000147016 001__ 147016
000147016 005__ 20241205091043.0
000147016 0247_ $$2doi$$a10.1016/j.ultramic.2024.114071
000147016 0248_ $$2sideral$$a140745
000147016 037__ $$aART-2025-140745
000147016 041__ $$aeng
000147016 100__ $$0(orcid)0000-0002-9102-7895$$aHettler, Simon
000147016 245__ $$aToward quantitative thermoelectric characterization of (nano)materials by in-situ transmission electron microscopy
000147016 260__ $$c2025
000147016 5060_ $$aAccess copy available to the general public$$fUnrestricted
000147016 5203_ $$aWe explore the possibility to perform an in-situ transmission electron microscopy (TEM) thermoelectric characterization of materials. A differential heating element on a custom in-situ TEM microchip allows to generate a temperature gradient across the studied materials, which are simultaneously measured electrically. A thermovoltage was induced in all studied devices, whose sign corresponds to the sign of the Seebeck coefficient of the tested materials. The results indicate that in-situ thermoelectric TEM studies can help to profoundly understand fundamental aspects of thermoelectricity, which is exemplary demonstrated by tracking the thermovoltage during in-situ crystallization of an amorphous Ge thin film. We propose an improved in-situ TEM microchip design, which should facilitate a full quantitative measurement of the induced temperature gradient, the electrical and thermal conductivities, as well as the Seebeck coefficient. The benefit of the in-situ approach is the possibility to directly correlate the thermoelectric properties with the structure and chemical composition of the entire studied device down to the atomic level, including grain boundaries, dopants or crystal defects, and to trace its dynamic evolution upon heating or during the application of electrical currents.
000147016 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/AEI/PID2023-151080NB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E13-23R$$9info:eu-repo/grantAgreement/EC/H2020/889546/EU/Properties of nanomaterials made from misfit-layered compounds revealed by electron microscopy and simulations/PROMISES$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 889546-PROMISES$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-104739GB-I00/AEI-10.13039-501100011033$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PRTR-C17.I1
000147016 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000147016 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000147016 700__ $$aFurqan, Mohammad
000147016 700__ $$0(orcid)0000-0001-7056-0546$$aSotelo, Andrés$$uUniversidad de Zaragoza
000147016 700__ $$0(orcid)0000-0002-2071-9093$$aArenal, Raul
000147016 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000147016 773__ $$g268 (2025), 114071 [10 pp.]$$pUltramicroscopy$$tUltramicroscopy$$x0304-3991
000147016 8564_ $$s2995260$$uhttps://zaguan.unizar.es/record/147016/files/texto_completo.pdf$$yVersión publicada
000147016 8564_ $$s2565747$$uhttps://zaguan.unizar.es/record/147016/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000147016 909CO $$ooai:zaguan.unizar.es:147016$$particulos$$pdriver
000147016 951__ $$a2024-12-05-08:46:42
000147016 980__ $$aARTICLE