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An energy-based theory of autoresonance in driven dissipative chains of coupled generic oscillators
is discussed on the basis of a variational principle concerning the energy functional. The theory
is applied to chains of delayed Duffing-Ueda oscillators and the equations that together govern
the autoresonance forces and solutions are derived and solved analytically for generic values of
parameters and initial conditions, including the case of quenched time-delay disorder. Remarkably,
the presence of retarded potentials with time-delayed feedback drastically modify the autoresonance
scenario preventing the growth of the energy oscillation over specific regions of the parameter space.
Additionally, effective harmonic forces with a slowly varying frequency are derived from the exact
autoresonant excitations and the effectiveness of the theory is demonstrated at suppressing the
chaos induced by homogeneous periodic excitations in such oscillator chains. Numerical experiments
confirmed all the theoretical predictions.

PACS numbers: 05.45. -a

I. INTRODUCTION

Autoresonance (AR) induced secular growth of the os-
cillation energy in nonlinear damped-driven systems take
place when the system persistently adjusts its ampli-
tude so that its instantaneous nonlinear period balances
the driving period. Firstly studied in Hamiltonian sys-
tems, AR phenomena have been investigated since the
middle of the last century and have been noted in di-
verse contexts: particle accelerators [1, 2], atomic and
molecular physics [3], planetary dynamics [4], nonlinear
low-dimensional oscillators [5], nanoscale magnetic de-
vices [6], nonlinear chains subject to localized driving
[7], plasma waves [8], and energy transfer between ax-
ions [9], to quote a few instances. While most previous
investigations on AR have restricted themselves to ex-
plore the effectiveness of chirped harmonic forces [1–10],
a general energy-based AR (EBAR) theory has been pro-
posed to explain the approximate and phenomenological
findings arising from a prior adiabatic approach to AR
in Duffing-like oscillators [11]. Further application of the
EBAR theory to low-dimensional systems has included
the case where the system crosses a separatrix associated
with its underlying integrable counterpart [12] as well as
the problem of chaotic escape in dissipative multistable
systems [13]. Since the application of chirped harmonic
forces to give rise to reliable autoresonant responses in
multi-particle chains seems to be more problematic than
in the case of an isolated oscillator [14], the question nat-

urally arises: How does an extension of the EBAR theory
to driven dissipative chains of coupled generic oscillators
work?

The remainder of the communication is organized as
follows. In Sec. II, we provide the extension of the EBAR
theory to driven dissipative chains of coupled generic os-
cillators. Section III applies the theory developed in Sec.
II to chains of Duffing-Ueda oscillators with time-delayed
feedback and the equations that together govern the AR
forces and solutions are derived and solved analytically
for generic values of parameters and initial conditions.
The effects of quenched time-delay disorder are discussed
in Sec. IV, while Sec. V is devoted to an exploration of
the effectiveness of the theory at controlling the chaos
induced by homogeneous periodic excitations in Duffing-
Ueda oscillator chains. Finally, we conclude with Sec. VI
by summarizing our conclusions and discussing future ex-
tensions and applications of the EBAR theory. Some an-
alytical calculations and numerical results are relegated
to the Appendixes.

II. THEORY

The present extension of the EBAR theory is studied in
the context of the family of N linearly coupled, identical
oscillators

..
un + V ′(un) = −η .un + λ∆dun + Fn(t), (1)



2

where dots indicate time derivative, ∆dun ≡ un+1 +
un−1 − 2un is the discrete Laplacian operator, V ′(un) ≡
dV/dun with V (un) being a general on-site potential, η
and λ are the damping coefficient and coupling constant,
respectively, while Fn(t) is a temporal force. Clearly, the
corresponding equation for the energy is

.

