
Physics-informed and graph
neural networks for enhanced

inverse analysis
Daniele Di Lorenzo

PIMM Lab, ENSAM Institute of Technology, Paris, France and
ESI Group, Bagneux, France

Victor Champaney and Chady Ghnatios
PIMM Lab, ENSAM Institute of Technology, Paris, France

Elias Cueto
ESI Group-UZ Chair of the National Strategy on Artificial Intelligence,

Aragon Institute of Engineering Research (I3A), Universidad de Zaragoza,
Zaragoza, Spain, and
Francisco Chinesta

PIMM Lab, ENSAM Institute of Technology, Paris, France;
ESI Group, Bagneux, France and

CNRS@CREATE Ltd., Singapore, Singapore

Abstract
Purpose – This paper presents an original approach for learning models, partially known, of particular interest
when performing source identification or structural health monitoring. The proposed procedures employ some
amount of knowledge on the system under scrutiny as well as a limited amount of data efficiently assimilated.
Design/methodology/approach – Two different formulations are explored. The first, based on the use of
informed neural networks, leverages data collected at specific locations and times to determine the unknown
source term of a parabolic partial differential equation. The second procedure, more challenging, involves
learning the unknown model from a single measured field history, enabling the localization of a region where
material properties differ.
Findings – Both procedures assume some kind of sparsity, either in the source distribution or in the region
where physical properties differ. This paper proposed two different neural approaches able to learn models in
order to perform efficient inverse analyses.
Originality/value – Two original methodologies are explored to identify hidden property that can be
recovered with the right usage of data. Both methodologies are based on neural network architecture.
Keywords Machine learning, Inverse analysis, Data completion, Graph neural networks, Model correction,
Physics-informed neural networks
Paper type Research paper

1. Introduction
Inverse problems play a crucial role in various scientific and engineering disciplines, where
the goal is to infer unknown causes or parameters from observed effects. These problems are
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often challenging due to their ill-posed nature, meaning that solutionsmay not exist, may not
be unique or may be highly sensitive to data perturbations. Traditional approaches to
inverse problems typically rely on optimization techniques that minimize the discrepancy
between observed data and model predictions.

Recently, the advent of machine learning and data-driven approaches has provided new
avenues for tackling inverse problems. These methods can leverage large datasets and
powerful computational tools to learn complex models that can generalize well beyond the
training data (Zhang et al., 2022, 2023). In this context, two promising neural network-based
methodologies have emerged for performing efficient inverse analyses: physics-informed
neural networks (PINNs) and graph neural networks (GNNs).

This paper explores these twomethodologies to perform inverse analyses reformulation the
inverse problem in a direct manner. The first approach utilizes PINNs to identify the source
location and intensity of thermal and pollution problems. This is achieved by combining the
physical knowledge of the problem with some measurements and a regularization technique
(Lorenzo et al., 2022, 2023). The second approach employs GNNs to learn from a single
measurement and infer the problem solution while identifying regions where material
properties, such as thermal conductivity, differ from those in the surrounding area. GNNs are
well-suited for problems involving complex geometries and topologies, as they can naturally
incorporate the connectivity and relationships between different parts of the system.

The present paper is structured as follows: Section 2 presents the detailedmethodology of
the proposed design, the implementation and the results of the inversemethodology based on
PINN. Section 3 presents the implementation and the results of the proposed GNN
approaches, showcasing the performance and capabilities of this methodology. Finally,
Section 4 provides conclusions and perspectives, summarizing the key findings and
outlining potential future research directions.

2. Learning partially known models: source identification using PINNs
In the domain of inverse problems, source detection plays a crucial role in uncovering hidden
origins of various phenomena (Adel, 2012; Torre et al., 2015). Whether it involves identifying
the source of a signal, locating a physical anomaly or pinpointing the root cause of a complex
issue, source detection harnesses the power of data and mathematical modeling to reveal
elusive sources.

This section aims at proving how the proposedmethodology based on PINNs provides an
appealing procedure that merges machine learning with physics principles and data to
enhance source detection accuracy. By integrating PINNs into the study of inverse problems,
we can refine our ability to pinpoint sources with precision and extract valuable insights
from complex datasets.

For that purpose, we explore source detection within the context of diffusion (thermal
conduction) and advection-diffusion (pollution-related) problems. It is important to note that
while our discussion is centered on these specific domains, the proposed methodology
maintains a level of generality and with some necessary adjustments and adaptations, it can
be readily applied to a broader range of fields.

2.1 Thermal problem with unknown location of the source
Heat source detection (Chen et al., 2023; Janne, 2020; Wang et al., 2022a) plays a pivotal role in
structural engineering, impacting safety, maintenance and the overall integrity of buildings
and infrastructure.Whether dealingwith potential fire hazards, equipmentmalfunctions or the
monitoring of complex industrial processes, the capability to identify heat sources promptly
can significantly impact safety, maintenance practices and structural durability over time.
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Although early detection of heat sources is crucial in various fields (e.g. fire prevention,
equipment malfunctions, . . .) our primary focus here is on industrial processes. In industrial
settings, monitoring heat sources is essential for maintaining the integrity of equipment,
optimizing processes and preventing costly downtime. This section explores the possibility
of using physics-informed learning combined with data completion (data augmentation) to
devise a solution for heat source detection in structural engineering.

For that purpose the heat equation is considered:

ρcp
vTðx; tÞ

vt
þ ∇ $qðx; tÞ ¼ Sðx; tÞ x ∈ Ω; t ∈ ½0;Θ�

qðx; tÞ ¼ −kðxÞ ∇Tðx; tÞ

Tðx; tÞ ¼ fðx; tÞ x ∈ Γd; t ∈ ½0;Θ�

kðxÞ∇Tðx; tÞ$n ¼ γðx; tÞ x ∈ Γn; t ∈ ½0;Θ�

Tðx; 0Þ ¼ T0ðxÞ x ∈ Ω

;

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

(1)

where x and t are the space and time coordinates, defined in the space-time domain Ω 3

[0, Θ], with Γ 5 Γd ∪ Γn its boundary, decomposed in the parts in which temperature or
thermal fluxes are enforced, Γd and Γn, respectively, ρ is the mass density, cp the specific heat
capacity and k(x) the thermal conductivity.

