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Only the disciplined ones are truly free
because they are capable of doing what
they must at every moment. Those who
lack discipline are enslaved by their
passions and desires.
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ABSTRACT

Cancer is one of the most prevalent and challenging diseases worldwide, af-
fecting millions of people, and with a projected increase in future prevalence.
Therefore, it is crucial to enhance our understanding of the mechanisms under-
lying its initiation and development, improve current monitoring methods, and
pursue more effective treatments.

This thesis presents a computational approximation to cancer, deconstruct-
ing the disease into its components to gain a comprehensive understanding. It
examines various aspects of cancer across different scales, from the cellular level
to the organ level to elucidate the factors influencing cell behavior, understand
the mechanisms driving cells from healthy to tumoral states, and predict tumor
growth. In this regard, computational models are powerful tools for their capac-
ity to provide cost-effective means to abstract phenomena, explore hypothetical
scenarios, analyze factors meticulously, determine causality, and predict potential
outcomes. Thus, this thesis employs diverse computational modeling approaches,
ranging from discrete models with agent-based models to continuum models with
partial differential equations. Additionally, it investigates the integration of arti-
ficial intelligence methods into these physics-based models, demonstrating their
combined capability to reproduce complex phenomena and enhance predictions
with meaningful interpretations.

Following this methodology, the thesis initially examines movement patterns
of experiments of the immune system cells and engineered immune cells used
in cancer immunotherapy. The goal is to assess their migratory capacity and
identify factors that may diminish the effectiveness of immunotherapy in can-
cer. Subsequently, the focus shifts to the morphogenesis of cystic structures to
understand their formation and the factors contributing to their transition from
healthy to tumoral structures, which are found in the most common type of can-
cer. Here, the impact of the extracellular matrix and fluid hydrostatic pressure on
the process is investigated, followed by quantitative reproduction of experimen-
tal assays involving pancreatic cells. Finally, the thesis addresses the prediction of
prostate tumor growth in real patients incorporating clinical information. Thus, a
methodology is presented to predict prostate cancer prognosis, offering a clinical
tool for comprehensive evaluation and advancing toward more accurate, faster,
and inexpensive monitoring methods, potentially reducing the need for clinical
tests such as magnetic resonance scans.

Therefore, this thesis aims to provide insights into some aspects of cancer,
improve therapy approaches, and provide new perspectives on the integration of
artificial intelligence into the field of computational biology.
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RESUMEN

El cancer es una de las enfermedades mas prevalentes y desafiantes, afectando
a millones de personas en todo el mundo y con una incidencia en aumento. Por
tanto, es crucial avanzar en el entendimiento de los mecanismos subyacentes de
su inicio y desarrollo, asi como mejorar los métodos de monitorizacién y buscar
tratamientos mas efectivos.

Esta tesis presenta una aproximacién computacional al cancer, desgranando
la enfermedad en sus algunos de sus componentes para obtener una comprensioén
integral de la misma. Asi, se examinan varios aspectos del cancer en diferentes
escalas, desde el nivel celular hasta el nivel de 6rgano, para dilucidar los factores
que influyen en el comportamiento celular, entender los mecanismos que alte-
ran su comportamiento sano a uno tumoral y, finalmente, predecir el crecimiento
de tumores. En este sentido, los modelos computacionales son una herramienta
poderosa por su capacidad para abstraer fendmenos, explorar escenarios hipoté-
ticos, analizar los factores involucrados, determinar causalidad y realizar predic-
ciones. Por ello, esta tesis emplea diversos enfoques de modelado computacional,
que van desde modelos discretos con modelos basados en agentes hasta modelos
continuos con ecuaciones diferenciales parciales. Ademas, investiga la integra-
ciéon de métodos de inteligencia artificial en estos modelos fisicos, demostrando
su capacidad combinada para reproducir fenémenos complejos y mejorar las pre-
dicciones.

Siguiendo esta metodologia, esta tesis examina inicialmente los patrones de
movimiento de células del sistema inmunitario y células inmunitarias modificadas
utilizadas en tratamientos de inmunoterapia en el cancer. El objetivo es evaluar su
capacidad migratoria e identificar los factores que puedan disminuir la efectividad
de dicho tratamiento. Posteriormente, el foco se traslada hacia la morfogénesis de
estructuras cisticas para comprender su formacion y los factores que contribuyen
a su transicion de estructuras sanas a tumorales tipicas del cancer mas comun.
Asi, se investiga el impacto de la matriz extracelular y la presion hidrostatica del
fluido en el proceso, seguido de la reproduccion de ensayos experimentales con
células pancreéaticas. Finalmente, la tesis aborda el cancer de prostata en pacientes
reales incorporando informacién clinica. De este modo, se presenta una metodo-
logia para predecir su prondstico, ofreciendo una herramienta clinica para una
evaluacion integral y avanzanda hacia métodos de monitoreo mas precisos, rapi-
dos y econémicos, potencialmente reduciendo la necesidad de pruebas clinicas.

Por lo tanto, esta tesis tiene como objetivo proporcionar informacion sobre
algunos aspectos del cancer, mejorar los enfoques terapéuticos y ofrecer nuevas
perspectivas sobre la integracién de inteligencia artificial en el campo de la bio-
logia computacional.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Cancer is one of the most prevalent and challenging diseases of our time,
impacting millions of people worldwide. It is the second leading cause of death
globally [1], as well as in Europe [2] and the United States (US) [3], accounting for
an estimated 10 million deaths in 2020 alone [4]. This rate imposes a significant
economic burden on healthcare systems [5, 6], individuals [7], and societies [8] at
large, with a consistent upward trajectory observed in recent years [9]. Despite
the continuous decrease in the risk of death from cancer, resulting in an overall
mortality rate drop of 32% in US since 1991 [10], the future prevalence of cancer
is projected to increase [11-13]. This rise in cancer cases could be attributed to
various factors, including the aging of society, sedentary lifestyles, or unhealthy
dietary habits [14], which may contribute to an increased susceptibility to cancer,
exacerbating the economic and social challenges associated with cancer. More-
over, as life expectancy rises, there is a concerning possibility that new manifes-
tations and forms of cancer may emerge in the future, underscoring the enduring
and evolving nature of cancer as an unending disease. Therefore, it is crucial
to enhance our understanding of cancer. This encompasses not only the pursuit
of more effective treatments for advanced stages but also a deep exploration of
the mechanisms underlying its initiation. By comprehending how cells transition
from a healthy to a tumoral behavior and identifying the factors that drive this
transformation, we can gain profound insights into the fundamental processes
governing cell behavior. This approach might pave the way for advancements in
early detection, targeted interventions, and ultimately the potential to halt can-
cer’s devastating impact on individuals and societies.

1.2 Biological background

In the last two decades, a new perspective has emerged in cancer research,
highlighting the significant impact of mechanical forces and cues on tumor ini-
tiation, growth, invasion, metastasis, and response to therapy. This prominent
branch, known as mechanobiology [15], specifically focuses on unraveling the
role played by mechanical forces and properties in biological processes [16]. These
processes encompass not only diseases such as cancer but also physiological phe-
nomena such as tissue development, immune response, or wound healing. Un-
derstanding this interplay between mechanical cues and cellular behavior offers
valuable insights into the complex mechanisms driving cancer progression and
vital physiological processes.

In response to mechanical cues from both their environment and neighbor-
ing cells, cells exhibit mechanisms to capture these signals in a reception process
(Figure 1.1A) and subsequently convert them through a process called mecha-
notransduction into a biological response (Figure 1.1B). Cells are immersed in
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a complex and dynamic three-dimensional network called the Extracellular Ma-
trix (ECM). The ECM, composed of proteins, carbohydrates, and other molecules,
provides structural and biochemical support to cells [17]. The ECM is a basic
component in various physiological processes, including cell differentiation, mi-
gration, adhesion, and tissue development. Thus, cells possess around their mem-
branes a protein called integrins, which attach them to the ECM (Figure 1.1A,
detail 1) [18, 19]. This connection, often referred to as focal adhesions, not only
provides structural support but also acts as a signaling hub. These integrins are
connected to the cell’s cytoskeleton, a dynamic protein network within the cy-
toplasm that provides structural support, determines cell shape, and regulates
cellular behavior. Comprising elements such as actin filaments, myosin motors,
microtubules, and intermediate filaments, the cytoskeleton plays a crucial role in
generating, transmitting, and responding to mechanical signals over both short
and long timescales [20-23] (Figure 1.1A, detail 2). Thus, mechanical forces are
transmitted through the integrins between the ECM and the cytoskeleton, trig-
gering biochemical events and activating signaling molecules within the cell. In
this way, the mechanical properties of the ECM, the integrins and the cytoskele-
ton mediate the mechanical forces transmitted, regulating the biological response
of the cell [24].

Besides the ECM, the surroundings of the cell also include the presence of in-
terstitial fluid, which generates a fluid-cell interaction (Interstitial Fluid Pressure
(IFP)) that derives to a cellular biomolecular response [25] (Figure 1.1A, detail 3).
Cells employ various mechanisms to capture and respond to fluid-related signals,
detecting and interpreting mechanical forces associated with fluid pressure. We
can highlight the presence of ion channels located in the cell membrane that are
sensitive to mechanical forces, including fluid pressure. These channels open or
close in response to mechanical cues, allowing the influx or efflux of ions, which
triggers signaling events [26, 27] (Figure 1.1A, detail 4). Also, the cell membrane
itself can act as a sensor for fluid pressure, leading to alterations in membrane and
cytoskeleton tensions to then initiate signaling pathways. Among membrane-
associated proteins and complexes involved, some cells also have a hair-like struc-
ture named primary cilia that extends from their surface. It serves as antennae
for detecting fluid flow and pressure changes [28] (Figure 1.1A, detail 5).

Furthermore, cells actively participate in mechanical interactions with neigh-
boring cells. Much like integrins, cells are equipped with cell surface receptors
known as cadherins, which establish physical connections between adjacent cells
[29] and their cytoskeletons through intermediate proteins [30, 31] (Figure 1.1A,
detail 6). These adhesion molecules contribute to the structural integrity and sta-
bility of cellular arrangements within tissues. This cell aggregation and sorting
involve the orchestrated movement and alignment of cells, eventually leading to
the generation of mechanical forces or tension transmitted through the cadherins
or direct membrane contact.
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Figure 1.1: Overview of cell signaling. A Biological system composed of a cluster of
cells and the ECM. B Receptors of the cell. The integrins attach cells to the ECM and mediate
the mechanical forces transmitted between the ECM and the cell (1). The cytoskeleton pro-
vides support to the cell, playing an essential role in processing the mechanical forces that
the cell receives (2). The cell surroundings may include interstitial fluid, which generates a
fluid-cell interaction (3). Additionally, the cell possesses ion channels that are sensitive to
cues, including fluid pressure (4). Some cells also have hair-like structures named primary
cilia extending from their surface to detect fluid flow and pressure changes (5). Finally,
the cadherins establish physical connections between adjacent cells and their cytoskeleton,
transmitting mechanical forces through cells (6). C Activation of the biological cell response.
These reception mechanisms allow cells to receive cues from other cells and the environment,
such as cell-cell, cell-fluid, and cell-ECM interactions. Finally, cells initiate complex intra-
cellular signaling cascades that transduce these signals into a cellular response or biological
behavior.

These are basic mechanisms through which cells receive the mechanical in-
formation of the ECM and neighboring cells, although there exist many more
mechanisms that allow them to capture distinct mechanical signals, and certainly
chemical signals. After these reception mechanisms of signals, cells initiate com-
plex intracellular signaling cascades that transduce these into biological behav-
iors (Figure 1.1B). From a direct standpoint, the tensions resulting from mechani-
cal interactions induce deformation in the cell’s cytoskeleton, influencing specific
cellular behaviors. Moreover, the mechanisms of ECM and cell recognition mod-
ulate the expression of specific genes associated with diverse cellular responses in
the nucleus, including changes in cell shape, migration, proliferation, and differ-
entiation. Therefore, the orchestrated integration of these mechanotransduction
mechanisms allows cells to dynamically adapt to their mechanical microenviron-
ment, generating context-specific biological outcomes.

This mechanical perspective underscores the need for an engineering ap-
proach to comprehensively analyze and bridge the apparent gap between engi-
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neering and biology. Leveraging mathematical, computational biology, and engi-
neering techniques not only approximates the physical nature of biological prob-
lems but also offers insights into unraveling these intricate processes. Next, we
will see a mechanobiological interpretation of important biological processes that
will be discussed later in the following chapters of this thesis.

1.2.1 Cell migration

Cell migration is the process in which cells move in our body and it plays
an important role in many physiological aspects [32]. Cell migration is essential
in embryonic development, where cells must move to form tissues and organs
[33]. Regarding the immune system, these cells possess a remarkable ability to
migrate within our body, traveling long distances to reach infection or injury
sites and orchestrate a defensive response [34]. In wound healing, cells migrate
coordinately to close gaps and restore tissue integrity [35, 36]. Nonetheless, it is
not only important in physiological processes, but it is also a key feature of cancer.
Aberrant cell migration is implicated in cancer metastasis, where cells acquire the
ability to migrate within the tissue and even invade distant tissues. Therefore,
understanding the mechanisms of cell migration holds a critical implication for
addressing both physiological and disease processes.

From a simplified standpoint, cell migration involves a series of regulated
events tightly related to the generation of protrusive and contractile forces by
the actin filament cytoskeleton [37]. Cells control the polymerization and de-
polymerization of actin filaments to rearrange and generate a protrusion of the
plasma membrane at the leading edge of the migration direction [38]. These pro-
trusions, such as the lamellipodium and filopodia, attach to the fibers of the ECM
to facilitate cell movement and also act as a sensing system to explore the mi-
croenvironment [39]. Subsequently, a contractile force is generated in the cell
protrusions that drive forward cell movement, followed by rear retraction. In
this process, myosin, a molecular protein, contributes to cell contractility [40].
Another element of cell-substrate adhesion, integrins, which attach to the ECM,
also contribute to the pulling forces necessary for migration. During cell move-
ment, the cytoskeleton and nucleus reassemble, coordinating and adapting to the
changing cellular environment [41].

Depending on the degree of involvement of the explained mechanisms, differ-
ent modes of migration are characterized [42]. Ameboid cell migration is charac-
terized by a more rounded cell shape, lacking protrusion generation. In this case,
high-speed myosin contractility is the driving force of the process, rather than
cell-matrix adhesions. Mesenchymal cell migration, however, requires higher cell
deformation with the creation of protrusions led by dynamic changes in the cy-
toskeleton, low myosin contractility but high cell-matrix adhesions. Other migra-
tion modes, such as lobopodial and swimming, span between these two modes.
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Besides the forces generation of the cell, the physical microenvironment also
is key in this process. Hence, cells can initiate the movement from a stationary
state motivated by signals such as the ECM molecules, growth factors, chemokines,
or mechanical cues. Once the locomotion is initiated, the ECM provides both
physical support and a substrate for cell adhesion and its topological aspects such
as its porosity or the fiber alignment can highly impact cell migration, affecting
their speed, persistence, and directionality. But also, the mechanical properties of
the ECM such as the stiffness and viscoelasticity are crucial in the way the cells
migrate. Lo et al. [43] found that cells migrated preferentially toward stiffer di-
rections in collagen substrates with stiffness gradients, concluding that cells can
receive the mechanical input generated by substrate deformation to regulate the
formation and retraction of protrusions. This phenomenon, which they called
"durotaxis”, has been widely studied afterward [44-46], showcasing that not only
chemical cues (chemotaxis) guide cell migration, but tissue rigidity and strain also
play an important role controlling cell locomotion.

Additionally, mechanical cues such as shear stress and fluid flow also influ-
ence cell migration. Prentice-Mott et al. [47] demonstrated that cells tend to
move through the lower hydraulic resistance paths in confined environments,
a phenomenon known as barotaxis. These asymmetrical hydraulic resistance
paths create pressure gradients that guide cell directional migration towards the
higher pressure gradient [48, 49]. Furthermore, alterations in pressure and exter-
nal forces impact the force equilibrium at the cell cortex, leading to the activation
of mechanosensitive ion channels and potentially establishing a feedback system
that interacts with the actin network [50]

In summary, the intricate interplay between cellular mechanisms, including
actin cytoskeleton dynamics, myosin contractility, and integrin-mediated adhe-
sion, orchestrates diverse modes of cell migration. The physical microenviron-
ment, governed by factors such as ECM composition, topography, and mechanical
properties, significantly influences cell motility. Moreover, emerging insights into
phenomena such as durotaxis, influenced by substrate stiffness, and barotaxis,
responding to hydraulic resistance paths, underscore the multifaceted nature of
cellular responses to mechanical cues. Understanding these complexities holds
the key to unraveling the fundamental principles governing both physiological
and pathological cell migration dynamics

1.2.2 Morphogenesis

Morphogenesis refers to the developmental process through which cells or-
ganize to form complex structures. From the earliest stages of embryonic devel-
opment to tissue remodeling in adulthood, morphogenesis guides the creation of
tissues and organs, ensuring the precise spatial arrangement of cells for functional
structures. To achieve this, cells undergo proliferation, coordinated movements,
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and differentiation, orchestrating temporary and spatial changes from the initial
single cell to generate diverse tissues and organs.

Behind this process, distinct gradients of chemical signaling molecules, known
as morphogens, guide cell fate, and control tissue patterning. In 1952, Alan Tur-
ing established the mechanisms of pattern formation in morphogenesis [51]. The
structure formed, referred to as pattern formation, requires satisfying two condi-
tions: local activation and long-range inhibition [52]. Thus, it is necessary for one
of the substances, referred to as the activator, to be autocatalytic. This means that
once a slight deviation from the homogeneous state occurs, there is an increase
in its production, leading to a consequent rise in its concentration. On the other
hand, long-range inhibition is required from what is termed the inhibitor. The
inhibitor counteracts the autocatalysis of the activator, preventing its increase
from tending to infinity and allowing the system to reach a steady-state pattern.
Importantly, this inhibitor must possess the characteristic of diffusing at a faster
rate than the activator.

However, the control over this process is not solely relegated to morphogens,
mechanical cues also have considerable influence over the outcome [53-56], reg-
ulating the process and providing feedback about size and shape. The ultimate
success in constructing and stabilizing cell structures directly relies on precise
mechanical interactions throughout the developmental process. Firstly, mechan-
ical forces generated by cells’ cytoskeleton produce forces that can drive morpho-
genetic processes [57]. Thus, apical constriction, mediated by the contraction of
actin-myosin cytoskeletal networks, plays a critical role in the formation of com-
plex tissue structures, such as tissue folding, bending, and invagination [58]. In
this context, cell-cell adhesions are crucial not only in supporting the structure
and guaranteeing its integrity [59] but also can lead to distinct cell sorting for
tissue patterning and organization [60]. Differential adhesive strength through
different expressions of cadherins determines the pattern of cell sorting [61, 62].
Additionally, interactions between cells and the ECM serve as mechanical cues,
regulating cell behavior [63], or serving as a scaffold for tissue organization, guid-
ing and stabilizing tissue expansion through force anisotropies resulting from its
heterogeneous distribution [64]. Furthermore, fluid flow is a major factor in mor-
phogenesis, affecting morphogenesis in distinct ways. It can create gradients of
chemical signaling molecules, generate physical forces including pressures and
shear stresses that contribute to shaping tissues or it can activate biological path-
ways in mechanosensitive cells [65]. Thus, the interplay between the dynami-
cal rearrangements of the cytoskeleton, the ECM, fluid flow, and cell adhesion
strength [66] underscores the intricate relationship between mechanical forces
and cellular behavior, shaping tissue development and morphogenesis through
mechanotransduction pathways.

Therefore, understanding morphogenesis tackles the question of how struc-
tures are formed de novo, and understanding this process allows us to understand
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not only how healthy structures are formed, but also how they can be disrupted
and the circumstances under those transform their correct formation to a patho-
logical one.

1.2.3 Cancer

Cancer is a complex disease characterized by the uncontrolled growth and di-
vision of cells in the body. It encompasses a diverse group of diseases with distinct
characteristics, but they share several common features. The prevalent feature of
the disease is the uncontrolled growth and division of cancer cells. Unlike healthy
cells, which undergo programmed death (apoptosis) when damaged or old, can-
cer cells evade the control mechanisms, conferring them a limitless proliferative
potential. Another hallmark of cancer is uncontrolled cell migration, which gives
the capacity of malignant cells to escape and invade other tissues, producing the
expansion of the disease. Therefore, understanding the factors that contribute to
this uncontrolled growth and migration of cells is fundamental to taking a step
closer to addressing cancer.

The initiation of cancer can be interpreted as a morphogenetic process in
which abnormal cells begin organizing to form a pathological structure. Thus,
mutations in healthy cells could induce altered transduction of normal cues from
other cells and environmental factors, modifying their normal biological func-
tioning to a tumorous state. Alternatively, an altered cascade of signals, rather
than a mutation within the cell, can modify cell behavior, promoting their trans-
formation into a tumoral phenotype. For instance, cells dynamically adapt to
force by modifying their behavior and remodeling their microenvironment [67].
Paszek et al. [68] found that non-cancerous mammary cells, when cultured in a
high-stiffness collagen matrix, formed aberrant tumoral structures. Provenzano
et al. [69] demonstrated that increased stromal collagen in mouse mammary tis-
sue enhances tumor formation and invasion by increasing ECM stiffness, result-
ing in higher mechanical loads and resistance to cellular contractility, ultimately
promoting proliferation and a more transformed phenotype. Additionally, Messal
et al. [70] employed three-dimensional whole-organ imaging techniques to ana-
lyze pancreatic tissue architecture in mice and showed that mechanical tension
imbalances are determinants of epithelial tumorigenesis.

As aresult, cells form a tumor structure. In this situation, there is a consolida-
tion of a tumor microenvironment that promotes the growth of the tumor. Thus,
the complex nature of this process, not only lies in the compound interactions
that are occurring but also in the changing properties of the agents involved in
this process. For example, within cancer, ECM remodeling, involving alterations
in its composition, structure, and organization, driven by cancer-activated fibrob-
lasts. This remodeled and stiffened ECM serves as a physical cue transduced by
tumor cells, affecting their proliferation, invasiveness, morphology, and respon-
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siveness to treatments [71, 72]. Moreover, residual solid stress is accumulated
within tumors during progression [73], influencing physical cues for tumor cells,
representing distinct abnormalities in tumor behavior alongside matrix stiffness,
impacting tumor progression and metastasis [74]. The growth of the tumor pro-
duces physical forces compressing blood and lymphatic vessels [75], reducing nu-
trient delivery and creating hypoxia, affecting the delivery of chemotherapy [76]
and hypoxia reduces the effectiveness of radiotherapy [77, 78]. Also, there is an
increased IFP, a significant hallmark of solid tumor growth. This elevation stems
from various factors, including the chaotic and aberrant vasculature within tu-
mors, high permeability of these vessels causing leakages, matrix decomposition,
and secretion of factors by tumor cells. Elevated IFP not only serves as a pre-
dictive and prognostic biomarker of tumors but also poses a therapeutic barrier
hindering effective drug delivery [79, 80]. In this environment, tumor cells in-
duce the generation of new vascularization networks to transport nutrients such
as oxygen and glucose to obtain energetic support to maintain their functions
and keep growing [81, 82].

These physical properties (altered mechanical properties of the ECM, com-
pression, solid stress, increased interstitial fluid pressure, and hypoxia), together
with other types of cells such as cells of the immune system, chemical factors
such as growth factors or chemokines, constitute the Tumor Microenvironment
(TME), whose composition is crucial in tumor initiation, growth, and invasion,
and metastasis [83, 84]. Ultimately, at some point, tumor expansion and progres-
sion can derive into an uncontrolled cell migration, spreading from the primary
tumor to surrounding tissues and even distant organs (metastasis) [85], which
is the main cause of cancer-related death. Therefore, studying aspects such as
cell morphogenesis, how cells transition from healthy behaviors to pathological
ones and the reasons behind it, tumor-contributing factors, and cell migration,
can allow us to gain insights into the initiation, establishment, and expansion of
cancer.