E =
∑
n

.
un
[
−η .un + Fn(t) + λ∆dun

]
+ λ

∑
n

( .
un+1 −

.
un
)

(un+1 − un)

≡ P
(
u1, ..., uN ,

.
u1, ...,

.
uN , t

)
, (2)

where

E ≡
∑
n

[
.
u
2
n/2 + V (un)

]
+
λ

2

∑
n

(un+1 − un)
2

(3)

and P
(
u1, ..., uN ,

.
u1, ...,

.
uN , t

)
are the energy and power,

respectively. As in the case of isolated oscillators, the
AR solutions of Eq. (1) are defined in terms of a varia-
tional principle by imposing that the energy variation

∆E =
∫ t2
t1
P
(
u1, ..., uN ,

.
u1, ...,

.
uN , t

)
dt is a maximum

(with t1, t2 arbitrary but fixed instants) under the influ-
ence of dissipation and forcing. Thus, the corresponding
Euler-Lagrange equations provide the necessary condi-
tions (AR conditions) to be fulfilled by the AR solutions
and temporal forces:

∂P

∂un
− d

dt

(
∂P

∂
.
un

)
= 0, (4)

n = 1, ..., N . Indeed, Eq. (4) supply relationships be-
tween un,

.
un, and Fn such that the solutions of the sys-

tem given by Eqs. (1) and (4) together provide the AR
forces, Fn,AR(t), and the AR solutions, un,AR (t), for each
set of initial conditions:

..
un,AR + V ′(un,AR) = η

.
un,AR + λ∆dun,AR, (5)

Fn,AR(t) = 2η
.
un,AR, (6)

n = 1, ..., N . Clearly, this AR scenario is strongly depen-
dent upon the distribution of initial conditions: while
for non-uniform distributions the AR forces and solu-
tions depend upon the coupling constant through the
discrete Laplacian operator, for uniform distributions the
coupling energy is always zero (a situation equivalent to
that of the anticontinous limit λ = 0), and hence the
AR forces and solutions are those corresponding to the
respective isolated oscillators. Regarding the Hamilto-
nian limiting case η → 0, notice that Eq. (5) can be
equivalently rewritten as

..
un,AR + V ′(un,AR) = Fn,AR/2 + λ∆dun,AR (7)

[cf. Eq. (6)], which suggests the natural ansatz [11]
Fn,AR(t) = κ

.
un,AR, κ > 0, for Hamiltonian chains

(η = 0) and where the AR rate, κ, is a free parameter
controlling the initial force strength. Therefore, one can
expect that the AR solutions and forces for the Hamil-
tonian case are essentially the same than those for the
dissipative case, both with κ instead of η.

III. DUFFING-UEDA OSCILLATORS WITH
TIME-DELAYED FEEDBACK

Let us consider the application of the above EBAR the-
ory to the significant instance of purely nonlinear (cubic)
oscillators with a homogeneous retarded potential with
time-delayed feedback V ′(un) = βu3n + αun (t− τ) [cf.
Eq. (1)], with the positive parameters α and τ account-
ing for the strength and time-delay of the retardation
term, respectively. Time delays are unavoidable in real-
world systems since they are induced because of the finite
time needed to exchange information in complex (cou-
pled) systems [15]. After assuming that τ is sufficiently
small such that

un (t− τ) = un(t)− τ .un (t) + τ2
..
un (t) /2 +O

(
τ3
)
, (8)

Eqs. (5) and (6) become

..
un,AR + ω2

0un,AR +Bu3n,AR = δ
.
un,AR + Λ∆dun,AR,

(9)

Fn,AR(t) = 2δR
.
un,AR, (10)

n = 1, ..., N , with ω2
0 ≡ α/R,R ≡ 1 + ατ2/2, B ≡

β/R, δ ≡ (η − ατ) /R,Λ ≡ λ/R. Thus, when N is a
multiple of 4 [16] and periodic boundary conditions are
assumed, Eqs. (9) and (10) present AR solutions and
forces

un,AR(t) = γ0 eδt/3 cn

[
ϕn (t) ;

1

2

]
, (11)