Considering the case in which we just have Dirichlet boundary conditions, that is Γd 5 Γ,
and constant density, heat capacity (ρ 5 1, cp 5 1) and conductivity, the problem (1)
reduces to:

vTðx; tÞ
vt

þ ∇ $qðx; tÞ ¼ Sðx; tÞ x ∈ Ω; t ∈ ½0;Θ�

qðx; tÞ ¼ −kðxÞ ∇Tðx; tÞ

Tðx; tÞ ¼ fðx; tÞ x ∈ Γ; t ∈ ½0;Θ�

Tðx; 0Þ ¼ T0ðxÞ x ∈ Ω

:

8
>>>>>>>>><

>>>>>>>>>:

(2)

We further assume that the temperature of the actual structure is measured at (Nsens) sensor
locations, at different times,TSens

¼ fTSens
1 ; . . . ;TSens

Nsens
g, along with the nominal source Snom,

which differs from the real one in a zone of the domain. We can formulate the NN loss
function (Raissi et al., 2017a, b) in a manner that ensures the PDE (2) upon minimization.
Simultaneously, this approach enables us to address the inverse problem of identifying the
actual source and distinguishing it from the nominal one. The loss function (where b• is the
neural network prediction) involves seven terms.

L ¼ Ld þ Lb þ Lin þ Lc1 þ Lc2 þ Ldat þ LS; (3)

where
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Ld ¼
1
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XNd
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xj; tj
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�

�
�
�
�
�

2

; (4)

Lin ¼
1
Nin

XNin

j

bT
�
xj; 0

�
� T0

�
xj
��

�
�

�
�
�
2
; (5)

Lbd ¼
1

Nbd

XNdc

j

bT
�
xj; tj

�
� f

�
xj; tj

��
�
�

�
�
�
2
; (6)
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Nd

XNd
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�
xj; tj
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� bqx
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�
�
�
�
�

�
�
�
�
�

2

; (7)

Lc2 ¼
1
Nd

XNd

j

−k
vbT
�
xj; tj

�
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� bqy

�
xj; tj
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�
�
�
�
�

�
�
�
�
�

2

; (8)

Ldat ¼
1

Nsens

XNsens

j

bT
�
xj; tj

�
� Tsens�xj; tj

��
�
�

�
�
�
2
; (9)

LS ¼
1
Nd

XNd

j

bS
�
xj; tj

�
� Snom�xj; tj

��
�
�

�
�
�; (10)

represent, respectively, the squared residuals of the heat equation, the initial condition, the
boundary conditions, the Fourier’s law, the data to fit and the residual of the source
correction; Nd, Nin, Nbd and Nsens are the numbers of data points for the different terms.
Usually the different terms of the loss function (3) are multiplied by a weight, whose choice
affects the solution and the performance of PINN. Tomitigate these pathologies, we used the
proposed technique inWang et al. (2022b) (based on the neural tangent kernel) theory, which
allows us to define and optimize the value of these weights during the training process. For
what follows in this section, we will omit the weights from all other loss functions, knowing
that the same technique has been used for all of them.A schematic representation of the PINN
architecture used, is shown in Figure 1. In particular, four fully connected neural networks
are employed to infer the solution: one to predict the temperature, two to predict the vector
heat flux and the last the source.

It is important to note that the term affecting the source correction involves the L1-norm,
to emphasize the sparse nature of the source correction.

2.2 Case study
We employ the outlined methodology to determine the temperature field and detect the
thermal source in the square plate depicted in Figure 2a, of dimension L 5 10 m. The
temperature is enforced on the domain boundary, f(x, t) 5 08, being the initial condition
given byT0(x)5 08. In the nominal configuration, no thermal source applies in the plate, that
is, Snom(x, t) 5 0, whereas the real system is assumed to contain a constant source as shown
in Figure 2c. The real structure is equipped with Nsens temperature sensors, the locations of
which are shown in Figure 2b. Due to the high density of sensors, it could be considered that a
thermal camera is used to measure the temperature on the real structure in this case.

2.2.1 Data generation. The data retrieved in the sensor locations are synthetic data
produced using the PINN approach. In particular, we solved system (2) for a time of
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five seconds (Θ 5 5 s), with null Dirichlet and initial conditions, constant thermal
conductivity (k 5 1 W/(m $ K)) and with the source location depicted in Figure 2c. A
representation of the employed PINN architecture is given in Figure 3. In this architecture,
one fully connected neural network (consisting of four layers, with 40 neural units per
layer and an exponential linear unit – ELU – activation function) is used to predict the
temperature. The network’s parameters are learned through minimization of the loss
function.

Figure 1.
PINN architecture used

to address the heat
source detection

problem

Figure 2.
Configuration setup for

the thermal source
detection problem
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L ¼ Ld þLbd þLin; (11)

where

Ld ¼
1
Nd

XNd

i

vbT
�
xi; ti

�

vt
� ∇$

�
k∇bT

�
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�
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�

2

; (12)

Lin ¼
1
Nin

XNin

j

bT
�
xj; 0

�
� T0

�
xj
��

�
�

�
�
�
2
; (13)

Lbd ¼
1

Nbd

XNbd

j

bT
�
xj; tj

�
� Tbd

�
xj; tj

��
�
�

�
�
�
2
; (14)

are the squared residuals of the heat equation, boundary and the initial conditions. During
the training, the boundary and initial conditions have been strongly enforced, as proposed in
Lagaris et al. (1998), thereby eliminating the terms (13) and (14) in the loss function previously
presented. After the training, the temperature is extracted at the measurement locations and
used as sensor data.

2.2.2 Results of the thermal source identification problem.The four fully connected neural
networks, employed to predict the temperature, the vector heat flux and the source, have the
same structure: four-layers, each with 40 neural units per layer and an ELU activation
function. The parameters of the network are learned by minimizing the loss function (3)
across 10,000 points distributed in the space-time domain using the standard Adam
optimizer with a learning rate of 0.001. Also for this case, the boundary and initial conditions
have been strongly enforced, thus eliminating the terms (5) and (6) from the loss function. The
temperature and the source obtained are shown and compared with their reference
counterparts in Figures 4 and 5, respectively.