1.3 Experimental biology

One potent approach for advancing our understanding of biology is through
an experimental perspective. Experimental models serve as invaluable tools in
studying biology owing to their tangible and hands-on nature. The tangible and
concrete nature of experimental models not only enhances our comprehension
of fundamental biological principles but also facilitates the development of inno-
vative strategies and interventions. In the spectrum of experimental models, a
distinction arises based on the level of abstraction or proximity to a whole organ-
ism.

At alower level, in vitro models aim to mimic characteristics of living organ-
isms to study cell behavior, cell migration, tumor growth, or drug response in
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Figure 1.2: Experimental model approaches. A In vitro experiments. These experi-
ments aim to reproduce the characteristics of living organisms in a controlled context. We
highlight the use of microfluidic devices for cell culturing, which allows the study of processes
such as morphogenesis, tumor growth, or cell migration in a closely physiological environ-
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ment. B In vivo models. These commonly utilize mice, providing a more realistic exploration
of biological aspects. Typically, it involves the induction of a disease or genetic manipula-
tion, followed by monitoring the signs of the disease or response to treatment. C Clinical
models. Here, we consider methods to study or evaluate biological processes and diseases in
human subjects. These data acquisition methodologies encompass MRI, X-ray, biopsies, and
wearables to detect and predict the prognosis.

a controlled, physiologically relevant context. In this regard, cell cultures are a
technique in which cells are seeded in a suitable medium outside their natural
environment, allowing for their manipulation. These cultures can be maintained
as monolayers, a simple and low-cost method of cell culture maintenance where
cells adhere to a flat surface. However, these 2D cell monolayers have limited
ability to mimic the real characteristics of tissues or tumors, and the interactions
between cells and the environment [86]. To overcome this limitation, 3D culture
models have emerged to better mimic the complexity of tissues and bridge the
gap between cell cultures and real tissues [87]. Among 3D culture models, cell
spheroids are a cell culture model where cells aggregate and grow in a spheri-
cal shape, forming a multicellular structure with cell-cell interactions similar to
those found within organisms. This model allows the study of various aspects of
cellular behavior, such as proliferation, differentiation, migration, and response
to drugs or environmental cues, in a more physiologically relevant context [88].
Thus, it has enabled the generation of in vitro models of tumors [89] and cancer
[90]. Additionally, the advancement of cell spheroids has led to the development
of cell organoids, which maintain the structure and key functions of specific or-
gans or tissues. Organoids typically consist of multiple cell types organized in
a manner resembling the architecture of the organ they mimic. These organ-
on-chip models show promise in studying human physiology and cancer in an
organ-specific context [91].

10
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Among in vitro techniques for culturing cell spheroids or organoids [92, 93],
microfluidic devices have emerged as powerful tools due to their capacity to pro-
vide a high level of control over microenvironmental conditions [94, 95]. This ca-
pability enables the study and manipulation of specific chemical and mechanical
cues to explore more detailed cell responses. Moreover, the well-defined environ-
ment in microfluidic devices closely mimics physiological conditions, allowing for
the exploration of how cells interact with their surroundings. These attributes,
coupled with lower budget requirements compared to other experimental meth-
ods, confer value to microfluidic devices in the study of cell behavior.

Next, at a higher level of abstraction, in vivo models, commonly utilizing mice,
provide a more in-depth exploration of biological aspects. In this context, vari-
ous techniques, not only those employed in clinical approaches but also exclusive
methods inapplicable to human subjects, come into play. Typically, it involves the
induction of a disease or genetic manipulation, followed by monitoring the signs
of the disease or response to treatment. These models are invaluable instruments
for studying intricate biological processes and testing pharmaceutical interven-
tions. However, ethical considerations related to mice models prompt a gradual
transition toward alternative methodologies, aiming ultimately to diminish re-
liance on these models over time.

Finally, in addition to traditional laboratory-based experiments conducted
in controlled settings, clinical approaches focus on investigating biological pro-
cesses and disease mechanisms in human subjects. In these clinical approaches,
acquiring data from patients to assess the status and progression of their dis-
eases is fundamental. Common data acquisition techniques include established
diagnostic tools such as Magnetic Resonance Imaging (MRI), X-ray imaging, and
blood tests. While these methods predominantly offer macroscopic insights, ad-
vancements in T2-Weighted MRI techniques allow the extraction of microscopic
data, enabling the derivation of cell concentrations and assessments of vascular-
ization levels. Biopsies also constitute another valuable clinical tool that permits
the microscopic observation of tissue samples under a microscope to evaluate dis-
eases at the cellular level. Thus, clinical approaches serve as indispensable tools
for disease diagnosis and prognosis. However, they play a crucial role in predict-
ing the evolution of diseases rather than providing in-depth insights into their
underlying nature.

1.4 Computational biology

Computational models have risen as a powerful tool in unraveling the intri-
cacies of cell behavior and tumor growth. Their capacity to simulate complex
systems, generate hypotheses, and incorporate diverse data sources makes them
indispensable in advancing our understanding of cellular processes and facilitat-
ing the development of innovative approaches for disease diagnosis, treatment,
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and prevention.

While experimental models remain integral in studying biological systems,
computational models excel in their ability to simulate intricate biological pro-
cesses, offering distinct advantages that are challenging to achieve through ex-
perimental models alone. These simulations provide a comprehensive view of
dynamic interactions within cellular systems, offering insights into mechanisms
that might evade observation in a laboratory setting. Additionally, computational
models afford researchers the opportunity for rapid and cost-effective exploration
of diverse scenarios. Unlike experimental models, which might be constrained by
practical limitations such as time, cost, and ethical considerations, computational
models can simulate a wide range of conditions and perturbations, enabling the
investigation of hypothetical scenarios and accelerating the pace of discovery.
One of the inherent strengths of computational models lies in their capacity to
isolate variables and meticulously analyze their individual effects, a feat often
challenging within experimental models. In experimental setups, manipulating a
single variable without impacting others can be a daunting task, leading to com-
plex interactions that confound observations. Conversely, computational models
offer a controlled environment, where variables can be systematically adjusted
and their impacts studied in isolation. This ability to disentangle and scrutinize
individual variables provides a clearer understanding of their specific influences
on cellular behavior and tumor dynamics. Consequently, computational models
offer a distinct advantage in discerning the true effects of variables, a task often
muddled in experimental settings, where disentangling the effects of multiple in-
teracting variables can obscure the real underlying relationships. Furthermore,
these models serve as invaluable predictive tools. By integrating data from var-
ious sources and incorporating theoretical constructs, they facilitate the genera-
tion of hypotheses that can guide experimental design. This predictive capabil-
ity aids in streamlining experimental efforts by focusing attention on the most
promising avenues, potentially reducing the time and resources required for em-
pirical validation. Importantly, computational models can bridge gaps between
experimental findings, providing a framework for interpreting complex data sets
and elucidating underlying mechanisms. They complement experimental obser-
vations by offering a platform to test hypotheses, refine theoretical models, and
generate new insights that can guide and inform experimental investigations.
Moreover, these models serve as predictive platforms, enabling the generation of
hypotheses that can be experimentally validated. Through their iterative refine-
ment, they offer a means to test theoretical constructs and explore scenarios that
might be challenging or impossible to investigate solely through experimental
approaches.

In essence, computational models stand as catalysts in pushing the bound-
aries of our understanding of cellular dynamics and tumor growth. Their role in
integrating diverse datasets, simulating intricate biological processes, and guid-
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ing experimental inquiry underscores their significance in driving advancements
in biomedical research and therapeutic innovation. There exist broad types of
computational models, whose selection would depend on the particular applica-
tion. In general, depending on the spatial scale of resolution, we can distinguish
between discrete and continuum models from the microscale (cell level) to the
macroscale (tissue level) respectively.

1.4.1 Discrete models

Discrete models are a specific type of mathematical model widely used to
study cell behavior and biological systems [96, 97]. It involves representing cells
as distinct, separate entities rather than as continuous entities. Within this dis-
crete approach, Agent-Based Models (ABMs) stand out as a versatile framework
for simulating complex biological systems. In ABMs, individual cells are rep-
resented as autonomous agents that interact with their environment and other
agents. This methodology allows for the study of collective behavior, emergent
properties, heterogeneity, variability in behaviors between cells, and spatial dy-
namics, offering a microscopic perspective on individual cell behavior. Through
the incorporation of experimental data and established biological principles, these
models can provide insights into the impact of cell-cell and cell-environment in-
teractions, mechanical forces, and biochemical signaling on cellular behaviors
such as migration, proliferation, and differentiation.

Multiple types of ABMs exist, varying based on how cells are represented and
the level of detail considered (Figure 1.3A). One common classification depends
on how the agent’s position is described. On the one hand, lattice models fix cell
positions within a mesh or lattice, resulting in a discrete cell position. This implies
that cells can only exist in specific fixed positions in space and their movement
is discrete. On the other hand, off-lattice models allow cell positions to be free in
space, enabling continuous movement.

Among lattice models, we can further classify them based on how many
agents can occupy the same lattice. In the case of Lattice Gas Cellular Automata
(LGCA), several agents can coexist in a single lattice, where each agent within
the lattice represents a subpopulation of cells. While this reduces computational
costs, it compromises the accuracy of cell representation and its individuality.
Cellular Automata (CA) enhances the representation of individual agents by main-
taining a lattice size equal to the agent size, therefore, each occupied lattice is
itself an agent. Lastly, in Cellular Potts Model (CPM), the lattice size is smaller
than the agent size, allowing a cell to be represented by multiple agents spanning
different lattice positions. This enables an accurate representation of cell shapes
at the expense of increased complexity.

Numerous computational models have been developed to study biological
processes. Mallet and De Pillis [98] built a CA to describe tumor growth and
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its interaction with the immune system, while Rubenstein and Kaufman [99] pre-
sented a CPM to analyze the growth and invasion of glioma, taking into account
the fibrous component of the ECM. A notable aspect of CPMs is their effective-
ness in reproducing spatial patterns based on experimental data. Engelberg et al.
[100] successfully used a CPM to simulate cystogenesis, reproducing the tempo-
ral evolution of the pattern of Madin-Darby canine kidney (MDCK) cyst growth
in collagen cultures, and Oers et al. [101] integrated a CPM model with a finite el-
ement model to study, from a biomechanical perspective, the formation of blood
vessel-like structures in cell cultures. Additionally, lattice models are not limited
to 2D representations, some works have also developed 3D models. Shirinifard
et al. [102] developed a 3D CPM model of tumor growth and tumor-induced vas-
cularization in hypoxic conditions, Scianna et al. [103] studied 3D cell migration
with a CPM, providing a relationship between ECM topology and cell locomo-
tion directionality, and Zhang et al. [104] studied cancer heterogeneity in brain
tumors with a 3D CA.

Regarding off-lattice models, agents are described by a radius and the position
of their center, allowing them to adopt any position in space. Here, we can make
a similar subclassification based on the relationship between the size of the agent
and the cell. In cluster models, the size of the agent is greater than that of the cell,
so each agent represents a subpopulation of cells. Thus, the interactions between
agents represent interactions between populations, and the agents condense the
information about population behavior, reducing the computational cost. Then,
the Center-Based Model (CBM) maintains an equal size for both the agent and
the cell, providing a more detailed description of the cell population since each
agent precisely represents an individual cell. The SEM involves representing a
cell with multiple smaller agents. In this scenario, the cell’s actual shape repre-
sentation arises from the interactions among agents within the cell, increasing
the complexity of interactions both within cells and between agents of different
cells. Additional off-lattice models aiming for a dynamic representation of popu-
lations of interacting cells include those based on Delaunay-Voronoi tessellations
to estimate cell shapes from agent centers or deformable cell models, in which cell
surfaces are discretized and triangulated with viscoelastic elements to reproduce
the mechanical response of the cytoskeleton.

Off-lattice models have been also highly employed in diverse biological con-
texts. Schliiter et al. [105] used a CBM to investigate cell migration, focusing on
the interactions between individual cells and matrix fibers, Macklin et al. [106] de-
veloped a CBM to study ductal carcinoma, utilizing a patient-specific calibration
method based on histopathologic data achievable from a single biopsy, or Kempf
et al. [107] simulated radiotherapy on a 3D tumor spheroid with a CBM, taking
into account cell cycle-specific radiosensitivity. Furthermore, there are other off-
lattice models dedicated to capturing cell shape. Gardiner et al. [108] utilized a
SEM to simulate, with multiple particles, the cell spreading experiments of single
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cells and the deformation of epithelial layers composed of multiple cells. Schaller
and Meyer-Hermann [109] developed a 3D Voronoi-Delaunay cell model to eval-
uate the induction of necrosis based on the ratio of oxygen and glucose uptake
rates in tumor spheroids. Van Liedekerke et al. [110] presented a 3D deformable
cell model to emphasize the importance of detailed representations of cell shape
and mechanics in computational models, applying their model to the regenera-
tion of hepatocytes after drug-induced liver damage.

Nonetheless, utilizing ABMs often presents certain challenges [111]. A direct
challenge emerges in abstracting biological phenomena into the ABM. ABMs re-
quire decomposing observed behaviors into cell-level behaviors, and translating
this information from the biological system is inherently intricate. Localized in-
formation, such as cell-cell, cell-matrix interactions and biochemical or metabolic
pathways can be challenging. Consequently, ABMs often resort to heuristic-type
laws (if-conditions), introducing predefined rules to govern cell behavior, which
may reduce the model’s realism. Related to this, ABMs frequently incorporate
numerous parameters, and their translation into physically meaningful terms can
be non-trivial. This introduces an element of uncertainty, questioning whether
the established rules are robust enough to yield the expected emergent behavior
and if the driving characteristics behind that behavior are accurately identified
and sufficient. Another limitation in ABMs is the computational cost, acting as a
significant factor. This is especially true for models aiming for a nuanced repre-
sentation of cell shape or deformation, or when increasing the number of simu-
lated agents. Thus, the computational burden escalates, as the number of interac-
tions to calculate scales quadratically with the number of agents. However, with
the increasing adoption of Graphics Processing Units (GPUs) for its efficiency in
handling a multitude of small calculations required for each agent in ABMs and
advancements in parallel computation [108, 112], the computational burden has
decreased, allowing for an expansion in the number of simulated agents.

In summary, despite the limitations, ABMs offer a powerful framework to
simulate cells, capturing the heterogeneity among individual cells and also for
simulating experimental setups in which the data is obtained at the cell level.

1.4.2 Continuum models

The continuum approach presents a distinct representation of cell popula-
tions wherein individual cells are not depicted separately but as a collective en-
tity. This collective representation often involves employing a continuum vari-
able that describes the concentration or density of cells within a given region.
Thus, the continuum approach offers a more macroscopic view of cellular dynam-
ics, focusing on population-level behaviors rather than the discrete interactions
of individual cells or cell heterogeneity. This abstraction allows for the analysis
of large-scale phenomena and system-level responses, particularly in scenarios
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Figure 1.3: Review of computational models in biology. A Classification of discrete
models through ABMs. This categorization distinguishes between lattice and off-lattice mod-
els, displaying some of the most characteristic models within each subcategory. B Classifica-
tion of continuum models based on mathematical representation. This division includes ODE
models, describing only temporal evolution, and PDE models, allowing both temporal and
spatial representations. C Hybrid models. Here, the integration of discrete and continuum
approaches to simulate biological cells and chemical species respectively at the cell level is
outlined, alongside fully multiscale approaches, where distinct spatial scales are considered.

where the detailed behaviors of individual cells might not be the primary focus.
Additionally, the continuum approach facilitates the application of mathematical
and computational models, providing valuable insights into population dynam-
ics, spatial patterns, and the overall trends of cellular behaviors within complex
biological systems.

Continuum models in biology are classified based on several criteria. One cri-
terion to classify them could depend on the mathematical representation of the
population (Figure 1.3B). First, on a very low level, we can distinguish models
based on Ordinary Differential Equations (ODEs), in which the evolution of the
variables is only described in time, so the evolution in space is neglected. In this
case, tumor growth is usually modeled through mathematical functions such as
logistic, Malthusian, Alle, Bertalanfty, or exponential law [113]. Interactions of
cells with chemicals or the immune system can be represented by adding addi-
tional terms to the ODEs, hindering or favoring tumor growth. Hence, ODEs have
been historically used to simulate solid tumor growth [114], immune response
[115], and radiation and chemotherapy treatments [116, 117]. Sarkar and Baner-
jee [118] simulated the effect of the immune system response in the tumor with
a prey-predator model, DePillis et al. [119] simulated cancer growth considering
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the immune system response coupled with treatments such as chemotherapy and
monoclonal antibodies or Browning et al. [120] developed a predictive model of
patient-specific tumor response to radiotherapy.

Models based on Partial Differential Equations (PDEs) gained popularity since
they can reproduce spatial variability, obtaining a better representation of biologi-
cal phenomena. In this category, PDEs based on reaction-diffusion equations have
been used in many areas of biology. Cell populations and chemicals are quantified
as concentrations, with their variations modeled using reactive terms. Addition-
ally, cell movement and the homogenization of substances are represented by a
diffusion process, usually assumed to follow Fick’s second law. This approach has
proven effective in simulating pattern formation and morphogenetic processes
[121]. Ferreira Jr et al. [122] introduced a reaction-diffusion model for avascu-
lar cancer growth including competition for nutrients among normal and cancer
cells, Chaplain and Lolas [123] presented a reaction-diffusion model to study cell
invasion in which cell migration is affected by a chemotaxis and haptotaxis pro-
cess. Mechanochemical models that also couple to the reaction-diffusion equation
with PDEs, constitutive laws to reproduce mechanical behavior, Weis et al. [124]
developed a mechanically coupled model to consider tissue stiffness restricts cell
diffusion to predict breast tumor response to chemotherapy therapy or Chen et
al. [125] also considered biomechanical properties of the kidney and surrounding
tissues to study patient’s specific kidney tumor.

Then, we distinguish mixture models in which components are considered
distinct mixtures rather than concentration-based representations. Ciarletta et
al. [126] studied solid stress inhibition in avascular tumor growth by employing a
mathematical model that incorporates a single-phase continuum with dissipative
evolution and a multi-scale approach considering surface growth. Other models
also consider poroelastic material properties as Roose et al. [127], who modeled
a tumor spheroid in poroelastic media with mechanoregulation of cell prolifera-
tion in response to the solid stress or Fraldi and Carotenuto [128] explored tumor
growth dynamics by incorporating nonlinear poroelastic behavior and investi-
gated how stress and fluid content dynamically change within the tumor, influ-
encing the nourishment and starvation processes.

Finally, in phase field models, a distinctive approach is taken where, rather
than explicitly representing cells and chemicals with concentrations, they are
conceptualized as interfaces and boundaries within the system. Lorenzo et al.
[129] used a phase field method to consider the transformation between healthy
and tumor cells with a reaction-diffusion model for nutrient consumption for
prostate cancer, suggesting that the particular geometry of the tumor as well as
the specific anatomy of the prostate influences tumor morphology. Xu et al. [130]
employed the same idea to study vascular tumor growth, coupling the phase field
method to represent the tumor interface with reaction-diffusion equations to sim-
ulate the oxygen and the tumor angiogenic factor released by malignant cells. Vi-
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lanova et al. [131] used the phase field method to investigate the creation of new
vascularization networks (angiogenesis) induced by tumors and their regression.

Continuum models have certain limitations. While simulating large popula-
tions can be advantageous, it also entails drawbacks. Simulating these large scales
involves neglecting the individuality of cells in favor of capturing broader collec-
tive behaviors. Consequently, they encounter challenges in capturing emergent
phenomena resulting from individual cell behaviors or interactions. Stochastic
effects, cell polarization, mutations, and other cellular processes are often diffi-
cult to model accurately within continuum frameworks. Furthermore, continuum
models struggle to depict spatial heterogeneity, a common feature of many bio-
logical systems where behaviors or properties vary across different regions or cell
populations. Hence, representing cell populations as homogeneous entities over-
simplifies the system’s complexity, failing to capture population heterogeneity
accurately. Lastly, simulating in vitro cell experiments with continuum models
may present difficulties, as these experiments typically gather data at the cell
scale, making it challenging to relate to macroscopic properties

Overall, continuum models are essential in computational biology, serving as
mathematically rigorous tools to gain insights into macroscopic phenomena and
conduct patient-specific simulations

1.4.3 Discrete vs continuum approaches

The simulation of biological systems often involves a choice between employ-
ing discrete or continuum approaches. Determining the most suitable model type
relies heavily on the specific nature of the problem. Both discrete and continuum
approaches offer distinct advantages and drawbacks. Typically, the decision on
the model will fall within the objectives of the study and the type of data available.

Discrete models excel in capturing detailed interactions between individual
components within the system. These models are particularly advantageous when
studying phenomena reliant on individual behaviors, cellular interactions, or spa-
tial heterogeneity. Also, they are straightforward to integrate data from cell ex-
periments. However, they might demand more computational resources and data
to capture the complexity of the system accurately.

Conversely, continuum models provide a more macroscopic view, represent-
ing populations or fields, and are advantageous in describing overall system trends
and behaviors. These models are beneficial when examining large-scale pro-
cesses, such as tissue-level phenomena or global system responses. Moreover,
they are more simple than discrete models to integrate with real patient data,
which usually are on a macroscopic level. However, they might oversimplify
individual interactions or fail to capture fine-scale heterogeneities inherent in bi-
ological systems.

The choice between these approaches hinges on the study’s specific aims,
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the scale of the biological process under investigation, and the available experi-
mental or observational data. For instance, when dealing with aggregated data,
continuum models might be more suitable for providing a broader understand-
ing of the system’s behavior. Conversely, if detailed cellular-level insights are
crucial and sufficient data are available to support individual interactions, dis-
crete models could offer a more comprehensive view. Ultimately, the decision on
model selection requires a careful balance between the intricacy needed to rep-
resent the biological system accurately and the computational feasibility within
the constraints of available resources.

1.4.4 Hybrid models

Hybrid models arise as an effort to obtain the benefits from the discrete and
continuum perspectives and reduce the disadvantages they have separately [132,
133]. However, this terminology is usually employed indiscriminately and in-
cludes different possibilities of hybridization (Figure 1.3C)

On the one hand, hybrid models sometimes refer to the combination of dis-
crete models with ABMs for simulating cells and ODEs or PDEs to simulate, with
a continuum approach, the presence of chemicals and substances in the envi-
ronment, such as oxygen or glucose. Thus, the scale of simulation is at the cell
level, but two different approaches are employed for cell simulation and chemical
representation. Ramis-Conde et al. [134] proposed a hybrid cancer cell invasion
model with off-lattice discrete cells that interact with the surrounding environ-
ment composed of the ECM and degrading enzymes, modeled with PDEs. Jeon
et al. [135] also developed a hybrid model to study tumor growth and invasion
with an off-lattice center-based approach for the cells. The ECM, the matrix-
degrading enzymes secreted by cells, and the oxygen concentration are simulated
with PDEs. Vilanova et al. [136] created a model to simulate the formation of new
blood vessels (angiogenesis) in tumors to study the role of fluid flow. The vascu-
lature network is simulated using a continuum approach, with the creation of
new branches being driven by discrete agents that represent tip endothelial cells.
On the other hand, hybrid models are also used to refer to approaches that in-
tegrate scales from the nanoscale (molecules), microscale (cells), and macroscale
(tissues), communicating information between scales [137, 138]. These models
usually aim to simulate large populations of cells at the tissue level while pre-
serving the events that occur at the cell level. In this multiscale approach, con-
tinuum models are employed at the macroscale, integrated with discrete models
to simulate the cells. Chauviere et al. [139] presented a theoretical framework
showecasing its capabilities for tumor growth, incorporating a discrete model to
represent the individual dynamics of cells, coupled with a continuum Dynamic
Density Functional Theory (DDFT) model operating at the tissue scale. Borau
et al. [140] created a multiscale model to simulate tumor growth by integrat-
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ing cell behavior across different scales. They simulated cells at the tissue level
with a reaction-diffusion model that communicates with an agent-based model
to determine cell behavior at the cell level. Rocha et al. [141] proposed a hybrid
three-scale model composed of an agent-based model for cell dynamics, which
also incorporates a molecular model for signaling pathways, and a PDE model
for nutrients and growth factors at the tissue scale to study tumor dynamics

1.4.5 Digital twins

The culmination of computational models in biology might be the creation of
Digital Twins (DTs). A DT serves as a virtual replica of the physical entity, offer-
ing a detailed and dynamic representation of its real-world counterpart. In the
field of biology, a digital twin involves generating a model for patients’ tissues,
incorporating patient-specific data spanning various scales, including genetic as-
pects, tissue geometries and information, and other relevant data. This digital
twin, designed as a multiscale model, provides insights not only into macroscopic
behaviors but also sheds light on behaviors across different scales. This represents
a paradigm shift in healthcare, enabling predictions about patients’ diseases and
the identification of optimal treatments [142]. Currently, DT models have been
developed to predict specific disease prognoses and optimize treatments [143].
For instance, Borau et al. [140] incorporated patient-specific Magnetic Resonance
Imaging (MRI) data into their multiscale model to predict the evolution of neu-
roblastoma cancer, and Chaudhuri et al. [144] developed a DT methodology for
optimizing radiation therapy for glioma patients.