Fn,AR(t) =
2

3
γ0δ

2R eδt/3 cn

[
ϕn (t) ;

1

2

]
− 2γ20δR

√
B e2δt/3 sn

[
ϕn (t) ;

1

2

]
dn

[
ϕn (t) ;

1

2

]
,

(12)

with the constraint Λ = δ2/9− ω2
0/2, i.e.,(

1 +
ατ2

2

)
(α+ 2λ) =

2

9
(η − ατ)2 (13)

(see Fig (1)), and where cn, sn, dn are Jacobian elliptic
functions of parameter m,

ϕn (t) ≡ 3γ0δ
−1B1/2 eδt/3 +nK(1/2) + φ0, (14)

with γ0, φ0 being arbitrary constants and K(m) the com-
plete elliptic integral of the first kind, while the initial
conditions satisfy the relationships

un,AR(0) = γ0 cn

[
ϕn (0) ;

1

2

]
,

.
un,AR(0) =

1

3
γ0δR cn

[
ϕn (0) ;

1

2

]
− γ20

√
B sn

[
ϕn (0) ;

1

2

]
dn

[
ϕn (0) ;

1

2

]
. (15)



3

FIG. 1: (a) Constrain condition for λ = 0 [Eq. (13)] (leftmost
surface), critical damping η = ηc [cf. Eq. (16)], and critical
damping η = ηc,mf [cf. Eq. (29)] (rightmost surface). (b)
Constrain condition for η = 1.3 [Eq. (13)].

In the two cases of homogeneous initial conditions and
anticontinous limit, the system [Eq. (9)] reduces to a set
of uncoupled oscillators and the corresponding general
AR solutions and forces are those given by Eqs. (11) and
(12) with ϕn (t) ≡ 3γ0 δ

−1B1/2 eδt/3 +φ0 for any N and
arbitrary boundary conditions, while the constraint re-
duces to ω2

0 = 2δ2/9 [11]. Mathematically, the constraint
is precisely the same condition for Eq. (9) to present,
in the anticontinous limit, both the Painlevé property
and a nontrivial Lie symmetry [17], indicating thus that
such an equation is integrable. Remarkably, there exists
a critical value of the damping coefficient,

η = ηc ≡ ατ, (16)

such that for η > ηc one has genuine AR solutions and
forces given by Eqs. (11) and (12), while for η < ηc the
Euler-Lagrange equations [Eq. (4)] provide a necessary
condition for the energy functional to present a minimum
(i.e., that energy corresponding to equilibria). Physically,
the constrain establishes a necessary condition to be sat-
isfied by the strengths of dissipation, coupling, and retar-
dation parameters for the energy amplification (decrease)
rate to be maximum when η > ηc (η < ηc). Furthermore,
Eq. (9) can be derived from a Lagrangian

L =
e−δt

2

∑
n

[
.
u
2
n − ω2

0u
2
n −

Bu4n
2
− Λ(un+1 − un)2

]
,

(17)
whose associated Hamiltonian is

H =
∑
n

{
eδt p2n

2
+

e−δt

2

[
ω2
0u

2
n +

Bu4n
2

+ Λ(un+1 − un)2
]}

,

(18)
where pn ≡ ∂L/∂

.
un = e−δt

.
un. For the critical damping

η = ηc, the Hamiltonian is time-independent and energy
is thereby conserved. After using the canonical transfor-
mation Un = un e−δt/2, Pn = pn eδt/2, together with the
generating function F2 =

∑
n unPn e−δt/2 [18], the new

Hamiltonian reads

K =
1

2

∑
n

[
P 2
n + ω2

0U
2
n +

B

2
eδt U4

n

]
+

1

2

∑
n

[
Λ(Un+1 − Un)2 − δPnUn

]
, (19)

and one obtains (after expanding eδt) that the AR solu-
tions are associated (in terms of the old canonical vari-
ables and parameters) with the adiabatic invariant