During the training process, approximately 800 epochs (batch size 5 100) were employed to
achieve convergence to an accurate enough solution. The results indicate that although the
temperature field is not perfectly approximated, the neural network effectively captures the trend
of the deviationbetween the nominalmodel and the actual solution. Furthermore, themethodology
demonstrates ahigh level of accuracy inpinpointing the locationof the thermal source, although its
magnitude is not recoveredwith great precision. This discrepancy can be improved by increasing
the number of epochs and data points used to evaluate the loss function.

Figure 3.
PINN architecture
employed to generate
data for the heat source
detection problem
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Figure 4.
Comparison between
the reference (left)

and computed (right)
temperatures at

different time steps,
from top to bottom:

t = 0.3 s, 1 s, 2.5 s
and 5 s
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2.3 Adding advective transport mechanisms: pollutant source distribution identification
Pollutant source detection stands as a critical concern in environmental science and
engineering. The early and precise identification of pollutant sources remains essential for
advancing environmental sustainability, mitigating risks to ecosystems and human health
and fostering responsible environmental practices.

The deployment of real-time monitoring systems, equipped with state-of-the-art sensors,
facilitates a continuous stream of data, enabling the swift detection of pollutant sources.
Furthermore, the Internet of Things (IoT) and sensor networks provide themeans to seamlessly
integrate data from a myriad of sensors, presenting a comprehensive perspective on plume
dispersion and air quality predictions (Gavrilas et al., 2022; Ullo and Sinha, 2020; Zhang
et al., 2021).

The integration of data from various sources, including remote sensing, ground-based
sensors and satellite imagery, significantly enhances the precision of pollutant source
detection. Machine learning algorithms, encompassing neural networks and support vector
machines, exhibit a prowess in the analysis of intricate datasets, excelling in pattern
recognition and the identification of pollutant sources (Tahir Bahadur et al., 2023; Bellinger
et al., 2017; Mahalingam et al., 2019).

In addition, predictive modeling techniques, play a pivotal role in simulating the
dispersion of pollutants, thereby aiding in the identification of sources. This capability is not
limited to industrial settings, where the early detection of pollutant sources, such as leaks and
emissions, emerges as a keystone to avoid environmental damage and optimizing process
efficiency. This section explores the use of informed learning for pollutant source detection.

Following the rationale described in Section 2.1, the advection–diffusion equation to
model the concentration (c) of a pollution inΩ 3 [0,Θ] is now considered. The problem reads:

vcðx; tÞ
vt

þ ∇ $ðuðx; tÞ cðx; tÞÞ þ ∇ $qðx; tÞ ¼ Sðx; tÞ x ∈ Ω; t ∈ ½0;Θ�

q ¼ −kðxÞ ∇cðx; tÞ

cðx; tÞ ¼ fðx; tÞ x ∈ Γd; t ∈ ½0;Θ�

�kðxÞ∇cðx; tÞ$n ¼ γðx; tÞ x ∈ Γn; t ∈ ½0;Θ�

cðx; 0Þ ¼ c0ðxÞ x ∈ Ω

;

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

(15)

Figure 5.
The reference (left)
and computed (right)
source for the thermal
problem
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where x and t are the space and time coordinates, Ω is the domain in which the problem is
defined, Γ 5 Γd ∪ Γn its boundary, u(x, t) is the velocity field that advects the pollutant and
k(x) is the diffusivity. Considering the case in which the diffusivity is constant, k, the flow is
incompressible (∇ · u 5 0) and the source term just depends on the space coordinates, that is
S(x, t) 5 S(x), the problem (15) reduces to:

vcðx; tÞ
vt

þ uðx; tÞ$∇cðx; tÞ þ ∇ $qðx; tÞ ¼ SðxÞ x ∈ Ω; t ∈ ½0;Θ�

q ¼ −k ∇cðx; tÞ

cðx; tÞ ¼ fðx; tÞ x ∈ Γ; t ∈ ½0;Θ�

�k∇cðx; tÞ$n ¼ γðx; tÞ x ∈ Γn; t ∈ ½0;Θ�

cðx; 0Þ ¼ c0ðxÞ x ∈ Ω

:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

(16)

We operate under the assumption that the pollutant concentration at the locations of Nsens

sensors, cSens ¼ fcSens1 ; . . . ; cSensNsens
g and the velocity field u(x, t) are known. Additionally, it is

presumed that the real source differs from its nominal representation Snom only in a specific,
small enough, region of the domain. In this scenario, the loss function, designed to satisfy the
PDE (16) upon minimization, involves eight distinct terms.

L ¼ Ld þ Lc1 þLc2 þLin þLbd þLbn þ Ldat þ LS; (17)

where

Ld ¼
1
Nd

XNd
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þ
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�
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�
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�
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�
�
�
�
�

2

;

(18)

Lc1 ¼
1
Nd

XNd

j

−k
vbc
�
xj; tj

�

vx
� bqx

�
xj; tj

�
�
�
�
�
�

�
�
�
�
�

2

; (19)

Lc2 ¼
1
Nd

XNd

j

−k
vbc
�
xj; tj

�

vy
� bqy

�
xj; tj

�
�
�
�
�
�

�
�
�
�
�

2

; (20)

Lin ¼
1
Nin

XNin

j

bc
�
xj; 0

�
� c0

�
xj
��

�
�
�2; (21)

Lbd ¼
1

Nbd

XNbd

j

bc
�
xj; tj

�
� f

�
xj; tj

��
�

�
�2; (22)
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Lbn ¼
1

Nbn

XNbn

j

−k∇bc
�
xj; tj

�
$n� γ

�
xj; tj

��
�

�
�2; (23)

Ldat ¼
1

Nsens

XNsens

j

bc
�
xj
�
� csens

�
xj
��

�
�
�2; (24)

LS ¼
1
Nd

XNd

j

bS
�
xj; tj

�
� Snom�xj; tj

��
�
�

�
�
�; (25)

correspond, respectively, to the squared residuals of the PDE equation, the concentration
gradient, the initial and boundary conditions, the data to fit and the detection of the source.
The numbers of data points allocated for each of these terms are specified asNd,Nin,Nbd,Nbn
and Nsens, respectively.