DTs will pave the way for a future where each individual possesses their dig-
ital counterpart, enabling continuous health monitoring, evaluation, and predic-
tion. In this regard, real-time acquisition wearables, such as those monitoring
heart rate, glucose levels, or oxygen levels, will enhance the DT by providing
real-time health status information through Internet of Things (IoT) technology.
Thus, a clear challenge to keep advancing in the development of DT arises from
managing large volumes of multiscale, individual-specific data that dynamically
changes over time and between different people [145, 146]. Incorporating such
vast amounts of data implies that DT models can adapt precisely between indi-
viduals and also in real-time to data variability. Therefore, the near future of DT
involves developing calibration methods incorporating ML to dynamically and
precisely adapt DT models.

1.5 Model calibration and validation in computational
biology

One imperative aspect of computational models in biology is their reliabil-
ity and accuracy. Ensuring that simulated biological behaviors closely align with
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observed realities is essential for obtaining meaningful predictions. Model cali-
bration and validation address the question: when faced with a known biological
phenomenon, how can we guarantee that our computational model accurately re-
produces these observations to make reliable predictions? This typically involves
fine-tuning the model’s parameters to align with empirical data, followed by an
assessment of the computational results against observed analogs. This process
not only enhances the credibility of simulations but also provides us with solid
conclusions and a more precise understanding of biological systems and has the
potential to enhance clinical tasks such as patient stratification and survival prog-
nosis [147, 148].

However, in computational biology, the diverse range of model types poses a
challenge when designing optimization procedures. Computational biology mod-
els span from discrete [96, 97] to continuum models, with hybrid models combin-
ing elements of both approaches, each with numerous subcategories. Addition-
ally, the biological data used to evaluate the outcome of computational models
originates from distinct sources, such as cell-level or tissue-level data, and exhibits
deterministic or stochastic characteristics, further complicating the evaluation
and robustness assessment of model performance. Moreover, the multitude of
alternative optimization methods, ranging from gradient-based methods to sam-
pling and other non-gradient-based methods, adds another layer of complexity.
As aresult, researchers may encounter difficulty in gaining a comprehensive per-
spective on employing appropriate calibration techniques across different model
types for specific applications.

In addition to these classical approaches, ML methods are gaining consider-
able attention and have emerged as game-changing tools. Their ability to learn
from nonlinear problems and adapt to data variability makes them particularly
appealing to biology. However, despite their growing popularity in other fields,
their adoption in computational biology is not widespread. Therefore, there is an
opportunity to leverage ML methods and apply them to computational biology
to enhance the adaptability of our models to biological data variability.

In this section, we will present some classical approaches for parameter es-
timation in computational biology that can be used in both discrete and contin-
uum models. Also, we will discuss the integration of machine-learning methods
into computational biology and explore new opportunities for combining modern
machine-learning techniques with computational models in biology.

1.5.1 Classical approaches

Classical approaches in optimization or calibration involve well-established
methods used historically in various fields to estimate the model’s parameters.
These approaches vary in their computational requirements, convergence speed,
and applicability to different optimization or calibration problems. Here, we will
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distinguish between sampling methods, gradient-based methods, and other non-
gradient-based methods and discuss some of the main techniques of each one and
the ones employed in this doctoral thesis.

Sampling methods

Sampling methods explore the parameter space by generating points and then
evaluating the performance using an objective function. At its simplest, the grid
search method offers a straightforward approach where parameters are evaluated
across a predefined set of values, exploring all possible combinations within the
range. However, this method can be highly computationally expensive, especially
when the parameter’s range is wide, as its cost increases significantly with the
number of parameters. In contrast, the random search introduces randomness
to the grid search by randomly sampling parameter combinations from the grid,
thereby avoiding the exhaustive requirements of the grid search [149]. However,
the random search may not effectively explore the parameter space or find the
optimal solution since it does not utilize prior knowledge of generated samples,
rendering the process inefficient.

To address these limitations, prior knowledge can be incorporated into the
exploration of the parameter space. This is exemplified by Monte Carlo (MC)
method, where parameter values are randomly sampled from probability distribu-
tions. In this way, the efficiency and effectiveness of the parameter combination
can be enhanced. Using a MC method Ruiz-Arrebola et al. [150] investigate the
growth of multicellular tumor spheroids using an on-lattice agent-based model.
Within this model, MC sampling is utilized to simulate stochastic cell processes
such as cell proliferation and to sample parameter values from Gaussian distri-
butions for parameter estimation. Also, it is worth highlighting that MC meth-
ods are widely employed for estimating radiation doses (dosimetry) and have be-
come a standard in radiation treatment planning [151-153]. Similarly, the inverse
transform method samples values between 0 and 1, treating them as probabilities,
and calculates the corresponding parameter values using cumulative distribution
functions.

Alternatively, Bayesian optimization offers a more sophisticated approach that
does not assume any specific functional form for the objective function. Instead,
it approximates the objective function, typically using a Gaussian Process (GP),
which serves as a surrogate. The GP is iteratively updated, guiding the explo-
ration of regions with high uncertainty and exploitation of regions with expected
high performance. This makes Bayesian optimization an efficient optimization
technique that systematically explores the parameter space while minimizing the
number of evaluations of the objective function. Hervas-Raluy et al. [154] use
Bayesian optimization for parameter inference in a continuum multiphase porous
media model to reproduce the growth of neuroblastoma tumor spheroids in 3D
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microfluidic devices. In their work, the authors conveniently demonstrated how
Bayesian calibration effectively captures the uncertainty arising from experimen-
tal data. In general, special care must be taken when dealing with stochasticity
in the model, since the prediction of the model does not depend solely on the pa-
rameters combination but also on randomness, therefore, it has to be taken into
account when evaluating model accuracy. In this regard, Lima et al. [155] develop
a coarse-grained hybrid off-lattice agent-based model to reproduce tumor growth
with cell process (cell movement, growth, death, and phenotypic transitions) rep-
resented as stochastic processes. Here, the Bayesian calibration employed a gen-
eralized likelihood function to quantify the probability of the observed data given
a set of model parameters for assessing the associated uncertainties while han-
dling with stochasticity of the model.

While these are some of the prominent sampling methods, it is important to
note that there are numerous other techniques available, each with its unique
characteristics and applications. Additionally, within these methods, there exist
further subdivisions and variations in their functioning and applicability. Despite
their diversity, sampling methods remain indispensable tools in various fields,
offering versatile approaches to exploring parameter spaces, optimizing models,
and gaining insights into complex systems.

Gradient-based methods

Gradient-based methods focus on moving along the minimizing direction of
the objective function rather than generating samples. Therefore, the objective
function must be differentiable. One basic first-order optimization algorithm
within this category is gradient descent. The main idea is to iteratively update the
model’s parameters to move in the negative direction of the objective function
with respect to those parameters. Thus, it efficiently explores high-dimensional
spaces to find the minimum of objective functions, although it can encounter
convergence issues and become stuck in local minima. A variant of gradient de-
scent is stochastic gradient descent. This method randomly samples subsets of
the dataset to compute the gradient, introducing stochasticity into the optimiza-
tion process and improving computational cost and convergence. However, both
methods are susceptible to oscillations, especially in non-convex problems, as
well as issues related to the learning rate, which determines the magnitude of
parameter updates based on the gradients.

Newton-Raphson method, a second-order method that utilizes the Hessian ma-
trix representing the curvature of the function, converges toward the minimum
of the function more efficiently than first-order methods such as gradient descent.
Moreover, the Newton-Raphson method adjusts the step size dynamically based
on the curvature of the objective function, providing more accurate parameter up-
dates. However, second-order methods are computationally more expensive and
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may not be suitable for large-scale optimization problems. An alternative to the
Newton-Raphson method is Quasi-Newton methods, such as the Broyden-Fletcher-
Goldfarb-Shanno algorithm, which, instead of computing the Hessian matrix, uses
an approximation from gradient evaluations, reducing the computational com-
plexity.

In summary, gradient-based methods offer efficient approaches for optimizing
objective functions in high-dimensional spaces.

Other gradient-free methods

There exist other techniques besides sampling methods that do not rely on
gradient calculation to minimize an objective function. Evolutionary algorithms,
such as genetic algorithms, find optimal parameters by iteratively combining them,
inspired by the principles of natural selection. They create an initial candidate
of parameter combinations (population), and after evaluating their performance
in solving the optimization problem, propose a new population using naturally-
inspired operations like selection, crossover, and mutation. Genetic algorithms
are capable of finding optimal or near-optimal solutions in complex optimization
problems, including nonlinear and multimodal objective functions. Additionally,
they are inherently parallelizable and can effectively handle problems with large
search spaces. Qods et al. [156] utilized the genetic algorithm to minimize the
tumor size predicted at the end of therapy by finding the optimal drug regimens
for patients with colorectal cancer using a multi-drug tumor growth ODE model.
Akasiadis et al. [157] employed a genetic algorithm to optimize the parameters of
an agent-based model that integrates a Boolean network model for simulating in-
tracellular signaling and cell fate in the presence of drugs. The study showcased
various types of objective functions (commonly referred to as fitness functions
in the context of genetic algorithms) and their integration in a parallel execution
context to reduce time complexity. However, genetic algorithms may require a
large number of iterations to converge, leading to longer computation times. Pat-
tern search, on the other hand, proposes an initial set of parameter combinations
but then explores the parameter space differently. It determines the new parame-
ter set along predefined directions from the previous best combination, adjusting
the step size as it approximates the optimal values. Thus, pattern search algo-
rithms are relatively easy to implement and are easily parallelizable, allowing
for non-convex, multimodal optimization without the need for gradient compu-
tations. Knopoff et al. [158] presented a pattern search method to estimate the
parameters of the PDE model to replicate the radius of spherical tumor growth
under drug treatment. They illustrated how incorporating time data into the ob-
jective function, rather than solely calibrating the data at a final time, leads to
improved parameter estimation. Pattern search main weaknesses are that they
have limited scalability when applied to high-dimensional problems, slow con-
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vergence compared to gradient-based methods, and may be prone to converging
to a local optimum.

1.5.2 Machine learning approaches

Artificial Intelligence (AI) is a promising field that is becoming more and more
relevant in different disciplines. Al is a general concept that refers to perform-
ing tasks typically associated with humans. A subset of Al is Machine Learning
(ML), which are the techniques that permit learning from existing data to gener-
ate insights or predictions when encountering new data [159]. Inside ML, Deep
Learning (DL), also called deep neural learning or deep NN, represents a specific
subdomain that utilizes Artificial Neural Networks (ANNs). ANNs are a compu-
tational model inspired by the brain’s biological Neural Network (NN). It consists
of nodes organized through layers, which receive input signals, process the in-
formation through activation functions, and propagate the output to nodes in the
next layer through connections. By iteratively adjusting the connection strengths
(weights) between nodes during training, ANNs can learn to approximate com-
plex functions and make predictions on new data.

ML techniques have wide applications in biology and have shown to be ex-
tremely useful in this context [160]. For instance, for protein structure prediction
[161], disease prediction [162], or biomedical image segmentation [163] among
many more applications. The increasing quantity of data collected over time, in
addition to new generative models that generate more data, contributes to the
fact that mechanistic models are maybe being relegated in favor of ML models.
Moreover, the way that ML handles complex non-linear relationships between the
data, the automation, and efficiency in predictions that lead to real-time analyses
are making these models attractive compared to their mechanistic counterparts.
However, most current works that integrate biological and medical data focus on
identifying correlations among data to then infer the behavior of the system, ig-
noring the fundamental laws of physics and lacking physical interpretation [164].

The integration of ML with mechanistic models has the potential to bene-
fit from both approaches. While ML excels in uncovering complex patterns and
relationships within the data, mechanistic models aim to identify causality be-
tween data and outcomes [165]. Together, they can enhance prediction accuracy,
efficiently adapting to dynamical data and resulting in solutions with meaningful
interpretations. However, there is a lack of progress toward integrating ML and
mechanistic modeling in biology [166]. Therefore, there is a promising oppor-
tunity to bridge the gap between mechanistic modeling and ML in biology that
needs to be pushed forward [167]. Here, we will discuss the integration of ML
models in computational biology models and provide some perspectives on the
future of the field.
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Machine learning for computational biology

Combined with computational biology models, ML frameworks offer a promis-
ing avenue to replicate complex dynamical behaviors and intricate biological phe-
nomena. We can distinguish various approaches in this combination.

The first approach involves generating a surrogate of the mechanistic model
by using an ML model to learn how the inputs relate to their outputs [168—170].
This approach is particularly relevant when obtaining a direct solution with the
mechanistic model becomes computationally prohibitive due to high computa-
tional costs. Thus, this surrogate model can be used for the prediction of re-
sponses instead of the mechanistic model, enabling fast computation. Addition-
ally, it facilitates more robust sensitivity analyses while also reducing computa-
tional time [171]. For instance, Liang et al. [172] exemplify the effectiveness of
generating a surrogate of a Finite Element (FE) model for estimating the stress dis-
tributions of the aorta through DNNs. Their study demonstrates minimal errors
in stress distributions with the surrogate model and a significant improvement
in computing time (from 30 min to 1s). Karabelas et al. [173] develop a patient-
specific four-chamber heart Computational Fluid Dynamics (CFD) model based
on the Navier-Stokes-Brinkman equations. They then generate a surrogate of
the physics-based model using a Gaussian Process Emulator (GPE). Subsequently,
they conduct the first variance-based global sensitivity analysis (GSA) using this
surrogate model to identify whole-heart CFD features, a task not achievable with
traditional models in realistic timeframes. Thus, this approach holds promise
in reproducing mechanistic models to make real-time decision-making without
compromising predictive power in biology [174], which is especially relevant for
clinical decision-making.

The next step would be to employ NNs for reduced-order modeling, aiming
to extract critical information and alleviate the complexity of biological simula-
tions. These methods facilitate the identification of important factors and reduce
the number of variables involved in the process, thereby enhancing comprehen-
sion of their significance. Consequently, eliminating non-relevant variables can
indirectly impact the effective number of parameters of the model.

Moreover, prior physics knowledge can be fully integrated into NNs to re-
spect the physical laws described by non-linear PDEs through Physics-Informed
Neural Networks (PINNs) [175]. This integration of physics laws into the NN ar-
chitecture allows PINNs to capture complex nonlinear relationships in the data
while ensuring that the learned solutions remain physically consistent. This is
achieved by incorporating the residual of the approximated physics-based model,
i.e., the PDE model, into the loss function (physics-informed loss), along with the
loss between the predicted and the known solution (data-driven loss) [176]. Sub-
sequently, the NN weights are optimized to minimize this combined loss. Addi-
tionally, PINNs are applicable for parameter optimization with minimal additional
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effort alongside learning the solution. Sainz-DeMena et al. [177] explore PINNs to
fit diffusion-corrected pharmacokinetic models to synthetic Dynamic Contrast-
Enhanced Magnetic Resonance Imaging (DCE-MRI) data. This imaging technique
assesses the vascular properties of tissues, proving valuable for diagnosing and
monitoring tumors. The study shows that PINNs outperform traditional algo-
rithms based on FEMs in accurately retrieving vascularization parameters from
diffusion-corrected tracer-kinetic models, exhibiting greater robustness against
noisy or incomplete data. Zhu [178] utilize PINNs to solve a time-dependent
reaction-diffusion PDE model of glioblastoma tumor growth and infer biophysical
parameters. The study showcases the significant speed-up that PINNs offer com-
pared to traditional simulation methods, particularly in the context of solving the
inverse problem to replicate patient-specific evolutions, which typically demands
numerous evaluations to calibrate the mechanistic model. Zhang et al. [179] also
simulate glioblastoma tumor growth using a reaction-diffusion PDE model. In
this work, they propose a sequential methodology: as a first step, an initial char-
acteristic solution by solving the PDE with Finite Difference Method (FDM) is
obtained, employing non-representative tumor growth and diffusion rates pa-
rameters. Subsequently, they train a PINN to map this initial solution to a better
approximation to finally fine-tune another PINN to estimate the patient-specific
tumor growth and diffusion rate from the improved solution.

Finally, at the lowest level of abstraction, NNs are employed solely to approx-
imate the model’s parameters [180]. In this approach, the NN approximates a set
of parameters used by mechanistic models based on observed data. Subsequently,
this model is executed with the estimated parameters to generate predicted data.
The prediction is then compared with the observed data to calculate the loss,
which is backpropagated to optimize the NN weights and improve parameter ap-
proximation. Gaskin et al. [181] developed this methodology for parameter esti-
mation in ABMs with stochastic processes and uncertainty quantification, con-
sidering various data types such as time-series data, steady-state data with only
a single time frame, noiseless and noisy data. They demonstrate its potential
in modeling epidemic infection diffusion and economic activity, outperforming
other classical Markov Chain Monte Carlos (MCMCs) in terms of accuracy and
speed.

Machine learning for reproducing cell behavior

Previously, we discussed current opportunities in combining biological mech-
anistic models (either continuum or discrete models) with ML. However, integrat-
ing ML with discrete models offers another perspective, which has the potential
to represent a paradigm shift in the simulation methodologies for biological sys-
tems. Thus, ML can grant cells in discrete models the capacity for autonomous
decision-making [182, 183] based on the interactions with their environment and
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other cells, dynamically adapting the behavior to the evolving conditions.

Considering cellular behavior, cells possess specialized receptors that cap-
ture diverse information from their microenvironment. These receptors enable
cells to perceive chemical signals and mechanical cues from the environment and
neighboring cells. Subsequently, the transduction of this multifaceted informa-
tion entails intricate interactions between received signals and the cell’s internal
machinery, encompassing Deoxyribonucleic Acid (DNA) and signaling pathways.
Within the cell, this integration initiates a cascade of biochemical reactions and
signaling pathways, eventually culminating in the activation of specific cellular
responses.

In this context, we can clearly state an analogy of this process with NNs (Fig-
ure 1.4). The information that the cell receives from the receptors that capture
the information from their microenvironment and other cells is represented in
the input layer. Then, the processing of this information takes place through the
hidden layers of the NN, which analogously simulates the intricate protein path-
ways within the cell. Lastly, the cell activates its biological response in the same
way that the NN activates the outputs of the NN.

Reception mp Transduction msp Response

Matrix stiffness Proliferation
Mechanical forces Migration
- Quiescence
Oxygen _>Q O g O O Secretion
Glucose oV e e e, O Apoptosis
OHOROFO 8
oGO 00 O

Inputs msp Hidden layers msp Qutputs

Figure 1.4: Representation of cell signaling using neural networks. The process of
cell signaling resembles the functioning of NNs. Cells receive signals from the environment
and other cells, similar to how NNs receive data in the input layer. Subsequently, cells acti-
vate cascades of pathways to transduce these signals, comparable to the data processing that
occurs in the hidden layers of NNs. Finally, the biological response of the cell is activated,
analogous to the activation of the output layer of the NN.

Consequently, through the training of this NN, we can develop a model that
learns and predicts cell behavior by leveraging the data they receive. In this ap-
proach, the NN weights symbolize the intricate internal machinery, including the
cell’s DNA, proteins, and pathways. These components function akin to a trans-
lation mechanism, where given specific information, they orchestrate biological
responses within the cell. The diversity in NN architectures and their correspond-
ing weights offers the capability to simulate various cell types or even model the
behavior of tumor cells. By manipulating these architectures and weights, we can
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emulate distinct cellular behaviors, reflecting the incredible potential of this ap-
proach to replicate and predict cellular responses across different scenarios and
cell types.

Here, Reinforcement Learning (RL) or Deep RL, when used with NNs, may
play a crucial role in learning complex behaviors [184]. In RL, agents learn by in-
teracting with the environment to maximize a reward signal. This reward in biol-
ogy is not external to the environment but an internal motivation for the organ-
ism. For cells, it may encompass homeostasis, correct physiological functioning,
survival, or, for tumor cells, maximize proliferation or invasion. By defining this
reward, agents make actions to achieve the highest reward, leading to collective
behaviors and emergent phenomena. Additionally, this reward can alternatively
measure the similarity between the simulation and observed data, enabling the
inverse solution of actions through trial and error to replicate observed data. The
potential of this methodology lies in its ability to eliminate unnecessary parame-
ters and heuristic or rule-based conditions of discrete models that predefine cell
behavior. Instead, agents learn from experience and adjust their individual be-
havior accordingly. In this way, we advance in creating parsimonious ABM mod-
els that consider only physical properties and eliminate rule-based conditions,
thereby enhancing interpretability, which is one of the main criticisms of ABM
[111]. Thus, this fusion holds the potential to propel us toward the development
of an intelligent cell model that processes information from its microenvironment
to activate its biological response.

Bray [185] first proposes the use of NNs to simulate cell signaling pathways
and discuss the biological adequacy of the model. Then, Vohradsky [186]) focuses
on testing the validity of using NNs to analyze genetic networks and utilize it to
simulate experiments involving bacterial infection by viruses with an ODE sys-
tem. Within this ODE system, a NN is employed to map the evolution of genes
between time steps with predefined parameters to consider positive, negative, or
non-interactions between. Thus, the author shows the model not only accurately
replicates observed behavior but also predicts a scenario that cannot be achieved
experimentally, providing a coherent explanation consistent with observed prin-
ciples. Finally, Gerlee and Anderson [187] introduces the use of NN to simulate
cell behavior in a ABM (CA model) for studying early tumor development. In
this approach, the NN processes microenvironmental conditions defined by the
number of neighbors, oxygen, glucose, and hydrogen ion concentration to coordi-
nate proliferation, quiescence, apoptosis, metabolism, and movement processes.
Each cell utilizes a separate NN, and when a cell divides, it copies the NN to the
daughter cells with a mutation of its weights. However, the NN weights are also
chosen to capture a user-predefined behavior of cells. Thus, these works employ
a NN solely as a function approximator with predefined weight values and do not
utilize any ML techniques, therefore, failing to unravel cell behavior.
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Conclusions

Although ML is employed in biology for image-based diagnosis and prognosis
prediction [188], the combination of mechanistic modeling with ML is still in
its early stages. Moreover, the combination of ABM with ML is not adopted in
biology despite the growing interest in other fields [148, 189]. Therefore, ML in
computational biology supposes a promising path to propel the field forward with
the potential to mark the next leap in advancement.

1.6 Objectives and thesis outline

The main objective of this thesis is to develop computational methods to
understand and reproduce cell behavior from the microscale to the macroscale.
Through these computational methods, the aim is to gain insights into the factors
that govern cell behavior and comprehend the mechanisms that drive cells from
healthy to tumoral states. By unraveling these factors, we aim to predict tumor
initiation and prognosis, to then analyze strategies to intervene effectively in fu-
ture research. For this purpose, we explore cell behavior across different scales,
ranging from the cellular level to the tissue level. Throughout these scales, we
consider various cell biological processes and mechanical interactions to inves-
tigate phenomena such as cell migration, morphogenesis, and tumor growth. In
this way, we aim to construct a multiperspective view of the factors governing
different phenomena across scales.