∑
n

(
p2n
2

+
αu2n

2 + ατ2
+

βu4n
4 + 2ατ2

)
+
∑
n

[
λ(un+1 − un)2 − (η − ατ) pnun

2 + ατ2

]
(20)

over the time interval 0 6 t . tAI ,

tAI ∼ δ−1 ∼
[(

1 + ατ2/2
)
/ (λ+ α/2)

]1/2
(21)

[cf. Eq. (13)], with tAI being the onset time for AR.
Thus, tAI provides a time scale from which the energy
amplification effects are noticeable when η > ηc. When
η → ηc, Eq. (13) cannot be satisfied, while tAI →∞ and
hence Eq. (20) provides the aforementioned invariant
(energy) due to Fn,AR(t) → 0 [cf. Eq. (12)]. When
λ → 0, the adiabatic invariant Eq. (20) reduces to a set
of N identical adiabatic invariants corresponding to a
set of N uncoupled Duffing-Ueda oscillators. Extensive
numerical simulations confirmed all the features of the
present AR scenario [see Fig. (2)].

Next, we derive effective chirped harmonic forces from
Eq. (12) for η > ηc. For t . tb,

tb ∼ δ−1 ∼
[(

1 + ατ2/2
)
/ (λ+ α/2)

]1/2
(22)

[cf. Eq. (13)], with tb being the breaking time for AR [5],
and, e.g., homogeneous initial conditions near equilibria
(ui(0) ' 0,

.
ui (0) ' 0, i = 1, ..., N), one straightforwardly

obtains

Fn,AR(t) ' 2

3
γ0 (η − ηc)2 cos [Ω (t) t] , (23)

Ω (t) ≡ 3γ0
√

2αβ

2 (η − ηc)

[
1 +

3α

4 (η − ηc)
t

]
(24)

which is of the form ε cos
(
Ω0t+ ξt2/2

)
[5], with ε and ξ

being the amplitude and linear sweep rate, respectively.
Therefore, the EBAR theory predicts the following scale
laws for the respective thresholds for AR:

εth ∼ (η − ατ)
2
, ξth ∼ α3/2 (η − ατ)

−2
. (25)

Notice that chirped harmonic forces valid for arbitrary
initial conditions can be straightforwardly calculated
from Eq. (12) (see Appendix A for an explicit expres-
sion).
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FIG. 2: (a), (b), (c) Energy amplification,
log [E (t = tmax) /E (t = 0)], in the α − τ parameter plane
for a ring of N = 15 oscillators with β = 1, η = 0.3 and
tmax = 100. (a) Isolated oscillator (λ = 0). (b) Case where
the exact AR force is applied to all oscillators and λ = 0.1.
(c) Case where the exact AR force is applied to a single
oscillator and λ = 0.1. (d) Dimensionless onset time for AR
(δt), after which the adiabatic invariant [Eq. (20)] undergoes
a deviation equal to 10% with respect to its initial value. The
initial conditions are randomly and independently chosen.
The dashed lines (green (grey) in version (d)) indicate
the critical damping η = ηc [cf. Eq. (16)] separating the
amplification regime from the extinction regime.

IV. TIME-DELAY DISORDER

We study the effects of quenched disorder on the above
AR scenario by randomly choosing the time-delays τn
uniformly from the interval [0, τmax]. Thus, Eqs. (9)
and (10) become a family of randomly AR equations
(one for each sampling of the uniform distribution) with
ω2
0 , B, δ,Λ being disorder-induced random parameters

having averages

〈
ω2
0

〉
= τ−1maxα

√
2/α arctan

(√
α/2τmax

)
,

〈B〉 = τ−1maxβ
√

2/β arctan
(√

β/2τmax

)
,

〈Λ〉 = τ−1maxλ
√

2/λ arctan
(√

λ/2τmax

)
,

〈δ〉 = τ−1maxη
√

2/α arctan
(√

α/2τmax

)
− τ−1max ln

(
1 + ατ2max/2

)
, (26)

and where 〈·〉 ≡ τ−1max

∫ τmax

0
(·) dτn. Therefore, the effec-

tive (mean-field) AR equations reads

..
un,AR +

〈
ω2
0

〉
un,AR + 〈B〉u3n,AR = 〈δ〉 .un,AR (27)

