

(
δ − gα(g)

δ − γ

)β+1

=

(
α+ 1

α+ 2

)β+1

,

as desired. This finishes the proof of (1.8), and hence also that of Theorem 1.2.
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References

[1] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper. Springer-Verlag, Berlin-New York,
1974 (in German, reprint of the (1934) first edition); Theory of Convex Bodies. BCS Associates,
Moscow, 1987 (in English).

[2] C. Borell, Convex set functions in d-space, Period. Math. Hungar. 6 (1975): 111–136.
[3] H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler
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Soc. 372 (9) (2019): 6755–6769.
[17] M. Stephen and N. Zhang, Grünbaum’s inequality for projections, J. Funct. Anal. 272 (6) (2017):

2628–2640.
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