We study this biological complexity developing both discrete and continuum
computational models. These models are designed to accurately replicate data
obtained from experimental biology, spanning from in vitro cell experiments to
real patient data. Thus, the developed computational models are integrated into
frameworks that enable the automation of simulating experimental data, thereby
adapting effectively to data variability. To achieve this, we employ various ap-
proaches, including traditional calibration methods and ML techniques. Addi-
tionally, these frameworks are designed to be modular, allowing for easy adapta-
tion to explore other types of data acquired from experimental methods or to in-
tegrate them with other mechanistic models. This versatility facilitates the adap-
tation of the approaches to the needs of other researchers.

To comprehensively scrutinize each of the presented objectives, this book is
structured in the following chapters (Figure 1.5):

o Chapter 2 - Individual cell migration. Here, we investigate individual
3D cell migration in microfluidic devices using an ABM combined with a
sampling method. To accomplish this, we propose a framework to predict
3D migration patterns based solely on 2D imaging data from in vitro cell
migration assays, which can be obtained even through basic microscopes.
We demonstrate that 2D cell migration data may not accurately represent
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real 3D trajectories and predict significant differences in 3D movement pat-
terns among various immune cell types. This framework offers researchers
a tool to reduce the need for sophisticated and expensive microscopes, as
well as the computational burden associated with generating and analyzing
3D experimental data.

« Chapter 3 - Lumen morphogenesis. In this study, we investigate the role
of extracellular matrix ECM density in the process of lumen morphogen-
esis using a 3D ABM. In our simulation, we consider the luminal hydro-
static pressure resulting from cell fluid secretion as the driving force be-
hind this morphogenetic process. We propose a discrete model to represent
the fluid and simulate cell-fluid interactions. Our model predicts normal
lumen formation in low-density matrices, while it indicates disruption of
healthy morphogenetic formation when the matrix density increases, con-
sistent with experimental evidence. Thus, it gives a mechanistic explana-
tion for alterations in cell behavior and underscores the role of the ECM as
a mechanoregulator in transitioning from healthy to tumorous formations

« Chapter 4 - Organoid morphogenesis. This work presents a framework
to reproduce in vitro experiments of cystic and solid organoids with an
ABM. It introduces a novel methodology that combines ML techniques with
ABM to unravel cell behavior in experimental assays. For this purpose, it
employs a NN to guide cell decision-making of cell biological functions dur-
ing development to reproduce the final organoid structure. This approach
enables the identification of underlying principles governing cell activation
and self-organization into various patterns under specific microenviron-
mental conditions. Therefore, the framework provides an automated tool
for researchers to simulate their in vitro organoid experiments, which al-
lows for the customization of both the physics-based and machine-learning
models to suit their experimental needs.

o Chapter 5 - Prostate cancer. The objective of this work is to predict pros-
tate tumor growth in real patients using a continuum PDE model based on
a biomarker obtained from blood tests. This framework generates a digi-
tal twin of the patient’s prostate from the MRI and incorporates it into a
physics-informed ML model that predicts tumor growth. The ML model
regulates tumor dynamics in the physics-based model spatially and tem-
porally, considering the 3D geometrical interactions between physiologi-
cal data. This framework offers a novel approach to faster and more cost-
effective monitoring of prostate cancer prognosis, reducing reliance on MRI
for a comprehensive evaluation of tumor prognosis and the uncertainty as-
sociated with tumor growth predictions from blood tests.

Finally, Chapter 6 provides a conclusive summary of the results achieved
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throughout this dissertation and presents future research lines that arise from
this thesis.

Mechanistic model - .
. Digital twin
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Figure 1.5: Visual summary of the dissertation’s research lines. The common
thread of this dissertation is based on the methods developed and the resolution of the spatial
scale. Firstly, it focuses on studying individual cell migration and lumen morphogenesis in
the microscale through ABMs. Then, it integrates an ML algorithm into the ABM to repro-
duce the morphogenesis of organoids. Finally, it employs a ML method combined with a

continuum PDE model of a DT to create a macroscopic, patient-specific model for prostate
cancer.
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CHAPTER

INDIVIDUAL CELL MIGRATION

The excitement of learning separates
youth from old age. As long as
you’re learning you’re not old.

- Rosalyn Sussman Yalow
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Abstract

Immune cell migration is one of the key features that enable immune cells
to find invading pathogens, control tissue damage, and eliminate primary de-
veloping tumors. Chimeric Antigen Receptor (CAR) T-cell therapy is a novel
strategy in the battle against various cancers. It has been successful in treat-
ing hematological tumors, yet it still faces many challenges in the case of solid
tumors. In this work, we evaluate the 3D migration capacity of T and CAR-T
cells within dense collagen-based hydrogels. Quantifying 3D cell migration re-
quires microscopy techniques that may not be readily accessible. In this con-
text, we introduce a straightforward mathematical model designed to infer 3D
trajectories of cells from experimental microscopy-based measurements of two-
dimensional (2D) cell trajectories. We apply the aforementioned methodology to
assess the migration capabilities of T and CAR-T cells within collagen-based ma-
trices of varying concentrations. Our findings indicate that CAR-T cells exhibit
distinct migration behaviors compared to native T cells in the absence of exoge-
nous chemical stimuli. However, upon the introduction of a CXCL12 chemical
gradient, CAR-T cells demonstrate migration patterns that closely resemble those
of T cells. Thus, this approach offers an automation method that could be widely
adopted by researchers.

2.1 Introduction

Cell migration is a key biological process that plays a crucial role in many
physiological processes [32] such as wound healing [35], tissue repair [36], mor-
phogenesis [190] and the functionality of the immune system [34]. In the con-
text of immune response, immune cells, such as T cells and macrophages, navi-
gate through tissues to detect and eliminate pathogens or abnormal cancer cells.
However, despite their innate high migration capacity, in some cases, the natural
T cells of the immune system struggle to recognize cancer cells because these can
evade detection or suppress the immune response [191]. Cancer cells often em-
ploy various mechanisms to evade the immune system’s surveillance, inhibiting
T-cell function within the tumor microenvironment. To overcome this challenge,
CAR-T cell therapy emerges as an innovative treatment strategy, leveraging en-
gineered immune cells tailored to target specific antigens found on cancer cells
[192]. This method involves the modification of a patient’s T cells to express
CARs, thereby reprogramming these cells for enhanced recognition and targeted
destruction of cancer cells with exceptional specificity. Notably, CAR-T cell ther-
apy has demonstrated promising results in blood cancers, including lymphomas,
certain forms of leukemia, and, more recently, multiple myeloma [193-195].

Nevertheless, the transformation of T cells into engineered CAR-T cells may
influence their migratory capabilities. These alterations may potentially compro-
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mise their natural ability to navigate the body and reach tumor sites, thus chal-
lenging their capacity to infiltrate solid tumors effectively. This issue represents a
significant obstacle to the success of CAR-T cell therapy in treating solid tumors,
as opposed to its demonstrated efficacy in blood cancers. Therefore, it is crucial
to comprehensively understand how these modifications impact the migratory
behavior and infiltration potential of CAR-T cells to optimize their therapeutic
effectiveness in solid tumor contexts.

The study of cell migration has traditionally been performed using in vitro
[196] (e.g., the Boyden chamber migration assay [197] or scratch assay [198]) and
in vivo (e.g., intravital microscopy [199, 200] and in vivo imaging [201, 202]) meth-
ods [203, 204]. However, the use of microfluidic devices emerged as a powerful
tool to study cell migration, providing a high degree of control over the microen-
vironment, and allowing for the study of the response of cells to specific chemical
and mechanical cues [49, 205, 206]. Microfluidic devices facilitate the analysis of
the impact of different ECM properties, such as matrix density and stiffness, fiber
alignment, and pore size [207, 208]. Another advantage of these devices is the
ability to recreate 3D environments, which can provide more physiologically rel-
evant information than 2D migration assays. Furthermore, by integrating imag-
ing systems, microfluidic devices allow for real-time monitoring of cell migration,
providing information on the kinematics of cell movement and allowing for a bet-
ter characterization of their motile behavior. Many different cell types have been
analyzed and studied in these microfluidic-based chips: tumor cells [209, 210],
cancer-associated fibroblasts [211], dermal human fibroblasts [212], osteoblasts
[213], leukocyte [214] among others. However, the use of microfluidic devices to
study 3D immune cell migration poses a significant challenge due to their high
migration capacity. While these devices can recreate 3D environments, quantifi-
cation of 3D cell trajectories requires time-lapse studies integrating 2D imaging
and Z-stack acquisition from the assays. Given the highly dynamic nature of 3D
immune cell migration [215], it is essential to quantify a substantial number of
events within a brief timeframe, which poses a risk of phototoxicity when using
standard confocal microscopes. Light sheet microscopy offers a good alterna-
tive by providing low phototoxicity, high temporal resolution, and live sample
imaging [215]. The primary challenge resides in managing the extensive data
produced, which is complex, computationally heavy, and requires sophisticated
tools for automated analysis. Apart from the technical hurdles, these microscopes
represent a significant investment and are not commonly found in standard lab-
oratory settings.

In this study, we propose a novel methodology based on ABMs to estimate
3D cell trajectories within microfluidic devices, relying only on 2D imaging data
that can be acquired even from the most basic bright-field microscope. ABMs
offer discrete computational representations for simulating cellular behavior at a
cell level, and they have been extensively employed in different areas of cell mi-
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gration. For instance, Saucedo-Mora et al. [216] simulated individual and collec-
tive cell migration in glioblastoma considering the influence of the oxygen field,
Gongalves and Garcia-Aznar [217]studied the role of collagen density in regulat-
ing cell migration and spheroid formation, Bretti and De Gaetano [218] investi-
gated the influence of tumor cell-produced chemical signals on immune cell dy-
namics within microfluidic chips, and Peng et al. [219] explored the dynamics of
cell migration within flexible channels and how mechanical interactions with the
microenvironment and neighboring cells influence this process. While these ap-
proaches have focused on simulating cell migration within microfluidic devices,
these works often struggle to extrapolate 3D behavior and lack a comprehensive
understanding of cell migration in 3D environments.

Our lattice-free center-based ABM aims to predict 3D cellular behavior from
2D imaging data. To achieve this, we consider that cell locomotion direction is
not entirely arbitrary but exhibits a directional bias influenced by the cell’s pre-
vious orientation. To determine this directional memory, we propose an inverse
sampling method to track its evolution from the previous direction. By deriving
cumulative distribution functions through this sampling method, we gain insights
into how past directions influence future ones. Consequently, this approach facil-
itates the simulation of a wide spectrum of migration behaviors, spanning from
entirely persistent movement in a single direction when the cumulative distri-
bution function approximates a Heaviside function, to non-persistent random
movement devoid of directional persistence when the function takes on a linear
shape. Finally, we apply the proposed methodology to simulate migration assays
involving CAR-T cells and natural T cells (serving as the control group) within
distinct collagen concentration matrices within microfluidic-based devices. The
resulting 3D migration patterns are then compared and validated with experi-
mental 3D measurements obtained through a lattice light-sheet microscope. Our
results underscore the variances between 2D projections and genuine 3D motion,
revealing that CAR-T cells display diminished motility in 3D relative to natural
T cells.

2.2 Material and methods

2.2.1 Computational framework for predicting 3D migration pat-
terns

We present a computational framework for predicting 3D migration of cells in
microfluidic devices using 2D in vitro data (Figure 2.1). In this experimental setup,
cells are seeded individually into microfluidic devices, and their movements are
live-tracked within a single plane by capturing images at regular time intervals
of At. These tracked cells are adequately spaced apart to prevent interactions be-
tween them, enabling the study of their individual migration dynamics. Then, we
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acquire individual cell trajectories and instantaneous velocities for each cell. Sub-
sequently, we calculate the mean velocity of each cell and determine the overall
mean of these individual mean velocities across the entire population ..

The computational model consists of a 3D center-based lattice-free ABM.
Thus, the balance of forces acting on a single-moving cell is:

dv(t)
dt

Here, m, is the mass of the cell, v.(t) is its velocity, F,.(t) represents the
cell’s locomotive force for migration, and F 4,44 (t) represents the friction force of
the cell with the matrix. In this expression, the inertia term is typically neglected
due to the small mass and velocity of the cell. The friction force is calculated
using Stokes’ law, which is appropriate for modeling the movement of spherical
particles in a viscous fluid under laminar flow conditions:

me

= Floc(t) + Fd'rag(t) ~ 0. (2.1)

Fdrag(t) = GWchvc(t)v (2.2)

with R, = 10 pm the radius of the cell and 7 the dynamic viscosity of the colla-
gen hydrogel obtained from Valero et al. Considering that the magnitude of the
locomotive force is constant but variable in direction:

Floc(t) = Floce(t) = GWchﬁce(t% (23)

where ¥, is the overall mean velocity of the experiment and e(t) = (eq (%), e, (1))
is the unit orientation vector in spherical coordinates (r, 8(t), p(t)). We simulate
the temporal changes in the migration direction (6(t), ¢(t)) through a rotational
transformation:

O(t + At) = 0(t) + Orot,

o(t + AL) = p(t) + Prar. @4)

Here, 0,,; and @, are the rotations of the azimuthal and polar angles respec-
tively. To determine these rotations, we consider that the migration direction ex-
hibits a directional bias influenced by its prior orientation and propose an inverse
transform sampling method. This method involves generating pseudo-random
numbers from a uniform distribution and applying the inverse CDF associated
with the desired probability distribution. Specifically, we utilize the CDF of the
Cauchy function:

1 — 1
C(a;ap,7y) = - arctan <a ’ya()) + 2’ (2.5)

with ag = 0 to be centered at x = 0, and ~ a parameter that controls the func-
tion’s shape. To account for potential variations in rotations for (t) and (t), we
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Figure 2.1: Overview of the 3D migration framework. In the experimental setup, N
individual cells are initially seeded onto a microfluidic device and tracked over ty;,, dura-
tion, capturing 2D images at intervals of At. Concurrently, N 3D simulations of a single
moving cell are performed using the ABM. The direction of the locomotive force is deter-
mined by angles 0(t) and p(t). To simulate the temporal direction of the locomotive force
F,c(t), we implement an inverse transform sampling method. This technique calculates
rotational angles 0,0, and oo using cumulative distribution functions f(prot;7,) and
9(Orot;Yo) respectively. After completing the simulations, we evaluate the accuracy of the
simulations by projecting the 3D predictions into 2D and comparing them with the exper-
iments. Thus, we calculate the error between the simulation and experiment of the mean
effective displacement, cell dispersion, and the directionality ratio. Subsequently, we update
the functions f(prot; V) and g(Orot; Yo) until the error between the simulation and exper-
iment is minimized.
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utilize two analogous functions, denoted as f(¢rot; ’ycp) and g(0yot;v0), derived
from the same form as the CDF in equation (2.5) within the inverse transform
sampling method. Thus, we use this technique to generate values for 6,.,; and
©rot Within the interval (—, 7), allowing for the calculation of the new direc-
tional angles 0(t + At) and ¢(t + At) through equation (2.4).

After simulating NV single migrating cells in 3D, we project the trajectories
in 2D for a direct comparison with the experimental data. For model calibration,
we employ prediction metrics involving the cell trajectories (x.(t)) and direc-
tionality ratio (d,(t)) (see Supplementary 1 for directionality ratio details). In
particular, we determine the mean effective displacement of cells along the X
(82 = (Ze(t = tsim))) and Y (sy = (Ye(t = tsim))) axes and integrate it into the
metric Sz = 4/s2 + 5%. Similarly, we calculate the standard deviation of cells’
final positions along the X (0,) and Y (o) directions to estimate cell invasion
and incorporate this information into a comprehensive metric, 0,y = /02 + 02,
to capture cell dispersion over the XY plane. We also calculate the area under the
curve of the mean XY directionality ratio (d,.(t)) of cells (Dr = tt::g sm . (t) dt)
to evaluate the cell trajectories’ straightness. Then, we compute the error be-
tween the simulation and experimental metrics through Gaussian-like functions
of the form:

2
h(a,b) = exp (—%) . (2.6)

Thus, the error is calculated as:

1 ; 1 . 1 .

E=1- <3h(sizym, gl ) + gh(a;;m,oggp) + gh(Di’m, Df:’xp)> . (2.7)

Finally, we minimize the error (£) using a direct search optimization me-

thod, iteratively updating -y, and vy while minimizing the error (£) to obtain the

functional shapes of f(¢rot;7Y,) and g(6r0;79) that accurately reproduce cell
migration within the microfluidic devices.

2.2.2 Fabrication of microfluidic devices

Microfluidic chips were fabricated in PDMS (polydimethylsiloxane-Dow Corn-
ing GMbH Sylgard 184) at a 10:1 ratio of base to curing agent, following the
methodology described by Shin et al. [205]. PDMS microdevices were plasma-
bonded to 35 mm glass-bottom Petri dishes (IBIDI) and treated with poly-D-lysine
(PDL) solution (Sigma- Aldrich) at 1 mg/mL to enhance the surface-matrix at-
tachment. The geometry of the microfluidic devices consisted of a central cham-
ber in which we introduced the hydrogel with the cells and two adjacent media
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channels that allowed the introduction of cell culture medium and the generation
of chemical gradients through the addition of a growth factor CXCL12 in one of
the channels [221]. The study previously published by Moreno-Arotzena et al.
[206] presents further details about the geometry of these microfluidic devices.

2.2.3 Cell culture and transduction of primary human T cells

PBMCs were obtained by Ficoll-Paque gradient centrifugation from blood ob-
tained from Healthy Donors (CEICA, C.I. PI 11/006). They were activated with
anti-CD3 (OKT3 clone) and anti-CD28 antibodies (BD Pharmingen) in complete
medium; 44% RPMI1640 (PAN Biotech) + 44% Click 's médium (Sigma) + 10%
FBS (Sigma) + 1% Glutamax (Gibco) + 1% Pen/Strep, (Sigma). The next day, the
medium was supplemented with IL-7 and IL-15 (Miltenyi Biotec) at a final con-
centration of 10 ng/mL. The transduction was performed on the third day with
lentiviral vector supernatants as described by Davies et al. [222] and Vectofusin-1
(Miltenyi Biotec) according to the manufacturer s recommendations. The acti-
vated PBMCs followed the same steps but without lentiviral vector supernatants.
After centrifugation, the medium was replaced with fresh medium with IL-4 at
30 ng/mL (Miltenyi Biotec). The medium was replaced every two or three days
with fresh medium with IL-4.

2.2.4 Hydrogel preparation and 3D cell culture

The hydrogels were prepared using collagen gel solution type I (BD Bio-
science) to a final concentration of 4 and 6 mg/mL, following the methodology
proposed by Shin et al. [205]. The dilution was brought to pH 7.4 with 0.5M
NaOH. T cells and CAR-T4 were suspended in a culture medium and mixed with
the collagen hydrogel to a final dilution of 1.5 x 10° cells/ml to follow individ-
ual migration in 3D. For light-sheet microscopy (LLSM) 6 mg/mL collagen gels
were used. The final dilution of cells was 1 x 105 cells/mL which were stained
with 1 mM Vibrant DiO (Molecular Probes) at 37 °C for 30 min. Then, the cells
were spun down, rinsed, and resuspended in a fresh medium. The dilution of
cells was then pipetted into the central gel chamber and the hydrogel was con-
fined by surface tension. Once in place, the collagen gel solution was polymer-
ized in a humidity chamber at 37°C and 5% C'O3 for 20 minutes. After that,
the matrix was hydrated with RPMI 1640 (Lonza) supplemented with 10% FBS,
1% penicillin/streptomycin (Sigma-Aldrich), 1% GlutaMAX (Thermo Fischer), and
30ng/mL IL4 (Milteny Biotec).
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2.2.5 Image acquisition and quantification of T cells and CAR-T4
migration

Cell migration was recorded using time-lapse live microscopy (Nikon D-Eclipse
Ti Microscope and Zeiss Axio Observer 7) with a 10X objective for migration, ac-
quiring phase contrast images every 30 s for 1 h. The focal plane was chosen to be
in the middle along the z-axis of the device ensuring that the tracked cells were
embedded within the 3D network. Cell trajectories were obtained using IMAGE]
and further analyzed using MATLAB scripts.

3D live T cell and CAR-T4 migration with light-sheet microscopy (LLSM) on
a ZEISS Lattice Light Sheet 7 microscope (ZEISS, Oberkochen, Germany) was fol-
lowed during 1.5 h exciting the cells at 488 nm. For all experiments, the datasets
acquired were deskewed using the ZEISS Zen (blue edition 3.7) software by a
linear interpolation and a Cover-glass transformation. Deconvolution was per-
formed using a constrained iterative algorithm. The resulting images had a voxel
size of 0.14 x 0.14 x 0.14 pm?® and image stacks had a mean temporal resolution
of 169.8 &= 26.34 s per frame. For further processing, sample image stacks were
resized with the resampling method of ZEISS’s software to 1/8 of their original
size, reaching a voxel size of 1.16 x 1.16 x 1.16 pm?, reducing significantly data
size for easier management. During the experiment, the incubation conditions
were controlled and held at 37°C, 5% COs, and 95% of humidity. The experi-
ments with 4 mg/mL collagen matrices were performed with two independent
experiments, with four technical replicas for T cells and for CAR-T4, and the ex-
periments with 6 mg/mL with two independent experiments and four technical
replicas with T cells and with four independent experiments with six technical
replicas with CAR-T4. For the assays with CXCL12 in 6 mg/mL collagen, two
experiments were performed with three technical replicas. 3D experiment with
light-sheet microscopy was performed once with two technical replicas with T
cells and three with CAR-T4.

2.3 Results

2.3.1 CAR-T cell migration is more sensitive to collagen concen-
tration than T cells

To demonstrate the potential of the computational framework in accurately
replicating cell movement patterns, we first conduct cell migration assays of T
and CAR-T4 cells (hereinafter referred to as CAR-T) within microfluidic devices
embedded in collagen-based hydrogels. These cells are individually seeded in two
distinct concentrations of type I collagen (4 and 6 mg/mL), replicating the extra-
cellular environment. The microfluidic device consists of a central chamber with
an embedded collagen matrix containing cells and two lateral channels serving
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as reservoirs for growth media. In some cases, the chemoattractant CXCL12 is
introduced into one of the channels to establish a chemotactic gradient within
the microfluidic devices with 6 mg/mL of collagen. Live-cell imaging techniques
in 2D are employed, capturing images at 30-second intervals for 1 hour to track
cell movement. Subsequently, we characterize the migration patterns using the
proposed calibration metrics (Table 2.1, experiments column).

Then, we apply the proposed methodology to gain insights into the 3D be-
havior of cells, replicating the 2D microfluidic device migration assays. The cal-
ibration metrics derived from the experimental data are matched with the simu-
lations (Table 2.1, simulation column), and the shape of the functions f(¢rot;7Yy)
and g(0,0t;79), which determine the directionality of cell migration, is obtained
(Figure 2.2B). Note how the optimized functions exhibit very subtle differences,
yet these nuances have a significant impact on the outcomes.

Table 2.1: Experiments and simulation data. N is the number of cells, U.. is the overall
mean velocity of the cells, s, is the module of the mean effective displacement of cells along
the X and Y axes, the 04, indicates the module of the standard deviation of cells’ final
positions along the X and Y directions, D, is the area under the curve of the mean XY
directionality ratio of cells, and £ is the error between the experiments and the simulation
calculated through Gaussians-like functions from (2.7).

