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The advances of machine-learned force fields have opened up molecular dynamics (MD) simu-
lations for compounds for which ab-initio MD is too resource-intensive and phenomena for which
classical force fields are insufficient. Here we describe a neural-network force field parametrized to
reproduce the r2SCAN potential energy landscape of HfO2. Based on an automatic differentiable
implementation of the isothermal-isobaric (NPT ) ensemble with flexible cell fluctuations, we study
the phase space of HfO2. We find excellent predictive capabilities regarding the lattice constants and
experimental X-ray diffraction data. The phase transition away from monoclinic is clearly visible at
a temperature around 2000K, in agreement with available experimental data and previous calcula-
tions. Another abrupt change in lattice constants occurs around 3000K. While the resulting lattice
constants are closer to cubic, they exhibit a small tetragonal distortion, and there is no associated
change in volume. We show that this high-temperature structure is in agreement with the available
high-temperature diffraction data.

I. INTRODUCTION

The atomistic modelling of structural phase transi-
tions and the resulting changes in macroscopic material
properties can have a profound impact on the develop-
ment of new technologies. However, ab-initio methods
have been hamstrung by the severe computational cost
they incur and thus their predictive reach has been lim-
ited in practice. On the other end of the spectrum lie
classical interatomic potentials. These are typically tai-
lored to a few specific use cases for which they allow a
descriptive simulation to be run in reasonable time, but
prove challenging when trying to extend their applica-
bility.

Machine-learned force fields (MLFF) are emerging
as a third possibility, offering not only predictive and
transferable ab-initio-like accuracy but also a reason-
able computational cost. MLFFs have powered a broad
variety of exploratory structural phase transition stud-
ies which were previously handicapped by resource lim-
itations. This includes molecular dynamics (MD) sim-
ulations [1–4] but also alternative strategies such as
nested sampling [5, 6] and effective harmonic potentials
(EHPs).[7]

The present study is concerned with hafnia, HfO2,
which is generally thought to undergo temperature-
induced phase transitions from monoclinic (P21/c) to
tetragonal (P42/nmc) to cubic (Fm3̄m) structures.[8]
Although the last of these phases has garnered signifi-
cant attention in connection to its stability at high tem-
peratures, the experimental and theoretical evidence re-
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garding its cubic nature remains inconclusive. While
earlier high-temperature X-ray diffraction studies re-
port it[9, 10], a more recent study found it to be virtu-
ally indistinguishable from a tetragonal phase.[1] We re-
cently used EHPs in combination with a MLFF to study
the thermal expansion and phase-transitions in HfO2.[7]
We found a P21/c-to-P42/nmc transition at temper-
atures consistent with experimental results. However,
while the cubic phase was found to be mechanically sta-
ble at high temperatures, it was not found to be ther-
modynamically stable under any applied temperature
and pressure condition.[7] The absence of cubic phases
in the EHP study[7] contradicts ab-initio MD (AIMD)
simulations of HfO2 which indicated the appearance of
the cubic phase at high temperatures [11]. While the
disagreement between the different experimental find-
ings and the computational results could be due to
defect stabilization of the high-symmetry cubic phase
[12], the disagreement between the two purely computa-
tional approaches (EHP and AIMD) [7, 11] is somewhat
puzzling. Both computational approaches (EHP and
AIMD) were backed by similar ab-initio methods and
performed on non-defect-laden stoichiometric phases.
The situations somewhat resembles that of hafnia’s “sis-
ter” compound ZrO2, where a study based on MLFF-
backed MD simulation [2] reported finding the cubic
phase at high temperatures, whereas an EHP study
found it be thermodynamically unstable relative to the
tetragonal phase at any realistic temperature [13].

One possible explanation for the discrepancies in ear-
lier studies could be differences in the interpretation
of results rather than the methodologies themselves.
In X-ray diffraction, distinguishing between cubic and
tetragonal phases relies on the absence of peaks spe-
cific to the tetragonal phase. However, at the relevant
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temperatures around 3000 K, only a limited number of
low-angle peaks are typically observed making it diffi-
cult to unambiguously determine the underlying sym-
metry. Similarly, identifying of the underlying equilib-
rium structure when performing MD simulations can be
challenging. It is worth pointing out that the MD stud-
ies indicating the presence of the high-temperature cu-
bic phases in HfO2 [11] and ZrO2 [2] were both based on
the observation of averaged lattice constants from NPT
simulations. Rather large fluctuations can be expected
in the underlying trajectories and the conclusions could
be affected by how these trajectories are interpreted.

