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Abstract
We find conditions on a function space L that ensure that it behaves as an L p-space
in the sense that any unconditional basis of a complemented subspace of L either is
equivalent to the unit vector system of �2 or has a subbasis equivalent to a disjointly
supported basic sequence. This dichotomy allows us to classify the symmetric basic
sequences of L. Several applications to Orlicz function spaces are provided.
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1 Introduction

Recall that a sequence (xn)∞n=1 in a Banach space U (over the real or complex field F)
is a basic sequence if it is a Schauder basis of its closed linear span [xn : n ∈ N]. Two
sequences, typically two basic sequences, (xn)∞n=1 and ( yn)

∞
n=1 in Banach spaces X

and Y, respectively, are said to be equivalent if there a linear isomorphism

T : [xn : n ∈ N] → [ yn : n ∈ N]

such that T (xn) = yn for all n ∈ N. A central problem in the isomorphic theory of
Banach spaces is the classification of the mutually non-equivalent basic sequences of
a certain type in a Banach space U. Among the conditions we can impose to tackle
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this classification we highlight complementability, unconditonality, spreadability, and
symmetry.

A basic sequence X = (xn)∞n=1 in X is said to be complemented if [xn : n ∈ N] is
complemented inX. The basic sequenceX = (xn)∞n=1 inX is said to be unconditional
if the rearranged sequence (xπ(n))

∞
n=1 is a basic sequence for any permutation π ofN.

In turn, X is said to be symmetric (resp., spreading) if it is equivalent to (xπ(n))
∞
j=1

for any permutation (resp., increasing map) π of N. Symmetric basic sequences are
both unconditional and spreading (see [16, 30]). In practice, the only features that one
needs about symmetric basic sequences in many situations are their unconditionality
and spreadability, to the extent that it was believed that symmetric bases could be
characterized as those bases that are simultaneously unconditional and spreading. As
Garling [9] provided a counterexample disproving it, Singer [31] coined the word
subsymmetric to refer to unconditional spreading bases.

Let us outline the more relevant results in the classification of symmetric and
subsymmetric basic sequences in Banach spaces. The unit vector system is a sym-
metric basis for �p, 1 ≤ p < ∞, and c0. Moreover, it is the unique subsymmetric
basic sequence of those spaces (see, e.g., [3, Proposition 2.14] and [4, Proposition
2.1.3]). The authors of [5] address the task of studying the symmetric basic sequence
structure of Lorentz sequence spaces. They proved that if 1 ≤ p < ∞ and w is a
non-increasing weight whose primitive sequence is submultiplicative, then d(w, p)
has exactly two subsymmetric (and symmetric) basic sequences, namely the unit vec-
tor bases of d(w, p) and �p. They also proved that if the submultiplicative condition
breaks down, then d(w, p) hasmore than two symmetric bases, and there are instances
where d(w, p) has infinitelymany symmetric basic sequences. The authors of [2] stud-
ied the subsymmetric counterpart of Lorentz spaces, namely Garling sequence spaces
g(w, p) modelled after the aforementioned Garling’s counterexample. They proved
that for any 1 ≤ p < ∞ and any non-increasing weight w, g(w, p) has a unique
symmetric basic sequence, namely the unit vector system of �p, and infinitely many
subsymmetric basic sequences. The basic sequence structure ofOrlicz sequence spaces
has also been deeply studied. Given an Orlicz function F , let hF denote the separable
part of the Orlicz sequence space �F . It is known [17] that every subsymmetric basic
sequence in hF is equivalent to the unit vector system of an Orlicz space hG for some
Orlicz function G. In particular, every subsymmetric basic sequence is symmetric.
Lindenstrauss and Tzafriri showed in [19] that if

lim
t→0+

t F ′(t)
F(t)

exists, then hF has a unique symmetric basis. In the same paper, an Orlicz sequence
space with exactly two symmetric basic sequences is supplied. The same authors gave
in [21] a sufficient condition for hF to have uncountably many subsymmetric basic
sequences. The article [7] contains an intricate construction of an Orlicz sequence
space with a countably infinite collection of symmetric basic sequences. In [12], suf-
ficient conditions for �p to be a subspace of the Orlicz space LF over [0, 1] are given.
In turn, the papers [11, 13] are devoted to study the existence of complemented copies
of �p-spaces in Orlicz function spaces over [0, 1]. We also highlight that Tsirelson
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[32] proved the existence of a Banach space without a copy of �p, 1 ≤ p < ∞, nor
c0, thus solving a long-standing problem that goes back to Banach. As a matter of
fact, the space nowadays known as the original Tsirelson space T ∗, its dual, denoted
by T after [8], and the convexifications of T , have no subsymmetric basic sequence
(see [8, 32]).

While the subsymmetric basic sequence structure of the more relevant sequence
spaces is quite well understood, the advances within the framework of function spaces,
i.e., Banach spaces over nonatomic measure spaces, are much scanter. Arguably, func-
tion spaces have, in general, a richer structure than sequence spaces, so it is more
challenging to find tools that fit their study. In view of this, the paper [16], which
successfully addresses the task of classifying the subsymmetric basic sequences of
Lebesgue spaces L p, deserves to be considered one of the peaks of the theory.
In it, Kadec and Pełczyński proved that any subsymmetric basic sequence of L p,
2 < p < ∞, is equivalent to the unit vector system of �p or �2. The situation in
the case when 1 ≤ p < 2 is quite different. In fact, if 1 ≤ p < 2, L p has a basic
sequence isometrically equivalent to the unit vector system of �q for every q in the
interval [p, 2] (see [18, Corollary 1 to Theorem 7.2]). Imposing the basic sequence
to be complemented makes a difference. The authors of [16] proved that the list of
subsymmetric sequence spaces that are equivalent to a complemented basic sequence
of L p reduces to the unit vector system of �q with q ∈ {2, p}. We also note that,
since L1 is aL1-space, �1 is, up to equivalence, the unique complemented normalized
unconditional basic sequence of L1 (see [18, Theorem 6.1]). Let us also mention the
work of Raynaud, who proved that �s embeds into Lq(L p), 1 ≤ p < q < ∞, if and
only if it embeds into L p or Lq (see [27]).

In this document, we generalize results from the milestone paper [16] by proving a
dichotomy theorem that works for function spaces other than Lebesgue spaces. Then,
we put this dichotomy in use to determine the subsymmetric basic sequence structure
of certain Orlicz function spaces.

The paper is organized as follows. In Sect. 2 we revisit some classical results of
Banach lattices recording their applications to function spaces. In Sect. 3 we give
several versions of the small perturbation principle for unconditional basic sequences
that fit our purposes. Section4 contains themain theoretical results. In Sect. 5 we apply
them to direct sums of Lebesgue spaces, and in Sect. 6 we use the developedmachinery
to study Orlicz sequence spaces.

2 Function spaces as Banach lattices

Let (�,�,μ) be a σ -finite measure space, and let F denote the real or complex scalar
field. We will denote by L0(μ) the linear space consisting of all F-valued measurable
functions on �, and by L+0 (μ) the cone consisting of all measurable functions with
values in [0,∞]. As usual, we identify functions that differ in a null set. Following
the nowadays standard terminology from [6], a function norm over the measure space
(�,�,μ) will be a map ρ : L+0 (μ) → [0,∞] such that

(F.a) ρ( f ) = 0 if and only if f = 0 μ-a.e.;
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(F.b) ρ( f + g) ≤ ρ( f )+ ρ(g) for every f , g ∈ L+0 (μ);
(F.c) ρ(t f ) = tρ( f ) for every t ∈ [0,∞] and f ∈ L+0 (μ);
(F.d) ρ( f ) ≤ ρ(g) whenever f and g ∈ L+0 (μ) satisfy f ≤ g μ-a.e.;
(F.e) ρ(χE ) <∞ for every E ∈ � with μ(E) <∞;
(F.f) ρ(limn fn) = limn ρ( fn) for any non-decreasing sequence ( fn)∞n=1 in L+0 (μ);

and
(F.g) for every E ∈ � with μ(E) < ∞ there is a constant CE such that

∫
E f dμ ≤

CEρ( f ) for every f ∈ L+0 (μ).

If ρ is a function norm, then

Lρ = { f ∈ L0(μ) : ρ(| f |) <∞},

endowed with the ordering ‘ f is not greater than g if f ≤ g almost everywhere’ and
the norm

‖ · ‖ρ := ρ(| · |)

is a Banach lattice, so we can apply to it the theory of Banach lattices masterfully
gathered in the handbook [23]. The separable part of the function space Lρ will be
closure in Lρ of the vector space S(μ) consisting of all integrable simple functions.
Since, by the Fatou property (F.f),

‖ f ‖ρ = sup{‖g‖ρ : |g| ≤ | f | , g ∈ S(μ)}, f ∈ L0(μ),

two function spaces over the same σ -finite measure space are in inclusion if and only
if their separable parts are.

For the reader’s ease, we single out some topics on Banach lattice theory relevant
to us.

2.1 Lattice convexity and concavity versus Rademacher type and cotype

Given 1 ≤ r ≤ ∞, we say that the function norm ρ is lattice r-convex (resp., lattice
r-concave) if there is a constant C such that A ≤ CB (resp., B ≤ CA) for every finite
family ( f j ) j∈J in L+0 (μ), where

A := ρ

⎛

⎜
⎝

⎛

⎝
∑

j∈J
f rj

⎞

⎠

1/r
⎞

⎟
⎠ and B :=

⎛

⎝
∑

j∈J
ρr ( f j )

⎞

⎠

1/r

.

If we impose the inequality A ≤ CB (resp., B ≤ CA) to hold only in the case when
the family ( f j ) j∈J consists of disjointly supported functions, so that
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⎛

⎝
∑

j∈J
f rj

⎞

⎠

1/r

=
∑

j∈J
f j ,

we say that ρ satisfies an upper (resp., lower) r-estimate. It is clear that the Banach
lattice Lρ is lattice p-convex (resp., is lattice p-concave, satisfies an upper p-estimate,
or satisfies a lower p-estimate) if and only if ρ does. The following result evinces the
tight connection between convexity and concavity of Banach lattices, and Rademacher
type and cotype of Banach spaces. Notice that any Banach lattice is lattice 1-convex
and lattice∞-concave. So we say that L has nontrivial convexity (resp., concavity)
if it is lattice p-convex for some p > 1 (resp., lattice p-concave for some p < ∞).
Similarly, we say that a Banach space X has nontrivial type (resp., cotype) if it has
Rademacher type p for some p > 1 (resp., Rademacher cotype p for some p <∞).

Theorem 2.1 (see [23, Theorem 1.f.3, Theorem 1.f.7, Corollary 1.f.9 and Corollary
1.f.13]) Let L be a Banach lattice.

• Let 1 < r ≤ ∞. If L satisfies an upper r-estimate, then it is p-convex for any
1 < p < r . In turn, if L is lattice r-convex and has nontrivial concavity, then it
has Rademacher type r . If r ≤ 2 and L has Rademacher type r , then L satisfies
an upper p-estimate for every 1 < p < r , and has nontrivial concavity.