Experiments Simulations
Cell type Medium N | 0c (um/min) = Sgy (Um) 04y (pm) D, | Szy (Um) 04y (um) D, | € (%)
T 4 lllg/HlL 75 6.80 81.12 110.64 22.32 84.00 108.41 23.46 0.33
6 mg/mL 44 5.26 52.40 81.64 19.20 55.89 73.09 19.10 1.17
4 nlg/IIlL 31 6.53 80.17 122.04 20.41 86.24 109.40 21.98 1.70
CAR-T 6 mg/mL 49 3.94 41.57 70.15 18.11 45.76 59.66 20.35 3.60
6 mg/mL + CXCL12 27 4.30 51.22 78.42 26.67 51.70 71.36 26.51 0.63

The 2D projections of our 3D simulations replicated the cell trajectories of T
and CAR-T cells in various collagen matrices (Figure 2.2C). Our observations re-
veal that at a collagen concentration of 4 mg/mL, T cells and CAR-T cells exhibit
a similar mean displacement in the XY plane. However, T cells show more di-
rectional movement (8.54% greater) and less dispersion (9.3% lower) than CAR-T
cells. Ata collagen concentration of 6 mg/mL, T cells reduce their mean displace-
ment by 35.5%, while CAR-T cells exhibit a more substantial reduction of 48.2%.
Similarly, dispersion decreases more in the case of CAR-T (42.6%) compared to T
cells (26.2%), and directionality is also lower in CAR-T compared to T cells. Fur-
thermore, although the velocities are similar at 4 mg/mL, at 6 mg/mL the overall
mean velocity of T cells decreases by 22.7%, while for CAR-T cells, the decrease
is 39.6%. This highlights a markedly higher sensitivity of CAR-T cells to colla-
gen density alterations, resulting in a 20.6% smaller mean displacement, 14.1%
smaller dispersion, and 25.10% smaller velocity compared to T cells under simi-
lar 6 mg/mL conditions. Nonetheless, the introduction of the chemo-attractant
CXCL12 to the 6 mg/mL matrix leads to a 23.25% increase in XY plane displace-
ment, an 11.7% increase in dispersion, and 9.14% increase in velocity, narrowing
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the gap between CAR-T and T cells’ mean displacement and dispersion to 2.2%
and 3.9%, respectively, and making migration more persistent (47.3% greater than
the condition without CXCL12).

To further validate the accuracy of our replications of 2D cell movement, we
analyze the effective displacements along the X and Y axes, revealing no statis-
tically significant differences between simulation predictions and experimental
displacements derived from in vitro data (Figure 2.2D). Additionally, we assess
the directionality ratio for T and CAR-T cells in different matrices, confirming its
ability to capture the temporal evolution of the experimental data (Figure 2.2E).

2.3.2 CAR-T cells tend to move in 2D, in contrast to the patterns
observed in T cells

In this section, we present model predictions of 3D trajectories for T and
CAR-T cells in different matrices (Figure 2.3A), providing an isometric view of
the 2D projected trajectories in Figure 2.2C. Despite the apparent similarity in
2D invasion patterns, as shown before, significant disparities are observed in the
3D movement patterns between T and CAR-T cells. While T cells exhibit multi-
directional migration, CAR-T cells show a limited movement along the Z-axis,
suggesting predominantly 2D movement at both 4 and 6 mg/mL. To quantify
these results, we compare the effective displacement along the X and Y -axis
with the effective displacements along the Z-axis (Figure 2.3B). At both 4 and
6 mg/mL matrices, T cells demonstrate a more balanced movement across the
X,Y, and Z axes, with a ratio between the median displacement in the Z direc-
tion and the XY directions of 1.01 and 0.95, respectively. In contrast, CAR-T cells
at the same concentration matrices exhibit predominantly favored movement in
the XY plane, with a ratio between the median displacement in the Z direction
and the X and Y directions of about 0.60 for both 4 and 6 mg/mL. However, the
introduction of CXCL12 to the 6 mg/mL matrix significantly boosts the Z-axis
movement for CAR-T cells, resulting in the most remarkable 3D movement ob-
served in this scenario, with a median displacement in the Z direction 2.16 times
higher than in the X and Y. We find no statistically significant differences be-
tween the effective displacements on the XY plane and Z in T cells but identify
significant differences for CAR-T cells, suggesting the tendency of CAR-T cells
to move two-dimensionally in the 4 and 6 mg/mL matrices not enriched with
CXCL12.

To confirm these predictions of the 3D movement patterns, we conduct new
3D in vivo migration experiments, tracking T and CAR-T cells in real-time for
1.5 hours within a 6 mg/mL hydrogel. This 3D experiment, utilizing light-sheet
microscopy, provides a more detailed understanding of cell migration within a
3D environment, allowing for the study of their spatial behavior. Subsequently,
we calculate the ratio between the movement in the Z direction and the planar
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XY movement for each displacement (Figure 2.3C). Our observations reveal that
T cells exhibited 3D movement, with a ratio between Z and XY movements
of 0.93. In contrast, CAR-T cells predominantly move in the XY plane with a
ratio between Z and XY movements of 0.57. We find no statistically significant
differences between simulations and experiments but we do find a significant
difference in movement patterns between T cells and CAR-T cells, confirming
the model predictions of a more predominant 2D movement pattern of CAR-T
cells compared to T cells.

2.4 Discussion

In this work, we developed a computational framework to estimate 3D mi-
gration patterns of cells within microfluidic environments using an ABM, relying
exclusively on 2D in vitro measurements. To assess the predictive capabilities of
our model, we simulated in vitro migration experiments of T and CAR-T cells in
hydrogels with different concentrations of type I collagen in microfluidic devices.
We showed that the 2D projections of our 3D predictions successfully reproduced
the 2D migration patterns of both T and CAR-T cells in the different density ma-
trices, with no statistically significant differences between the experiments and
simulations (Figure 2.2). Moreover, we observed that although CAR-T and T cells
behaved similarly at 4 mg/mL, CAR-T cells showed higher susceptibility to the
increment in collagen concentration compared to T cells, resulting in a more pro-
nounced reduction in their invasiveness.

Furthermore, our computational model revealed notable differences in the 3D
movement patterns between T and CAR-T cells. T cells displayed migratory be-
havior in three dimensions within the two collagen concentration matrices, align-
ing with the characteristic high motility observed in immune cells that enables
their access to intricate regions within the body. In contrast, our simulations un-
veiled a distinctive pattern in CAR-T cells. They appeared to predominantly move
within the XY plane and exhibited limited movement in the Z direction, indica-
tive of primarily 2D migration. To quantify the differences between movements
in each direction, we calculated the displacement ratio between the Z direction
and the X and Y directions. T cells presented a ratio around 1 in both density
matrices, indicating a balanced three-dimensional movement, while CAR-T cells
presented a ratio around 0.6 in both matrices, emphasizing their predisposition
to move more over the XY plane compared to the Z direction. We found no sta-
tistically significant difference between the Z and XY displacements in the case
of T cells, but we did find notable differences in the Z movement compared to the
XY movement in the case of CAR-T cells.

To validate these results of our new approach, we conducted 3D cell migration
experiments at 6 mg/mL using light-sheet microscopy, allowing us to quantify
cell migration patterns in 3D. Similarly, we calculated, for each displacement, the
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ratio between the Z movement and the mean X and Y movements, showing
that in 3D experiments, T cells exhibited three-dimensional movement (Z move-
ment versus mean XY movement of 0.93), whereas CAR-T cells exhibited limited
movement along the Z axis (Z movement versus mean XY movement of 0.57).
We compared these experimental observations with our simulations and found
no statistically significant differences between them. However, we did observe
differences between T and CAR-T cells, confirming the model’s predictions of 3D
migration patterns derived from 2D data. Additionally, our investigation revealed
that the presence of the chemical factor CXCL12 not only stimulated CAR-T cells
to migrate within the XY plane but also induced a shift in behavior, promoting
3D movement similar to T cells. Therefore, enhancing the migrative capacity of
CAR-T cells might be a promising strategy to improve the efficacy of therapies in
solid tumors [223].

The planar migration pattern observed in CAR-T cells may be attributed to
two primary factors. Firstly, the exposure of T-cells to chimeric antigen receptors
during their conversion into CAR-T cells could influence their migration capabil-
ities, potentially impeding their ability to navigate through intricate and confined
spaces. Secondly, the geometrical characteristics of microfluidic devices must be
considered. The vertical dimension (Z) significantly differs in scale from the other
two dimensions, and the potential influence of fiber alignment occurring in the
XY [224] plane during media loading may impact CAR-T cell migration. This
influence could lead to a reduction in migration, potentially transitioning from
3D movement to a mode resembling 2D migration. The combination of these fac-
tors may account for the observed behavior, further limiting the cells’ ability to
migrate in the Z direction within this complex environment.

Nevertheless, we have to keep in mind that our novel predictive approach is
based on several simplifications. Initially, we assumed cells exert constant mag-
nitude locomotive force, with temporal changes attributed solely to changes in
migration direction. Cells may generate locomotive forces varying in both mag-
nitude and direction. However, to calculate this force magnitude, we used the
temporal mean velocity of the entire cell population. This mean velocity rep-
resents the temporal velocity variations across the cell population. Therefore,
considering a mean locomotive force effectively encompasses the temporal vari-
ations in force magnitude across the population of cells, offering a comprehensive
measure of these temporal fluctuations and modeling it with a mean representa-
tive value. However, temporal variations in the locomotive force magnitude can
be easily incorporated, for instance, making it variable within a certain range.
Temporal variations in the magnitude of the locomotive force can be easily in-
corporated by allowing it to vary within a certain range, based on probability
distributions derived from velocity measurements. Additionally, we utilized the
displacements, dispersion, and directionality ratio as predictive metrics. While
projecting trajectories in 2D can yield the same trajectories across multiple po-
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sitions, the combination of these predictive metrics, in conjunction with cell ve-
locity, constrains the feasible cell positions that result in XY projections. This
synergy between metrics effectively constrains the problem space and enhances
predictive accuracy. Nonetheless, further refinements could be incorporated dur-
ing the calibration phase, as the model can be easily tailored to the user’s needs.
For example, additional criteria could be added to better capture the direction-
ality ratio over time, taking into account not only the area under the curve but
the value of the ratio at different time steps. Similarly, our approach possesses
the flexibility to incorporate additional metrics based on the specific in-vitro data
collected, demonstrating its adaptability for various types of migration assays.

2.5 Conclusions

Therefore, the methodology here proposed can be used by researchers to es-
timate 3D migration patterns from 2D experimental data. which can be easily ob-
tained with automatic quantification algorithms [225, 226]. This approach helps
reduce the need for sophisticated and expensive microscopies required in labora-
tories, as well as the computational burden involved in producing and analyzing
3D experimental data.
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Figure 2.2: Comparative analysis of 2D cell migration patterns between experi-
ments and simulations. A. Calibration errors for each iteration of minimization, with
two details at the first and last 10 iterations. B. Obtained directional migration functions
9(0ror:ve) and f(@rot;V,) from the inverse transform sampling method that minimize
calibration error. C. Experimental and simulated 2D cell trajectories of T and CAR-T cells
in different collagen density matrices. D. Analysis of effective displacements along X and
Y axes between experiments and simulations. ANOVA followed by post hoc Tukey—Kramer
tests are performed to determine statistical significance. * x xP < 0.001; * * P < 0.01;
xP < 0.05. We find no statistically significant differences between experiment and simu-
lation results in any of the conditions. E. Comparison of simulated and experimental direc-
tionality curves.
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Figure 2.3: Analysis of 3D cell migration patterns. A. Isometric view of the 3D predic-
tions of cell trajectories for T and CAR-T cells corresponding to the 2D simulated trajectories
in Figure 2.2C. B. Analysis of effective displacements along the X andY axes versus the Z
axis in the simulations for T and CAR-T cells in different matrices. ANOVA followed by post
hoc Tukey—Kramer tests are performed to determine statistical significance. %P < 0.001;
* % P < 0.01; xP < 0.05. We find statistically significant differences between the CAR-T
movement pattern in the X and Y directions and the Z direction in all conditions, in con-
trast with the T cells which present similar patterns. C. Comparison of the ratio of effective
displacement in the Z direction and the mean effective displacement in the X andY direc-
tions between simulations and the 3D in vivo experiment in the 6 mg/mL matrix. We find
no statistically significant differences between simulations and experiments, but we do find
statistically significant differences between T and CAR-T cells.
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CHAPTER 3. LUMEN MORPHOGENESIS

Abstract

The correct function of many organs depends on proper lumen morphogen-
esis, which requires the orchestration of both biological and mechanical aspects.
However, how these factors coordinate is not yet fully understood. Here, we fo-
cus on the development of a mechanistic model for computationally simulating
lumen morphogenesis. In particular, we consider the hydrostatic pressure gener-
ated by the cells’ fluid secretion as the driving force and the density of the ECM
as regulators of the process. For this purpose, we develop a 3D ABM for lumen
morphogenesis that includes cells’ fluid secretion and the density of the ECM.
Moreover, this computer-based model considers the variation in the biological
behavior of cells in response to the mechanical forces that they sense. Then,
we study the formation of the lumen under different mechanical scenarios and
conclude that an increase in the matrix density reduces the lumen volume and
hinders lumen morphogenesis. Finally, we show that the model successfully pre-
dicts normal lumen morphogenesis when the matrix density is physiological and
aberrant multilumen formation when the matrix density is excessive.

3.1 Introduction

Lumen morphogenesis is a key process in the development of tissues and
organs. Luminal structures are found in many parts of metazoan organisms, and
they allow these organisms to perform specific functions, such as blood flow,
digestion, and renal system activity. The formation involves the coordination of
cells in a sophisticated manner. Three basic principles are required to create a
lumen: spatially controlled cellular mitosis, cell-cell and cell-matrix interaction,
and cell fluid pumping [227]. However, how these mechanisms coordinate is not
fully understood.

Fluid-solid interaction is critical in vascular biology [228], in hemodynamics
[229], in angiogenesis [136] and, in general, in physiology and pathophysiology
[230]. Thus, luminal structures are in a state of hydrostatic pressure [231], and
this pressure, which is developed from fluid secretion, might be the driving force
in luminal structures during morphogenesis [232], as shown in ductal network
formation in the pancreas [233]. Furthermore, the mechanical properties of the
ECM play an important role in lumen formation. The mechanical interaction
of cells with the ECM provides physical cues that are relevant to cellular self-
organization [234]. In fact, an increment in tissue stiffness is related to the tumor-
ous behavior of cells, as tumors are generally stiffer than normal tissues [235]. In
the case of luminal structures, matrix stiffening compromises tissue organization,
inhibits lumen formation, and enhances growth [68]. This perturbation in the tis-
sue architecture as a result of matrix stiffening produces a dysfunctional lumen
associated with disease and may be related to the aberrant structures found in
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carcinomas [236, 237]. Therefore, understanding how these two factors influence
lumen morphogenesis might provide insight into not only normal formation but
also pathological formation.

Previous computer-based models have been developed to study different as-
pects of luminal structures. Specifically, on-lattice models are the most prevalent.
In this type of model, cells occupy sites in a regular lattice, and mechanical in-
teractions are usually represented by minimizing the energy of the system [96].
Thus, Cerruti et al. [238] analyzed dynamic regimes of epithelial growth, Engel-
berg et al. [100] developed a predictive model that matches their in vitro data, Boas
and Merks [239] investigated two alternative mechanisms of lumen formation,
Liedekerke et al. [240] studied cell mechanics in the embryonic bile duct, Rejniak
and Anderson [241] simulated the development of an acinar structure with five
different subpopulations of cells, and then the maintenance and stability of the
epithelial monolayer and the hollow lumen [242]. Continuum approaches have
been also adopted to simulate developmental processes. In the case of lumen mor-
phogenesis, Dasgupta et al. [243] studied the balance between paracellular leaks
and the build-up of osmotic pressure in the lumen, and Duclut et al. [244] built
a continuum model to explore the role of the coupling of mechanical, electrical,
and hydraulic phenomena in tissue lumen formation. Nonetheless, in this type of
model, individual cells are neglected in favor of a larger scale of simulation, so it
is difficult to take into account how heterogeneities in cell behaviors affect lumen
initiation and formation from individual cells [245].

Although important achievements have been made, to the best of our knowl-
edge, some crucial aspects have not yet been considered in lumen morphogen-
esis. Cell-cell interaction is essential and neither on-lattice models nor contin-
uum models can directly represent the mechanical interaction between individual
cells. Moreover, the forces produced by the luminal hydrostatic fluid pressure are
essential in lumen morphogenesis, as they permit the lumen to initiate and ex-
pand. Finally, the mechanical properties of the ECM are usually neglected, even
though it regulates the process, as it opposes the expansion produced by hydro-
static pressure. Therefore, we introduce a 3D multi-ABM for lumen morpho-
genesis that integrates the cell-cell and cell-matrix interactions, the hydrostatic
pressure generation, and the role of the ECM. ABMs have been widely used to
study cell and tumor growth [246-248], or tissue regeneration mimicking cell
deformation [110]. Here, we aim to create a model that mimics lumen morpho-
genesis, taking into account the internal luminal hydrostatic pressure generated
by cells’ secretion and the effect of matrix density. To evaluate the predictive ca-
pacity of the model, we qualitatively replicate the experimental results achieved
by [68], who found that an increase in matrix stiffness inhibits lumen formation
and enhances cell colony size, resulting in an aberrant multiluminal architecture.
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3.2 Materials and methods

We formulate a 3D multi-ABM for lumen morphogenesis, in which agents are
spheres that do not change shape (Figure 3.1). The objective of this computer-
based model is to mimic the morphogenesis of an organoid composed of cells
enclosing a fluid-filled lumen by means of numerical simulations. To accomplish
this task, we consider two types of agents: cells, which are the biological entities,
and particles, which are secreted by cells and simulate the lumen fluid.

Therefore, we define a computational model for simulating the cell cycle that
regulates cell proliferation and fluid secretion to form the lumen. To simulate
how cells secrete fluid, we assume that cells generate particles inside the lumen,
thereby increasing the lumen volume. Consequently, the lumen is in a state of
hydrostatic pressure [231] due to this cell secretion [232, 249].

Mechanical equilibrium between cells anchored to the ECM and the luminal
pressure ensures the maintenance of the luminal architecture. To model this me-
chanical equilibrium, we use agents that interact mechanically to generate and
maintain the lumen. Thus, cells interact among themselves based on pairwise
potential functions in an adhesive-repulsive manner. Moreover, particles also in-
teract among themselves via pairwise potential functions and interact with cells
in a repulsive manner. This interaction mimics the luminal hydrostatic pressure
generated by cells’ fluid secretion, and it is responsible for the movement of cells
and generation of the luminal space. Finally, agents interact with the ECM by
means of a friction coefficient that represents the dynamic viscosity of the ma-
trix.

Fluid secretion

Cell cycle Mechanical interactions
Cell-cell RRAVAYAS S
Particle-particle «N\\»>
estri Cell-particle
0int —
Particle-cell
inactive
Matrix -

Figure 3.1: Sketch of the lumen model. It consists of two main agents and their in-
teractions. First, for the agent that simulates the cells, we consider a mathematical model
for the cell cycle, which handles proliferation. Second, the fluid secretion agent makes cells
secrete fluid into the lumen through particles, increasing the hydrostatic pressure. Finally,
both agents interact mechanically, and the lumen expands.
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3.2.1 Modeling the cell cycle

The cell cycle is a complex process that occurs that involves the growth and
proliferation of cells, organismal development, regulation of DNA damage repair,
tissue hyperplasia in response to injury, and diseases such as cancer [250]. Over-
all, it can be described by a growth phase, in which the cell progressively increases
its volume as a result of DNA replication, and by a mitosis phase, in which the
cell divides into two daughter cells. To simulate the growth phase, we consider
that each i-cell has a total volume V;(t), whose temporal evolution is given by:

dvi(t
0 — (P, Far, (VD) 61
where a;(Pin(t), Ft,.,, (t)) is the growth rate of the i-cell, which we assume that

depends on the luminal pressure (P;,(t)) and the net force exerted on the cell
(Fe,er, (1))- In this expression, cell growth is exponential and dependent on cell
size according to experimental evidence that growth rates increase with cell size
throughout the cell cycle [251-253].

Here, we assume the value of the growth rate is influenced by the luminal
pressure P;,(t) and by the net force exerted on the cell (F¢,., (t)). The vari-
ability of the growth rate during lumen morphogenesis has been experimentally
observed in cell cultures in which MDCK [100] and primary Pancreatic Ductal
Epithelial Cells (PDEC) [254] slowed their proliferation when they initiated the
lumen. The onset of the lumen is determined by the initiation of the luminal
pressure. Therefore, when there is no luminal pressure, the cell cycle time de-
creases so it can generate a closed volume to secrete fluid and form a lumen de
novo. By contrast, when the luminal pressure increases, the cells do not need
to divide as quickly as before, so the growth rate decreases. The growth rate
a;(Pin(t), Fe,., (1)) is obtained from:

» = Cnet;

)

(3.2)

aA(PA (t) F (t)) _ 1/Tini(1 + ai(Fcneti (t)))v Pm(t) =
i\Lin\b)s Leper, 1/Tpol(1 + ai(FCneti (t)))7 .Pz‘n(t) > 0,

where Pj,(t) is the luminal pressure and 7T}, and T}y,; are constants related to
the cell cycle time (T},0; > Tin;). Second, we consider that the value of o (P, (%),
F,... (1)) is influenced by a;(F%,,,. (t)) depending on the net cell force supported
by the cell (F%.,,,, (¢)). In this regard, the ECM stiffness regulates the magnitude of
the net cell force, and an increase in cytoskeletal tension, mediated by sustained
matrix stiffness, promotes growth [68]. Moreover, the compliance of the ma-
trix acts as a cell-cycle inhibitor and matrix stiffening increases cell proliferation
[255-258] and cell cycle progression [259]. To model this mechanoregulation, we

include a variation in the growth rate as a function of the net cell force as follows:
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0, Fcneti (t) < Fbota
a
ai(FCneti (t)) = (FCneti (t) - Fbot) ﬁa Fbot < Fcneti (t) < Ftopa
d op 0
Omazx Fcneti (t) > Ftopa
(3.3)
where I, (?) is the net cell force, aq, is the maximum variation in the growth

rate, and F},; and F},, are approximately the mean values of net cell forces when
matrix density is low and high respectively.

Last, to account for biological variability, we let the daughter cell growth rate
@i(Pin(t), Fe,.., (1)) vary randomly between [—20, 20]% based on a normal prob-
ability distribution around the progenitor cell’s value.

When the volume of the cell reaches twice the value of its initial volume,
DNA replication is concluded, and the cell divides. Spatially controlled division
is a fundamental condition to maintain the lumen architecture and to enhance
its growth by enlarging the lumen volume. In this regard, a complex molecularly
controlled process regulates the spindle orientation, so mitosis occurs in the plane
of the monolayer [260-265]. Here, we distinguish division between nonpolarized
cells and polarized cells. Nonpolarized cells are those that have not yet formed
a lumen, and polarized cells are those that belong to a lumen and face it. In the
case of nonpolarized cells, the division direction is chosen randomly. Polarized
cell division is performed using a random cleavage plane that contains the line
that passes through the cell center and the lumen center of mass. The position of
the two daughter cells (Z4qugnters) are calculated similarly to other models [266,
267] from the center of the parent cell ;4 cnt at:

Ldaughters = Lparent + (Rc - %Rc> n, (3'4)
where R, is the radius of the parent cell and 7 is the unit orientation vector. When
a nonpolarized cell divides, the unit orientation vector n is chosen randomly.
However, when a polarized cell divides, the unit orientation vector n is normal
to the random cleavage plane that contains the line that passes through the cell
center and the lumen center of mass.

After cell division, the cell decides whether to remain active and continue in
the cell cycle to divide again or to become inactive within the cell cycle, namely
restriction point [268]. In the model, at this point, either or both of the daughter
cells can enter a quiescent state. Thus, we introduce a variable called state; to
register for each cell whether they are active or inactive. The probability that a
i-cell enters a quiescent state is

P(Q)i=b- Csteps;» (3.5)
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where b is a probability parameter and cgcps, is the number of times the cell has
divided. Each time a cell divides, the value of cs¢ps, of its daughter cells increases
by one. Thus, a random number in the interval [0,1] is generated for each daugh-
ter cell, and if it is lower than their probability P(Q);, the corresponding daughter
cell enters into a quiescence state. When a cell becomes inactive, it implies that
it does not grow (a; = 0) and, therefore, its growth rate does not follow Equa-
tion 3.2. Otherwise, the cell continues in the cycle and starts growing to double
its volume again and then divides.