To elucidate why the earlier studies reach different
conclusions, we perform a neural-network force field
(NNFF)-backed MD study of HfO2. We take advan-
tage of the possibilities offered by automatic differen-
tiation and extend the NPT formalism implemented
in jax-md [14], to include flexible cell shape changes,
which allows for a direct study of phase transitions.
We combine those developments in an extensive MD
investigation of the temperature-dependent behavior of
stoichiometric hafnia. We discuss the interpretation of
the obtained trajectory files and find two phase transi-
tions: one from monoclinic to tetragonal at a tempera-
ture around 2000K and another to a cell with a small
tetragonal distortion at around 3000K. The findings
are shown to be in agreement with the available diffrac-
tion data.

II. METHODS

A. Density Functional Theory

The DFT data used to train the NNFF were based
on the structures used for the previous EHP study of
HfO2 [7]. These were recalculated using the r2SCAN
meta-generalized gradient functional [15] within the
projector-augmented-wave formalism [16] as imple-
mented in VASP [17, 18]. The original dataset was ex-
tended by an additional 200 “flipped” structures. Each
of those is generated by extracting a sample from the
existing database and randomly changing the chemical
identity of some of the constituent atoms (from Hf to
O and vice-versa), allowing for a richer sampling of e.g.
Hf-Hf bonds. An energy cutoff of 600 eV and a Γ-only
k-point mesh was used for all calculations.

B. Neural-Network Force Field

We use the NeuralIL architecture described in
Refs. 19, 20. Specifically, we choose a committee of
NNFFs with five ResNet-style layers consisting of 128
: 64 : 32 : 16 : 16 neurons each and augmented with

a Morse potential. The network is constructed with a
cutoff radius of rc = 5Å for the local element-specific
spherical Bessel functions, an embedding dimension of
4 and a total of 128 basis functions. The loss function
is defined as
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with ∆E = EDFT − ENN and ∆fiα = fiα;DFT − fiα;NN

where the indices i run over the atoms in the unit cell
and the α run over Cartesian axes. The optimization of
the loss landscape described by Eq. (1) was performed
using the Versatile Learned Optimizer (VeLO) [21] for
21 epochs. Compared to our previous work [7] this
constitutes a reduction in training time by two orders
of magnitude, similar to our earlier findings for VeLO
[20]. With this architecture we find the NNFF closely
reproduces the training data, showing mean absolute
errors over the validation data of 5meV atom−1 and
155meVÅ−1 for energies and forces, respectively.

C. Molecular dynamics

Flexible-cell MD calculations were performed using a
modified version of jax-md described in detail in the
next section [14]. A 768-atom HfO2 supercell and tem-
peratures ranging from 500K to 3250K at ambient pres-
sure, p = 1bar, were used. A timestep of ∆t = 0.5 fs
was chosen after careful evaluation of convergence and
the simulations covered a total of 120 ps. The coupling
constants used to construct the mass-like quantities,
Qk, Q′

k and Wg were set to τT = 50 fs and τp = 500 fs,
respectively, ensuring efficient equilibration while pre-
venting excessive oscillations.

D. X-ray diffraction patterns

To obtain X-ray diffraction (XRD) patterns from the
molecular dynamics trajectories we use the formalism
described in the work by Zhang et al. [22], where the
static structure factor is calculated as
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The data is then smoothed and consolidated using the
scikit-learn [23] implementation of a RadiusNeigh-
borRegressor with a radius rXRD = 0.5 and a local
Gaussian weighting with σ = 0.02.
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III. FLEXIBLE CELL MD VIA AUTOMATIC
DIFFERENTIATION

As NeuralIL is built on top of the jax framework
[24], it integrates well with jax-md [14], an MD library
also based on jax. An implementation of a Nosé-Hoover
chain barostat [25] taking only isotropic cell changes
into account was already available in jax-md [14]. The
barostat is based on the theory developed by Martyna,
Tuckerman, Tobias and Klein (MTTK), which provides
a particularly elegant formulation of the NPT ensem-
ble. In contrast to e.g. the Berendsen prescription [26],
the MTTK barostat allows sampling of the correct en-
semble [27] and thus provides physically meaningful re-
sults. Furthermore, it is less susceptible to the large-
scale oscillations [28] and hysteresis phenomena some-
times exhibited by systems driven by the basic Hoover
barostat [29, 30] or even the Parrinello-Rahman baro-
stat [31].