• Let 1 ≤ r < ∞. If L satisfies a lower r-estimate, then it is p-concave for any
r < p < ∞. In turn, if L is lattice r-concave, then it has Rademacher cotype
r . Finally, if r ≥ 2 and L has Rademacher cotype r , then L satisfies a lower
p-estimate for every r < p <∞.

Remark 2.2 Theorem 2.1 gives that L has nontrivial cotype if and only if it has non-
trivial concavity, and that L has nontrivial type if and only if it has both nontrivial
convexity and nontrivial concavity. Notice that these results imply that if L has non-
trivial type, then it also has nontrivial cotype. This result holds for general Banach
spaces, but it depends on the deep result from [24] that �∞ is finitely representable in
any Banach space with no finite cotype.

If r = 2, we can say even more than that stated in Theorem 2.1.

Theorem 2.3 (see [23, Theorem1.f.16 andTheorem1.f.17])Let L be aBanach lattice.

• L has Rademacher type 2 if and only if it is 2-convex and has nontrivial concavity.
• L has Rademacher cotype 2 if and only if it is 2-concave.

IfX is a Banach space of type r , thenX∗ has Rademacher cotype r ′, where r ′ is the
conjugate index defined by 1/r + 1/r ′ = 1 (see [23, Proposition 1.e.17]). In Banach
lattices, a converse result holds.

Theorem 2.4 ([23, Theorem 1.f.18]) Let 1 < r ≤ 2 and let L be a Banach lattice.
Then, L has Radenacher type r if and only if L∗ has Rademacher cotype r ′ and
nontrivial type.
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2.2 Absolute continuity

A Banach lattice is said to be complete (resp., σ -complete) if every order bounded set
(resp., order bounded sequence) has a least upper bound. It is said to be order contin-
uous (resp., σ -order continuous) if for every downward directed set (resp., decreasing
sequence) ( fλ)λ∈
 with ∧λ∈
 fλ = 0 we have limλ∈
 fλ = 0. Taking advantage
of Fatou property (F.f), we give a sharp characterization of order continuous func-
tion spaces. Prior to stating it, we recall that a Schauder basis (xn)∞n=1 of a Banach
space X is said to be boundedly complete if the series

∑∞
n=1 an xn converges (in the

norm-topology) whenever the scalars (an)∞n=1 satisfy

sup
m∈N

∥
∥
∥
∥
∥

m∑

n=1
an xn

∥
∥
∥
∥
∥

<∞.

Theorem 2.5 Given a function norm ρ over a σ -finite measure space, the following
are equivalent.

(i) Lρ is order continuous.
(ii) Lρ is σ -order continuous.
(iii) limn ρ( f χAn ) = 0 for every f ∈ L+0 (μ) with ρ( f ) < ∞ and every non-

increasing sequence (An)
∞
n=1 in � with limn μ(An) = 0.

(iv) Lebesgue’s dominated convergence theorem holds in Lρ . That is, if ( fn)∞n=1
and f in L0(μ) are such that limn fn = f a. e. and ρ(supn | fn|) < ∞, then
limn fn = f in Lρ .

(v) Lρ contains no copy of �∞.
(vi) No sequence of pairwise disjointly supported functions is equivalent to the unit

vector system of �∞.
(vii) Every unconditional basic sequence in Lρ is boundedly complete.

Proof It is known that a Banach lattice is order continuous if and only if it is σ -order
complete and σ -order continuous [23, Proposition 1.a.8]. So, since Lρ is σ -complete,
(i) and (ii) are equivalent. The equivalence between (ii), (iii) and (iv) follows from [6,
Chapter 1, Propositions 3.2 and 3.6]. The equivalence between (ii), (v) and (vi) is a
consequence of [23, Proposition 1.a.7]. Finally, the equivalence between (vi) and (vii)
is a by-product of James’ theory on unconditional bases (see [4, Theorem 3.3.2]). ��

Following [6], we call function norms satisfying (iii) absolutely continuous. In this
terminology, we record an interesting consequence of combining Theorem 2.5 with
the fact that �∞ has no finite cotype.

Theorem 2.6 Let ρ be a function norm over a σ -finite measure space. Suppose that
Lρ has nontrivial cotype. Then, ρ is absolutely continuous.

We also point out that if ρ is absolutely continuous, then the linear space consisting
of all integrable simple functions is dense in Lρ (see [6, Chapter 1, Theorem 3.11]).
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2.3 Duality

Given a function quasi-norm ρ over a σ -finite measure space (�, σ, μ) we set

ρ∗ : L+0 (μ)→ [0,∞], f → sup

{∫

�

f g dμ : g ∈ L+0 (μ), ρ(g) ≤ 1

}

.

Since the gauge ρ∗ is a function norm (see [6, Chapter 1, Theorem 2.2]), we call it the
function norm associated with ρ. The dual pairing

〈g, f 〉 =
∫

�

g(ω) f (ω) dμ(ω), g ∈ Lρ∗ , f ∈ Lρ. (2.1)

defines an isometric embedding of Lρ∗ into (Lρ)∗ [6, Chapter 1, Theorem 2.9]. More-
over, this embedding is onto if and only if ρ is absolutely continuous [6, Corollary
4.2]. Since (ρ∗)∗ = ρ [6, Chapter 1, Theorem 2.9], Lρ is a reflexive Banach space if
and only if both ρ and ρ∗ are absolutely continuous.

Given f ∈ L0(μ) we set

supp( f ) = � \ f −1(0).

To be precise, since we are identifying functions that differ in a null set, supp( f ) is
an equivalence class of measurable sets. The underlying equivalence relation is the
following: A ∼ B if μ(A� B) = 0. Notice that this identification makes � endowed
with the distance

dμ(A, B) = μ(A � B), A, B ∈ �.

a metric space.
Given A ∈ � we set

Lρ[A] := { f ∈ Lρ : supp( f ) ⊆ A}.

We look at the next result from the view that if ρ is absolutely continuous, then Lρ∗
is the dual space of Lρ , and Lρ is a subspace of (Lρ∗)∗.

Proposition 2.7 Let ρ be an absolutely continuous function norm over a σ -finite mea-
sure (�,�,μ). Then, for each A ∈ �, Lρ[A] is w∗–closed.

Proof It suffices to prove that

Lρ[A] = Y := { f ∈ Lρ : 〈g, f 〉 = 0 for all g ∈ Lρ∗ [� \ A]}.

It is clear that Lρ[A] ⊆ Y. To prove that the reserve inclusion also holds, pick f ∈
X\Lρ[A]. Then, there is B ∈ � such that B∩ A = ∅, 0 < μ(B) <∞, and f (ω) �= 0
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for every ω ∈ B. If g : �→ F is such that g f = | f |χB , then g ∈ Lρ∗ [� \ A], and

〈g, f 〉 =
∫

�

| f | dμ > 0.

Hence f /∈ Y. ��

2.4 The role of themeasure space

Given a σ -finite measure space (�,�,μ) we set

�μ = {A ∈ � : μ(A) <∞}.

We say that μ is separable if the metric space (�μ, dμ) is. It is known that, given a
function norm ρ over (�,�,μ), the function space Lρ is separable if and only if ρ

is absolutely continuous and μ is separable (see [6, Chapter 1, Corollary 5.6]).
Let (A, �A, μA) be the restriction of a σ -finite measure (�,�,μ) to a set A ∈ �.

Given a function norm ρ over (�,�,μ), let ρA be its restriction to A, that is,

ρA( f ) = ρ( f̃ ), f ∈ L+0 (μA),

where f̃ is the extension of f given by f̃ (ω) = 0 for allω ∈ �\A. In this terminology,
we identify LρA with Lρ[A]. The mapping

PA : Lρ → Lρ, f → f χA,

is a bounded linear projection onto Lρ[A] whose complementary projection is P�\A.
Consequently, we have a canonical lattice isomorphism from Lρ onto Lρ[A] ⊕
Lρ[� \ A]. This isomorphism allows us to split any function space into its atomic
and nonatomic parts. Indeed, for any σ -finite measure space (�,�,μ) there is a par-
tition of � into two measurable sets �c and �a such that μ�c is nonatomic and μ�a

is purely atomic. Hence, if ρc = ρ�c and ρa = ρ�a ,

Lρ � Lρc ⊕ Lρa .

TheBanach lattice Lρa is isometrically isomorphic to a function space over a countable
set endowed with the counting measure. As far as (�c, �,μ) is concerned, we note
that nonatomic separable measure spaces are isomorphic to Lebesgue measure over
the real line (see [10, Theorem 1]).

Given a Banach space X, the property that X is isomorphic to its square and to its
hyperplanes is as natural as elusive to check in some situations. Next, relying on the
boundedness of averaging projections, we prove that rearrangement invariant function
spaces have this property. A function norm ρ is said to be rearrangement invariant if
ρ( f ) = ρ(g) whenever f and g are equimeasurable.
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Theorem 2.8 (see, e.g., [23, Theorem 2.a.4]) Let ρ be a rearrangement invariant
function norm over a real interval I endowed with the Lebesgue measure. Let (An)

∞
n=1

by pairwise disjoint Borel subsets of I . Then, the mapping

f →
∞∑

n=1

χAn

|An|
∫

An

f (x) dx

is a bounded linear projection from Lρ onto [χAn : n ∈ N].
Proposition 2.9 Let ρ be a rearrangement invariant function norm over a real interval
I endowed with the Lebesgue measure.

(i) If I is bounded, then Lρ is lattice isomorphic to Lρ[J ] for every open set J ⊆ I .
(ii) If I is unbounded, then Lρ is isometrically lattice isomorphic to Lρ[J ] for every

open set J ⊆ I with |J | = ∞.
(iii) Lρ is lattice isomorphic to its square Lρ ⊕ Lρ .
(iv) Lρ is isomorphic to Lρ ⊕ F.

Proof To prove (i) and (ii), we suppose the J �= I . Pick M = N = 1 in the unbounded
set, and M = �|I | / |J |� and N = �|I | / |J |� in the bounded case. In both cases, let
T : J → I be a measurability-preserving bijection such that

M |A| ≤ |T (A)| ≤ N |A| , A measurable.

Given a simple function f : J → [0,∞], there are functions ( f j )Nj=1 equimeasurable
with f such that

M∑

j=1
f j ≤ T ( f ) ≤

N∑

j=1
f j ,

where T is the linear map given by χA → χT (A). Indeed, if f = ∑
k∈K akχAk

with (Ak)k∈K pairwise disjoint, then there is a family (Bk)k∈K consisting of pairwise
disjoint measurable subsets of I such that T (Ak) ⊆ Bk and |Bk | = N |Ak | for all
k ∈ K . For each k ∈ K we pick a partition (Ak, j )

N
j=1 of Ak into measurable sets

with ∪M
j=1Ak, j ⊆ T (Ak) and

∣
∣Ak, j

∣
∣ = Ak for all j = 1, …, N . Finally, we set

f j =∑
k∈K akχAk, j for all j = 1, …, N . We have

ρ( f ) ≤ ρ(T ( f )) ≤ Nρ( f ).

We infer that T extends to a lattice isomorphism from Lρ onto Lρ[J ].
To prove (iii) we pick a partition (J1, J2) of I into subsets as in (i) or (ii). We have

Lρ � Lρ[J1] ⊕ Lρ[J2] � Lρ ⊕ Lρ.