+ 〈Λ〉∆dun,AR,

〈1/R〉Fn,AR(t) = 2 〈δ〉 .un,AR, (28)

whose solutions are given by Eqs. (11) and (12) with
obvious substitutions. Remarkably, this mean-field ap-
proach also predicts the existence of a critical value of
the damping coefficient,

η = ηc,mf ≡
√
α/2 ln

(
1 + ατ2max/2

)
arctan

(√
α/2τmax

) , (29)

such that for η > ηc,mf one has optimal energy amplifi-
cation on average, while for η < ηc,mf the chain’s energy
tends to a minimum on average, which indicates the ro-
bustness of the above AR scenario against the presence of
quenched time-delay disorder. Note that ηc,mf → ηc with
τ = τmax/2 when τmax → 0, as expected [cf Fig. 1(a)].
We found that quenched time-delay disorder favors the
energy’s amplification with respect to the homogeneous
case, as predicted from the above mean field approxima-
tion and is confirmed by numerical experiments (see Fig.
3).

FIG. 3: Energy amplification, log [E (t = tmax) /E (t = 0)], in
the α − τmax parameter plane for β = 1, η = 0.3, tmax = 50.
(a) Isolated oscillator (λ = 0). (b) Ring of N = 5 oscillators
with λ = 0.1 and where the retardation term and the exact
AR force are solely applied to a single oscillator, while the ini-
tial conditions are randomly and independently chosen. The
dashed lines indicate the critical damping η = ηc,mf [cf. Eq.
(29)] separating the amplification regime from the extinction
regime.

V. AR-INDUCED CHAOS SUPPRESSION

Since local injection and absorption of energy can mod-
ify a chain´s energy landscapes, and hence reshape the
basins of attraction of the possible attractors in phase
space, we study the effectiveness of retardation terms and
AR forces at suppressing the chaos arising from Duffing-
Ueda chains when the oscillators are solely subjected to
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dissipation and homogeneous harmonic driving:

..
un + βu3n = −η .un + γ cos (ωt) + λ∆dun, (30)

n = 1, ..., N . Thus, for the case V ′(un) = βu3n +
αun (t− τ) − γ cos (ωt) [cf. Eq. (1)], Eqs. (5) and (6)
become

..
un,AR + ω2

0un,AR +Bu3n,AR = δ
.
un,AR + Λ∆dun,AR,

(31)

Fn,AR(t) = 2δR
.
un,AR − γ cos (ωt)

(32)

n = 1, ..., N . Clearly, the AR solutions are the same for
the cases with and without homogeneous periodic driv-
ing, but the corresponding AR forces differ precisely in
such a periodic force [cf. Eqs. (10) and (32)]. Now,
we explore the effectiveness of locally applying AR forces
on M (1 6M 6 N) oscillators at suppressing the chaos
existing for α = Fn(t) = 0. Two suppressory scenarios
are expected depending on whether η is greater or less
than ηc. When η > ηc, one has an optimal local injection
of energy on each of the M oscillators subjected to AR
forces. Since these M oscillators act as energy sources
for the remaining oscillators, after a certain time interval
∆t = tf − ti, with ti and tf being the initial and final
instants for the application of the AR forces, and also
depending upon the remaining parameters, the chain’s
energy E is expected to reach a sufficiently high value to
allow the chain to escape from the basin of the chaotic
attractor (scenario I). However, this scenario is solely ex-
pected to be fully effective in the presence of multista-
bility, i.e., when the damping coefficient is sufficiently
small to allow the coexistence of a number of attractors
for a fixed set of parameters. On the contrary, one has
a monotonous loss of energy in each of the M oscillators
when η < ηc, i.e., they are behaving as energy sinks for
the chain’s energy. This loss of energy may again, de-
pending upon the remaining parameters, allow the chain
to escape from the basin of the chaotic attractor, thus
regularizing its dynamics (scenario II). While the former
scenario seems less effective and less far-reaching than
the latter scenario, Fig. 4 shows illustrative examples
confirming these two regularization scenarios. Typically,
we found that regularized states are period-1 solutions of
different waveforms, the regularization-inducing desyn-
chronization of the chain when M � N being maximum
in the weak coupling regime and appearing due to cluster
synchronization of different sets of oscillators (see Ap-
pendix B for further numerical details).