Regarding the term (25) in the loss function, the L1-norm is preferred to the L2-norm, as
for the other applications, it is assumed that the source differs from the nominal one only in a
localized, small enough, area. The employed PINN architecture is shown in Figure 6.

2.3.1 Case study. In this section, we apply the proposed methodology to determine the
concentration and identify the pollution source in a 2D domain. The domain dimensions
are Lx 5 15 m and Ly 5 6 m, with null concentration on the right, top and bottom sides,
f(x, t) 5 0, null Neumann condition on the left side, γ(x, t) 5 0 and constant initial condition
c0(x) 5 0, as Figure 7a describes. Furthermore, a constant velocity field u 5 (�1.5, 0)m/s is
considered. In the nominal configuration, there is no pollution source Snom(x) 5 0, whereas
the real (reference) system is assumed to contain a source, as the one depicted in Figure 7c.
Data are collected from six mobile sensors (e.g. emulating drones) moving along the
horizontal lines and measuring the concentration at the locations indicated in Figure 7b at
different time instants (when the mobile sensors reach the indicated positions).

Figure 6.
PINN architecture used
for addressing the
source pollution
problem
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2.3.2 Data generation. Also, in this case, the data retrieved in the sensor locations are
synthetic data produced using a PINN. In particular, we solved system (16) in a time interval
of five seconds (Θ 5 5 s), with null Dirichlet, Neumann and initial conditions, constant
diffusivity (k5 1m2/s), constant velocity field u 5 (�1.5, 0)m/s andwith the source depicted
in Figure 7c. Figure 8 illustrates the PINN architecture employed, featuring a fully connected
neural network with four layers, each consisting of 40 neural units and employing an ELU
activation function to predict the concentration. The network’s parameters are learned by
minimizing the loss function.

L ¼ Ld þ Lbd þ Lbn þLin; (26)

where

Ld ¼
1
Nd

XNd

j

vbc
�
xj; tj

�
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þ u

�
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; (27)

Lbd ¼
1
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XNdc
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��
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�2; (28)

Lbn ¼
1

Nbn

XNdc

j

−k∇bc
�
xj; tj

�
$n� γ

�
xj; tj

��
�

�
�2; (29)

Figure 7.
Problem configuration

Figure 8.
PINN architecture used

to compute the data
used in the

identification of the
pollution source

problem
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Lin ¼
1
Nin

XNin

j

bc
�
xj; 0

�
� c0

�
xj
��

�
�
�2; (30)

in 8000 points distributed within the space-time domain.

The terms (28) and (29) have been strongly enforced and thus removed, along with (30),
from the loss function. After training, the output is used to retrieve the data corresponding to
the sensor locations.

2.3.3 Results of the pollutant source identification problem. By considering the
methodology previously introduced and utilizing the data computed as described in the
previous section, we employ four fully connected neural networks to infer the solution:
one for predicting the concentration, one for determining the source and two others to define
the gradient of concentration. Each neural network consists of four layers with 40 neurons
per layer, and the ELU activation function has been adopted as the activation function for all
of them. The parameters of the network are learned by minimizing the loss function (17)
across 12,000 points distributed in the space-time domain using the standard Adam
optimizer with a learning rate of 0.001. Also for this case, the boundary and initial conditions
have been strongly enforced, thus eliminating the terms (21)–(23) from the loss function. The
concentration and the source obtained are displayed and compared with their reference
counterparts in Figures 9 and 10, respectively.

During the training process, approximately 750 epochs (batch size5 80) were required to
obtain a solution accurate enough. The outcomes suggest that while the concentration field is
not replicated with high accuracy, the neural network effectively captures the discrepancy
between the nominal model and the reference solution. Furthermore, the methodology
demonstrates good accuracy in detecting the location of the pollution source. However,
estimating its magnitude lacks precision. This discrepancy can be reduced by increasing the
number of epochs and data points used in training the loss function.

3. Learning the model and physical parameters from the use of graph neural
networks – GNN
Finite element methods (FEM), have been long employed as a vital tool for solving partial
differential equations (PDEs). However, in the framework of ML, GNNs (Hamilton, 2020; Wu
et al., 2020; Zhou et al., 2018) have emerged as a powerful tool for learning representations and
conducting inference on graph-structured data. And unlike traditional neural networks
designed for grid-like data, GNNs can capture complex relationships and dependencies
present in graphs, making them well-suited for a wide range of applications such as social
network analysis, molecular chemistry (Oliver et al., 2020; Wu et al., 2023), complex systems
(Ha and Jeong, 2021; Hernandez et al., 2022) and more (Pfaff et al., 2020).

GNNs keep nodal connectivity at a central point in their formulation and learning process,
as the FEM performs when making discretization from piecewise approximations. The fact
of being formulated at the vertex and edge levels allows capturing the physics’ locality, while
message passing (discussed later) enables accounting for the global behaviors that PDEs
represent. GNNs can extract models at a much lower scale than usual multilayer perceptrons
–MLP – (artificial deep neural networks), by extracting the model of vertices (that in general
corresponds to conservation balances) and edges (more concerned by the behavior laws).
Thus, GNNs remain closer to the local physics scale than their NN counterparts that operate
at the domain scale.

A strong and intriguing parallel can be drawn between GNNs and FEM in the use of
spatial entities. FEM operates by discretizing a spatial domain into smaller patches, the so-
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called elements, in which PDE solutions can be effectively approximated and the differential
operator discretization operated. In a similar analogy, GNNs employ nodes within the spatial
domain, with each node designed to model the localized state of the system. By establishing
connections among these nodes, we create a connectivity graph, which can take the form of a
regular mesh or any other arbitrary network structure, mirroring the underlying system’s
spatial characteristics.

Additionally, the integration of input values is a pivotal step in both FEM and GNN. In
FEM, these values correspond to the specification of boundary conditions and initial
conditions, thereby kickstarting the numerical analysis. In GNNs, input values are attributed
to multiple spatial locations, serving as initializations for the nodes within the graph.