Since, regardless I is bounded or unbounded, Lρ(I ) � Lρ(I1) ⊕ Lρ(I2) with I1
bounded, it suffices to prove (iv) in the case when I is bounded. For notational ease,
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set I = [0, 1). Let X (resp., Y) be the subspace of Lρ (resp., Lρ([0, 1/2))) consisting
of all functions that are constant in each interval [2−n−1, 2−n), n ∈ N ∪ {0} (resp.,
n ∈ N). The aforementioned isomorphism T gives X � Y. Moreover, X � Y ⊕ F.
Let U be the space of Lρ consisting of all functions with null integral in each interval
[2−n−1, 2−n), n ∈ N ∪ {0}. By Theorem 2.8, Lρ � U⊕ X. Piecing the bits together,
we obtain

Lρ � U⊕ X � U⊕ Y⊕ F � U⊕ X⊕ F � Lρ ⊕ F.

��

3 Unconditional basic sequences

It is known that an unconditional basic sequence X = (xn)∞n=1 in a Banach space L
induces an atomic lattice structure on its closed linear span. To be precise, there is a
constant C such that

∥
∥
∥
∥
∥

∞∑

n=1
an xn

∥
∥
∥
∥
∥
≤ C

∥
∥
∥
∥
∥

∞∑

n=1
bn xn

∥
∥
∥
∥
∥

, |an| ≤ |bn| , (bn)
∞
n=1 ∈ c00. (3.1)

(see, e.g., [22, Proposition 1.c.7]). If (3.1) holds for a given constant C we say that X
is C-unconditional. Note that (3.1) yields

∥
∥
∥
∥
∥

∞∑

n=1
an xn

∥
∥
∥
∥
∥
≈

(

Ave
εn=±1

∥
∥
∥
∥
∥

∞∑

n=1
εn an xn

∥
∥
∥
∥
∥

p)1/p

, (an)
∞
n=1 ∈ c00 (3.2)

for any 0 < p < ∞. In turn, if the Banach lattice L has cotype p < ∞, then, by
Khintchine’s inequalities,

Ave
εn=±1

∥
∥
∥
∥
∥

∞∑

n=1
εn fn

∥
∥
∥
∥
∥

�

∥
∥
∥
∥
∥
∥

( ∞∑

n=1
| fn|2

)1/2
∥
∥
∥
∥
∥
∥

�
(

Ave
εn=±1

∥
∥
∥
∥
∥

∞∑

n=1
εn fn

∥
∥
∥
∥
∥

p)1/p

(3.3)

for ( fn)∞n=1 ∈ c00(L). Combining (3.2) with (3.3) allows us to relate the lattice
structure induced by X to that in L. Namely, if L has nontrivial cotype we have

∥
∥
∥
∥
∥

∞∑

n=1
an xn

∥
∥
∥
∥
∥
≈

∥
∥
∥
∥
∥
∥

( ∞∑

n=1
|an|2 |xn|2

)1/2
∥
∥
∥
∥
∥
∥

, (an)
∞
n=1 ∈ c00.

Oddly enough, this estimate still holds if we drop the assumption that L has nontrivial
cotype and, in return, we impose X to be complemented. To state this result in a
precise way, it will be convenient to use the constants involved in complementability.
A subspace X of a Banach space U is complemented if and only if there is a bounded
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linear projection P : U → U with P(U) = X. If C ∈ [1,∞) is such that ‖P‖ ≤ C
for a suitable such projection we say that X is C-complemented.

Theorem 3.1 (see [23, Proposition 1.d.6] and subsequent Remark 1) LetX = (xn)∞n=1
be a complemented unconditional basic sequence in a Banach lattice L. Then, there
is a constant C such that

1

C

∥
∥
∥
∥
∥

∞∑

n=1
an xn

∥
∥
∥
∥
∥
≤

∥
∥
∥
∥
∥
∥

( ∞∑

n=1
|an|2 |xn|2

)1/2
∥
∥
∥
∥
∥
∥
≤ C

∥
∥
∥
∥
∥

∞∑

n=1
an xn

∥
∥
∥
∥
∥

for all (an)∞n=1 ∈ c00. Moreover, if X is C1-unconditional and [X ] is C2-
complemented, then C only depends on C1 and C2.

A sequence X = (xn)∞n=1 in a Banach space U is a complemented unconditional
basic sequence if and only if there is a constant C ∈ [1,∞) and a sequence X ∗ =
(x∗n)∞n=1 in U∗ such that (xn, x∗n)∞n=1 is a biorthogonal system, and

∥
∥
∥
∥
∥

∑

n∈A
x∗n( f ) xn

∥
∥
∥
∥
∥
≤ C ‖ f ‖ , f ∈ U, |A| <∞.

If this is the case, we say that X ∗ is a sequence of projecting functionals for X .
Such a sequence is not unique, but all possible sequences of projecting functionals are
obtained as

x∗n = z∗n ◦ P = P∗(z∗n), n ∈ N,

where P is a projection from U onto X := [xn : n ∈ N], and Z∗ = (z∗n)∞n=1 in X∗ are
the coordinate functionals of X . Notice that X ∗ and Z∗ are equivalent.

Two sequences X and Y in a Banach spaceU are said to be congruent if there is an
automorphism S of U with S(xn) = yn for all n ∈ N. Although the classification of
basic sequences in Banach spaces is usually stated in terms of equivalence, congruence
is a stronger condition that is convenient to record in some situations. Notice that ifX
and Y are congruent, and X := [X ] is complemented in U, then Y := [Y] also is. In
fact, if P : U → U is a projection onto X, and T : U → U is an automorphism with
T (X ) = Y , then T ◦ P ◦ T−1 is a projection onto Y. The following result establishes
a partial converse of this fact. For broader applicability, we state it within the more
general setting of quasi-Banach spaces. Recall that quasi-Banach spaces are defined
as Banach spaces, replacing the triangle law of the norm ‖·‖ on the vector space X

with the weaker assumption that

‖ f + g‖ ≤ κ (‖ f ‖ + ‖g‖) , f , g ∈ X, (3.4)

for some uniform constant κ ∈ [1,∞). If there is 0 < p ≤ 1 such that

‖ f + g‖p ≤ ‖ f ‖p + ‖g‖p , f , g ∈ X, (3.5)
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the (3.4) holds with κ = 21/p − 1. Quasi-Banach spaces whose quasi-norm satisfies
(3.5) are called p-Banach spaces. ByAoki-Rolewicz theorem, any quasi-Banach space
is for some 0 < p ≤ 1 a p-Banach space under a suitable renorming.

Lemma 3.2 Let X = (xn)∞n=1 and Y = ( yn)
∞
n=1 be sequences in a quasi-Banach

space U, and let X and Y denote the closed subspaces of U generated by X and Y ,
respectively. Supppose that X and Y are equivalent, that X and Y are complemented
in U, and that U/X � U/Y. Then, X and Y are congruent. Moreover, if T : X→ Y

is an isomorphism with T (xn) = yn for all n ∈ N, given projections P and Q onto
X and Y, respectively, we can choose an isomorphism J : U→ U such that J |X = T
and T ◦ P = Q ◦ J .
Proof The mappings IdU− P and IdU− Q are projections onto Ker(P), and Ker(Q),
respectively. By assumption, there is an isomorphism S from Ker(P) onto Ker(Q).
The map

u → J (u) := T (P(u))+ S(u − P(u))

is an isomorphism from U onto U, and we have Q(J (u)) = T (P(u)) for all u ∈ U. ��
Corollary 3.3 Let X = (xn)∞n=1 be Y = ( yn)

∞
n=1 be complemented unconditional

basic sequences in a quasi-Banach space U. Let (x∗n)∞n=1 and ( y∗n)∞n=1 be projecting
functionals for X and Y , respectively. Suppose that X and Y are equivalent and that
there is (λn)

∞
n=1 inF such that y∗n = λn x∗n for all n ∈ N. Then,X andY are congruent.

Proof Let P and Q be the projections ofU ontoX := [X ] andY := [Y], respectively,
given by

P( f ) =
∞∑

n=1
x∗n( f ) xn and Q( f ) =

∞∑

n=1
y∗n( f ) yn,

respectively. We have

Ker(P) = ∩∞n=1 Ker(x∗n) = ∩∞n=1 Ker( y∗n) = Ker(Q).

Consequently, U/X � U/Y. Hence, the result follows from Lemma 3.2. ��
If X is a complemented unconditional basic sequence in a quasi-Banach space

U with projecting functionals X ∗, and T is an automorphism of U, then T (X ) is
a complemented unconditional basic sequence in U projecting functionals S∗(X ∗),
where S is the inverse of T . The following result points in the opposite direction.

Proposition 3.4 Let X and Y be complemented unconditional basic sequences in a
quasi-Banach space U. Let X ∗ and Y∗ coordinate functionals for X and Y , respec-
tively. IfX andY are congruent, then there is an automorphism T ofUwith T (X ) = Y
and T ∗(Y∗) = X ∗.
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Proof Congruence implies U/[X ] � U/[Y]. Consider the automorphism of U

provided by Lemma 3.2. It is routine to check that it satisfies the desired
conditions. ��

The following two results are improved versions of the small perturbation principle
that fit our purposes. As before, we state it for (non-necessarily locally convex) quasi-
Banach spaces.

Given a sequence A in a dual space X∗, where X is a quasi-Banach space, [A]w∗
denotes its closed linear span relative to the w∗–topology in X

∗. Given (x∗n)∞n=1 and
x∗ in X∗, the symbol

x∗ = w∗–
∞∑

n=1
x∗n

means that the series
∑∞

n=1 x∗n converges to x∗ in the w∗–topology.

Lemma 3.5 Let X = (xn, x∗n)∞n=1 be a biorthogonal system in a p-Banach space X,
0 < p ≤ 1. Let Y = ( yn)

∞
n=1 be a sequence in X, and suppose that

∞∑

n=1

∥
∥ yn − xn

∥
∥p ∥

∥x∗n
∥
∥p

< 1.

Then, Y is congruent to X . Moreover, we can choose ( y∗n)∞n=1 biorthogonal to Y
satisfying conditions (a) and (b) below.

(a) If x∗k( yn) = 0 for all (k, n) ∈ N
2 with k > n, then, for every n ∈ N,

y∗n ∈ Un := [x∗k : k ≥ n]w∗ .

(b) If X is a complemented unconditional basic sequence with projecting functionals
(x∗n)∞n=1, then Y is a complemented unconditional basic sequence with projecting
functionals ( y∗n)∞n=1.

Proof The map E : X→ X given by

E( f ) =
∞∑

n=1
x∗n( f )(xn − yn), f ∈ X,

iswell-defined, andwe have ‖E‖ < 1.Consequently, S = IdX−E is an automorphism
whose inverse is

T =
∞∑

n=0
En .
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We have S(xn) = yn for every n ∈ N. It is clear that (T ∗(x∗n))∞n=1 is biorthogonal to
Y and satisfies (b). In order to prove (a), since

T ∗ = w∗–
∞∑

n=0
(E∗)n,

it suffices to prove that E∗(Uk) ⊆ Uk for every k ∈ N. Notice that

E∗( f ∗) = w∗–
∞∑

n=1
f ∗(xn − yn) x

∗
n, f ∗ ∈ X

∗.