While the barostat accounting only for isotropic cell
changes is sufficient for gaseous or liquid systems, flex-
ible cell changes are necessary for the study of phase
transitions in solids. Thus, the jax-md code was ex-
tended to incorporate the additional functionality of
anisotropic or flexible cell changes [32]. We do not de-
tail the full theory here as it is excellently described
elsewhere (e.g. in Ref. 33), but limit the discussion to
the issues related to implementing it in an automatic
differentiation framework. While the present method-
ology was applied to a descriptor-based NNFF, it can
be be applied equally well to one based on a message-
passing NN [34]. The pressure tensor used to effect the
time propagation of the generalized “box momentum”
is given by

P
(int)
αβ (p, r) =

1

det(h)

nat∑
i=1

[
piαpiβ
mi

+ fiαriβ

]
− σαβ , (3)

with h representing the matrix of cell vectors. p and r
are 3nat-vectors containing the particle momenta and
position vectors respectively. mi denote the nuclear
masses and the i and Greek letter indices are used like
in Eq. (1). σαβ represents a component of the stress
tensor, σ, which can be obtained through automatic
differentiation of the position- and cell-dependent en-
ergy function E (r,h):
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1
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∂E [r,h (1+ ϵ)]

∂ϵ
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The corresponding equations of motion describe
the movement of the ions and their containing cell
when interacting with a thermostat and barostat.
To solve those equations, we resort to the Liouville
factorization[32] with a Nosé-Hoover chain coupling for
both the thermostat and barostat. This code extension
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Figure 1. A comparison of the volume (top), lattice param-
eter (bottom left) and angle (bottom right) trajectory of an
isotropic and a flexible-cell molecular dynamics run of HfO2

at T = 298K.

is also implemented on top of jax, rendering it fully au-
tomatically differentiable, and great care is taken to op-
timize the number of descriptor evaluations which con-
stitute the bulk of run time, to optimize for efficiency.
To assess the integrity and correctness of the code, we
benchmarked it against the preexisting isotropic imple-
mentation. As an example consider Fig. 1, where we
show the volume, the lattice constants and the cell an-
gles along the trajectory of a 768-atom HfO2 system ob-
tained using the flexible (blue) and the isotropic (green)
barostat. For the flexible barostat, an arbitrary starting
configuration is chosen, as can be seen by the rapidly
adapting lattice constants in the panel in the bottom
left. For the isotropic barostat, naturally, the propor-
tion of the constants needs to be correct, as isotropic
fluctuations cannot change it. Hence, the last 50 ps of
the flexible-cell trajectory were averaged to obtain a
reasonable starting point. The averages and standard
deviations of the volume agree within less than 1% and
20%, respectively, between the isotropic and flexible
simulation. The differences observed in the fluctuations
are to be expected, as the constraint of isotropy leads
to sampling a different distribution.

IV. RESULTS AND DISCUSSION

A. Volumetric analysis

In Fig. 2, we compare the volumetric thermal ex-
pansion obtained using MD with the above-described
methodology with experimental results [9, 10, 35] and
our previous theoretical work carried out using EHPs
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Figure 2. Volume as a function of temperature as obtained
using MD (gold markers) compared with EHP results (solid
lines) and several experimental investigations of different
phases (Exp. 1: Ref. 35, Exp. 2: Ref. 9, Exp. 3: Ref. 10)