3.2.2 Fluid secretion

One of the key aspects of the model is how cells create the lumen. To gener-
ate a luminal domain de novo, neighboring cells must coordinate to secrete fluid
into a common site, and that common site could be the midbody created during
mitosis [227]. The midbody is a transient structure formed in the last phases of
cell division to complete the separation between cells [269]. This landmark deter-
mines the apical-basal polarization of the cells and, therefore, the site where the
cells will secrete to create the lumen. To contemplate the polarization of cells, we
introduce a variable called polarized; that registers for each cell whether they
are polarized or nonpolarized. Consider an initial active nonpolarized cell (Fig-
ure 3.2a). When this cell divides, it generates a midbody, and the two daughter
cells polarize with respect to that point. Then, the cells need to form a closed
volume, the Preapical Patch (PAP) [270], to be able to generate hydrostatic pres-
sure. We consider that the PAP is formed when the number of cells is equal to a
specific value (ny,). With subsequent cell division, the number of cells increases,
and the cells form the PAP. Once the initiation site for the lumen is created, the
cells secrete fluid into that point to open the lumen. Each polarized cell, after a
period of time of fluid production At.,,, secretes fluid into the lumen. To model
the luminal fluid, cells generate a certain number of particles. First, when the lu-
men does not yet have any fluid, the cell secretes into the initiation site where the
lumen will be generated. Then, when another cell secretes, some random parti-
cles are duplicated inside the lumen to recreate the increment in the fluid volume.
The position of the new particles is obtained from the position of the particle that
duplicates in a similar way to cell division. As a result of the cells” secretion, the
luminal hydrostatic pressure increases, and the lumen grows. The luminal hydro-
static pressure (F;,) is estimated by the mean of the particle’s net force (F3,,). We
hypothesize that there is a maximum luminal hydrostatic pressure above which
cells cannot pump any more fluid into the lumen. Thus, cells can only secrete
when the force generated by hydrostatic pressure, estimated through the mean
particle net force, is below a threshold Fj;,,,. This makes lumen formation a dy-
namic process of phases in which polarized cells can secrete, thereby increasing
the hydrostatic, and phases in which polarized cells are not able to secrete due to
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the high pressure.

Cells remain polarized as long as they face either the midbody or the lumen.
However, due to subsequent cell division or mechanical interactions, a cell can
leave the lumen and no longer face it (green cell in Figure 3.2b). This cell is now
nonpolarized, and depending on whether it is active or not within the cell cycle,
it may create a secondary lumen. If it is active, the process is equivalent to the
previous case: a new midbody is established when the cell divides and the cells
polarize with respect to that point, create a preapical patch, and secrete into the
area to generate the lumen. In this case, when the initial nonpolarized cell polar-
izes to create a new lumen, the number of times that the cell has divided cseps, is
reset to prevent its daughter cells from entering quiescence and being unable to
form the new lumen. On the other hand, if it is not active, the cell will not form
a new lumen.

@ .co-&R .

!

Nonpolarized cell Midbody  Pre-apical patch Fluid secretion

(a)

Principal lumen

Nonpolarized cell New midbody Secondary lumen
(b)

Figure 3.2: Sketch of the lumen morphogenesis model. Case (a) shows how the lumen
is formed beginning from an individual cell, and case (b) shows the formation of a secondary
lumen. The arrows indicate the apical-basal polarization of cells.

3.2.3 Mechanical interactions

Mechanical interactions between agents make them move and change their
positions. We illustrate how the cell position x. and particle position x,, are

calculated. Let N be the set of cells N, = {1,..., N.}, and let N, be the set of
particles N, = {1, ..., N, }. First, the velocity of each i-cell v., and each k-particle
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vy, are calculated from the balance of forces:

dv,.
Me, ;J;Z = Z (chj) + Z (Fcipj) + Fcidr'ag =~ 07 (3.6)
JeNe jEN,
dv
My, dfk = Z (Fpip;) + Z (Fpic,) +Fy,, ~0. (3.7)
JENY jEN,

Here, m.; and my, are the cell and particle masses, respectively, F'¢,.; repre-
sents cell-cell interaction force, Fcz.pj indicates the cell-particle interaction force,
F'},, p, is the particle-particle interaction force, F'y, ., denotes the particle-cell in-
teraction force and Fcidmg and Fpkdmg are the friction of the cell and particle
with the ECM, respectively. Random cues, such as chemotaxis, or random walk

dv,, dvy,

are neglected. Also, the inertial terms m, and my, are neglected be-

cause Re << 1. The drag forces F'¢; and F'p,  are obtained from Stoke’s
rag rag

law:
.= —6mn R, ve; s (3.8)

= —6mRyvy,, (3.9)

F
pkdrag

where 7 is the dynamic viscosity of the ECM, R, is the radius of the i-cell, R,
is the radius of the particle and v., and v, are the velocities of the i-cell and
k-particle.

Cell-cell interaction forces are usually modeled as repulsive-attractive forces.
The repulsion between cells arises from cell resistance to deformation when their
membranes touch, and the attractive forces are the result of the junctions that
cells form between themselves through specialized protein complexes [271]. In
the case of particles, the repulsive-attractive forces represent the intermolecu-
lar forces in fluids. Accordingly, we modeled the interaction forces F's,, (both
subindexes § and 7 denote ¢ or p, depending on whether the i and j agents are
cells (c) or particles (p)) following [272], as follows:

_ Tij
F5i7j — ngm, (310)
where:
Tij = Ty, — T, (3.11)
and:
B Frepg.yX(_S)g/Qa s < 0 (repulsion),
= —Fadng, x{(s + 80)6_’\(S+50)2 - voe_MQ}, s > 0 (adhesion).
(3.12)
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Consequently, x, s, ¢ and vy are defined as:

R(g. 1 1 d— mindist
_ R, _ & Tdist 3.13
X=- <R5i+Rw>’ 5 Ry, (3.13)
1
70 =1/ 5y vy = xoe_)‘xg. (3.14)

Freps, and Fyqp, are the strengths of the adhesive and repulsive forces, re-
spectively. r;; is the distance between the centers of the agents, and R;; and R,
are the radii of the corresponding agents. zg, vg and A are matching constants,
and x is a geometric correction factor. The value of ming;ss = —0.1R;, is cho-
sen such that the equilibrium state where the adhesive and repulsive forces are
balanced is slightly less than zero, following [272], and d = ||ri;|| — Rs, — R, is
the distance between the agents’ surfaces.

Since cells do not present any attraction towards the lumen fluid, the inter-
action force between cells and particles is only repulsive (Fyqn,, = Fudn,. = 0).
Thus, the cell net forces F,__, (t) are computed from:

Cnet;
Fcneti (t) = | Z (FCZ‘C]') + Z (Fcipj) ‘, (315)
JEN JEN,

and the mean interactive cells’ net force during the simulation as follows:

oo ZjeNC (Fcneti (t))
Fe = mean ( ne(t) ) ) (3.16)

with n.(¢) the number of cells.
Finally, the velocity of the i-cell and the k-particle at time ¢ can be calculated
explicitly:

daxc,(t) 1
dt = UCi (t) = 67‘('77Rci JEEI\; (FCiCj) +JE§1\; (Fcipj) ) (317)
c r
dxz,, (t) 1
fl]z = Up, (t) = 670 R, j; (Fpkpj> +j§ (Fpkcj) : (3.18)
D c
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3.2.4 Implementation

Mechanical interactions occur faster than biological processes (Atyecn <
Atp;o), which allows them to be uncoupled and implemented with different time
steps [266, 273].

The fluid secretion and agent dynamics are solved every At,,c.;, = 0.01 min,
and when the current simulated time (¢) increases Aty;, = 6 min (t = tp;,), the
cell cycle is solved for each cell along with the fluid secretion and the agent dy-
namics. Figure 3.3 presents a simplified flowchart of the implemented algorithm.
Initially, we begin the simulations with an active cell. The variable state; stores
for each cell whether they are active or inactive within the cell cycle. After divi-
sion, in the restriction point, cells can reenter in the cell cycle or become inactive,
so the variable state; is updated for each daughter cell. If the cell becomes inac-
tive, it enters into a quiescent phase and does not grow anymore (o; = 0). In the
fluid secretion part, the variable polarized; accounts whether cells are polarized
or nonpolarized, and n; refers to the number of lumens in the organoid, there-
fore, n.(n;) is the number of cells in the n; lumen. Moreover, we track the fluid
production time ., for each polarized cell and the luminal hydrostatic pressure
Fin(ny) in the n; lumen. If the cell secretes fluid, we reset its fluid production
time t.4,,. Finally, after fluid secretion, we solve the agent dynamics.

To evaluate the predictive capacity of the model, we replicate the experiment
developed by Paszek et al. [68], who studied the influence of matrix rigidity in
the lumen formed by MCF10A cells and concluded that matrix stiffening compro-
mises tissue organization, inhibits lumen formation and enhances growth. How-
ever, there was no clear conclusion about the intrinsic mechanisms that regulate
this process. Here, we focus on reproducing the results by comparing the lu-
men formation in a low-density matrix and a high-density matrix. Different tech-
niques have been employed to model the ECM (e.g., the Smoothed-Particle Hy-
drodynamics (SPH) method [274]). Here. we model the ECM through a uniform
dynamic viscosity and relate the density of the ECM with the dynamic viscos-
ity based on Valero et al. [275], which presents a characterization of crosslinked
collagen-based hydrogels. The low-density matrix represents the 4 mg/ml colla-
gen concentration, with a dynamic viscosity of approximately 20 Pa s (1;4,,) [275].
Regarding the high-density matrix, we consider a dynamic viscosity of 100 Pas
(Mhigh), which corresponds to a five-fold increase in the dynamic viscosity with
respect to the low-density matrix. Moreover, to analyze the trend of the lumen
evolution under different-density matrices, we include an intermediate-density
matrix with a dynamic viscosity of 50 Pa s for comparative purposes.

Finally, we initiate the simulations with one cell of radius 10 pm, then create
a random seed and run the simulation for 7 days. Thus, we first performed 20
simulations with the low-density matrix and then, with the random seeds gener-
ated for each, we executed the equivalent simulations for the intermediate- and
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Cell cycle
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Fluid secretion

Agent |dynamics

Active

Double the
volume
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Figure 3.3: A simplified flowchart of the implemented algorithm. First, we check
if the current simulated time t is equal to the time at which the cell cycle has to be solved
tvio- If that is the case, the cell cycle is solved for every cell. In the cell cycle, for each cell,
we check whether it is active or inactive. If it is active, we evaluate if the cell has already
doubled in volume and is ready to divide or if it has to continue growing. After division, the
restriction point decides whether each daughter cell remains active and prepares to double
in volume or enters into a quiescent state. If the cell is inactive, it remains quiescent. After
the cell cycle has finished, ty;, is increased. Then, we check if cells are polarized and if the
number of cells in each lumen is higher than n.,. For each lumen that meets that condition,
we check for each cell polarized around that lumen if it is time to secrete fluid and if the
lumen pressure is lower than Fi;y,. If the cell secretes, we reset its time of fluid production
lezo; and secrete fluid. If not, the cell produces fluid by increasing teso,. Afterward, we
solve the agent dynamics. We obtain the forces produced by mechanical interactions and the
velocity of the agents and update the agents’ positions. Finally, we increase the simulated
time; if the stipulated simulation time t s;,, is reached, the simulation is complete; otherwise,
we repeat the algorithm.

60



3.3. RESULTS

Table 3.1: Parameters of the lumen morphogenesis model.

Parameter Description Value Source

Atego Fluid production time 5h Estimated

MNow Dynamic viscosity of the low- 20 Pas [275]
density matrix

Nhigh Dynamic viscosity of the 100Pas [68, 275], estimated
high-density matrix

Fyot Mean value of the cells’ net 0.42 pN  Estimated
force in the low-density ma-
trix

Fiop Mean value of the cells’ net 1.17 pN  Estimated
force in the high-density ma-
trix

Tini Cell cycle time constant 30 h Estimated

Thot Cell cycle time constant 100 h Estimated

ng, Number of cells to form the 5 Estimated
PAP

Amaz Maximum variation in the 60% [275], estimated
growth rate

b Quiescence probability 0.1 Estimated

R, Particle radius 2 pm Estimated

Frep.. Cell-cell repulsive force -4.80 pN  [272], estimated

Fodh,, Cell-cell adhesive force 24 pN [272], estimated

Freppy Particle-particle repulsive  -4.80 pN  [272], estimated
force

Fadn,, Particle-particle adhesive 24 pN [272], estimated
force

Frepe, Cell-particle repulsive force 0.60 pN  [272], estimated

Fudne, Cell-particle adhesive force 0 [272], estimated
Matching constant of the po- 7 [272])
tential function

Flim Force threshold for cell secre- 0.07 pN  Estimated

tion

high-density matrices. The agent surfaces were discretized and then processed
with alpha shapes [276]. The parameters used for the simulations are shown in
Table 3.1. The code was fully implemented in MATLAB R2019a.

3.3 Results

3.3.1 Lumen morphogenesis requires a low-density matrix to be
accomplished

First, we studied lumen formation in the low-density matrix with a dynamic
viscosity of 20 Pas (10,). We simulated the evolution of one lumen during 7
days (Figure 3.4). The simulation began with only one cell, and on the first day,
it grew and then divided into two cells (day 1). At this moment, a midbody was
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Figure 3.4: Evolution of a simulated cyst in the low-density matrix (n = 20 Pas).
Cells are represented in blue and the lumen fluid in red.

created (red dot), which determined the apical-basal polarization of the cells and
the common site where cells would secrete. At day 2, the cells divided around
the midbody to create a closed volume. Then, cells began to secrete and create a
small lumen. At day 3, the lumen was formed by 8 cells and was already in a state
of hydrostatic pressure. Between day 3 and day 6 the lumen continued growing,
increasing its volume by a factor of 9.7 times on day 6 compared to day 3, and
the number of cells increased to 16. Finally, at day 7, a cyst with a single lumen
formed by a monolayer of 16 cells was achieved.

3.3.2 Increasing the matrix density hinders lumen morphogene-
sis and produces an aberrant multiluminal architecture

Then, we investigated, with the same seed of random numbers, the evolu-
tion of the lumen during 7 days of simulation in a dense matrix with a dynamic
viscosity of 100 Pas (nhign) (Figure 3.5). Again, the simulation began with one
cell at day 0, which grew and divided. At day 1, the midbody was already gener-
ated. At day 2, due to the fact that in the high-density matrix the cells’ net forces
are higher than those in the low-density matrix, the growth rate of cells had in-
creased, so the number of cells increased to 8. At this point, a closed volume for
lumen initiation was created, and cells secreted fluid into the lumen, generating
a small lumen. In the next 24 hours, cells continued secreting, and the lumen
volume increased slightly. Between day 3 and day 6, significant changes were
observed. The number of cells increased from 8 to 24. However, the lumen vol-
ume increased by only a factor of 3 (the increment in the low-density matrix was

62



3.3. RESULTS

Day 0 Day 1 Day 2
50 50 50
H 0 B 0 B 0
= = 3
: o 2 °® s ()
501 501 501
50 - 50 - 50 "
Y . 50 . 50 . 50
0~ _—"9 0 0
Y (um) -30-50 X (pm) Y (pm) -50 50 X (pm) Y (pm) 50 50 X (pm)
Day 3 Day 6 Day 7
50 50, 50,
I SN § 0
N N N
50 50 L -50
50 - 50 50
~ 50 50 50
0" 0" 0 =
Y (pm) -0 -50 X (pm) Y (pm) 50 -50 X (pm) Y (pm) 50 -50 X (pm)

Figure 3.5: Ewvolution of a simulated cyst in the high-density matrix (n =
100 Pas). Cells are represented in blue and the lumen fluid in red.

approximately 9.7). The high-density matrix opposes cell movement, so the lu-
minal hydrostatic pressure cannot displace the cells. Consequently, the pressure
increases with successive secretions without enlarging the lumen, at times reach-
ing the hydrostatic pressure limit at which cells cannot pump more fluid into the
lumen. Moreover, as the lumen is small, cell divisions caused some cells to move
into a second layer where they ceased to face the lumen. This change made them
polarize to create two midbodies and later two new lumens. Finally, at day 7, a
dysfunctional structure composed of 7 lumens and 53 cells was observed.

3.3.3 Matrix density reduces the lumen volume

To compare the lumen formed in the low and high-density matrices, we show
the structure achieved (Figure 3.6a and Figure 3.6b (left)) and a view of the lumen
with only the cells that are situated approximately below the center of the orga-
noid in both matrices (Figure 3.6a and Figure 3.6a (middle)) after 7 days of lumen
formation. In the case of the low-density matrix, a cyst with a single regular lu-
men and 16 cells was developed. However, in the high-density matrix, 7 lumens
were developed. The volume of the largest lumen for the high-density matrix
was 80.64% smaller than that in the case of the low-density matrix, and the sec-
ondary lumen volume formed in the high-density matrix was 94.2% less than that
of the principal lumen of the cyst. Moreover, a non-linear increase of the lumen
volume was obtained in the case of the low-density matrix (Figure 3.6a (right))
since there were more cells to secrete fluid as the simulation time increased due
to cell proliferation. In contrast, in the high-density matrix, the principal lumen
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volume grew discontinuously (Figure 3.6b (right)), with higher increases in lu-
men volume as the simulation proceeded. The evolution of the pressure and the
number of cells is represented in the low- and high-density matrix (Figure 3.6¢
and Figure 3.6d). The pressure was obtained by integrating the interacting forces
between the cells and the lumen fluid (¥'.,) divided by the lumen surface. The
pressure increased after day two with successive cell secretions. Thus, the pres-
sure in the low-density matrix (Figure 3.6¢) increased when the cell secreted fluid
and then decreased as a consequence of lumen expansion. After day 5, a signif-
icant decrease in pressure was developed since cells proliferated and generated
more inner volume. In contrast, in the high-density matrix (Figure 3.6d), with
each cell secretion the pressure increased more sharply. In this situation, little
lumen expansion was produced and, therefore, the pressure increased with time.
In this case, the total population of cells increased 3.3 times compared to the low-
density matrix, from 16 cells to 53 cells.

To analyze the robustness of the model, we show (Figure 3.7) the lumen vol-
ume after 7 days for the 20 simulations performed in the low and high-density ma-
trices’ (see Figure A.1 in Appendix for a representation of the lumen volume after
7 days for each simulation performed in an intermediate-density matrix (n = 50

Pas)). In the case of the low-density matrix (Figure 3.7a), 9 of 20 simulations
formed a single large lumen, and 11 simulations formed a principal large lumen
with some additional small ones. The median value of the number of lumens was
2.5. When the sum of the lumens coincides with the higher lumen volume value,
the volumes of the secondary lumens are insignificant compared to that of the
principal lumen. In the case of the high-density matrix (Figure 3.7b), only 2 cases
produced a single lumen, and the median number of lumens increased to 6. In all
simulations in the high-density matrix, the higher lumen volume is significantly
smaller than that in the previous cases. Moreover, two main cases are identified,
those with a small principal lumen with various lumens of negligible volume and
those with a small principal lumen, some secondary lumens smaller than the prin-
cipal but still significant and some minor lumens (for instance, simulations 1, 3,
6, 13, 15 and 19).

We compare the higher lumen volume of the organoid obtained in each sim-
ulation after 7 days in the low-, intermediate- and high-density matrices for the
20 simulations performed (Figure 3.8). The lumen volume obtained in the sim-
ulations in the low-density matrix presents a higher variability than that in the
high-density matrix. Thus, the standard deviation is 2.8 times higher than that
in the high-density matrix. However, the lumen volume achieved in most cases
in the low-density matrix is significantly greater than that in the high-density
matrix. Additionally, the median lumen volume difference between the low-
density and high-density matrix is approximately 74.2%, between the low-density

"The cases of lumen morphogenesis in the low and high-density matrices presented previously
correspond to the second simulation (nsim = 2) in Figure 3.7a and Figure 3.7b respectively.
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Figure 3.6: Comparison of lumen formation in the low and high-density matrices.
Cyst formed after 7 days of simulation in the low-density matrix in (a), and in the high-
density matrix in (b). Full view of the cyst (left), a perspective of the cyst with only the cells
positioned approximately below the center of the organoid (middle), and the evolution of the
lumen volume (right). Cells are represented in blue and the lumen fluid in red. Evolution
of the pressure and number of cells in the low-density matrix in (c) and in the high-density
matrix in (d).
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Figure 3.7: Comparison of the lumen volume in the low and high-density matri-
ces. Volume of the lumen after 7 days for each of the twenty simulations in the low-density
matrix in (a) and in the high-density matrix in (b). The numbers in parentheses indicate
the number of lumens produced, the red circles represent the discrete volume of each lumen,
the green crosses show the sum of the volumes of all lumens in each simulation and the blue
line is the median. The bars represent the volume of the largest lumen, which are plotted
for the sake of the visualization (note the difference between the scales of the graphs). A
representation of the cyst formed in simulations 1, 2, 3, 4, 7, 13, 15, 17, and 20 is shown in
the case of the low-density matrix in (c) and in the case of the high-density matrix in (d).
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Figure 3.8: Higher lumen volume of the organoid after 7 days for each simula-
tion in the low-, intermediate- and high-density matrices. Red circles are the discrete
values of each simulation. In cases in which multiple lumens were produced, the red circle
corresponds to the volume of the largest lumen. The top line of the box represents the 75th
percentile and the bottom line the 25th percentile. The magenta line shows the mean and the
blue line the median.

and intermediate-density matrix is approximately 57.0%, and 39.7% between the
intermediate-density and high-density matrix.

Finally, the mean interactive cells’ net force during the 7 days simulated for
each simulation in the case of the low-, intermediate- and high-density matrices is
presented in Figure 3.9. The forces acting on cells are higher in the high-density
matrix than in the low-density matrix. In particular, the median in the high-
density matrix is approximately 4.5 times greater than that in the low-density
matrix. Moreover, the standard deviation in the high-density matrix is 2.98 times
higher than that in the low-density matrix. In the case of the intermediate-density
matrix, the median is 2.3 times greater than in the low-density matrix but 0.51
times lower than in the high-density matrix.
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Figure 3.9: Mean value of the cells’ net forces for each simulation in the low-,
intermediate- and high-density matrices. Red circles are the discrete values of each
simulation. The top line of the box represents the 75th percentile and the bottom line the
25th percentile. The magenta line shows the mean value and the blue line the median.

3.4 Discussion

We present a 3D multi-ABM for lumen morphogenesis that introduces the
regulatory role of the luminal hydrostatic pressure generated by the cells’ fluid
secretion and the interaction with the ECM. These biophysical effects allow the
simulation of lumen morphogenesis under three matrices with different densities
and the determination of how the density influences its formation. We show
that increasing the density of the matrix hinders lumen morphogenesis, increases
the number of cells, and produces a dysfunctional architecture. Moreover, the
model predicts normal lumen morphogenesis and aberrant multilumen formation
related to tumor formation as a result of the increased density of the matrix.

In a high-density matrix, we find alteration of the lumen formation process
that produces an aberrant structure. The main contribution to the disruption of
normal lumen morphogenesis is the balance between the matrix and the forces
derived from the luminal hydrostatic pressure. When the matrix density is high,
the luminal hydrostatic pressure generated by the cell secretion cannot displace
the cells as easily as when the matrix density is low since the matrix opposes the
cells’ movement. Consequently, the lumen remains diminished, and the hydro-
static pressure continues increasing with the successive cell secretion to a value
at which point cells cannot pump more fluid into the lumen. In this situation, cell
division does not contribute to creating luminal space because the lumen size is
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small, and its surface is fully covered by overlapped cells. Conversely, as there
is no space around the lumen surface, cell division forces some cells to leave the
monolayer. At this point, the cells that do not face the lumen attempt to polarize
to create a new lumen. Finally, a dysfunctional structure with numerous small lu-
mens is formed. This aberrant architecture is associated with tumor pathogenesis
and is found in many carcinomas [236]. Therefore, we conclude that the relation-
ship between the matrix density and the luminal hydrostatic pressure is crucial
and might help to determine the development of tumor pathogenesis [68].

Moreover, the matrix density not only acts as a damping and determines the
timescale of the problem, but also provides important mechanobiological feed-
back to cells. From a mechanobiological perspective, the second aspect that con-
tributes to lumen malformation is the cell net force. We showed that cells’ net
forces increase with matrix density (Figure 3.9), and this increment in the net
forces transforms the cells towards a malignant phenotype, which enhances the
cell growth rate. The interplay between mechanical forces, ECM, and growth
factors controls the cell cycle progression [259]. Thus, the compliance of the ma-
trix acts as a cell-cycle inhibitor and matrix stiffening increases cell proliferation
[255-258]. Our model includes this effect and when the matrix density is higher,
the cell net forces are higher and it makes cells increase their growth rate, there-
fore, the total number of cells increases with matrix density. This contributes to
some cells escaping from the lumen they are facing and attempting to form a new
lumen. Moreover, we showed that there is low variability in mean cell net force;
therefore, it is strongly influenced by matrix density. Therefore, the density of
the matrix acts not only as a relaxation time of the system, but also as a regulator
of cells’ net forces, luminal pressure, morphology, and the formation of multiple
lumens.