Figure 9.
Comparison between
the reference (left)

and computed (right)
pollutant

concentration at
different time steps,
from top to bottom:

t = 0.3 s, 1 s, 2.5 s
and 5 s

Figure 10.
The reference (left)

and computed (right)
source of pollution
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The following step entails the evolution of the system’s states. In FEM, this involves the
numerical approximation of the PDE solution within each element, ultimately providing
insights into the global behavior of the system. In GNNs, the nodes update their states
through specialized functions, facilitating the modeling of intricate relationships and
behaviors throughout the system.

By drawing parallels between these two methodologies, it becomes noticeable that while
FEM is designed for solving PDEs by dividing a space into elements, GNNs employ a graph-
based approach to capture and analyze the localized states of a system within a spatial
domain while keeping at a central position nodal connectivity.

Since the two approaches have a lot in common, numerous studies have begun
incorporating elements of FEMs into GNN (Gao et al., n.d.). For instance, develop encoders
and decoders that perform interpolation between random field points and graph nodes,
emulating the FEM’s shape function-based interpolation within elements (Alet et al., 2019).
Or, some recent research has innovatively applied finite-element principles to the
computation of training loss. They introduced a method where the loss is calculated by
integrating prediction errors across the simulation domain, using Gaussian quadrature
integration with high-order shape functions, diverging from the conventional mean-squared
loss calculation on nodes (Gao et al., 2022).

Within this intricate framework, the present paper addresses the following question: Can
GNN benefit more from all the tools employed in the classical FEM approach to address
inverse problems, such as the identification of local properties within a model?

The present section is organized into three subsections. The first revisits the fundamental
concepts associated with GNNs. The second proposes a novel architecture that combines
GNN with elements of FEM. The third and last presents the results of applying this
methodology to a heat problem case study. This section aims at proving the potential and
promising capabilities of GNNs when they are enriched by integrating information from the
FEM. By combining the strengths of GNN, which excels in modeling complex relationships
and dependencieswithin graph-structured data, with the robust foundation of FEM,which is
renowned for solving partial differential equations and accurately approximating physical
phenomena, we aim to unlock a new frontier of problem-solving and analysis.

3.1 Revisiting graph neural networks
3.1.1 Definitions. Graph is a key concept in mathematics and computer science, essentially
consisting of two primary elements: nodes (or vertices) and edges. Nodes represent entities or
points, while edges connect these nodes, symbolizing the relationships or interactions
between them. They are commonly denoted as G ¼ ðV; EÞ, where V is a set of nodes and E
represents the set of edges connecting these nodes.

Graphs can be either directed or undirected, depending on whether their edges have a
specific direction. In directed graphs, edges indicate a one-way relationship, whereas in
undirected graphs, the relationships are bidirectional or non-directional. This distinction is
critical in applications like network flow analysis or route mapping, where directionality can
significantly impact the analysis or outcome.

Graphs can also be categorized based onwhether their edges are weighted or unweighted.
Weighted graphs assign a value or weight to each edge, which can represent quantities like
distance, cost or capacity, adding a layer of complexity to the graph structure. Unweighted
graphs, on the other hand, treat all connections uniformly.

The representation of graphs in computational contexts typically involves structures like
adjacency matrices or adjacency lists. An adjacency matrix is a 2D array, A ∈ RjVj3 jVj, that
maps the connections between nodes, while an adjacency list is a more space-efficient
method, especially for sparse graphs, where each node directly points to its connected nodes.
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For instance, consider the graph shown in Figure 11, composed of four nodes and four
undirected edges. The corresponding adjacency matrix is as follows:

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

2

6
6
4

3

7
7
5: (31)

Despite their apparent simplicity, graphs are incredibly versatile tools for modeling complex
systems, offering a framework to abstract and solve a variety of computational problems.
Their study involves addressing challenges like cycle detection, shortest path determination
and exploring the most efficient ways to traverse these networks.

In the discussion that follows, we will focus only on “simple graphs,” where there is at
most, one edge between any pair of nodes, no edges connecting a node to itself, and all edges
are undirected.

3.1.2 Graph-based learning. GNNs are deep learning algorithms that focus on learning
representations for nodes and edges in a graph by utilizing the graph’s inherent structure
(Alessio, 2009; Sanchez-Lengeling et al., 2021; Franco et al., 2009). Although during the years
different types of GNNs have been proposed, i.e. graph convolutional networks (GCNs) (Kipf
andWelling, 2017), graph isomorphism networks (GINs) (Xu et al., 2019) and graph attention
networks (GATs) (Veli�ckovi�c et al., 2018), their fundamental design feature is the use of
pairwise message passing. In this process, graph nodes iteratively enhance their
representations by exchanging information with their neighbor nodes. Message passing is
formed by two key components:

(1) The “Aggregate” step: a function is applied to a node’s neighbors to create an
aggregated node feature.

(2) The “Combine” step: the aggregated node feature is passed through a learnable layer
to generate the node embedding specific to that GNN layer.

In each message-passing iteration within a GNN, the embedding hu (associated with each
node u in the set V), is updated based on the information gathered from u’s graph
neighborhood N(v), as depicted in Figure 12. This update can be represented as follows:

hðkþ1Þu ¼ COMBINEðkÞ hðkÞu ;AGGREGATE
ðkÞ
n
hðkÞv ;∀v∈NðuÞ

o� �
; (32)

where COMBINE and AGGREGATE are two differentiable functions (e.g. artificial neural
networks).

In each iteration k, the AGGREGATE function takes as input the embeddings of the nodes
neighbors of u and produces amessage. TheCOMBINE function then combines this message
with the current embedding hðkÞu to produce an update to the embedding hðkþ1Þu of u. After
completingM-iterations of the GNNmessage passing, the output of the final layer defines the

Figure 11.
Graph with four nodes

and four
undirected edges

Engineering
Computations



embeddings for each node. The choice of these two functions may differ considerably based
on the particular field of application. Nevertheless, the most used model, as proposed in
Merkwirth and Lengauer (2005), is:

hðkþ1Þu ¼ σ W ðkÞ
1 hðkÞu þW ðkÞ

2

X

v∈NðuÞ

hðkÞv

 !