[7]. As mentioned earlier, the MD results are obtained
under ambient pressure conditions (1 bar) and using a
NNFF trained to parameterize the potential energy sur-
face of the r2SCAN functional. In the previous EHP
work, the artifactual elongation of lattice constants in-
troduced by the underlying PBE functional was com-
pensated by the introduction of an artificial pressure
of P = 4GPa [7]. We find that the r2SCAN NNFF
reproduces the experimental volume very well without
additional pressure and thus shows excellent predictive
capabilities for HfO2. In particular, the transition en-
tailing a compression in volume is clearly visible around
2000K in accordance with the P21/c to P42/nmc tran-
sition [8]. HfO2 is typically assumed to also exhibit a
phase transition to a cubic structure in the tempera-
ture region above 2500K. However, the earlier EHP-
predicted volumes obtained enforcing the cubic space
groups Fm3̄m and P 4̄3m substantially underestimate
the cell volume, thereby calling this interpretation into
question [7]. It is noteworthy that the present vol-
ume predictions obtained from the MD trajectories are
compatible with the available experimental data in the
high-temperature region above 2500K even though no
abrupt change in volume is predicted.

B. MD trajectory analysis

To further investigate the high-temperature behav-
ior of HfO2 we analyse the lattice constants throughout
a NPT MD trajectory. The lattice constants can un-
dergo significant fluctuations during such runs, and the
interpretation of their averages can be complicated or
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Figure 3. Lattice constants obtained from the NPT MD
trajectory at P = 1bar and 3000K. From top to bottom:
(first) the raw trajectory data, (second) the result of apply-
ing a moving average across 500 fs, (third) the same, but
after sorting the lattice parameters, and (fourth) the aspect
ratio [ℵ; see Eq. (5)]. The horizontal dashed lines represent
the respective averages.

biased by the analysis procedure. Particularly in re-
gions of metastability, the analysis of MD trajectories
can be subject to ambiguity. As an example, consider
the top panel of Fig. 3, where a trajectory at 3000K
is shown. Simply averaging over the trajectory of cell
parameters, as is indicated by the horizontal dashed
lines, might prompt the conclusion that the material is
present in a cubic phase. However, the running average,
depicted in the second panel, reveals that conclusion to
be an artifact created by mixing together clearly non-
cubic configurations where the elongated axis changes
its orientation at around 70 ps. In the third panel of
Fig. 3 the impact of that artifact is limited by sorting
the running average of cell parameters at each timestep.
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Figure 4. Average aspect ratio (ℵ; see Eq. (5)) as a function
of temperature. The error bars indicate the standard devi-
ation along the trajectory.

C. Aspect ratio

To better understand the behavior of the structure,
a metric is required that does not depend on, e.g., the
identification of the “long” axis. We thus introduce a
three-dimensional aspect ratio, ℵ, defined as

ℵ =
ℸ

ℸcub
, with ℸ =

Vi

Ve
, (5)

where Vi (Ve) is the volume of the largest (smallest)
sphere that can be inscribed (circumscribed) in the cell
(i.e. ℸcub = 1√

3
). We choose this normalization so

that ℵ attains its maximum value of 1 if the structure
is perfectly cubic. The aspect ratio obtained for the
3000 K trajectory is illustrated in the bottom panel of
Fig. 3. The value of ℵ is seen to fluctuate around 0.845
without being influenced by the change of orientation
at 70 ps.

In Fig. 4 we show the value of ℵ averaged over
each trajectory as a function of temperature. First,
a step-like change, larger than the standard deviation,
is observed around 2000K, indicating the monoclinic
to tetragonal phase transition taking place. At 3000K
another step-like transition takes place indicating that
the material is indeed increasing its cubicity. The tem-
perature is in good agreement with the threshold of-
ten reported for a high-temperature phase transition
in experimental studies. However, the ℵ is still signif-
icantly smaller than one and, judging by the figure, it
is highly unlikely that a cubic structure can be reached
before melting. While a transition from monoclinic is
clearly visible and agreement with literature is excel-
lent, a transition to cubic is more ambiguous.
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Figure 5. Average lattice parameters as a function of tem-
perature in comparison with experiment. (top) The lat-
tice constants (a, b, c) and (bottom) the angles (α, β, γ) as a
function of temperature. The experimental values are taken
from: Exp. 1: Ref. 35, Exp. 2: Ref. 9, Exp. 3: Ref. 10.