Our work replicates the experimental observations of [68]. They found that
matrix rigidity compromises tissue organization, inhibits lumen formation, in-
creases colony size, and increases cell forces. These four tendencies are observed
in our results; in the case of the high-density matrix, an aberrant architecture
with multiple lumens was obtained, the lumen volume was significantly smaller
than that in the low-density matrix, and the number of cells and the cells’ forces
increased.

In the proposed model, several simplifications have been considered. Cells are
assumed to be nondeformable spheres; therefore, cell shape was not represented
accurately. In a deformable model, we would have cell deformation around the
lumen. However, apart from the shape representation, little differences in cells’
position are expected. This simplification reduces the computational cost of the
simulations, but it does not affect the process of lumen morphogenesis. Here,
we focused on simulating lumen morphogenesis from the beginning with an in-
dividual cell; therefore, we are focused on determining the position of each cell
to understand their coordination rather than obtaining the exact representation
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of the cell shape. Moreover, we represented the lumen fluid through a particle-
based simulation. With this approach, the mechanical properties of the fluid are
not accurately described, especially concerning the rheological behavior of the
lumen. Although this representation is a simplification, it allowed us to simulate
the interaction between cells and the fluid in a developmental process in which
the interface between cells and the fluid changes with time. Also, our model per-
mits the simulation of the formation of lumens de novo and the increase of the
luminal fluid.

In our model, we characterized the ECM by means of the dynamic viscosity
for the whole domain. With this approximation, we are considering the viscous
properties of the matrix but not the elastic ones. Despite this simplification, our
model allows us to study how the biophysical properties of the ECM, represented
through its viscosity, affect the lumen size and morphology in a three-dimensional
simulation. Both cells and particles experiment with a drag force that opposes
their relative motion with the matrix. It may be reasonable to expect variation
in the dynamic viscosity between the lumen and the outside of the cyst. A lower
dynamic viscosity inside the lumen implies lower resistance to the motion of par-
ticles, and we might expect variation in the growth and size of the lumen. How-
ever, this aspect is already considered through the parameter representing the
strength of the repulsive and adhesive forces in the particle-particle and particle-
cell interactions. Thus, a reduction in dynamic viscosity in the lumen facilitates
particle movement, which is equivalent to an increase in the magnitude of these
interacting forces.

In this study, we suggest that there is a maximum luminal pressure above
which the cells cannot secrete. On the one hand, an increase in the force threshold
for cell secretion allows higher hydrostatic pressure, and the lumen might open.
On the other hand, if the threshold is excessively restricted, cells cannot secrete,
and the lumen remains diminished. Therefore, this parameter is set such that it
allows the lumen to grow without opening.

This computational model is conceptualized as a tool for simulating lumen
morphogenesis by cells in different organs. Thus, the parameters used in the
model could be experimentally quantified and, therefore, enable adjustment of the
model to simulate lumen morphogenesis in different scenarios. Specifically, the
cell cycle constants of the model can be experimentally estimated to characterize
diverse cell types that form a lumen. The fluid production time can be estimated
by monitoring the volume of the lumen in cell cultures such that the evolution of
the lumen volume obtained can be fitted with the experimental results.

70



3.5. CONCLUSIONS

3.5 Conclusions

This work finds a strong correlation between the density of the ECM and
lumen morphogenesis. Thus, an optimal density that provides adequate biome-
chanical conditions to form the lumen and reach a proper structure may exist. We
showed that cells require a low-density matrix to form a normal lumen. In this
case, cell division and cell fluid secretion act in a coordinated manner to form
a normal lumen. However, an increase in matrix density disrupts this coordi-
nation and promotes an aberrant multiluminal architecture. Therefore, matrix
density provides crucial properties to regulate the deviation from normal lumen
morphogenesis to tumorigenesis. Finally, we would like to highlight that this
computer-based model has allowed us to investigate different mechanical sce-
narios representative of a relevant biological process as lumen morphogenesis,
clearly demonstrating the possibilities of computational simulations in biological
engineering research.
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CHAPTER 4. ORGANOID MORPHOGENESIS

Abstract

How cells orchestrate their cellular functions remains a crucial question to
unravel how they organize in different patterns. We present a framework based
on artificial intelligence to advance the understanding of how cell functions are
coordinated spatially and temporally in biological systems. It consists of a hy-
brid physics-based model that integrates both mechanical interactions and cell
functions with a data-driven model that regulates the cellular decision-making
process through a DL algorithm trained on image data metrics. To illustrate our
approach, we used data from 3D cultures of murine Pancreatic Ductal Adenocar-
cinoma (PDAC) grown in Matrigel as tumor organoids. Our approach allowed
us to find the underlying principles through which cells activate different cell
processes to self-organize in different patterns according to the specific microen-
vironmental conditions. The framework proposed here expands the tools for sim-
ulating biological systems at the cellular level, providing a novel perspective to
unravel morphogenetic patterns.

4.1 Introduction

Organ morphogenesis can be studied in situ through the analysis of stained
tissue sections taken at different phases of embryonic development. This pro-
vides relevant, albeit static, information about the evolution of the morphology
and the interactions between the elements of the developing organ. Morphogen-
esis can also be studied using 2D in vitro models built from stem cells properly
stimulated with growing factors and/or cocultured cells. These models replicate
some of the cellular interactions that occur during organ development, providing
important information about the signaling pathways involved in normal organ
formation. 2D culture models, however, lack a key element of organ morphogen-
esis, namely, the complex ensemble of three-dimensional spatial interactions that
occur during the developmental process. These interactions, which determine the
successful series of events that end with the formation of a mature organ, include
not only interactions between cells but also, very importantly, interactions be-
tween the cells and their local microenvironment. This has caused the birth of
a growing trend in the study of morphogenesis, which is the use of 3D in vitro
cellular models or organoids that recreate in vitro the process of organ formation
[277-279]. Some organotypic models have also been developed that replicate the
growth and development of tumors (tumor organoids) from cancer stem cells and
the appropriate stimulation of growth factors and biomechanical cues [280, 281].
These complex models replicate the interactions that exist between cancer cells
and with other cells of the tumor microenvironment, most relevantly the cells of
the immune system. Tumor organoids can be of different complexity, from simple
spheroids made of one or a few cell types suspended in medium enriched with the
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appropriate growth factors [282] to more complex models comprised of several
cell types embedded in a biomimetic hydrogel. Finally, more advanced models
are being developed based on microfabrication-bioprinting and microfluidic tech-
nologies that allow the simulation of interstitial flows [283]. Tumor organoids are
becoming invaluable tools to study the response of tumors to therapies, including
those that stimulate the host immune system.

There are also different approaches to simulate morphogenesis in silico. On
the one hand, continuum models permit the simulation of large cell populations
at the tissue level. This is the case for reaction-diffusion systems based on PDEs
[284] or positional information (PI) [285]. However, these methods neglect the
individuality of cells in favor of larger scales, disregarding the important role
played by cell-to-cell interactions and the phenotypic diversity of the biological
system. Consequently, these methods struggle to reproduce the way cell com-
munities develop into complex structures, especially in three dimensions. On
the other hand, discrete approaches with agent-based modeling consider cells as
autonomous entities that interact among themselves and with the microenviron-
ment [286]. These methods are usually classified into lattice models, in which cell
positions are fixed within a spatial grid [100], and lattice-free models, which al-
low continuous cell positioning in space [272]. Based on the way the cell shape is
represented in lattice-free models, there are center-based models, in which cells
are represented as spheres and are described by their centers and radii [287],
and deformable cell models and vertex models, which account for the cell shape
and deformability [288, 289]. These models have been widely employed, for in-
stance, to simulate tumor growth in vitro [246], to study the role of ECM density
in cell migration within tumor spheroids [217], collective cell migration [290], or
tissue regeneration [291]. These approaches seem appropriate to simulate mor-
phogenesis, it being a process that evolves from a single cell, and the emerging
pattern emerges from cell interactions, cell heterogeneity, and cell processes [111,
245]. Furthermore, agent-based modeling focuses on the cell level; therefore, it
very flexibly simulates in vitro experiments. However, these models have some
challenges related to the designation of rules and fitting parameters that gov-
ern decision-making heuristics and the behavior of cells [111, 245]. Additionally,
they usually have a large number of parameters compared to continuous models,
especially when considering molecular events per cell [292], which makes their
calibration difficult.

Data-driven models are widely used to predict the behavior of complex phys-
ical systems [293, 294]. They can unravel unknown phenomena and reduce the
degree of abstraction of computational models. In computational biology, there
are examples of data-driven models used to find the optimal parameter values in
gene regulatory networks to reproduce the growing limb bud [295] or Bayesian
inference of agent-based cellular automaton to study kidney branching morpho-
genesis [296]. These methods combining data-driven and computational models
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aim to obtain the required parameters of the computational model, which is an
optimization method that lacks generalization, as in the case of the data chang-
ing, the parameters must change as well. In the context of data-driven methods,
there is an increasing use of artificial intelligence and, in particular, ML and DL
algorithms [297]. However, data-driven models are considered black boxes and
are difficult to relate to physical interpretations, as they are mainly focused on
finding input-output relationships.

In this work, we propose a hybrid approach that combines DL and ABMs as a
novel computational framework to simulate cellular biological systems. In other
approaches, the coordination between cells is fixed beforehand and then adjusted
to reproduce a certain behavior. On the one hand, in continuum models, cell
processes are included in constitutive equations and these cell functions are per-
formed at the same time [298, 299]. Then, they are adjusted through a sensitivity
analysis to obtain the fitting solution. However, there is no competition between
cell functions, as they occur simultaneously. On the other hand, in stochastic
models, cells change between cell states through cell state rules, boolean circuits,
gene regulatory circuits, and biochemical reactions from the more abstract to the
more detailed [300, 301]. These relationships between cell states are complex
to establish and describe [302]. Both approaches are usually made to simulate
one particular case or median cases from experiments. However, it is difficult to
reproduce different cases since their parameters are adjusted to reproduce one
observed behavior and the variability is obtained by the introduction of noise.
Moreover, they usually fail to reproduce dynamical processes due to the intri-
cacy of recreating distinct behaviors temporarily with fixed parameters and even
more taking into account the variability between cells. In this new work, we do
not determine how cells behave before defining the relationships between cell
states in order to perform a sensitivity analysis to find the parameters that allow
us to reproduce an observed behavior. Instead, we eliminate all the parameters
in the physics-based model that preestablish the behavior of cells and incorpo-
rate the mechanical cell interactions and biological cell functions in an ABM that
uses a NN to drive the cellular decision-making of the agents during the simula-
tion, replicating how cells make decisions and behave in vivo. This DL algorithm
coordinates cell decision-making by evaluating the simulation in real time and
comparing it with metrics that define the final architecture of the morphogenetic
pattern extracted from cell-level images of real organoids or in vivo data.

To validate and illustrate this framework, we show three different applica-
tions. First, we explain how to particularize this approach to simulate the forma-
tion and growth of tumor organoids from a mouse pancreatic adenocarcinoma
cell line grown in a 3D biometric Matrigel matrix. These organoids form cystic
structures, namely, an organized architecture of cells around a fluid-filled space
called the lumen. Then, we show the simulations of these experiments. Addi-
tionally, we show the application of the approach to simulate the formation and

76



4.2. METHODS

growth of solid tumor organoids from other mouse pancreatic adenocarcinoma
cell lines grown in a 3D biometric Matrigel matrix, which consists of dense ag-
gregates of cells. Finally, we apply this framework to simulate a theoretical case
of the evolution of solid tumor organoids with time-dependent quantitative data.

4.2 Methods

4.2.1 Hybrid physics-based and data-driven framework

We present a novel hybrid physics-based and data-driven framework that
combines agent-based modeling and DL to simulate morphogenetic patterns (Fig-
ure 4.1). The purpose of the physics-based model is to replicate a specific mor-
phogenetic pattern. The data-driven algorithm in turn coordinates, through a
NN, the cell functions required in the physics-based model to achieve that pat-
tern (Figure 4.1a). Thus, the physics-based part consists of an agent-based model
that couples mechanical interactions and the cell biological functions that are de-
cisive in the morphogenetic process, namely, proliferation, quiescence, secretion,
migration, cell death, etc. The selection of these cell functions depends on the
morphogenetic process being simulated.

The physics-based model coordinates the biological behavior of cells to form
a specific pattern, which also requires the appropriate mechanical interactions.
For that coordination, instead of using parameters that fix the relationships be-
tween them, we introduce a data-driven algorithm that performs the cellular
decision-making of the cell functions. Therefore, during the simulation of the
agent-based model, the NN determines which cell function each cell has to per-
form (Figure 4.1a). To this end, given a morphogenetic pattern, we first define
the data metrics that characterize the pattern and establish target values. These
data metrics set the objective of the simulation. Then, when a cell needs to decide
which function to perform, the NN receives as inputs the predefined data metrics
and the simulation metrics from the agent-based model that evaluates the actual
state of the simulation. In this way, the NN compares the simulation with the
target values and makes a decision (see the data-driven box in Figure 4.1a). Each
node of the output layer is related to one cell function; therefore, the activated
node determines the biological function that the cell will perform. This decision
is fed to the agent-based model, which initiates the corresponding cell function
for that cell. This process is repeated during the predefined time of simulation
every time a cell finishes the biological function that it was performing. When
the simulation finishes, a fitness value is reported, which indicates how close the
simulated morphogenetic pattern is compared to the desired morphogenetic pat-
tern. Therefore, the result depends on how well the NN evaluates the simulation
and coordinates cell functions through adequate decision-making.
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Figure 4.1: Framework of the hybrid physics-based and data-driven model. a
Schematic overview of the hybrid data-driven and physics-based algorithm. It consists of an
agent-based model that incorporates mechanical interactions and cell biological functions.
To orchestrate the cell functions within the simulation, the agent-based model employs a
data-driven algorithm. Thus, to determine which function the cell has to perform, the agent-
based model goes into the data-driven algorithm. The data-driven algorithm extracts from
the desired morphogenetic pattern data metrics that characterize the pattern, which are in-
troduced, together with simulation metrics, into the NN as inputs. The NN evaluates the
inputs and determines the cell function that the cell must perform. This process is repeated
until the simulation time of the agent-based model reaches (ts;,, ). Finally, a fitness value is
given to the simulation by comparing the simulated and desired morphogenetic patterns. b
Schematic overview of the training algorithm of the NN. The training starts with the creation
of a random generation (Gen) composed of a population (Pop) of ten NNs. Then, the physics-
based algorithm performs a simulation with each NN, following a similar methodology as a.
Finally, the genetic algorithm selects the two best populations based on their fitness and cre-
ates a new generation through crossover and mutation algorithms. The training is concluded
when the number of generations reaches the specified number of generations (Genp,qq ).
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4.2.2 Learning by the neural network framework

To simulate the morphogenetic pattern, the NN needs to learn how to evalu-
ate the simulation and, depending on the target values, decide which biological
function the cell has to perform. To make the NN learn, we propose a learning
methodology based on a genetic algorithm (Figure 4.1b). Initially, the genetic
algorithm creates a random population of ten NNs with different weight values
assigned, i.e., a generation. Then, we perform a simulation of the agent-based
model with each NN of the generation. When the simulation finishes, we obtain
a simulated pattern for each population. Subsequently, each NN of the genera-
tion is given a fitness value, which represents how well they performed in the
simulation. Finally, it selects from the current generation the two fittest NNs and
obtains, through a genetic algorithm (further details are included in Learning al-
gorithm in Appendix A.2.6), the next generation of NNs. This process is repeated
for a predefined number of generations.

4.2.3 Application of the physics-based framework to the simula-
tion of cystic organoids

To show the potential of our approach, we simulated cystic tumor organoids,
i.e., organoids formed by an outer shell made of cancer cells surrounding a lumen
(Figure 4.2). Lumen morphogenesis implies the development of an organized ar-
chitecture of cells around a fluid-filled space. This inner space, called the lumen,
is found in many parts of metazoan organisms and allows them to perform spe-
cific functions. The development of a lumen requires sophisticated coordination
of several cell processes. Specifically, three basic mechanisms are crucial [227]:
Initially, cells proliferate and polarize to determine the landmark where the lu-
men will be initiated. Next, cells secrete fluid into that central site and generate
luminal hydrostatic pressure that makes the lumen enlarge [231, 232, 243, 244].
To preserve the overall cystic structure, a balance between strong cell-cell junc-
tions and spatially controlled cell mitosis is needed. Finally, the stiffness of the
ECM plays an important role [68] by balancing the luminal hydrostatic pressure
and providing physical cues that regulate cell behavior [234].

To simulate the morphogenesis of the lumen, we built a 3D ABM. This physics-
based model is based on a previous 3D lattice-free center-based model [303]. Here,
we use the structure of that model, but we eliminate the parameters that coor-
dinate the relationships between cell functions, the effect of the cell net forces
on the cell cycle, and multiluminal polarization mechanisms. To reproduce the
morphogenesis of organoids composed of cells enclosing a fluid-filled lumen, we
consider two types of agents: cells, which are the biological entities, and particles,
which are secreted by cells and simulate the lumen fluid. The mechanical equi-
librium between cells anchored to the ECM and the luminal pressure ensures the
maintenance of the luminal architecture (further details are included in Agent-
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based modeling in Appendix A.2.7). To model this mechanical equilibrium, we use
agents that interact mechanically to generate and maintain the lumen. Thus, cells
interact among themselves based on pairwise potential functions in an adhesive-
repulsive manner. The repulsion between agents mimics cell resistance to de-
formation when their membranes touch, and the attractive forces are the result
of the cell junctions exerted through specialized protein complexes. Moreover,
particles also interact via pairwise potential functions and interact with cells in a
repulsive manner. This interaction mimics the luminal hydrostatic pressure gen-
erated by the cells’ fluid secretion, and it is responsible for the movement of cells
and generation of the luminal space. Finally, agents interact with the ECM by
means of a friction coefficient that represents the dynamic viscosity of the matrix
(Figure 4.2 top left).
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Figure 4.2: Particularization of the framework for organoids with lumen. The
physics-based model consists of an ABM that integrates mechanical interactions and cell
functions. Cells are biological entities, and the particles simulate the lumen fluid. Three cell
functions are considered: proliferation, quiescence, and fluid secretion. At is the minimum
period of time that a cell remains quiescent and At is the fluid production time.
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Three decisive cell functions are considered to achieve the cystic morpho-
genetic pattern: proliferation, quiescence, and fluid secretion (Figure 4.2 top right).
First, we define a mathematical model for simulating the cell cycle that regulates
cell proliferation. Overall, it consists of a growth phase, in which the cell progres-
sively increases its volume as a result of DNA replication, and a mitosis phase,
in which the cell divides into two daughter cells (see Cell division in Appendix
A.2.8). In addition, we include a quiescent state in which the cell remains inac-
tive for a period of time (At,). Finally, cells can produce fluid during a period of
time (At¢z0) and then secrete it inside the lumen, increasing the lumen volume.
To simulate this process, we assume that cells generate particles that simulate the
lumen fluid (further details are included in the Characterization of the lumen fluid
section in Appendix A.2.13). Consequently, the lumen is in a state of hydrostatic
pressure due to this cell secretion.

4.2.4 Application of the data-driven framework to the simulation
of cystic organoids

In the data-driven framework, we first define the metrics that characterize the
pattern using target values. In the case of organoids with lumen, we defined the
target number of cells (IV!) and target lumen volume (V}') to describe the mor-
phology of the organoid (Figure 4.2 middle). We also define several simulation
metrics that are updated when a cell has to decide its next cell function. Specif-
ically, these simulation metrics are the total number of cells, the lumen volume,
the eccentricity between the cells center of mass and the lumen fluid center of
mass (see Eccentricity in Appendix A.2.10), and the number of proliferating, qui-
escent and secreting cells. These values are given as inputs to a NN (Figure 4.2
bottom right). We assume that each cell can only perform one cell function at
a time. Hence, the NN determines the appropriate cell function that cells must
perform. The NN consists of an input layer with six nodes, one hidden layer with
four nodes and a hyperbolic tangent activation function, and a layer with three
outputs and a sigmoid activation function. Each node of the output layer iden-
tifies the function that the cell must perform: proliferation, quiescence, or fluid
secretion.

4.3 Results

4.3.1 Learning of the neural network to simulate cystic organoids

The success of the morphogenetic pattern depends on how well the NN co-
ordinates cell functions during the simulation. To make the NN learn to form
organoids with a lumen, we trained the NNs for 400 generations. For this pur-
pose, we did not use any of the experimental data; instead, we used a synthetic
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pattern consisting of an organoid with 8 cells and a lumen of 1000 pm?®. To illus-
trate this process, we show the increase in performance for each generation of
NN (Figure 4.3). As shown, the first generation of NNs did not coordinate the cell
functions properly, as the fitness (see Fitness function in Appendix A.2.9) of this
generation was 0.1869. In fact, the NN only allowed cells to proliferate, thus gen-
erating an organoid without a lumen. Then, the performance increased to 0.6136
in generation 100, as cells were also secreted to generate the lumen. However,
the fluid of the lumen leaked due to the poor coordination between proliferation
and secretion. In generation 200, the fitness increased to 0.8846, and better coor-
dination than in generation 100 was found, in that lumen fluid did not leak, but
the organoid was too asymmetrical. Generation 300 achieved a symmetrical or-
ganoid with lumen with a better approximation of the number of cells and lumen
volume. Finally, in generation 400, an organoid composed of 7 cells and a lumen
volume of 1245 um?® was achieved.
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Figure 4.3: Learning of the neural network of cystic organoid formation. The
fitness value represented corresponds with the highest fitness of the population within the
generation. Snapshots of the achieved organoid inserted in a cube with 100 pym sides fea-
turing one population at generations 1, 100, 200, 300, and 400 are represented. The spheres
represent the nuclei of cells with radius R./2 and the green hull is an estimation of the cell
membrane through alpha shapes of the cells with « = 2R, [276]. The lumen fluid is repre-
sented in black through the alpha shapes of particles with the smallest alpha that produces
an alpha shape enclosing all of the particles.
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4.3.2 Simulation of pancreatic cystic tumor organoids

We simulated 3D cultures of murine pancreatic ductal adenocarcinoma cells
grown in a biomimetic matrix made of Matrigel (4 mg/ml). Real 3D cultures of
PDAC93-GFP cells were generated and incubated for 5 days. In the experimental
setup, we generated a randomly distributed population of organoid seeds ranging
from single cells to small clusters of 2-3 cells (see Figure A.3 in Organoid seeds in
Appendix A.2.11). Then, multiphoton microscopy images of the grown organoids
were segmented and quantified to characterize their morphology. In particular,
we obtained the number of cells in the organoid and the lumen volume, which
were used as target values for the simulation. We chose organoids of different
sizes to test the generalization potential of the methodology (Table 4.1). Specif-
ically, we used two intermediate-size samples (organoids #1 and #2), one small-
size sample (organoid #3), and one large-size sample (organoid #4). We initiated
the simulations with one cell and ran the simulations for 7 days. Although the
PDAC93-GFP cells were incubated for 5 days, we extended the simulation time
to 7 days to prove that the model was able to reach steady-state patterns. The
parameter values used in the simulations are described in Table A.2 in Simulation
parameters for pancreatic tumor cystic organoids in Appendix A.2.12.

Table 4.1: Experiment and simulation results of pancreatic cystic tumor orga-
noids. N! is the number of target cells and V' the target lumen volume.