; (33)

where W1 and W2 are trainable parameter matrices, while σ represents a pointwise
nonlinearity (e.g. a tanh or ReLU). This message passing scheme can be compared to a
standard MLP, as it involves linear operations followed by a single pointwise nonlinearity.
First, messages received from neighboring nodes are summed. Then, the neighborhood
information is integrated with the node’s previous embedding through a linear combination.
Finally, an element-wise nonlinearity is applied.

However, in this approach, the choice of the sumas an aggregation function has a drawback,
as it can be unstable and highly influenced by the degrees of nodes. For example, if node u has
N-times as many neighbor as node u0, we would reasonably expect that the sum of neighbor
embeddings for u, i.e.

P
v ∈ N(u)hv, would be much larger than the sum for u0, i.e.

P
w∈Nðu0Þ

hw.
This significant difference in magnitude can lead to numerical instabilities. A straightforward
solution to this issue is to normalize the aggregation operation by considering the degrees of the
involved nodes. The simplest approach is to compute an average instead of a sum.

P
v∈NðuÞhv

NðuÞj j
: (34)

A more sophisticated normalization factor can be used, as the one proposed in Kipf and
Welling (2017). In addition to the summation, alternative approaches incorporate element-

Figure 12.
Visualization of two-
layer version of a
message
passing model
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wise maximum or minimum operations (Qiu et al., n.d.; Veli�ckovi�c et al., 2020). Nonetheless,
in Zaheer et al. (2017), a more complex yet versatile aggregation function approximating any
permutation invariant function was proposed.

In what follows, we illustrate the importance of the aggregation function in mitigating
overfitting and propose a novel aggregation function. This new function leveraging the
spatial information within the underlying graph structure allows improved performance.

3.2 Learning procedure
3.2.1Model.Our objective is to develop a predictivemodel capable of anticipating the state of
the field at time tþ 1 based on the available current data and, optionally, a historical record of
the field. To this end, we introduce a GNN model with an architecture consisting of encode-
process-decode components. A visual representation of this architectural framework is
provided in Figure 13.

The architecture consists of:

(1) Encoder:We employ a single MLP, denoted as ev, to convert the initial feature vectors
of vertices, represented as xi ∈ Rn, into higher-dimensional embeddings, denoted as
vi ∈ Rv:

ev: Rn → Rv

xi → vi
(35)

It should be noted that while zt represents the field of the entire structure under
consideration, the vector feature xi pertains to nodal information. This in fact can
include additional details related to the geometry or specific characteristics of certain
nodes in contrast to others, such as distinguishing between boundary nodes and
internal ones.

(2) Processor:The processor serves as the algorithm’s central component, facilitating the
exchange of information between vertices through message passing. It also plays a
crucial role in modifying hidden vectors to extract the desired system output. At this
stage, the following steps are undertaken:

• An MLP ðbfÞ calculates the updated edge features, denoted as v0ij for each edge in
the graph (36). This calculation takes into account the information from the

Figure 13.
Schematic

representation of GNN
architecture
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sending (vi) and receiving nodes (vj).When available, also the current edge features
and global features could be used as input to update the edge feature.

v0ij ¼
bfðvi; vjÞ (36)

• For each node, the messages are aggregated with a permutation invariant function
S ¼ Sðv0ijÞ, based on the neighborhood of the node i (N(i)). More details on the choice of
the aggregation function can be found in Section 3.2.3.

• Another MLP ðbγÞ calculates the updated node features v0i (37), for each node in the
graph. This calculation takes into account the current state of the node (vi) and the
result at the previous step (aggregation).

v0i ¼ bγðvi; SiÞ (37)

The processing step corresponds to the exchange of messages between nodes that are 1-step
adjacent. To capture the influence ofmore distant graph nodes, this process can be iteratively
applied through N-processing blocks (Defferrard et al., 2017; Hamilton et al., 2017). These
blocks may employ shared or unshared parameters and can optionally incorporate residual
connections (He et al., 2016).

(3) Decoder: For predicting the time tþ 1 state from the time t input, the decoder uses an
MLP(δv) to transform the latent node featuresv0i after the final processing step into one
or more physical output features yi ∈ Rn

ev: Rv → Rn

v0i → yi

(38)

where yi could be the updated nodal state, composing the updated global state y that
should represent ztþ1.

3.2.2 Model training. We train the final network with the mean square error loss:

L ¼ ky� ztþ1k
2
2; (39)

where y is the output of our GNN and ztþ1 represents the ground truth field at the next time
step with respect to the input. The networks’ inputs and outputs are normalized using the
statistical characteristics of the training dataset. Additionally, during the training process,
Gaussian noise is introduced into the inputs. The variance of this added noise is adjustable as
a hyperparameter, being zero as its mean value. We adopted the Adam optimizer (Kingma
and Ba, 2014) algorithm for training.

3.2.3 On the choice of the aggregation function. In GNNs, both the choice of aggregation
function and the integration of attention mechanisms play pivotal roles in defining how
information is processed and represented. Aggregation functions like sum, mean, max and
pooling operations are essential for combining features from neighboring nodes, thereby
encapsulating the local neighborhood’s information and the structural essence of the graph.

Such aggregation is crucial for tasks such as node classification and graph classification.
On the other hand, attention mechanisms (Gilmer et al., 2017), notably GATs (Veli�ckovi�c
et al., 2018), bring a dynamic and context-dependent layer to feature aggregation. GATs use
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self-attention mechanisms to assign varying degrees of importance to each neighbor’s
features, enhancing the expressive power of the model beyond traditional convolutional
methods. This approach, further enriched with variations like multi-head attention (Ai et al.,
2021; Cordonnier et al., n.d.) and the inclusion of edge features, has demonstrated improved
performance in various graph-related tasks.

Moreover, attention mechanisms based on geometric properties focusing on spatial or
structural relationships within graphs have emerged as a crucial improvement (Veli�ckovi�c
et al., 2018; Zhang et al., 2018). Spatial attention, for instance, is highly relevant in
applications involving physical space, such as 3D point cloud (Yue et al., 2019) processing or
molecular structure analysis, where the relative positions and orientations of nodes (like
atoms in a molecule) are critical. Geometrically based attention methods thus offer enhanced
capabilities in processing and interpreting graphs where the spatial arrangement and
structural roles of nodes are key factors. However, these improvements also bring challenges
like increased computational complexity and the need for rich datasets with detailed spatial
or structural information.