D. Phase transitions

To investigate the potential phase transitions in more
detail, we show the lattice parameters as a function of
temperature in Fig. 5. Looking at the lattice constants
in Fig. 5 we see an acceptable agreement with experi-
mental results and a transition to an orthorhombic or
tetragonal phase at 2000K. The angles α and γ are
oscillating around a mean of 90◦, whereas the collapse
of the angle β from ≈ 100◦ to 90◦ at 2000K serves as
clear indication for the transition away from monoclinic
in very good agreement with the measurements by Hag-
gerty et al. [35].

The transition at around 3000 K that could be ob-
served in the aspect ratio, Fig. 4, can also be seen in
the lattice constants [Fig. 5, top]. However, they do not
indicate a fully cubic phase and the transition is better
described as one to a structure with a small tetrago-
nal distortion. The main experimental evidence for the
high-temperature Fm3̄m HfO2 structure comes from X-
ray diffraction patterns. Fig. 6 illustrates the patterns
obtained in two recent experimental studies in red[36]
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Figure 6. XRD patterns obtained from molecular dynamics
(green) through Eq. (2). Experimental data are taken from
reports by Tobase et al. [36] (red) and Hong et al. [10]
(violet) using WebPlotDigitizer [37]. Those experimental
data are converted from 2θ to r∗ using the reported energy
(64.1 keV) [9] and wave length (λ=0.124Å) [10] of the in-
cident beams. The peak positions are obtained assuming
lattice constants a = 5.263Å (Fm3̄m)) and a = 3.7123Å
and c = 5.290Å (I4/mmm)

and violet[10]. The peak positions are in good agree-
ment with what would be expected for the Fm3̄m space
group as shown by the black lines below. However, the
extreme temperature means that only low angle peaks
were observed. Fig. 4 and Fig. 5 would indicate that a
small tetragonal distortion is still present at high tem-
perature. The bottom of Fig. 6 shows that the peak
positions of the I4/mmm space group, which would re-
sult from a small tetragonal distortion of the Fm3̄m
space group, give an equally good agreement with the
available experimental data. To confirm that the MD
trajectories are not in disagreement with the available
high-temperature experimental evidence, we calculated
the static structure factor from the 3000K trajectory
according to Eq. (2). This is shown with the green curve
and a good agreement with the experimental peak po-
sitions can be observed.

V. CONCLUSION

We have implemented a flexible-cell NPT molecular
dynamics workflow using automatic differentiation and
trained a suitable neural-network force field on HfO2
data obtained using the r2SCAN functional. These de-
velopments have been employed to perform molecular-
dynamics simulations of HfO2 in the temperature range
from 500K to 3250K. The lattice constants are in very
good agreement with experiment and previous simu-
lations, and clearly indicating a departure from mon-
oclinic symmetry around 2000K. We have found no
clear signs of a transition towards any cubic phase at
high temperatures. We find a small tetragonal distor-
tion and show that the simulated X-ray diffraction pat-
terns and lattice constants are still in good agreement
with experimental data. We suggest I4/mmm as a
high-temperature space group in agreement with both
simulated and experimental data.

CODE AVAILABILITY

The code implementing flexible-cell NPT molecular
dynamics on top of jax-md has been archived on Zen-
odo with D.O.I. 10.5281/zenodo.10787829. A compati-
ble version of NeuralIL, including example scripts for
training and evaluation, has been archived on Zenodo
with D.O.I. 10.5281/zenodo.10786377. Both are dis-
tributed under an Apache 2 open source license.

DATA AVAILABILITY

A dataset containing the structures used for training
and validation and their calculated energies and forces,
the parameters of the neural-network force field, and
a 3000 K MD trajectory are available on Zenodo with
D.O.I. 10.5281/zenodo.10793828.

ACKNOWLEDGEMENTS

AI4DI receives funding within the Electronic Compo-
nents and Systems for European Leadership Joint Un-
dertaking (ESCEL JU) in collaboration with the Euro-
pean Union’s Horizon2020 Framework Programme and
National Authorities, under grant agreement n° 826060.
This research was funded in part by the Austrian Sci-
ence Fund (FWF) 10.55776/F81 (SFB F81 TACO).