Pick f ∗ ∈ Uk . We have f ∗(xn) = f ∗( yn) = 0 for every n ∈ N with n < k.
Consequently,

E∗( f ∗) = w∗–
∞∑

n=k
f ∗(xn − yn) x

∗
n ∈ Uk . ��

Lemma 3.6 LetX = (xn)∞n=1 bea complementedunconditional basic sequence in a p-
Banach space X, 0 < p ≤ 1, with projecting functionals (x∗n)∞n=1. Let Y∗ = ( y∗n)∞n=1
be another sequence in X

∗, and suppose that

∞∑

n=1

∥
∥ y∗n − x∗n

∥
∥p ‖xn‖p < 1.

Then, there is a sequence Y = ( yn)
∞
n=1 congruent to X such that Y∗ are projecting

functionals for Y .

Proof The map E : X→ X given by

E( f ) =
∞∑

n=1

(
x∗n( f )− y∗n( f )

)
xn, f ∈ X,

is well-defined, and we have ‖E‖ < 1. Consequently, IdX − E is an automorphism.
Hence, if S denote its inverse, (S(xn))∞n=1 is a complemented basic sequence with
projecting functionals

z∗n := (IdX − E)∗(x∗n), n ∈ N.

Since (IdX − E)∗ = IdX∗ − E∗ and E∗ : X∗ → X
∗ is given by

E∗( f ∗) = w∗–
∞∑

n=1
f ∗(xn)(x∗n − y∗n), f ∗ ∈ X

∗,

z∗n = y∗n for every n ∈ N. Hence we can take yn := S(xn). ��
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4 Unconditional basic sequences in function spaces

We start our study with a lemma that places a given basic sequence in a function
space with the unit vector system of �2 face to face. To state it, we introduce some
additional terminology. We say that a sequenceX = (xn)∞n=1 in a quasi-Banach space
X dominates a sequence Y = ( yn)

∞
n=1 in a quasi-Banach spaceY if there is a bounded

linear map

T : [xn : n ∈ N] → Y

such that T (xn) = yn for all n ∈ N, in which case we also say that Y is dominated by
X . If ‖T ‖ ≤ C we say that X C-dominates Y . Notice that the sequences X and Y are
equivalent if and only if X both dominates and is dominated by Y . Given a measure
space (�,�,μ), we say that a sequence ( fn)∞n=1 in L0(μ) escapes to infinity if

lim
n

ess inf{| fn(ω)| : ω ∈ supp( fn)} = ∞.

Lemma 4.1 Let ρ be a function norm over a σ -finite measure space (�,�,μ). Let
� = (ψn)

∞
n=1 be a semi-normalized unconditional basic sequence in Lρ .

(i) Suppose that Lρ has type 2 and nontrivial cotype. Then, � is dominated by the
unit vector system of �2.

(ii) Suppose that there is function norm ρb over (�,�,μ) such that Lρ ⊆ Lρb , Lρb

has cotype 2, and infn
∥
∥ψn

∥
∥

ρb
> 0. Then, � dominates the unit vector system

of �2.
(iii) Suppose that μ is finite and that infn

∥
∥ψn

∥
∥

ρb
= 0 for some function norm ρb.

Then, there is an increasing sequence (nk)∞k=1 and a non-increasing sequence
(Ak)

∞
k=1 in � such that

lim
k

∥
∥ψnk − ψnkχAk

∥
∥

ρ
= 0

and limk μ(Ak) = 0.
(iv) Suppose that ρ is absolutely continuous and that there is a non-increasing

sequence (An)
∞
n=1 in � such that supp(ψn) ⊆ An for all n ∈ N, and

lim
n

μ(An) = 0.

Then, there is an increasing sequence (nk)∞k=1 in N and a pairwise disjointly
supported sequence (φk)

∞
k=1 consisting of simple functions escaping to infinity

such that
∣
∣φk

∣
∣ ≤ ∣

∣ψnk

∣
∣, supp(φk) ⊆ Ank \ Ank+1 for all k ∈ N, and

lim
k

∥
∥ψnk − φk

∥
∥

ρ
= 0.
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Proof To prove (i) and (ii) we use (3.2) and (3.3). In the former case we have

∥
∥
∥
∥
∥

∞∑

n=1
an ψn

∥
∥
∥
∥
∥

ρ

≈
∥
∥
∥
∥
∥
∥

( ∞∑

n=1
|an|2

∣
∣ψn

∣
∣

)1/2
∥
∥
∥
∥
∥
∥

ρ

�
( ∞∑

n=1
|an|2

∥
∥ψn

∥
∥2

ρ

)1/2

≈
( ∞∑

n=1
|an|2

)1/2

for f = (an)∞n=1 ∈ c00. In the latter case we have

∥
∥
∥
∥
∥

∞∑

n=1
an ψn

∥
∥
∥
∥
∥

ρ

≈ Ave
εn=±1

∥
∥
∥
∥
∥

∞∑

n=1
εn an ψn

∥
∥
∥
∥
∥

ρ

� Ave
εn=±1

∥
∥
∥
∥
∥

∞∑

n=1
εn an ψn

∥
∥
∥
∥
∥

ρb

≈
∥
∥
∥
∥
∥
∥

( ∞∑

n=1
|an|2

∣
∣ψn

∣
∣2

)1/2
∥
∥
∥
∥
∥
∥

ρb

�
( ∞∑

n=1
|an|2

∥
∥ψn

∥
∥2

ρb

)1/2

≈
( ∞∑

n=1
|an|2

)1/2

.

To prove (iii) we assume, passing to a subsequence, that � converges to zero in
measure. By Egoroff’s theorem, passing to a further subsequence we can assume
that limn ψn = 0 almost uniformly. We infer that there is a non-increasing sequence
(An)

∞
n=1 in � such that limn μ(An) = 0 and

lim
n

∥
∥ψn − ψnχAn

∥
∥∞ = 0.

Since χ� ∈ Lρ , L∞(μ) ⊆ Lρ . Consequently, limn
∥
∥ψn − ψnχAn

∥
∥

ρ
= 0.

To prove (iv), we set sn = ρ−1/2(χAn ) and εn = snρ(χAn ) for n ∈ N. Notice that
limn sn = ∞ and limn εn = 0. We use that, by assumption,

lim
j

∥
∥ψnχA j

∥
∥

ρ
= 0, n ∈ N,

123



Unconditional basic sequences... Page 17 of 36     1 

to recursively construct an increasing sequence (nk)∞k=1 in N such that

∥
∥
∥ψnkχAnk+1

∥
∥
∥

ρ
≤ εk, k ∈ N.

Approximating each function ψnk by simple functions and using the property of Lρ

recorded in item (iv) of Theorem2.5,we obtain a sequence (φk)
∞
k=1 of simple functions

such that supp(φk) ⊆ Bk := Ank \ Ank+1 ,
∣
∣φk

∣
∣ ≤ ∣

∣ψnk

∣
∣χBk , and

∥
∥ψnkχBk − φk

∥
∥

ρ
≤ εk

for all k ∈ N. Now, set Dk = {ω ∈ � : ∣
∣φk(ω)

∣
∣ ≥ snk }. We have

∥
∥φk − φkχDk

∥
∥

ρ
≤ snkρ(χDnk

) ≤ snkρ(χAnk
) = εnk .

Summing up, we obtain limk
∥
∥ψnk − φkχDk

∥
∥

ρ
= 0. ��

The following theorem generalizes the result from [16] that any semi-normalized
unconditional basic sequence in L p, 2 ≤ p < ∞, is either the canonical basis of �2
or has a subsequence equivalent to a disjointly supported sequence.

Theorem 4.2 Let ρ be a function norm over a finite measure space (�,�,μ). Suppose
that Lρ ⊆ L2(μ) and that Lρ has Rademacher type 2. Let � = (ψn)

∞
n=1 be a semi-

normalized unconditional basic sequence in Lρ .

(i) If infn
∥
∥ψn

∥
∥
2 > 0, then� is equivalent to the unit vector system of �2. Oppositely,

(ii) if infn
∥
∥ψn

∥
∥
2 = 0, then� has a subsequence congruent to a disjointly supported

sequence � consisting of simple functions escaping to infinity.

Proof The function norm ρ is absolutely continuous by Theorem 2.3 and Theorem 2.6.
So, we identify (Lρ)∗ with Lρ∗ .

In the case (i), we apply Lemma 4.1(ii) with ρb = ‖·‖2.We obtain that� dominates
the unit vector system of �2. In turn, by Lemma 4.1(i), the unit vector system of �2
dominates �.

In the case (ii), combining Lemma 4.1(iii) with Lemma 4.1(iv) gives a pairwise
disjointly supported sequence (φn)

∞
n=1 consisting of simple functions escaping to

infinity such that

lim
n

∥
∥ψn − φn

∥
∥

ρ
= 0.

Set Y = [ψn : n ∈ N]. Since � is a semi-normalized Schauder basis of Y, there
exists a sequence in Y

∗ biorthogonal to �. Use the Hahn-Banach theorem to extend
these coordinate functionals to a norm-bounded sequence �∗ = (ψ∗n)∞n=1 in Lρ∗ . We
have

lim
n

∥
∥ψn − φn

∥
∥

ρ

∥
∥ψ∗n

∥
∥

ρ∗ = 0.

123



    1 Page 18 of 36 J. L. Ansorena, G. Bello

Since �∗ is biorthogonal to �, passing to a further subsequence, an application of
Lemma 3.5 puts an end to the proof. ��

Before going on, we record the straightforward application of Theorem 4.2 to the
study of subsymmetric basic sequences. Notice that ifY is a subbasis of a subsymetric
basic sequence X in a Banach space U, and we set X = [X ] and Y = [Y], the
quotient spaces U/X and U/Y are not necessarily isomorphic, and assuming X is
complemented does not change anything. So, despite X and Y being equivalent, they
are not necessarily congruent.

Corollary 4.3 Let ρ be a function norm over a finite measure space (�,�,μ). Suppose
that Lρ ⊆ L2(μ) and that Lρ has Rademacher type 2. Let � be a semi-normalized
subsymmetric basic sequence in Lρ . Then, � is equivalent to either the unit vector
system of �2 or a disjointly supported sequence consisting of simple functions escaping
to infinity.

Any pairwise disjointly supported sequence in a function space is an unconditional
basic sequence. It might not be complemented, however. In case it is, to understand
the lattice structure it induces, it is convenient to look at the position of its projecting
functionals within the dual space. To that end, we bring up a notion successfully used
within the study of the uniqueness of structure in atomic lattices (see [1]).

Definition 4.4 Letρ be an absolutely continuous functionnormover aσ -finitemeasure
space. Let � be a sequence of nonzero functions in Lρ . We say that � is a well-
complemented basic sequence if

• it is pairwise disjointly supported,
• it is complemented, and
• there are projecting functionals �∗ for � which, regarded as functions in Lρ∗ , are
pairwise disjointly supported.

Such sequence �∗ is said to be a sequence of good projecting functionals for �.

The following two lemmas help us to pass from a complemented unconditional
basic sequence to a well-complemented one.