In essence, the evolution of GNNs through sophisticated aggregation functions and
various forms of attentionmechanisms, including geometrically based approaches, marks
a significant stride in the field. These developments have broadened the effectiveness of
GNNs in interpreting complex graph-structured data, opening new possibilities in various
domains where understanding the intricate relationships and structures within data is
essential.

Building on the advancements in GNNs with sophisticated aggregation functions and
attentionmechanisms, we introduce a novel aggregation function that uniquely incorporates
information derived from the assembly matrices, specifically stiffness and mass matrices, of
the FEM. The essence of this integration is represented by

S
�

v0ij
�
¼

1

Mlump
ii

X

j∈NðiÞ

Kij v0ij; (40)

where the coefficientsKij andM
lump
ii , respectively, are the elements of the stiffnessmatrix and

the lumped mass matrix of the FEM counterpart.
The integration of these matrices into the GNN aggregation process enables the network

to capture not only just the topological and feature-based information of the graph but also
the inherent physical and mechanical properties encoded in the FEM matrices. This could
enhance the model’s ability to understand and predict behaviors in engineering and physical
systems, where such properties are crucial, in particular in the physics of continuous media.

Integrating the assembled FEM matrices into the aggregation function of GNNs also
offers a strategic advantage in simplifying the model architecture. By using stiffness and
mass matrices, the architecture can effectively capture the geometric and physical
information of the graph without the need to construct a separate, geometry-dependent
edge model. This reduction in complexity not only simplifies the model but also potentially
mitigates the risk of overfitting.

By embedding essential geometric and physical insights directly into the node
aggregation process, the network remains robust and generalizable, avoiding the pitfalls
of overly complex models that are too tightly tailored to specific datasets or geometries. This
balance between richness of information and model simplicity could be a key factor in
enhancing the performance and applicability of GNNs in fields concerned with
computational engineering and mechanics.

The fact of including lumpedmass and stiffnessmatrices can be viewed as physics-aware
learning, where physical biases are employed to better learn and operate GNNs.
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3.2.4 Parallelism with the FEM. To illustrate the connection between the proposed
aggregation function and the FEM rationale, let us start with an illustrative example by
considering the heat equation

ρcp
vTðx; tÞ

vt
� ∇ $ðkðxÞ ∇Tðx; tÞÞ ¼ Sðx; tÞ; (41)

assuming for simplicity a constant conductivity (k(x) 5 1), constant density and heat
capacity (ρ 5 1, cp 5 1) and null source term (S(x, t) 5 0).

Thus, the algebraic FEM counterpart with a forward Euler scheme for the time
discretization, reads

M
Δt

�
Tnþ1

� Tn�
�KTn

¼ 0; (42)

or

Tnþ1
¼ Tn

þ ΔtM−1K Tn
; (43)

where M is the mass matrix, K is the stiffness matrix and Δt is the integration time-step.

In the case of considering the lumped mass matrix, its inversion is trivial because of the
fact that it is diagonal. From (43) we have that for each node of the mesh the temperature can
be updated as:

Tnþ1
i ¼ Tn

i þ
Δt

Mlum
ii

XNd

j¼1

KijT
n
j ¼ Tn

i þ
Δt

Mlum
ii

X

j∈VðiÞ

KijT
n
j ; (44)

where Nd is the number of nodes in the mesh and V(i) 5 {N(i) ∪ i} is the set (N(i)) of all the
nodes connected with i, and the node i itself. In particular, in the last equality of (44) we
utilized the property that all nodes not connected to node i contain a zero in the corresponding
column of the stiffness matrix.

In what follows, a GNN with the architecture described in Section 3.2 is considered. If we
define an edge model such that

fij ¼
bfðTi;TjÞ ¼ Ti � Tj; (45)

and the node model such that

bγ
�
Ti; Si

�
fij

��
¼ Ti þ ΔtSi

�
fij

�
; (46)

using (40) as aggregation function we have:

Si
�
fij

�
¼

1

Mlum
ii

X

j∈NðiÞ

Kijfij; (47)

and so (46) at each iteration of the GNN becomes:
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Tnþ1
i ¼ Tn

i þ
Δt

Mlum
ii

X

j∈NðiÞ

Kij

�
Tn

j � Tn
i

�
; (48)

that is,

Tnþ1
i ¼ Tn

i þ
Δt

Mlum
ii

X

j∈NðiÞ

KijT
n
j �

X

j∈NðiÞ

KijT
n
i

 !

; (49)

that by considering now then the properties of the stiffness matrix

∀i
X

j∈VðiÞ

Kij ¼ 0 0 ∀i
X

j∈NðiÞ

Kij ¼ −Kii; (50)

Equation (49) becomes

Tnþ1
i ¼ Tn

i þ
Δt

Mlum
ii

X

j∈NðiÞ

KijT
n
j þ KiiT

n
i

 !

¼ Tn
i þ

Δt

Mlum
ii

X

j∈VðiÞ

KijT
n
j : (51)

Thus, Equation (51) is found to be equivalent to Eq. (44), having exactly the same form. To
demonstrate the validity of this architecture, which essentially emulates an explicit Euler
scheme, we will evaluate its ability to replicate the dynamics of a system. Specifically, let’s
consider again the heat Equation (41) with constant conductivity (k(x)5 1), constant density
and heat capacity (ρ 5 1, cp 5 1) and null source term (S(x, t) 5 0). For this analysis, we will
focus on a square domain as illustrated in Figure 14 with a fixed temperature on each side.

The ground truth – GT – simulations are computed using the FEM using an explicit
time integration. The simulations are conducted over a period of five seconds, with a
discretization consisting of NT 5 600 time increments, each of Δt 5 8.3 $ 10–3. One

Figure 14.
Problem set-up used to
prove the validity of

the proposed
methodology

Engineering
Computations



hundred different cases are simulated, with varying values of temperature enforced on the
domain boundary. The dataset has been divided into two sets, with 80% in the training set
and 20% in the test set.