[1] G. Sivaraman, L. Gallington, A. N. Krishnamoorthy,
M. Stan, G. Csányi, A. Vázquez-Mayagoitia, and C. J.

Benmore, Experimentally driven automated machine-

https://doi.org/10.5281/zenodo.10787829
https://doi.org/10.5281/zenodo.10786377
https://doi.org/10.5281/zenodo.10793828


7

learned interatomic potential for a refractory oxide,
Phys. Rev. Lett. 126, 156002 (2021).

[2] C. Verdi, F. Karsai, P. Liu, R. Jinnouchi, and G. Kresse,
Thermal transport and phase transitions of zirconia by
on-the-fly machine-learned interatomic potentials, Npj
Comput. Mater. 7, 156 (2021).

[3] T. Chen, F. Yuan, J. Liu, H. Geng, L. Zhang, H. Wang,
and M. Chen, Modeling the high-pressure solid and liq-
uid phases of tin from deep potentials with ab initio
accuracy, Phys. Rev. Mater. 7, 053603 (2023).

[4] N. M. Chtchelkatchev, R. E. Ryltsev, M. V. Magnit-
skaya, S. M. Gorbunov, K. A. Cherednichenko, V. L.
Solozhenko, and V. V. Brazhkin, Local structure, ther-
modynamics, and melting of boron phosphide at high
pressures by deep learning-driven ab initio simulations,
J. Chem. Phys. 159, 064507 (2023).

[5] G. A. Marchant, M. A. Caro, B. Karasulu, and L. B.
Pártay, Exploring the configuration space of elemental
carbon with empirical and machine learned interatomic
potentials, Npj Comput. Mater. 9, 1 (2023).

[6] N. Unglert, J. Carrete, L. B. Pártay, and G. K. H.
Madsen, Neural-network force field backed nested sam-
pling: Study of the silicon p−t phase diagram, Phys.
Rev. Mater. 7, 123804 (2023).

[7] S. Bichelmaier, J. Carrete, R. Wanzenböck, F. Buch-
ner, and G. K. H. Madsen, Neural-network-backed effec-
tive harmonic potential study of the ambient pressure
phases of hafnia, Phys. Rev. B 107, 184111 (2023).

[8] C. Wang, M. Zinkevich, and F. Aldinger, The zirco-
nia–hafnia system: DTA measurements and thermody-
namic calculations, J. Am. Ceram. Soc. 89, 3751 (2006).

[9] T. Tobase, A. Yoshiasa, H. Arima, K. Sugiyama,
O. Ohtaka, T. Nakatani, K.-i. Funakoshi, and S. Ko-
hara, Pre-transitional behavior in tetragonal to cubic
phase transition in HfO2 revealed by high temperature
diffraction experiments, Phys. Status Solidi (b) 255,
1800090 (2018).

[10] Q.-J. Hong, S. V. Ushakov, D. Kapush, C. J. Benmore,
R. J. K. Weber, A. van de Walle, and A. Navrotsky,
Combined computational and experimental investiga-
tion of high temperature thermodynamics and structure
of cubic ZrO2 and HfO2, Sci. Rep. 8, 14962 (2018).

[11] P. Fan, Y. K. Zhang, Q. Yang, J. Jiang, L. M. Jiang,
M. Liao, and Y. C. Zhou, Origin of the intrinsic ferro-
electricity of HfO2 from ab initio molecular dynamics,
J. Phys. Chem. C 123, 21743 (2019).

[12] N. Kaiser, T. Vogel, A. Zintler, S. Petzold, A. Arzu-
manov, E. Piros, R. Eilhardt, L. Molina-Luna, and
L. Alff, Defect-stabilized substoichiometric polymorphs
of hafnium oxide with semiconducting properties, ACS
Appl. Mater. Interfaces 14, 1290 (2022).

[13] K. Tolborg and A. Walsh, Exploring the high-
temperature stabilization of cubic zirconia from anhar-
monic lattice dynamics, Crystal Growth & Design 23,
3314 (2023).

[14] S. S. Schoenholz and E. D. Cubuk, JAX M.D. a frame-
work for differentiable physics, Adv. Neural Inf. Process
Syst. 33, 11428 (2020).