Lemma 4.5 Let ρ be a function norm over a σ -finite measure space (�,�,μ). Let
� = (ψn)

∞
n=1 be a complemented unconditional basic sequence in Lρ . Let � =

(φn)
∞
n=1 be a pairwise disjointly supported sequence in Lρ with

∣
∣φn

∣
∣ ≤ ∣

∣ψn

∣
∣ for

all n ∈ N. Then � C-dominates �, where C only depends on the unconditionality
constant of � and the complementabilty constant of the closed subspace it spans.

Proof By Theorem 3.1, for (an)∞n=1 ∈ c00 we have

∥
∥
∥
∥
∥

∞∑

n=1
an φn

∥
∥
∥
∥
∥

ρ

=
∥
∥
∥
∥
∥
∥

( ∞∑

n=1
|an|2

∣
∣φn

∣
∣2

)1/2
∥
∥
∥
∥
∥
∥

ρ

≤
∥
∥
∥
∥
∥
∥

( ∞∑

n=1
|an|2

∣
∣ψn

∣
∣2

)1/2
∥
∥
∥
∥
∥
∥

ρ

≈
∥
∥
∥
∥
∥

∞∑

n=1
an ψn

∥
∥
∥
∥
∥

ρ

. ��
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Lemma 4.6 Let ρ be an absolutely continuous function norm over a σ -finite measure
space. Let� = (ψn)

∞
n=1 be a complemented unconditional basis sequence in Lρ with

projecting functionals �∗ = (ψ∗n)∞n=1 regarded as functions in Lρ∗ . Let� = (φn)
∞
n=1

be a pairwise disjointly supported sequence in Lρ and (φ∗n)∞n=1 be a pairwise disjointly
supported sequence in Lρ∗ . Suppose that

∣
∣φn

∣
∣ ≤ ∣

∣ψn

∣
∣ and

∣
∣φ∗n

∣
∣ ≤ ∣

∣ψ∗n
∣
∣ for all n ∈ N.

Then, we have the following.

(i) There are bounded linear maps R, S, T : Lρ → Lρ given by

R( f ) =
∞∑

n=1
〈ψ∗n, f 〉φn,

S( f ) =
∞∑

n=1
〈φ∗n, f 〉ψn,

T ( f ) =
∞∑

n=1
〈φ∗n, f 〉φn .

for all f ∈ N.
(ii) If infn

∣
∣〈φ∗n,φn〉

∣
∣ > 0, then� is a well-complemented basic sequence equivalent

to �. Moreover, there are scalars (λn)
∞
n=1 such that (λnφ∗n)∞n=1 is a sequence of

good projecting functionals for �.
(iii) If, in addition, �∗ is disjointly supported, then � and � and congruent.

Proof The existence of R is straightforward consequence of Lemma 4.5. It also fol-
lows from Lemma 4.5 that the existence of S implies the existence of T . Before
addressing the proof of the existence of S, we note that, given f ∗ ∈ Lρ∗ , the series∑∞

n=1〈 f ∗,ψn〉ψ∗n might not converge in the norm-topolopy. So, � might not be a
sequence of projecting functionals for �∗. To circumvent this drawback, we use that,
for each m ∈ N, (ψ∗n)mn=1 is a complemented unconditional basic sequence with pro-
jecting functionals (ψn)

m
n=1. Hence, there is a constant C such that

∥
∥
∥
∥
∥

m∑

n=1
〈 f ∗,ψn〉φ∗n

∥
∥
∥
∥
∥
≤ C

∥
∥ f ∗

∥
∥

for all m ∈ N and f ∗ ∈ Lρ∗ . Since the operator

f ∗ →
m∑

n=1
〈 f ∗,ψn〉φ∗n

is the dual operator of

f →
m∑

n=1
〈φ∗n, f 〉ψn,
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we have
∥
∥
∥
∥
∥

m∑

n=1
〈φ∗n, f 〉ψn

∥
∥
∥
∥
∥
≤ C ‖ f ‖ , m ∈ N, f ∈ X.

By Theorem 2.5, � is boundedly complete. Hence,
∑∞

n=1〈φ∗n, f 〉ψn converges for
any f ∈ X, and

∥
∥
∥
∥
∥

∞∑

n=1
〈φ∗n, f 〉ψn

∥
∥
∥
∥
∥
≤ C ‖ f ‖ .

This gives the existence of S.
To prove (ii) we set λn = 〈φ∗n,φn〉, and we consider the bounded linear operators

U , Q : Lρ → Lρ given by

U ( f ) =
∞∑

n=1

1

λn
〈φ∗n, f 〉ψn,

Q( f ) =
∞∑

n=1

1

λn
〈φ∗n, f 〉φn .

Since Q(φn) = φn for all n ∈ N, Q is a projection onto the closed subspace generated
by�, and (φn/λn)

∞
n=1 is a sequence of projecting functionals for�.We have S(ψn) =

φn and U (φn) = ψn and for every n ∈ N. Consequently, � and � are equivalent.
To prove (iii), consider a measurable function ε : �→ F such that |ε(ω)| = 1 and

ε(ω)ψ∗n(ω)φn(ω) ≥ 0 for all ω ∈ �. We have

μn := 〈ψ∗n, εφn〉 ≥ λn, n ∈ N.

Since the map f → ε f is an isomorphism on Lρ , there is a bounded linear operator
V : Lρ → Lρ given by

V ( f ) =
∞∑

n=1

1

μn
〈ψ∗n, f 〉 εφn .

We infer that �ε := (εφn)
∞
n=1 is a complemented basic sequence with projecting

functionals (ψ∗n/μn)
∞
n=1. Since � and �ε are congruent, �ε and � are equivalent.

Consequently, by Corollary 3.3, �ε and � are congruent. ��
Theorem 4.7 below and the subsequent Corollary 4.8 genereralize the result from

[16] that any complemented semi-normalized unconditional basic sequence in L p,
1 < p < ∞, is either equivalent to the canonical basis of �2 or has a subsequence
equivalent to a pairwise disjointly supported sequence. To help the reader understand
their statements, we point out that any pairwise disjointly supported sequence of L p,
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1 ≤ p < ∞, is well-complemented (see [16, Proof of Lemma 1]), but this property
does not hold in general function spaces.

Theorem 4.7 Let ρ be a function norm over a finite measure space (�,�,μ). Suppose
that L2(μ) ⊆ Lρ and that Lρ has Rademacher cotype 2. Let � = (ψn)

∞
n=1 be a

semi-normalized complemented unconditional basic sequence in Lρ with projecting
functionals �∗ = (ψ∗n)∞n=1.
(i) If infn

∥
∥ψ∗n

∥
∥
2 > 0, then� is equivalent to the unit vector system of �2. Oppositely,

(ii) if infn
∥
∥ψ∗n

∥
∥
2 = 0, then � has a subsequence equivalent to a well-complemented

basic sequence � = (φn)
∞
n=1 escaping to infinity. Moreover, both � and its

sequence �∗ of good projecting functionals consist of simple functions. If ρ∗
is absolutely continuous, we can make � congruent to �, and make �∗ escape to
infinity.

Proof By Theorem 2.6, Lρ is absolutely continuous. Hence, we can regard �∗ as an
unconditional basic sequence in Lρ∗ .

In the case (i), applying Lemma 4.1(ii) with ρb = ‖·‖2 gives that �∗ dominates
the unit vector system of �2. Hence, by the reflexivity principle for basic sequences in
Banach spaces (see [4, Corollary 3.2.4]), the unit vector system of �2 dominates �.
In turn, applying Lemma 4.1(ii) with ρb = ρ, gives that � dominates the unit vector
system of �2.

In the case (ii), an application of Lemma 4.1(iii) gives an increasing map (nk)∞k=1
and a non-increasing sequence (Ak)

∞
k=1 such that

lim
k

μ(Ak) = 0 and lim
k

∥
∥ψ∗nk − ψ∗nkχAk

∥
∥

ρ∗ = 0.

Therefore, we can assume, passing to a subsequence, that there is a non-increasing
sequence (An)

∞
n=1 with limn μ(An) = 0 and

∞∑

n=1

∥
∥ψ∗nχAn − ψ∗n

∥
∥

ρ∗
∥
∥ψn

∥
∥

ρ
< 1.

Hence, by Lemma 3.6, we can suppose that supp(ψ∗n) ⊆ An for all n ∈ N. Since ρ is
absolutely continuous, passing to a further subsequence we can suppose that

∞∑

n=1

∥
∥ψnχAn+1

∥
∥

ρ

∥
∥ψ∗n

∥
∥

ρ∗ < 1.

If k > n, then supp(ψ∗k) ⊆ An+1. Consequently,

〈ψ∗k ,ψnχ�\An+1〉 = 0.

By Lemma 3.5, � is congruent to � := (ψnχ�\An+1)
∞
n=1, and there are projecting

functionals (φ∗n)∞n=1 for � with

φ∗n ∈ [ψ∗k : k ≥ n]w∗ , n ∈ N.
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By Proposition 2.7, supp(φ∗n) ⊆ An for all n ∈ N.
Summing up, we can assume that the complemented unconditional basic sequence

� and its coordinate functionals �∗ satisfy

supp(ψn) ⊆ � \ An+1 and supp(ψ∗n) ⊆ An, n ∈ N,

for a suitable non-increasing sequence (An)
∞
n=1 with limn μ(An) = 0, and we can

forget other terminology used so far in the proof of (ii).
Use Lemma 4.1(iv) to pick, passing to a further subsequence, a pairwise disjointly

supported sequence � = (φn)
∞
n=1 consisting of simple functions escaping to infinity

such that
∣
∣φn

∣
∣ ≤ ∣

∣ψn

∣
∣χAn\An+1 and

∥
∥ψnχAn\An+1 − φn

∥
∥

ρ
<

1

2
∥
∥ψ∗n

∥
∥

ρ∗

for all n ∈ N. Since

〈ψ∗n,ψnχAn\An+1〉 = 〈ψ∗n,ψn〉 = 1,

∣
∣〈ψ∗n,φn〉

∣
∣ > 1/2. Consequently, for each n ∈ N there is a simple function φ∗n with∣

∣φ∗n
∣
∣ ≤ ∣

∣ψ∗n
∣
∣χAn\An+1 and

∣
∣〈φ∗n,φn〉

∣
∣ ≥ 1/2.

By Lemma 4.6(ii), � and � are equivalent, � is well-complemented, and there is
a sequence (an)∞n=1 such that (anφ∗n)∞n=1 are good projecting functionals for �.

In the case that ρ∗ is absolutely continuous, we prove (ii) by means of an argument
that differs from the previous one from the beginning.Nowwe combineLemma4.1(ii),
Lemma 4.1(iii) and Lemma 4.1(iv) to claim, passing to a subsequence, that there are
pairwise disjointly supported simple functions (φ∗n)∞n=1 escaping to infinity such that

∞∑

n=1

∥
∥ψ∗n − φ∗n

∥
∥

ρ∗
∥
∥ψn

∥
∥

ρ
< 1.

By Lemma 3.6, we can suppose that �∗ consists of pairwise disjointly supported
simple functions escaping to infinity. As before, passing to a further subsequence, we
choose a pairwise disjointly supported sequence � = (φn)

∞
n=1 consisting of simple

functions escaping to infinity such that
∣
∣φn

∣
∣ ≤ ∣

∣ψn

∣
∣ and

∣
∣〈ψ∗n,φn〉

∣
∣ > 1/2 for all

n ∈ N. As above, we apply Lemma 4.6(ii) with the particularity that now �∗ = �∗.
Since a suitable dilation of �∗ is a sequence of projecting functionals for �, � and �

are congruent by Corollary 3.3.