Two two-layer neural networks, each with ten neural units per layer and using rectified linear
unit (ReLU) activation, are employed to define the node and edge models. The learning rate is set
at lr 5 10–4, with a decrease in order ofmagnitude at epochs 100 and 200, a total number of epochs
set at Nepoch 5 200 and a batch size of 15. The training noise variance is set to σnoise 5 5 $ 10–4.

The chosen state variable is the Temperature, which defines a node feature. Additionally,
a vector n is incorporated into the node features to identify the internal and the boundary
nodes of the domain. The results for one simulation in the test set are shown in Figure 15.

Figure 15.
Ground truth solution
(left), GNN-solution
(center) and the
difference in absolute
value between
both (right)
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As it can be noticed, there is an overall consistency between the ground truth solution and the
prediction made by the GNN. In particular, the maximum relative error computed on the
solution at five seconds across all the datasets remains lower than 4%.

3.3 Heat equation with unknown conductivity distribution
This section addresses the application of the methodology just outlined to identify the
thermal conductivity deviations in a small region of a larger domain that represents a topic of
special interest in structural health diagnosis, as considered before by applying the PINN
rationale.

Here, we assume that the system under scrutiny contains regions with different thermal
conductivities, and our goal is to accurately locate these regions and construct a model that
can faithfully reproduce the system’s thermal behavior. The model intent is thus to pinpoint
variations in the structural properties, with a focus on thermal conductivity.

Adapting the architecture detailed in Section 3.2 is necessary for this task. We need to
enhance the edge model to reflect the presence of zones where conductivity differs from the
one existing in the larger part of the domain. This involves parametrizing the model, for
example, with a new trainable parameter, bα, whose task is to discriminate between areas that
exhibit different thermal properties. This new architecture is presented in Figure 16.

Specifically, the MLP ðbfÞ defined in (36), which calculates the updated edge features,
becomes:

v0ij ¼
bfðvi; vj; bαijÞ; (52)

where vi is the information from the sending node, vj the information of the receiving nodes
and bαij is a trainable parameter defined for each edge in the graph that represents the
different conductivity zone.

Given our assumption that the area in which the property differs from the one existing in
the remaining larger domain, that is, that the deviation remains localized, we expect that the
zone where the alpha parameter differs from zero will also be localized. Consequently, we
have incorporated a penalty term (Goodfellow et al., 2016) into the loss function (39) that
now reads

Figure 16.
Schematic

representation of GNN
architecture used to
differentiate a zone

with different
conductivity in the

whole structure
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L ¼ λ1 ky� ztþ1k
2
2 þ λ2 kαk1; (53)

where {λ1, λ2} are the weights for the two terms of the cost function.

Moreover, it is important to mention that the penalty term also serves to mitigate
overfitting, especially in scenarios with limited training data where non-physical
correlations could appear.

3.3.1 Case study.The case study here addressed involves the analysis of the heat flow in a
two-dimensional domain, as depicted in Figure 17a. The focus is to identify areas within the
structure where the thermal properties deviate from the ones existing in the bulk.

The target is achieved by heating the structure with four distinct heat sources (f1, . . ., f4)
positioned as indicated in Figure 17a. The temperature changes in the domain of interest are
thenmonitored and recorded using a thermal imaging camera. This data serves then as input
into a GNN architecture, as shown in Figure 16. The GNN is trained to estimate the
coefficients bα, which identify the zones where there is a possible variation of the conductivity
law. In order to employ the expression (40) as an aggregation function, the stiffness and the
mass matrix must be computed, assuming a constant conductivity (k 5 1), and passed to
the model.

The case study here considered can be easily extended to other processes, like casting in
materials processing or to cases where conductivity exhibits nonlinear behavior (e.g.
temperature dependent properties).

3.3.2 Data production. The data used to train the GNN are synthetic data produced
provided by a FEM solver. In particular, we solved the Equation (41) in the domain shown in
Figure 17a with fixed temperature on the boundary (T 5 208), fixed temperature of the four
sources (f1 5 428, f2 5 508, f3 5 458&f4 5 358) and uniform initial condition T(x, 0) 5 208.
Moreover, we consider that the domain of interest presents a zonewith different conductivity
as shown in Figure 17a (blue square). The heat conduction problem is simulated during 2.5 s
from its initial condition.

Figure 17.
Problem set-up
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Although the simulation domain considers both the domain of interest and the surrounding
mold, only the temperature in the domain of interest has been extracted and used to train
the GNN.

3.3.3 Results. Two two-layer neural networks with ten neural units per layer equipped
with a ReLU function are used for the node and the edge models. The learning rate is set to
lr 5 10–5 with decreasing order of magnitude on epochs 60 and 100, and a total number of
Nepoch 5 100. The training noise variance is set to σnoise 5 5 $ 10–4.

The state variable chosen is the Temperature which defines a node feature. An additional
one-hot vector n is added to the node features in order to represent the boundary. The
coefficients α resulting from the solution are showed in Figure 18. It can be concluded that by
using a single simulation to train for the GNN, it accurately identifies the zone where the
conductivity exhibits a differencewith respect to the remainingmuch larger domain, proving
its potential applicability for inverse analyses.

We would like to emphasize that, unlike the traditional use of GNNs or most neural
networks where multiple experiences (and thus a big dataset) are required to train the model,
the proposed architecture does not have training and testing phases. Instead, it features only
a training phase with data coming from one process (one simulation in our case), making it
particularly suitable for online exploration.

4. Conclusions
This paper proposed two different neural network approaches able to learn models in order
to perform efficient inverse analyses. The first approach, based on the PINN, focuses on
completing the measured data and identifying the sources on which the measured data
depends.

The second proposed strategy involves a GNN capable of learning from a single measure
the problem solution and to identify the region where the thermal conductivity differs from
that in the remaining larger region. This methodology has been tested on the case of linear
behavior of the conductivity, but we are persuaded that a real advantage could be realized
when it is applied to discover nonlinear conductivity in materials. Further research will be
conducted in this direction.

Figure 18.
Coefficient α computed

with the proposed
architecture

Engineering
Computations



The present work focuses its attention mainly on the development of ideas; its application is
kept here for academic examples. Thus, for both presentedmethodologies, extensions should
be carried out to be applied to cases closer to the industrial world.
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