[15] J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew,
and J. Sun, Accurate and numerically efficient r2SCAN
meta-generalized gradient approximation, J. Phys.

Chem. Lett. 11, 8208 (2020).
[16] P. E. Blöchl, Projector augmented-wave method, Phys.

Rev. B 50, 17953 (1994).
[17] G. Kresse and J. Furthmüller, Efficient iterative

schemes for ab initio total-energy calculations using a
plane-wave basis set, Phys. Rev. B 54, 11169 (1996).

[18] G. Kresse and D. Joubert, From ultrasoft pseudopoten-
tials to the projector augmented-wave method, Phys.
Rev. B 59, 1758 (1999).

[19] H. Montes-Campos, J. Carrete, S. Bichelmaier, L. M.
Varela, and G. K. H. Madsen, A differentiable neural-
network force field for ionic liquids, J. Chem. Inf. Model.
62, 88 (2022).

[20] J. Carrete, H. Montes-Campos, R. Wanzenböck,
E. Heid, and G. K. H. Madsen, Deep ensembles vs com-
mittees for uncertainty estimation in neural-network
force fields: Comparison and application to active learn-
ing, J. Chem. Phys. 158, 204801 (2023).

[21] L. Metz, J. Harrison, C. D. Freeman, A. Merchant,
L. Beyer, J. Bradbury, N. Agrawal, B. Poole, I. Mor-
datch, A. Roberts, and J. Sohl-Dickstein, VeLO: train-
ing versatile learned optimizers by scaling up (2022),
arXiv:2211.09760 [cs.LG].

[22] K. Zhang, On the concept of static structure factor
(2016), arXiv:1606.03610 [cond-mat.soft].

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, Scikit-learn: Machine learning in Python, J. Mach.
Learn. Res. 12, 2825 (2011).

[24] I. Babuschkin, K. Baumli, A. Bell, S. Bhupatiraju,
J. Bruce, P. Buchlovsky, D. Budden, T. Cai, A. Clark,
I. Danihelka, C. Fantacci, J. Godwin, C. Jones, R. Hem-
sley, T. Hennigan, M. Hessel, S. Hou, S. Kapturowski,
T. Keck, I. Kemaev, M. King, M. Kunesch, L. Martens,
H. Merzic, V. Mikulik, T. Norman, J. Quan, G. Pa-
pamakarios, R. Ring, F. Ruiz, A. Sanchez, R. Schnei-
der, E. Sezener, S. Spencer, S. Srinivasan, L. Wang,
W. Stokowiec, and F. Viola, The DeepMind JAX
Ecosystem (2020).

[25] G. J. Martyna, M. L. Klein, and M. Tuckerman,
Nosé–hoover chains: The canonical ensemble via con-
tinuous dynamics, J. Chem. Phys. 97, 2635 (1992).

[26] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gun-
steren, A. DiNola, and J. R. Haak, Molecular dynamics
with coupling to an external bath, J. Chem. Phys. 81,
3684 (1984).

[27] M. E. Tuckerman, Y. Liu, G. Ciccotti, and G. J.
Martyna, Non-Hamiltonian molecular dynamics: Gen-
eralizing Hamiltonian phase space principles to non-
Hamiltonian systems, J. Chem. Phys. 115, 1678 (2001).

[28] G. J. Martyna, D. J. Tobias, and M. L. Klein, Con-
stant pressure molecular dynamics algorithms, J. Chem.
Phys. 101, 4177 (1994).

[29] W. G. Hoover, Canonical dynamics: Equilibrium phase-
space distributions, Phys. Rev. A 31, 1695 (1985).

[30] W. G. Hoover, Constant-pressure equations of motion,
Phys. Rev. A 34, 2499 (1986).