Corollary 4.8 Let ρ be a function norm over a finite measure space (�,�,μ). Suppose
that Lρ ⊆ L2(μ), and that Lρ has Rademacher type 2. Let � = (ψn)

∞
n=1 be a semi-

normalized complemented unconditional basic sequence in Lρ with infn
∥
∥ψn

∥
∥
2 = 0.

Then, � has a subsequence congruent to a well-complemented basic sequence � =
(φn)

∞
n=1. Moreover, there is a sequence �∗ of good projecting functionals for � such

that both � and �∗ consist of simple functions escaping to infinity.
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Proof If we identify (Lρ)∗ with Lρ∗ , �∗ is a complemented unconditional basic
sequence of Lρ∗ , and � is a sequence of projecting functionals for �∗. Applying
Theorem 4.7 and Proposition 3.4 gives, passing to a subsequence, an isomorphism
S : Lρ∗ → Lρ∗ such that, if T : Lρ → Lρ is its dual isomorphism, the sequences
�∗ := S(�∗) and � = T (�) satisfy the desired conditions. ��
Remark 4.9 In some important situations the assumption that Lρ ⊆ L2(μ) in Theo-
rem 4.2 and Corollary 4.8, as well as the assumption that L2(μ) ⊆ Lρ in Theorem 4.7,
are superfluous. In fact, if a rearrangement invariant function space Lρ over [0, 1] is
lattice 2-convex, then Lρ ⊆ L2, while if Lρ is lattice 2-concave, then L2 ⊆ Lρ (see
[23, Remark 2 following Proposition 2.b.3]).

5 Unconditional basic sequences in direct sums of function spaces

Let J be a finite set and, for each j ∈ J , let ρ j be a function norm over a σ -finite
measure space (� j , � j , μ j ). Let μ := � j∈Jμ j denote the disjoint union of the
measures μ j , j ∈ J . There is a natural identification of L0(μ) with ⊕ j∈J L0(μ j ).
So, we can regard ρ := (ρ j ) j∈J as a function norm over μ, and we can canonically
identify Lρ with ⊕ j∈J Lρ j . Since each summand Lρ j canonically embeds in Lρ , we
will use the convention that Lρ j is a subspace of Lρ . Note that two sequences in Lρ j

are congruent when regarded in Lρ if and only if they are when regarded in Lρ j .
We also identify (Lρ)∗ with ⊕ j∈J (Lρ j )

∗ and, in the case when ρ j is absolutely
continuous for all j ∈ J , with ⊕ j∈J Lρ∗j .

We start with a lemma that illustrates the reduction entailed in dealing with well-
complemented basic sequences.

Lemma 5.1 Let J be a finite set and, for each j ∈ J , let ρ j be a function norm over
a σ -finite measure space (� j , � j , μ j ). Any well-complemented basic sequence of
⊕ j∈J Lρ j has a subsequence congruent to a well-complemented basic sequence of
Lρ j for some j ∈ J .

Proof Let (ψ∗n)∞n=1 be good projecting functionals for (ψn)
∞
n=1. If we write

ψn = (ψ j,n) j∈J , ψn = (ψ∗j,n) j∈J , n ∈ N,

then
∑

j∈J 〈ψ∗j,n,ψ j,n〉 = 1 for all n ∈ N. Hence, there is j ∈ N such that the set

N :=
{

n ∈ N : 〈ψ∗j,n,ψ j,n〉 ≥
1

|J |
}

is infinite. Let (nk)∞k=1 be an increasing enumeration of N . An application of
Lemma 4.6(ii) gives that (ψ j,nk )

∞
n=1 is well-complemented. Since

〈ψ∗n,ψ j,n〉 = 〈ψ∗j,n,ψ j,n〉,

(ψnk )
∞
n=1 and (ψ j,nk )

∞
n=1 are congruent by Lemma 4.6(iii). ��
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Theorem 5.2 Let J be a finite set and, for each j ∈ J , ρ j a function norm over a σ -
finite measure space (� j , � j , μ j ). Suppose that for each j ∈ J either Lρ j ⊆ L2(μ)

and Lρ j has Rademacher type 2 or L2(μ) ⊆ Lρ j and Lρ j has Rademacher cotype 2.
Let� be a semi-normalized complemented unconditional basic sequence in⊕ j∈J Lρ j .
Then, either � is equivalent to the unit vector system of �2, or there is j ∈ J such that
� has a subsequence equivalent to a well-complemented basic sequence, say �, of
Lρ j consisting of simple functions escaping to infinity. Moreover, there is a sequence
�∗ of good projecting functionals for � which consists of simple functions. If ρ j is
absolutely continuous for all j ∈ J , we can make � be congruent to �, and make �∗
escape to infinity.

Proof Set � = (ψn)
∞
n=1 and let �∗ = (ψ∗n)∞n=1 be coordinate functionals for �. We

first address a particular case.
Case A. Suppose that J = {1, 2}, Lρ2 ⊆ L2(μ) ⊆ Lρ1 , Lρ1 has Rademacher cotype
2, and Lρ2 has Rademacher type 2. Let ρb and ρd be the function norms over μ1 �μ2
given by ρb = (ρ1, ‖·‖L2(μ2)) and ρd = (‖·‖L2(μ1) , ρ∗2 ). Note that Lρ ⊆ Lρb ∩ Lρd

and that Lρb and Lρd have cotype 2. We consider three possible subcases.
Case A.1. Suppose that infn

∥
∥ψn

∥
∥

ρb
> 0 and infn

∥
∥ψ∗n

∥
∥

ρd
> 0. Then, by

Lemma4.1(ii),� and�∗ dominate the unit vector systemof �2. Hence,� is equivalent
to the unit vector system of �2.
CaseA.2. Suppose that infn

∥
∥ψn

∥
∥

ρb
= 0.We infer fromLemma3.5 that a subsequence

of � is congruent to a sequence (ψ2,n)
∞
n=1 in Lρ2 that satisfies limn

∥
∥ψ2,n

∥
∥
2 = 0.

Then, the result follows from Corollary 4.8.
Case A.3. Suppose that infn

∥
∥ψn

∥
∥

ρd
= 0. By Lemma 3.6, a subsequence of � is con-

gruent to a sequence (ψ1,n,ψ2,n)
∞
n=1 with projecting functionals (ψ∗1,n)∞n=1 belonging

to Lρ∗1 and satisfying limn
∥
∥ψ∗1,n

∥
∥
2
= 0. Since the mapping

( f , g) → P( f , g) :=
∞∑

n=1
ψ∗1,n( f )(ψ1,n,ψ2,n)

is an endomorphism of Lρ1 ⊕ Lρ2 , also is the mapping

( f , g) → Q( f , g) :=
∞∑

n=1
ψ∗1,n( f )ψ1,n .

The mappings P and Q witness that (ψ1,n,ψ2,n)
∞
n=1 and (ψ1,n)

∞
n=1 are equivalent. In

turn, the mapping Q witnesses that (ψ1,n)
∞
n=1, regarded as a sequence in Lρ1⊕Lρ2 , is

a complemented unconditional basic sequence with projecting functionals (ψ∗1,n)∞n=1.
By Corollary 3.3, (ψ1,n,ψ2,n)

∞
n=1 and (ψ1,n)

∞
n=1 are congruent. We conclude by

applying Theorem 4.7.
To address the proof in the general case we consider the partition (J1, J2) of J

defined by j ∈ J1 if L2(μ) ⊆ Lρ j and Lρ j has Rademacher cotype 2, and j ∈ J2
if Lρ j ⊆ L2(μ) and Lρ j has Rademacher type 2. If J2 = ∅, we apply Theorem 4.7.
If J1 = ∅, we apply Corollary 4.8. If J1 �= ∅ and J2 �= ∅, we apply the already
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proved Case A. In any case, we conclude that, unless� is equivalent to the unit vector
system of �2, there is i ∈ {1, 2} such that a subsequence of � is equivalent to a well-
complemented basic sequence� of⊕ j∈Ji Lρ j which escapes to infinity. Besides, both
� and a sequence�∗ of good projecting functionals for� consist of simple functions;
and, if i = 2 or ρ∗j is absolutely continuous for all j ∈ J1, �∗ escapes to infinity and
we obtain congruence. Since, by Lemma 5.1, � is congruent to a well-complemented
basic sequence in Lρ j for some j ∈ Ji , we are done. ��

Theorem 5.2 has an immediate consequence on the study of subsymmetric basic
sequences.

Theorem 5.3 Let J be a finite set and, for each j ∈ J , ρ j be a function norm over a σ -
finite measure space (� j , � j , μ j ). Suppose that for each j ∈ J either Lρ j ⊆ L2(μ)

and Lρ j has Rademacher type 2 or L2(μ) ⊆ Lρ j and Lρ j has Rademacher cotype 2.
Let � be a complemented subsymmetric basic sequence in ⊕ j∈J Lρ j . Then, either �

is equivalent to the unit vector system of �2, or there is j ∈ J such that� is equivalent
to a well-complemented basic sequence, say �, of Lρ j consisting of simple functions
escaping to infinity. Moreover, there is a sequence �∗ of good projecting functionals
for � which consists of simple functions. If ρ j is absolutely continuous for all j ∈ J ,
we can make �∗ escape to infinity.

In some situations, we can classify the subsymmetric basic sequences of a direct
sum of function spaces without assuming complementability.

Theorem 5.4 Let N ∈ N and for each j ∈ {1, . . . , N }, ρ j be a function norm over a
σ -finite measure space (� j , � j , μ j ). Suppose that there is an increasing N −1-tuple
(p j )

N−1
j=1 in (2,∞) such that

• Lρ j ⊆ L2(μ) and Lρ j has Rademacher type 2 for all j = 1, …, N,
• Lρ1 is 2-convex,
• LρN has nontrival concavity, and
• Lρ j satisfies a lower p j -estimate and Lρ j+1 satisfies an upper p j -estimate for all

j = 1, …N − 1.

Let � be a semi-normalized unconditional basic sequence in ⊕N
j=1Lρ j . Then, either

� is equivalent to the unit vector system of �2, or there is j = 1, …, N such that� has
a subsequence equivalent to a disjointly supported basic sequence of Lρ j consisting
of simple functions escaping to infinity.

Proof The function norm ρ = (ρ j )
N
j=1 is 2 convex and has nontrivial concavity. So,

Lρ has Rademacher type 2. By Theorem 4.2, unless � is equivalent to the unit vector
system of �2, it has a subsequence congruent to a disjointly supported sequence, say
� = (φn)

∞
n=1, consisting of simple functions escaping to infinity. Write

φn = (φ j,n)
N
j=1, n ∈ N, and �( j) := (φ j,n)

∞
n=1, j = 1, . . . , N .