VI. CONCLUSION

We have developed a general energy-based theory of
AR in damped driven chains of coupled generic oscil-
lators and applied it to chains of delayed Duffing-Ueda
oscillators to reveal a quite complex scenario of AR. This

FIG. 4: (a), (b) Energy amplification,
log [E (t = tmax) /E (t = 0)], in the α − τ parameter plane
for a ring of N = 5 oscillators with tmax = 200. (a)
Isolated oscillator (λ = 0). (b) Case where the retardation
term and the exact AR force are applied to all oscilla-
tors and λ = 0.1. (c), (d) Average energy amplification,

log [〈E〉 / 〈E0〉] with 〈E〉 ≡ (4π/ω)−1 ∫ tmax

tmax−4π/ω
E(t)dt,

〈E0〉 ≡ (4π/ω)−1 ∫ t0+4π/ω

t0
E(t)dt, in the α − τ parameter

plane for a ring of N = 5 oscillators with t0 = 40, tmax = 400,
and where the retardation term and the exact AR force
are solely applied to a single oscillator. (c) λ = 0.01. (d)
λ = 0.05. The dashed lines indicate the critical damping
η = ηc [cf. Eq. (16)] separating the amplification regime
from the extinction (regularization) regime (blank region).
The chains present a chaotic attractor for α = Fn(t) = 0.
Fixed parameters: β = 1, η = 0.05, γ = 0.1, ω = 0.21.

scenario provides accurate indications on how locally and
optimally control the injection and absorption of energy
to modify the global dynamics of the oscillator chains,
in particular, of the order↔chaos transitions, includ-
ing the case of quenched time-delay disorder. In con-
trast to previous approaches to AR in oscillator chains
[7], in which chirped harmonic forces are systematically
used, the present theory provides exact AR solutions and
forces, from which useful chirped harmonic forces are de-
rived and the limits of their effectiveness in parameter
space are established. Future developments and applica-
tions of the present theory involve the control of topo-
logical solitons in Frenkel-Kontorova lattices as well as
the control of dynamics in complex networks of damped-
driven nonlinear systems.
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VII. APPENDIX A: CHIRPED HARMONIC
FORCES FOR ARBITRARY INITIAL

CONDITIONS

From the expression for the exact AR forces [cf. Eq.
(12)], and for arbitrary initial conditions

(
un(0),

.
un(0)

)
,

one straightforwardly obtains the generic harmonic ap-
proximation

Fn,AR(t) ≈ 3γ0(α+ 2λ)k1 cos[Ω′(t)t+ nπ/2]

− 3γ20k2

{
1 +

2 cos [2Ω′(t)t+ nπ]

coshπ

}
√

2β(α+ 2γ) sin [Ω′(t)t+ nπ/2] , (A1)

Ω′(t) ≡
3γ0k3

√
2β (α+ 2λ)

2 (η − ηc)

[
1 +

3 (α+ 2λ)

4 (η − ηc)
t

]
,

(A2)

where k1 ≡ π
√

2/ [K(1/2) cosh (π/2)] ≈ 0.95, k2 ≡
π2
√

2/
[
2K2 (1/2) sinh (π/2)

]
≈ 0.88, k3 ≡

π/ [2K(1/2)] ≈ 0.93. Figure 5 shows a comparison
between the exact [Eq. (12)] and the approximate
[Eq. (A1)] autoresonance forces for a ring of N = 16
oscillators. Notice that the pattern shown for four
correlative oscillators is repeated along the ring for the
following oscillators.