[31] M. Parrinello and A. Rahman, Polymorphic transitions
in single crystals: A new molecular dynamics method,

https://doi.org/10.1103/PhysRevLett.126.156002
https://doi.org/10.1038/s41524-021-00630-5
https://doi.org/10.1038/s41524-021-00630-5
https://doi.org/10.1103/PhysRevMaterials.7.053603
https://doi.org/10.1063/5.0165948
https://doi.org/10.1038/s41524-023-01081-w
https://doi.org/10.1103/PhysRevMaterials.7.123804
https://doi.org/10.1103/PhysRevMaterials.7.123804
https://doi.org/10.1103/PhysRevB.107.184111
https://doi.org/10.1111/j.1551-2916.2006.01286.x
https://doi.org/10.1002/pssb.201800090
https://doi.org/10.1002/pssb.201800090
https://doi.org/10.1038/s41598-018-32848-7
https://doi.org/10.1021/acs.jpcc.9b04106
https://doi.org/10.1021/acsami.1c09451
https://doi.org/10.1021/acsami.1c09451
https://doi.org/10.1021/acs.cgd.2c01458
https://doi.org/10.1021/acs.cgd.2c01458
https://papers.nips.cc/paper/2020/file/83d3d4b6c9579515e1679aca8cbc8033-Paper.pdf
https://papers.nips.cc/paper/2020/file/83d3d4b6c9579515e1679aca8cbc8033-Paper.pdf
https://doi.org/10.1021/acs.jpclett.0c02405
https://doi.org/10.1021/acs.jpclett.0c02405
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1021/acs.jcim.1c01380
https://doi.org/10.1021/acs.jcim.1c01380
https://doi.org/10.1063/5.0146905
https://arxiv.org/abs/2211.09760
https://arxiv.org/abs/1606.03610
http://github.com/deepmind
http://github.com/deepmind
https://doi.org/10.1063/1.463940
https://doi.org/10.1063/1.448118
https://doi.org/10.1063/1.448118
https://doi.org/10.1063/1.1378321
https://doi.org/10.1063/1.467468
https://doi.org/10.1063/1.467468
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1103/PhysRevA.34.2499


8

J. Appl. Phys. 52, 7182 (1981).
[32] T.-Q. Yu, J. Alejandre, R. López-Rendón, G. J.

Martyna, and M. E. Tuckerman, Measure-preserving
integrators for molecular dynamics in the isother-
mal–isobaric ensemble derived from the liouville opera-
tor, Chem. Phys. 370, 294 (2010), dynamics of molec-
ular systems: From quantum to classical.

[33] M. Tuckerman, Statistical Mechanics: Theory and
Molecular Simulation, Oxford Graduate Texts (OUP
Oxford, 2010).

[34] M. F. Langer, J. T. Frank, and F. Knoop, Stress and
heat flux via automatic differentiation, The Journal of

Chemical Physics 159, 10.1063/5.0155760 (2023).
[35] R. P. Haggerty, P. Sarin, Z. D. Apostolov, P. E.

Driemeyer, and W. M. Kriven, Thermal expansion of
HfO2 and ZrO2, J. Am. Ceram. Soc. 97, 2213 (2014).

[36] T. Tobase, A. Yoshiasa, H. Arima, K. Sugiyama,
O. Ohtaka, T. Nakatani, K.-i. Funakoshi, and S. Ko-
hara, Pre-transitional behavior in tetragonal to cubic
phase transition in HfO2 revealed by high tempera-
ture diffraction experiments, Phys. Status Solidi B 255,
1800090 (2018).

[37] A. Rohatgi, Webplotdigitizer: Version 4.6 (2022).

https://doi.org/10.1063/1.328693
https://doi.org/10.1016/j.chemphys.2010.02.014
https://books.google.at/books?id=Lo3Jqc0pgrcC
https://books.google.at/books?id=Lo3Jqc0pgrcC
https://doi.org/10.1063/5.0155760
https://doi.org/10.1111/jace.12975
https://doi.org/https://doi.org/10.1002/pssb.201800090
https://doi.org/https://doi.org/10.1002/pssb.201800090
https://automeris.io/WebPlotDigitizer

	Neural-network-enabled molecular dynamics study of HfO2 phase transitions
	Abstract
	Introduction
	Methods
	Density Functional Theory
	Neural-Network Force Field
	Molecular dynamics
	X-ray diffraction patterns

	Flexible cell MD via automatic differentiation
	Results and discussion
	Volumetric analysis
	MD trajectory analysis
	Aspect ratio
	Phase transitions

	Conclusion
	Code availability
	Data availability
	Acknowledgements
	References