If j ∈ {1, . . . , N } is such that infn
∥
∥φ j,n

∥
∥

ρ j
= 0, then, by Lemma 3.5, passing to a

further subsequence we can assume that
∥
∥φ j,n

∥
∥

ρ j
= 0 for all n ∈ N. Consequently,
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we can assume that there is A ⊆ {1, . . . , N } such that

inf
j∈A inf

n∈N
∥
∥φ j,n

∥
∥

ρ j
> 0.

Of course, A is nonempty. If A is a singleton, we are done. Otherwise, set k = min A
and p = pk+1. The lower estimate for Lρk gives that �(k) dominates the unit vector
system of �p. In turn, the upper estimate for Lρ j , j ∈ A\{k}, gives that the unit vector
system of �p dominates �( j) for all j ∈ A \ {k}. Consequently, � is equivalent to
�(k). ��

We next apply our results to Lebesgue spaces. If μ is the Lebesgue measure over
[0, 1], we set L p = L p(μ).

Theorem 5.5 Let P ⊆ [1,∞) be finite. Let � be a semi-normalized complemented
subsymmetric basic sequence in ⊕p∈P L p. Then, � is equivalent to the unit vector
system of �p for some p ∈ P ∪ {2}.
Proof Since L p has type 2 if 2 ≤ p < ∞ and cotype 2 if 1 ≤ p ≤ 2, we can
apply Theorem 5.3. Since any semi-normalized disjointly supported sequence of L p

is equivalent to the unit vector system of �p, we are done. ��
Notice that Theorem 5.5 gives that, given P , Q ⊆ [1,∞) finite, ⊕p∈P L p and

⊕p∈QL p are not isomorphic unless P ∪ {2} = Q ∪ {2}. Since L2 is a complemented
subspace of L p if and only if 1 < p < ∞, the converse holds with the following
exception: L1 and L1 ⊕ L2 are not isomorphic.

Theorem 5.6 Let P ⊆ [2,∞) be finite. Let � be a semi-normalized subsymmetric
basic sequence in ⊕p∈P L p. Then, � is equivalent to the unit vector system of �p for
some p ∈ P ∪ {2}.
Proof Taking into account that L p is lattice p-convex and lattice p-concave, the result
is a ready consequence of Theorem 5.4. ��

6 Orlicz function spaces

A (convex) Orlicz function is a convex non-decreasing function

F : [0,∞) → [0,∞]

with F(0) = 0 and F(c) < ∞ for some c > 0. If F takes the infinity value, we
assume that it does so in an open interval. If F(1) = 1, we say that F is normalized.

Let (�,�,μ) be a σ -finite measure space. The Orlicz space over (�,�,μ) asso-
ciated with F is the linear space LF (μ) built from the modular

mF : L+0 (μ) → [0,∞], f →
∫

�

F( f ) dμ.
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This means that LF (μ) = LρF , where ρF is the Luxemburg functional constructed
from mF . Namely,

ρF : L+0 (μ) → [0,∞], f → inf{t > 0 : mF ( f /t) ≤ 1}.

It is known [6, Chapter 4, Theorem8.9] thatρF is a rearrangement invariant function
norm, that is, LF (μ) is a rearrangement invariant function space. Its associated function
norm is given by (ρF )∗ = ρF∗ , where F∗ is the complementary Orlicz function of F
defined by

F∗(u) = sup{tu − F(t) : 0 < t <∞}.

Notice that F∗(u) < ∞ for all u ∈ [0,∞) if and only if limt→∞ F(t)/t = ∞, in
which case the suppremum that defines F∗(u) is attained for every u. The other way
around, F takes the infinity value if and only if limt→∞ F∗(t)/t <∞. If both F and
F∗ are finite, then (F∗)′ it is the right-inverse of F ′.

In the case when μ is the Lebesgue measure on a set �, we set LF (μ) = LF (�).
In turn, if μ is the counting measure on a countable setN , we set LF (μ) = �F (N ). If
N = N, we put �F (N ) = �F . In the discrete case, we will also consider theMusielak-
Orlicz’s generalization of Orlicz spaces. Given a family F = (Fn)n∈N of normalized
Orlicz functions, the Musielak-Orlicz sequence space �F is the sequence space built
from the modular

f = (an)
∞
n=1 → mF( f ) :=

∑

n∈N
Fn(an).

To relateMusielak-Orlicz sequence spaceswith basic sequences inOrlicz spaceswe
define, given anOrlicz function F , aσ -finitemeasure space (�,�,μ) and f ∈ L0(μ),

Ff : [0,∞) → [0,∞], t → mF (t | f |) =
∫

�

F(t | f |) dμ.

Clearly, Ff is a nondecreasing convex function with Ff (0) = 0.
Let HF (μ) consist of all functions f ∈ L0(μ) such that Ff (t) < ∞ for all

t ∈ [0,∞). It is known that HF (μ) is the closed linear span in LF (μ) of the integrable
simple functions.

The flows of a finite Orlicz function F are defined for each s ∈ (0,∞) as

Fs(t) = F(st)

F(s)
, t ≥ 0.

Notice that Fs is a normalized Orlicz function.

Lemma 6.1 Let (�,�,μ) be a σ -finite measure space and F be a finite Orlicz func-
tion.

(i) Let f be a norm-one function in HF . Then, F f is a normalized finite Orlicz
function.
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(ii) Let f be an integrable simple funtion with ‖ f ‖F = 1. Then, F f belongs to the
convex hull of {Fs : s ∈ f (�) \ {0}}.

(iii) Let � = (φn)
∞
n=1 be a normalized disjointly supported sequence in HF . Then,

� is isometrically equivalent to the unit vector system of the Musielak-Orlicz
sequence space �F , where F = (Fφn

)∞n=1.

Proof If f ∈ HF (μ), Ff : [0,∞) → [0,∞) is a continuous function. We infer
that Ff (s) = 1 provided s := ‖ f ‖F < ∞. This proves (i). Proving (iii) is routine
checking. To prove (ii), we expand f as

∑
j∈J a jχA j with (A j ) j∈J pairwise disjoint

and a j �= 0 for all j ∈ J . We have

Ff (t) =
∑

j∈J

∣
∣A j

∣
∣ F(a j )F|a j |(t), t ≥ 0.

In particular, 1 = Ff (1) =∑
j∈J

∣
∣A j

∣
∣ F(

∣
∣a j

∣
∣). ��

Let (�,�,μ) be aσ -finitemeasure space and F be a finiteOrlicz function. Suppose
that (�,�,μ) is purely atomic. If (An)n∈N is a family of representatives of its atoms
we put

F = (Fsn )n∈N , sn = F−1(μ(An)
−1).

By Lemma 6.1, the mapping

(an)n∈N →
∑

n∈N
ansnχAn

defines a lattice isometry from theMusielak-Orlicz sequence space �F onto the Orlicz
space LF (μ). Oppositely, if μ is nonatomic and separable, then, by Proposition 2.9,
LF (μ) is lattice isomorphic to LF (I ), where I = [0, 1) if μ is finite and I = [0,∞)

isμ is infinite. In this paper, we will study the Orlicz function space LF ([0, 1)), which
we will simply call LF . Notice that an Orlicz function F takes the infinity value if and
only if LF = L∞.

Given a finite Orlicz function F , the function norm associated with the Orlicz
function space LF is absolutely continuous if and only if F is finite and satisfies the
�2-condition near infinity, i.e.,

sup
t≥1

F(2t)

F(t)
<∞

(see [23, Chapter 2, Section a]). In turn, the function norm associated with the Orlicz
sequence space �F is absolutely continuous if and only if F satisfies the �2-condition
near zero, i.e.,

sup
t≤1

F(2t)

F(t)
<∞
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(see [22, Chapter 4]). These results are consistent with the facts that, given Orlicz
functions F and G, LF = LG (up to an equivalent norm) if and only if F and G
are equivalent near infinity, while �F = �G if and only if F and G are equivalent
near zero. Musielak [25, Chapter 8] extended this characterization of Orlicz functions
that define the same Orlicz spaces. As sequence spaces are concerned, he proved the
following.

Theorem 6.2 ([25, Theorem 8.11]) Let F = (Fn)∞n=1 and G = (Gn)
∞
n=1 be sequences

of normalized Orlicz functions. Then �F ⊆ �G if and only if there exist a positive
sequence (an)∞n=1 in �1, some δ > 0, and positive constants b and C such that

Fn(t) < δ  ⇒ Gn(t) ≤ CFn(bt)+ an .

The convexity-type and concavity-type of Orlicz spaces is known.

Proposition 6.3 (see [15, Section 7])Given a finite Orlicz function F and 1 < p <∞
the following are equivalent.

(i) LF is lattice p-convex (resp., p-concave).
(ii) The function t → F(t)t−p is essentially increasing (resp., decreasing) on

[1,∞).
(iii) F is equivalent near infinity to an Orlicz function G such that the function

t → G(t1/p) is convex (resp., concave) on (0,∞).

Moreover, LF has some nontrivial concavity if and only if F is doubling near infinity.

Lindberg [17] and Lindenstrauss and Tzafriri [19–21] studied the basic sequence
structure of a given Orlicz sequence space �F in terms of subsets of C([0, 1/2]) con-
structed from the flows Fs of the Orlicz function F for s near zero. To study Orlicz
function spaces we must consider flows Fs for s near infinity. Suppose that F is
normalized. Given b ∈ [0,∞), let E∞F,b be the topological closure of {Fs : s > b}
in (C([0, 1/2]), ‖·‖∞), and C∞F,b be the topological closure of the convex hull of
{Fs : s > b}. Following [21] we define

E∞F =
⋂

b≥0
E∞F,b, C∞F =

⋂

b≥0
C∞F,b.

By definition,

E∞F ⊆ C∞F ⊆ C∞F,0.

Each function G ∈ C∞F,0 inherits from the flows of F the following properties:

• G(0) = 0.
• G is non-decreasing.
• G is convex.
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• For all 0 ≤ t < u ≤ 1/2,

G(u)− G(t)

u − t
≤ 2(G(1)− G(1/2)).

In particular, G(1/2) ≤ 1/2F(1) and G is 2F(1)-Lipschitz.

Consequently, the extension of G to [0,∞) that is linear on [1/2,∞) and satisfies
G(1) = F(1) is an Orlicz function. So, we can defineG∗ and �G forG ∈ C∞F,0. Notice
that, a priori, G could be null near zero, in which case �G = �∞ and G∗(t) ≈ t for t
near zero.

The setC∞F,0 is equicontinuous and uniformly bounded, hence compact. Therefore,
E∞F andC∞F are compact subsets of C([0, 1/2]), and E∞F is nonempty (c.f.[22, Lemma
4.a.6]).

Once written the necessary background on Orlicz spaces down, we state the main
results of this section. Since the foundations they rely on are closely related, we carry
out a unified proof.

Theorem 6.4 Let F be a finite Orlicz function. Suppose that F is doubling near infinity
and that the mapping t → F(t)t−2 is essentially increasing on [1,∞). Then, any
subsymmetric basic sequence � in LF is equivalent to the unit vector system of �2 or
�G for some G ∈ C∞F .

Theorem 6.5 Let F be a finite Orlicz function. Suppose that themapping t → F(t)t−2
is essentially decreasing on [1,∞). Then, any complemented subsymmetric basic
sequence� in LF is equivalent to the unit vector system of �2 or �G for some G ∈ C∞F .

