000146980 001__ 146980
000146980 005__ 20241205091043.0
000146980 0247_ $$2doi$$a10.1002/adhm.202001739
000146980 0248_ $$2sideral$$a120995
000146980 037__ $$aART-2020-120995
000146980 041__ $$aeng
000146980 100__ $$aJoseph, J.
000146980 245__ $$aDNA-based nanocarriers to enhance the optoacoustic contrast of tumors in vivo
000146980 260__ $$c2020
000146980 5060_ $$aAccess copy available to the general public$$fUnrestricted
000146980 5203_ $$aOptoacoustic tomography (OT) enables non-invasive deep tissue imaging of optical contrast at high spatio-temporal resolution. The applications of OT in cancer imaging often rely on the use of molecular imaging contrast agents based on near-infrared (NIR) dyes to enhance contrast at the tumor site. While these agents afford excellent biocompatibility and minimal toxicity, they present limited optoacoustic signal generation capability and rapid renal clearance, which can impede their tumor imaging efficacy. In this work, a synthetic strategy to overcome these limitations utilizing biodegradable DNA-based nanocarrier (DNA-NC) platforms is introduced. DNA-NCs enable the incorporation of NIR dyes (in this case, IRDye 800CW) at precise positions to enable fluorescence quenching and maximize optoacoustic signal generation. Furthermore, these DNA-NCs show a prolonged blood circulation compared to the native fluorophores, facilitating tumor accumulation by the enhanced permeability and retention (EPR) effect. In vivo imaging of tumor xenografts in mice following intravenous administration of DNA-NCs reveals enhanced OT signals at 24 h when compared to free fluorophores, indicating promise for this method to enhance the optoacoustic signal generation capability and tumor uptake of clinically relevant NIR dyes.
000146980 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E47-20R$$9info:eu-repo/grantAgreement/ES/UZ/UZ2018-CIE-04
000146980 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000146980 590__ $$a9.933$$b2020
000146980 591__ $$aENGINEERING, BIOMEDICAL$$b8 / 89 = 0.09$$c2020$$dQ1$$eT1
000146980 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b20 / 106 = 0.189$$c2020$$dQ1$$eT1
000146980 591__ $$aMATERIALS SCIENCE, BIOMATERIALS$$b4 / 40 = 0.1$$c2020$$dQ1$$eT1
000146980 592__ $$a2.287$$b2020
000146980 593__ $$aBiomaterials$$c2020$$dQ1
000146980 593__ $$aPharmaceutical Science$$c2020$$dQ1
000146980 593__ $$aBiomedical Engineering$$c2020$$dQ1
000146980 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000146980 700__ $$aBaumann, K.N.
000146980 700__ $$aPostigo, A.
000146980 700__ $$aBollepalli, L.
000146980 700__ $$aBohndiek, S.E.
000146980 700__ $$0(orcid)0000-0003-3109-4284$$aHernandez-Ainsa, S.$$uUniversidad de Zaragoza
000146980 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000146980 773__ $$g10, 2 (2020), 2001739 [8 pp]$$pAdvanced healthcare materials$$tADVANCED HEALTHCARE MATERIALS$$x2192-2640
000146980 8564_ $$s1368919$$uhttps://zaguan.unizar.es/record/146980/files/texto_completo.pdf$$yPostprint
000146980 8564_ $$s1822208$$uhttps://zaguan.unizar.es/record/146980/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000146980 909CO $$ooai:zaguan.unizar.es:146980$$particulos$$pdriver
000146980 951__ $$a2024-12-05-08:45:59
000146980 980__ $$aARTICLE