0 1 2
-4

-2

0

2

4
(a)

0 1 2
-4

-2

0

2

4
(b)

0 1 2
-4

-2

0

2

4
(c)

0 1 2
-4

-2

0

2

4
(d)

FIG. 5: Exact [Eq. (12), solid lines] and approximate [Eq.
(A1), dashed lines] autoresonance excitations for a ring of
N = 16 oscillators. (a) n = 1. (b) n = 2. (c) n = 3. (d)
n = 4. Fixed parameters: β = 1, η = 0.6, α = 0.05, τ =
0.01, λ = 0.015.

VIII. APPENDIX B: ADDITIONAL
NUMERICAL RESULTS

Figure 6 shows the average energy amplification,
log [〈E〉 / 〈E0〉], where

〈E〉 ≡ (4π/ω)
−1
∫ tmax

tmax−4π/ω
E(t)dt, (A3)

〈E0〉 ≡ (4π/ω)
−1
∫ t0+4π/ω

t0

E(t)dt, (A4)

in the α− τ parameter plane for a ring of N = 5 oscilla-
tors with t0 = 40, tmax = 400, and where the retardation
term and the exact AR force are solely applied to a sin-
gle oscillator (u3). The dashed line indicates the critical
damping η = ηc [cf. Eq. (16)] separating the amplifica-
tion regime from the extinction (regularization) regime
(blank region). The chains present a chaotic attractor
for α = Fn(t) = 0. Points A, B, C y D are representa-
tive of the different regions in the α− τ parameter plane.
The time series of oscillators position and ring energy
corresponding to such points and different values of the
coupling λ and the amplitude γ of the homogeneous pe-
riodic driving are shown in Figs. 7-10. One sees different
regularized behaviors depending on whether or not the
homogeneous harmonic force acts on the ring (compare
Figs. 7 and 9 with Figs. 8 and 10, respectively). Ad-
ditionally, synchronization of the regularized solutions of
the full ring is achieved for sufficiently large values of the
coupling, while in the weak coupling regime desynchro-
nization appears by groups of oscillators (compare Figs.
7 and 8 with Figs. 9 and 10, respectively).

FIG. 6: Average energy amplification, log [〈E〉 / 〈E0〉] [cf.
Eqs. (A3) and (A4)], in the α − τ parameter plane for
β = 1, η = 0.05, γ = 0.1, ω = 0.21, λ = 0.05, N = 5 with
t0 = 40, tmax = 400. Points A, B, C, D correspond to the
values (α, τ) = (0.75, 0.02), (2, 0.003), (4, 0.0125), (7, 0.015),
respectively.
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FIG. 7: Time series of oscillators position and ring energy for λ = 0.05, γ = 0.1 and the values of (α, τ) corresponding to the
points A, B, C, D shown in Fig. 6. Fixed parameters: N = 5, β = 1, η = 0.05, ω = 0.21.
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FIG. 8: Time series of oscillators position and ring energy for λ = 0.05, γ = 0 and the values of (α, τ) corresponding to the
points A, B, C, D shown in Fig. 6. Fixed parameters: N = 5, β = 1, η = 0.05, ω = 0.21.
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FIG. 9: Time series of oscillators position and ring energy for λ = 0.01, γ = 0.1 and the values of (α, τ) corresponding to the
points A, B, C, D shown in Fig. 6. Fixed parameters: N = 5, β = 1, η = 0.05, ω = 0.21.
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FIG. 10: Time series of oscillators position and ring energy for λ = 0.01, γ = 0 and the values of (α, τ) corresponding to the
points A, B, C, D shown in Fig. 6. Fixed parameters: N = 5, β = 1, η = 0.05, ω = 0.21.