Theorem 6.6 Let F be a finite Orlicz function. Suppose that either

• F is doubling near infinity and the mapping t → F(t)t−2 is essentially increasing
on [1,∞), or

• F∗ is doubling near infinity and the mapping t → F(t)t−2 is essentially decreas-
ing on [1,∞).

Then, any complemented subsymmetric basic sequence � in LF is equivalent to the
unit vector system of �2 or �G for some G ∈ C∞F such that G∗ is equivalent to a
function in C∞F∗ .

Proof (Proof of Theorems 6.4, 6.5 and 6.6) Suppose that � is not equivalent to the
unit vector system of �2. Then, combining Proposition 6.3, Theorem 2.3 and Corol-
lary 4.3 or Theorem 5.3, gives that� is equivalent to a normalized disjointly supported
sequence � = (φn)

∞
n=1 in LF consisting of simple functions escaping to∞. More-

over, under the assumptions of Theorem 6.6, the dual basis �∗ or � is equivalent to a
normalized disjointly supported sequence �∗ = (φ∗n)∞n=1 in LF∗ consisting of simple
functions escaping to∞. By Lemma 6.1(iii), there is a sequence (bn)∞n=1 in (0,∞)

with limn bn = ∞ such that Fφn
∈ C∞F,bn

and F∗
φ∗n
∈ C∞F∗,bn for all n ∈ N.

Pick an arbitrary sequence (an)∞n=1 in (0,∞) with
∑∞

n=1 an < ∞. Since C∞F,0 is
compact we can assume, passing to a subsequence, that there is G ∈ C∞F,0 such that

∥
∥Fφn

− G
∥
∥∞ ≤ an, n ∈ N.
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In the case we are addressing proving Theorem 6.6 we can also assume, passing to a
further subsequence, that there is H ∈ C∞F∗,0 such that

∥
∥
∥F∗φ∗n − H

∥
∥
∥∞ ≤ an, n ∈ N.

Combining Lemma 6.1(ii) with Theorem 6.2 gives that � is equivalent to the unit
vector system of �G , and �∗ is equivalent to the unit vector system of �H . Since �∗ is
also equivalent to the unit vector system of �G∗ , �H = �G∗ up to an equivalent norm.
Therefore, H is equivalent to G∗. Since G ∈ C∞F and H ∈ C∞F∗ , we are done. ��

Concerning the accuracy of Theorems 6.4, 6.5 and 6.6, we point out that the
Rademacher functions, regarded as a sequence in a rearrangement invariant func-
tion space Lρ , are equivalent to the unit vector of �2 if and only LM2 ⊆ Lρ , where,
for each a > 0, Ma is the normalized Orlicz function given by

Ma(t) = et
a − 1

e − 1
, t ≥ 0.

Moreover, the Rademacher functions are complemented in Lρ if and only if LM2 ⊆
Lρ ⊆ LM∗

2
, where M∗

2 (t) ≈ t (log(t))1/2 for t near infinity (see [28, 29] and also [23,
p. 134]). We also point out that the assumption of complementability in Theorems 6.5
and 6.6 is necessary. In fact, if 1 < s < 2 and

∫ 1

0
F(x−1/s) dx <∞,

then LF has a basic sequence equivalent to the unit vector system of �s (see [15,
Proposition 8.9] and [23, Chapert 8]). As for sequences other than the canonical basis
of the Hilbert space, we next prove that if E∞F = C∞F , then these theorems are sharp.

Lemma 6.7 Let (An)
∞
n=1 be a pairwise disjoint sequence consisting of Borel subsets

of I , where I is either [0, 1] or [0,∞). Let F be a normalized finite Orlicz function.
Set

sn = F−1
(

1

|An|
)

, n ∈ N.

Then, � = (snχAn )
∞
n=1 is a well-complemented basic sequence with good projecting

functionals (χAn F(sn)/sn)∞n=1. Moreover, � is isometrically equivalent to the unit
vector system of �F , where F = (Fsn )

∞
n=1.

Proof Since mF (snχAn ) = 1 for all n ∈ N, � is normalized. Then, by Lemma 6.1(ii),
FsnχAn

= Fsn for all n ∈ N. We close the proof by combining Theorem 2.8 with
Lemma 6.1(iii). ��

For completeness, we write down a result by Lindenstrauss and Tzafriri that can be
proved using our techniques.
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Theorem 6.8 (c.f. [21, Proposition 4]) Let F be a finite Orlicz function with
limt→∞ F(t)/t = ∞. For any G ∈ E∞F there is a well-complemented basic sequence
� in LF that is equivalent to the unit vector system of �G. Moreover, there are good
projecting functionals �∗ for � such that both � and �∗ consist of simple functions
escaping to infinity.

Proof Pick an arbitrary positive sequence (an)∞n=1 ∈ �1. Let (sn)∞n=1 in (0,∞) be such
that

∑∞
n=1 1/F(sn) ≤ 1 and

∥
∥G − Fsn

∥
∥∞ ≤ an, n ∈ N.

Let (An)
∞
n=1 be a pairwise disjoint sequence consisting Borel subsets of [0, 1] with

|An| = 1/F(sn) for all n ∈ N. Combining Lemma 6.7 and Theorem 6.2 gives the
desired result. ��

It is known the the converse of Theorem 6.8 does not hold. In fact, for each 1 <

p < ∞ there is an Orlicz function F such that the potencial function x → x p is not
in E∞F and still �p is a complemented subspace of LF (see [13, Theorem 2.1]).

We close our study of the accuracy of Theorems 6.4, 6.5 and 6.6 with a criterion to
ensure that E∞F = C∞F .

Proposition 6.9 (c.f. [12, Proposition 6]) Let F be an Orlicz function. Suppose that
there is 0 < c < 1 such that for all t ∈ [0, c] there exists

G(t) := lim
s→∞ Fs(t) = lim

s→∞
F(st)

F(s)
<∞. (6.1)

Then, there is p ∈ [1,∞) such that G(t) = t p for all t ∈ [0, c], and E∞F = C∞F =
{t → t p}. In particular, the above holds if there exists

q := lim
s→∞

sF ′(s)
F(s)

<∞, (6.2)

in which case q = p.

Proof If (6.2) holds, then for any ε > 0 and 0 < t < 1 there is t0 ∈ (1,∞) such that

tq−ε ≤ F(st)

F(s)
≤ tq+ε, t ≥ t0,

(see [12, Proof of Proposition 6]). Hence, (6.1) holds for any 0 < t < 1, and G(t) =
tq . To prove that the wished-for exponent p exists in general, we show that G is
multiplicative. Given t1, t2 ∈ (0, c] we have

G(t1)G(t2) = lim
s→∞

F(st1)

F(s)
lim
s→∞

F(st1t2)

F(st1)
= G(t1t2).
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Since E∞F is nonempty, proving that if H ∈ C∞F thenG(t) = H(t) for all t ∈ [0, c]
will conclude the proof. Fix t ∈ [0, c] and ε > 0. There is b ∈ (0,∞) such that

|Fs(t)− G(t)| < ε

2
, s > b.

Now, since H ∈ C∞F,b there are finite families (λ j ) j∈J in [0,∞) and (s j ) j∈J in (b,∞)

such that

∑

j∈J
λ j = 1 and sup

0≤s≤1/2

∣
∣
∣
∣
∣
∣
H(s)−

∑

j∈J
λ j Fs j (s)

∣
∣
∣
∣
∣
∣
<

ε

2
.

Consequently, |H(t)− G(t)| < ε. ��
Example 1 Let 1 ≤ p < ∞ and a ∈ R \ {0}. If p = 1, we assume that a > 0. It is
easily checked that there are constants c = c(p, a) and m = m(a, p) such that the
function

Fp,a(t) =
{
t p(log t)a if t ≥ c,

mt if 0 < t < c,

is an Orlicz function that satisfies the �2-condition near infinity. Notice that

Dp,a := F ′p,a ≈ t p−1(log t)a

near infinity. If p > 1 and we set

q = p′ = p

p − 1
, b = −a(p − 1),

then Dp,a(Dq,b(t)) ≈ 1 near infinity. Consequently, LFp,a and LFq,b are dual spaces.
As the case p = 1 is concerned, since (D1,a(M ′

1/a(t)) ≈ 1 near infinity, the dual
space of LF1,a = L loga L is LM1/a .

If a > 0, then the function t → t−pFp,a(t) is essentially increasing near infinity,
while the function t → t−q Fp,a(t) is essentially decreasing near infinity for all q > p.
Consequently, LFp,a is lattice p-convex and lattice q-concave for all p < q. In turn,
if a < 0, then the function t → t−pFp,a(t) is essentially decreasing near infinity, and
the function t → t−q Fp,a(t) is essentially increasing near infinity for all 1 ≤ q < p.
Therefore, LFp,a is lattice p-concave and lattice q-convex for all 1 ≤ q < p. Since

lim
s→∞

Fp,a(st)

Fp,a(s)
= t p, t ≥ 0,

then E∞F = C∞F = {t → t p}. We obtain the following information about the basic
sequence structure of LFp,a .
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• If p > 2, then LFp,a has, up to equivalence, two different subsymmetric basic
sequences. Namely, the unit vector systems of �2 and �p.

• If p = 2 and a > 0, then LFp,a has, up to equivalence, a unique subsymmetric
basic sequence. Namely, the unit vector system of �2.

• If p = 2 and a < 0, then LFp,a has, up to equivalence, a unique complemented
subsymmetric basic sequence. Namely, the unit vector system of �2. We do not
know whether LFp,a has subsymmetric basic sequences other than the unit vector
system of �2.

• If 1 < p < 2or p = 1 anda ≥ 1/2, then LFp,a has, up to equivalence, twodifferent
complemented subsymmetric basic sequences. Namely, the unit vector systems
of �2 and �p. Moreover, �s , p < s < 2, is isomorphic to a (non-complemented)
subspace of LFp,a . If p = 1 and 0 < a < 1/2 these results about the subsymmetric
basic sequence structure of LFp,a still hold, with the exception that it seems to be
unknown whether �2 is isomorphic to a complemented subspace LF1,a , 0 < a <

1/2.

We conclude with an application of Example 1 to the isomorphic theory of Banach
spaces. It is known that, given 1 ≤ p < ∞, all separable L p-spaces over non purely
atomic measure spaces are isomorphic (see, e.g., [4, Chapter 6]). As Orlicz spaces are
concerned, the situation is quite different. Since Orlicz spaces on [0,∞) depend on
the behaviour of the associated Orlicz functions near zero and infinity, there are Orlicz
functions F such that LF ([0,∞)) is not isomorphic to LF (see [14, 26]). We show
that even if 1/F(t) ≈ F(1/t) for t ∈ (0,∞) these spaces may not be isomorphic.

Corollary 6.10 Let 1 < p <∞ and a ∈ R
∗. Let F be an Orlicz function such that

1

F(1/t)
≈ F(t) ≈ Fp,a(t), 1 ≤ t <∞.

Then, the Banach spaces LF and LF ([0,∞)) are not isomorphic.

Proof In light of Example 1, it suffices to show that �F is a complemented subspace of
LF ([0,∞)) for every normalized Orlicz function F . To that end, we apply Lemma 6.7
with An = [n − 1, n) for all n ∈ N. ��
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