Experiment Simulation
Organoid N! V!(um®) Nf V/(um?)
1 29 11263 30 11330
2 37 13233 41 14097
3 13 1985 14 2174
4 59 42762 59 43239

We show images of the experimental organoids used as targets of the simula-
tion, the achieved solution of one of the simulations performed, and the coordi-
nation of cell functions (Figure 4.4) corresponding to the organoids in Table 4.1.
As shown, sophisticated coordination of cell functions is required to form an or-
ganoid with a lumen (Figure 4.4b). In our simulations, cells first proliferated,
generating a closed volume. Then, some cells started secreting fluid, while other
cells continued proliferating to create more luminal space to secrete and prevent
fluid leakage. In organoid #1, 2 out of 16 cells (13%) started secreting after 84 h,
and then at 105 h, the rest of the cells also contributed to lumen enlargement by
producing and secreting fluid. In the case of organoid #2, 23 out of 32 cells (72%)
were secreting at 105 h, while 9 cells continued proliferating. After these 9 cells
finished proliferating, the target lumen volume was already reached, so no more
fluid secretion was needed. In organoid #3, cells started secreting earlier (63 h)
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than in organoids #1, #2 and #4. In this situation, only two cells were secreting
over approximately 8 h since the lumen volume of this organoid was small. In
the case of organoid #4, 5 cells out of 32 cells (16%) started secreting at 105 h, and
21 h later, the remaining cells that initially were proliferating were also secreting.
Finally, cells entered a quiescent state in all four organoids when they achieved
the final pattern.

To demonstrate the robustness of the NN to properly coordinate cell func-
tions, we performed 10 simulations with the same NN for each organoid. Both
the number of cells (Figure 4.4c) and the lumen volume (Figure 4.4d) obtained
in the simulations consistently approximated the target data. The fitness of the
simulations was evaluated similarly to the fitness function used for the training
of the NN but neglected the penalization of the eccentricity, since we were not
aiming to approximate the eccentricity of the in vitro experiments, as it was not
used as input data (Figure 4.4e). The minimum median value of the fitness was
0.978 for organoid #2. The median values for organoids #1, #3, and #4 were all
above 0.983.

Moreover, a sensitivity analysis was performed to investigate the influence of
the main parameters of the model on the coordination of cells. For that purpose,
organoid #1 was simulated in situations where the cell cycle time was decreased
and increased by 20% from 30 h to 24 h and 36 h respectively (see Figure A.8 in
Sensitivity analysis in Appendix A.2.16). Originally, the cells finished proliferating
after 105h. A cell cycle time reduction makes cells proliferate faster; therefore,
cells finished proliferating after 84 h. Conversely, cells proliferate slower when
the cell cycle time increases, thus requiring approximately 125 h to finish prolif-
eration. Additionally, a similar sensitivity analysis for the fluid production time
(Ateyo) was performed (see Figure A.9 in Sensitivity analysis in Appendix A.2.16).
When the fluid production time was 15 min, cells secreted during 23 h. A reduc-
tion of the fluid production time to 6 min caused cells to secrete during 21 h, only
two hours less than in the previous case. However, in this case, only two cells
were secreting, since they were able to produce more fluid over the same time
period. Finally, when the fluid production time increased to 60 h, cells were se-
creting over 34 h. Although the variation in these parameters produced changes
in the temporal evolution of the process, neither the variation in the cell cycle
time nor the differences in the fluid production time altered the coordination of
cell functions. Therefore, there might exist a specific organization of cell func-
tions independent of cell type.
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Figure 4.4: Simulation of experimental pancreatic tumor organoids with lumen.
a Image of in vitro organoids and a slice view. Maximum Intensity Projection (MIP). Snap-
shots of the full view, a slice of the simulated organoids, and a slice of the simulated organoids
with the lumen particles representation. The spheres represent the nuclei of cells with radius
R./2 and the green hull is an estimation of the cell membrane through alpha shapes of the
cells with o = 2R.. The lumen fluid is represented in black (fourth column) through the
alpha shapes of particles with the smallest alpha that produces an alpha shape enclosing all
of the particles. All scale bars are 30 um. b Coordination of cell functions, in which blue
represents proliferation, red represents secretion, green represents quiescence, and white rep-
resents an unborn cell. ¢ Target number of cells (N!) and the number of cells (N..) in the
10 simulations for each organoid. d Target lumen volume (V}') and lumen volume (V}) in

the 10 simulations for each organoid. e Boxplot of the fitness value of the 10 simulations for
each organoid.
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Finally, an analysis of the effect of the noise on the parameters was per-
formed. Accordingly, the cell cycle time and fluid production time parameters
varied £20%. Thus, every time a cell is set to perform either proliferation or fluid
secretion, a random variation of the parameter for that individual cell is made be-
tween [-20, +20]% of the value from Table A.2 and assigned for its cell cycle time
or fluid production time. To determine how this variation could affect the results,
we simulated an intermediate cystic organoid (organoid #2). Thus, we performed
10 simulations of this organoid to determine the effect of the fluctuation of the
parameter. We found that the coordination of cell functions when the parameters
are variable is similar to the case without any variability (see Figure A.10a and
Figure A.10b in Random effect analysis in Appendix A.2.17). However, there is a
desynchronization between cells in terms of cell functions caused by the variabil-
ity of the duration of their functions. To better compare the coordination of the
cell functions, we represented the evolution of the normalized number of prolif-
erating cells, secreting cells, and quiescent cells over time (Figure A.10c). In the
three cases, the evolution of the functions performed by the cells in the case with
variable parameters was aligned with the case without variation. Despite the in-
troduction of this noise, the median value of the fitness of the ten simulations
was 0.9956, and the minimum was 0.9537 (Figure A.10d).

4.3.3 Application of the framework to solid tumor organoids

To illustrate the possibility of applying this framework to other morpho-
genetic patterns, we applied our methodology to simulate the formation of solid
tumor organoids (further details of the methodology can be found in Figure A.11
in Application of the framework to solid tumor organoids in Appendix A.2.18). These
solid tumor organoids consist of dense spherical aggregates of cells. To simulate
the formation of this pattern, we considered two cell functions: proliferation and
quiescence. Furthermore, we consider cell-cell mechanical interactions based on
pairwise potential functions and the interaction of cells with the ECM by means
of a friction coefficient. In the data-driven part of the model, we employed the
target number of cells (IV!) as the metric that defines the size of the organoid and
fixes the objective of the simulation. We also extracted some simulation metrics,
which are the total number of cells, the number of proliferating cells, and the
number of quiescent cells. The NN consists of an input layer of three nodes, a
hidden layer of two nodes, and an output layer of two nodes, which represents
either proliferation or quiescent states of the cell. Therefore, the NN coordinates
both processes to achieve the target size of the organoid.

4.3.4 Simulation of pancreatic solid tumor organoids

We simulated the corresponding experiments of 3D cultures of PM12500-GFP
tumor cells grown also in a biomimetic matrix (Matrigel 4 mg/ml). This cell line is
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characterized by the formation of organoids composed of aggregates of cells that
do not form a lumen. Here, real 3D organoids of PM12500-GFP tumor cells were
also generated and incubated for 5 days. Then, their morphology was segmented
and quantified from multiphoton microscopy images of the grown organoids. In
this case, we obtained the number of cells to quantify the size of the organoids.
Different-size organoids were chosen again to prove the adaptive response of the
computational-based methodology to the data. In particular, we used one small
sample (organoid #1), one intermediate sample (organoid #2), and two large sam-
ples (organoids #3 and #4) (Table 4.2). The simulations were initiated with one
cell and run for 7 days to prove that the model is able to reach steady-state pat-
terns. The parameters of the simulations can be found in Table A.3 in Simulation
parameters for pancreatic solid tumor organoids in Appendix A.2.19

We show images of the experimental organoids, the simulation of the orga-
noids, and the coordination of cell functions (Figure 4.5), which represent the
organoids in Table 4.2. The simulated organoids matched the target number of
cells of the experimental data by Day 5. Here, precise coordination between pro-
liferative and quiescent cells is needed, as the organoids approximate the target
number of cells (Figure 4.5b). In organoid #1, after 67 h, 7 cells continued prolifer-
ating, and 9 cells entered quiescence, reaching the target number of cells at 84 h.
In organoid #2, most of the cells (93.75%) became quiescent at 84 h, while 2 cells
continued proliferating to finally form the target pattern at 101 h. In organoid #3.
Twenty-two cells (68.75%) were proliferating after 84 h to increase the number of
cells up to 53 at 101 h. Organoid #4 was the case in which more cells continued
proliferating after 84 h, 28 out of 32 (87.5%).

Table 4.2: Experiment and simulation results of pancreatic solid tumor orga-
noids. N! is the number of target cells.

Organoid Experiment Simulation

N Ne
1 23 23
2 34 34
3 53 53
4 60 60

4.3.5 Application of the framework to the evolution of solid or-
ganoids

To demonstrate not only the application of the methodology to other patterns
but also the possibility to mimic the temporal evolution of patterns, we show an
extrapolation of our methodology to simulate the evolution of solid organoids
without lumen, which consists of dense spherical aggregates of cells (further de-
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Experiment Simulation

Organoids

Figure 4.5: Simulation of experimental solid tumor organoids. a. Image of in vitro
organoids. Snapshots of the simulated organoids. The spheres represent the nuclei of cells
with radius R./2 and the green hull is an estimation of the cell membrane through alpha
shapes of the cells with « = 2R,.. All scale bars are 30 um. b Coordination of cell functions,
in which blue represents proliferation and green represents quiescence.

tails of the methodology can be found in Figure A.12 in Application of the frame-
work to the evolution of solid organoids in Appendix A.2.20). With this methodol-
ogy, we aim to reproduce the growth of solid organoids so that the evolution of
this organoid matches the target evolution. To do that, target data is specified at
different time points (¢). In this case, the target data consisted of the number of
cells (N f}) In the agent-based framework, we consider cell mechanical interac-
tions and the cell interactions with the ECM. Moreover, cells can either proliferate
or stay in a quiescent state during a period of time (At,;). When a cell finishes the
cell function that it is performing, the NN decides the next cell function that the
cell has to perform. Thus, we extract some simulation metrics (number of cells,
number of proliferating cells, number of quiescent cells, and the simulation time)
that characterizes the state of the simulation. Then, we obtain from the target
time (¢') the target time immediately superior to the simulation time (¢) and the
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number of cells (IN%). These data are transferred to the input layer of the NN in
the following manner: the first node receives the comparison between the target
number of cells and the number of cells of the simulation (N? — N.)/N?); the
second node receives the normalized number of quiescent cells, and the third node
receives the normalized number of proliferating cells. Finally, the NN determines
the next function to perform.

4.3.6 Simulation of the evolution of solid organoids

In order to show the possibilities of the methodology, we consider three syn-
thetic cases of solid organoids with different temporal evolutions (Table 4.3). Or-
ganoid A represents a proliferative organoid. Case B represents an organoid that
proliferates, then remains quiescence between day 3 and day 5, and proliferates
again between day 5 and 7. Finally, case C corresponds to a proliferative orga-
noid with a higher proliferation rate than case A. The parameters used for the
simulation are collected in Table A.4 in Simulation parameters for the evolution of
solid organoids in Appendix A.2.21

The simulations matched the evolution of the number of cells in the three
cases (Figure 4.6), adapting to the changes in input data over time. In organoid
A, as cells proliferate, they become quiescent while some cells still proliferate to
match the target values (Figure 4.6a). In the case of the organoid B, cells prolifer-
ate until day 3, and between day three and five they enter into a quiescent state
to finally proliferate after day 5 (Figure 4.6b). In organoid C, cells have a higher
proliferative capacity than organoids A and B, so cells tend to proliferate against
quiescence (Figure 4.6¢). Also, we simulated the evolution of a larger solid tumor
organoid to demonstrate that the model works for any size. In this case, the target
number of cells was established to 100 cells on day 7 and 500 cells on day 10 (Ta-
ble A.5 in Simulation of the evolution of larger solid organoids in Appendix A.2.22).
The simulation matched the evolution of the number of cells (Figure 4.6). Thus,
this methodology is also able to mimic the temporal evolution of morphogenetic
patterns of any size as long as the final result is feasible to achieve.

Table 4.3: Target data for the evolution of solid organoids.

Target number of cells (V))
Organoid 3days 5 days 7 days

A 7 15 40
B 5 5 17
C 6 20 60
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o Target values
— Total number of cells
Day 3 Day 5 Day 7 —Number of proliferative cells

Number of quiescent cells

Figure 4.6: Simulation of the evolution of solid organoids. Snapshots at days 3, 5,
and 7 of the temporal evolution of the solid organoids inserted in a cube of 200 um side
and the evolution of their number of cells. a Organoid A. b. Organoid B. ¢ Organoid C.
The spheres represent the full cell volume, and the green hull is an estimation of the cell
membrane through alpha shapes of the cells with o = 2R,..

4.4 Discussion

We present a novel hybrid physics-based and data-driven approach that com-
bines agent-based modeling and DL for the simulation of developmental biology
at the cellular level. Thus, we hypothesized that the different patterns that cells
form are consequences of the distinct spatial and temporal coordination of their
cellular functions. The following question is then how cells determine which cel-
lular function to perform, since if we are able to replicate the decision-making
of cells, we can reproduce the coordination of cell functions to achieve any pat-
tern. Thus, we built a novel computational framework in which a NN manages
the decision-making of biological cell functions within a physics-based model to
achieve an objective morphogenetic pattern. To accomplish the simulation of
morphogenetic patterns, we do not fix the relationships between cell functions
beforehand; instead, we consider cell functions as independent processes that
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cannot occur simultaneously, and the DL algorithm decides for each cell which
cellular function they will be performing during the developmental process, prop-
erly coordinating all cellular functions for pattern formation. Thus, this artificial
intelligence-based method learns the intrinsic mechanisms of the morphogenetic
process and, therefore, is capable of reproducing similar morphogenetic patterns
with different dynamical processes without optimizing the parameters ad hoc just
by changing the target data about the pattern transferred to the input of the NN.
Therefore, with this approach, we can understand how cells must behave both
spatially and temporarily to form different patterns.

In this work, we showed how to integrate a physics-based model with a DL
algorithm to simulate morphogenetic patterns in 3D organoids. This modular
framework offers a wide flexibility to change and adapt the physics-based and
data-driven models involved. On the one hand, in the physics-based part, agent-
based modeling offers a broad range of types of models: from center-based mod-
els to deformable or vertex models [286]. This allows us to take advantage of a
chosen model to better adapt to a specific application. On the other hand, regard-
ing the data-driven part of the framework, different types of NNs and activation
functions can be considered. Indeed, the architecture of the NN could be simpli-
fied to reduce the computational cost of the learning process or incremented to
unravel complex features, trying to find the optimal conditions for each case de-
pending on the type of morphogenetic pattern, the quantity of input data, and the
different cell states considered [304]. Additionally, there exist different learning
algorithms that can be integrated into this approach (genetic algorithm, gradi-
ent descent, conjugate gradient, Levenberg-Marquardt algorithm, among others
[305]) for different computational speeds and memory requirements given a set
number of parameters of the chosen NN. Therefore, our framework is scalable
with different types of models and permits modification to improve the compu-
tational cost and to better capture the specific biological process.

To evaluate the potential of the approach, we showed two applications mim-
icking in vitro data of the final pattern of organoids and one application repro-
ducing synthetic time-lapse data. Thus, one advantage of this approach is that
it requires little information about the morphogenetic processes, being able to
undertake pattern formation using just final morphological information about
the pattern extracted visually. In pattern formation, generally, the information
is obtained from the observed final pattern (in general image data), and the ef-
forts move to unravel how it was formed. In particular, time-lapse experiments
could alter the viability of cell cultures by inducing cellular damage (e.g., imaging-
induced phototoxicity, leading to cell cycle arrest or cell death [306]). However,
it is possible not only to obtain the coordination from the data of the final pat-
tern but also to reproduce the temporal evolution of patterns. This permits us to
mimic the exact evolution of the pattern formation when having time-lapse data,
since it matches the known temporal constraints.
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Regarding the simulation of in vitro data of lumen morphogenesis in PDAC
organoids, physiologically, the generation of a cystic organoid requires the or-
chestration of proliferation, fluid secretion, and quiescence. On the one hand,
if cells secrete fluid too early, the preapical patch, which is the closed volume
necessary to secrete fluid, will not be formed, resulting in fluid leakage. On the
other hand, if cells secrete too much fluid, the hydrostatic pressure excessively
increases, and the lumen opens. Additionally, if cells proliferate too much, they
will not fit in the monolayer around the lumen, and cystic structures will not be
formed. In contrast, if cells do not proliferate, they will not create enough inner
space for the fluid, resulting in leakage. Only if cell functions are coordinated in
a sophisticated manner will cystic structures form. In particular, first cells must
proliferate to create an inner volume and then secrete fluid and while continu-
ing to proliferate to create more inner space as the fluid increases, before finally
entering into a quiescent state. Therefore, the success of lumen generation de-
pends on the proper coordination between cell proliferation, cell secretion, and
quiescence. In fact, what the NN learns is that if it generates too much pressure
through fluid secretion with an insufficient number of cells, it leaks. Additionally,
it learns that cells must first proliferate to generate the organoid and, as the orga-
noid reaches its final size, enter into a quiescent state. Despite the great biological
variability in terms of the final size of in vitro experiments (see Figure A.14 in Cell
count analysis of the in vitro cystic organoids in Appendix A.2.23), we were able to
obtain the developmental process to finally predict their size in each case. This
quantitative validation with in vitro data proves that this approach does not pro-
duce ad hoc solutions and confirms that the different coordination of processes
determines the final pattern. This is very suitable to simulate biological systems,
which display variability and fluctuations around a solution. In the case of solid
tumor organoids, the NN coordinates proliferation and quiescence to achieve the
final size of the organoid. This regulation of the dynamics of the population of
cells is a helpful tool that could be used in many types of simulations. This per-
mits the integration of data into simulations to determine cell proliferation, which
is sometimes a difficult task, especially when the dynamics of the population of
cells change over time. Therefore, our model is designed to predict the order in
which cells behave to achieve a specific pattern.

Moreover, from a biological perspective, we found in our simulations that
some cells are predisposed to perform a specific function over others. This is the
case for the initial cell or first cells, which tend to proliferate more than daughter
cells (Figure 4.4b). These initial precursor cells might have a higher prolifera-
tive potential, and as they divide, the daughter cells are more specialized with
a higher differentiation grade. Inside an organoid, there exists heterogeneity of
cellular functions, and we hypothesize that the cellular functions that cells per-
form in a morphogenetic process are not governed by the maturation of cells but
by the stimuli to which they are exposed when they determine which function to
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perform. This implies that some cells are more specialized in division and others
in secretion within the organoid. We also found that the final size of the organoid
depends on the morphological characteristics of the organoid when the lumen is
initiated. In our simulations, the initiation of the lumen, determined by the begin-
ning of the fluid secretion, was different for each case, being earlier the smaller
the final size of the organoid was (Figure 4.4b). We were able to establish that,
initially, cells have a less differentiated phenotype and have a higher proliferative
capacity. Then, as they proliferate, the daughter cells adopt a higher differen-
tiation grade and specialize into secretory cells due to the stimuli that they are
exposed when they are born. Thus, when they start secreting, the proliferative
capacity of the organoid is reduced, so the final size of the organoid is limited by
its size at the lumen initiation time. Therefore, we hypothesize that the prolifer-
ation capacity of cells may be hindered by the initiation of lumen formation and
that the final size can be predicted at the initiation of lumen formation. These
hypotheses could be validated by performing cell culture immunostaining with a
mitotic cell marker to determine the number of proliferative cells in the biological
system [307].

Another potential of this approach is that once the NN has learned how to or-
chestrate cells to form the morphogenetic pattern, the parameters of the physics-
based model can be modified to study the morphogenetic process under differ-
ent scenarios. This allows the simulation of morphogenesis with different ECM
properties, cell cycle times, or even organ-specific morphogenesis. In the case of
morphogenesis, similar patterns are found in many parts of the organism, but the
dynamic process differs in each organ since cell cycle time phases vary consid-
erably between different types of cells and secretory cells may require different
amounts of time to produce fluid. This implies that similar morphogenetic pat-
terns can result in different sizes and require different lengths of time to achieve
the final shape. However, although morphogenesis depends on cell type and the
dynamics of the process vary, the requirements of the morphogenetic process are
conserved among similar patterns. To this aim, we conducted a sensitivity anal-
ysis (Figure A.8 and Figure A.9) varying the cell cycle time and fluid production
time for the pancreatic cystic tumor organoids. This variation in these two pa-
rameters represents either the fluctuation of the behavior between the same type
of cells or other types of cells that can also form cystic organoids. We also per-
formed an analysis of the influence of the introduction of noise in the cell cycle
and fluid secretion parameters (Figure A.10), showing that the model is robust in
forming the patterns and that the NN can orchestrate cells despite the fluctua-
tions of these parameters. With these analyses, we showed that in addition to the
alteration of the dynamical processes of cells, the coordination to form the same
pattern with the same morphological features (in this case, the number of cells
and lumen volume) is conserved.

In the applications shown in this work, some simplifications have been as-
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sumed. First, we employed a center-based lattice-free model to simulate the for-
mation and growth of organoids, which entails some simplifications. The most
important one is that cells are assumed to be nondeformable spheres, and their
shape was not represented accurately. This simplification allowed us to approx-
imate the size of the organoids through their number of nuclei with a reduced
computational cost. Since the deformation of cells is not simulated, there are
differences between the volume of the simulated organoids and the experiments
(Figure 4.5a). However, this simplification does not influence the coordination
that cells must follow to form morphogenetic patterns. Here, we did not aim to
reproduce the exact shape and volume of the organoids; instead, we focused on
showing the potential of the framework to unravel the orchestration of cell func-
tions from a morphogenetic pattern, which is independent of the cell shape and
volume. Second, we represented the lumen fluid through a particle-based model
comparable to other works [240, 303]. Although this representation is a simplifi-
cation, we showed that our approach accurately reproduces the expected velocity
and shear stress profiles for a Newtonian fluid, similar to water (see Characteri-
zation of the lumen fluid in Appendix A.2.13). This confirms the capability of our
method to model real fluids, serving as a minimal model that aims to recapitulate
certain features such as mass conservation and momentum exchange. However,
it does not rigorously reproduce bulk-scale physical properties. Furthermore, our
approach enables us to simulate the interaction between cells and the fluid during
amorphogenetic process, in which the lumen initiates de novo and grows through
a fluid deposition process by cells, thus evolving the interface between cells and
fluid over time. Additionally, we investigated the influence of particle radius on
the rheological properties of the fluid (further details are included in Particle ra-
dius influence on the rheological properties of the fluid in Appendix A.2.14). We
have justified the choice of the particle radius and demonstrated that the rheo-
logical properties of the fluid play a crucial role in cystic organoid morphogenesis
(see Particle radius influence on fitness in Appendix A.2.15).

Another limitation of the approach relates to the selection of cell functions
and the question of whether the hypothesized functions are sufficient to generate
the specific pattern. In our model, the decision-making possibilities are limited
to the cell functions considered, which in this work were proliferation, secretion,
and quiescence. Indeed, there are many cellular functions and processes that
could be simulated. However, including more cell functions does not guarantee
that all of them might be activated to reach a specific morphogenetic pattern. This
allows us to underestimate them and reduce the complexity of the NN and the
number of outputs. Furthermore, in this first work, we created this data-driven
approach with a NN that receives the quantitative data as inputs. However, the
NN aims to reproduce the cell signaling through which cells sense, receive, and
transduce external factors from their microenvironment (such as pressure, chem-
ical signals, nutrients, etc.), or even internal factors (such as cell damage and cell
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deformation). Therefore, this approach permits the introduction of those factors
as inputs of the NN to enrich cell signaling and response. The final concern is
related to finding the optimal NN architecture for each specific application. Al-
though some rules help to select the number of nodes and hidden layers, trial and
error are commonly used. The NN architecture determines the capacity to solve
the problem and must be appropriate for the application. Moreover, the choice
of the fitness function is fundamental to make the NN learn. The fitness function
evaluates the NN performance depending on how close the simulated pattern is
compared to the objective pattern. Therefore, this interplay between the NN and
the fitness function regulates the learning of the morphogenetic pattern. Despite
the simplifications made in the applications of this framework, it allowed us to
reproduce the morphogenetic patterns of organoids, understating how cells or-
chestrate their cellular functions to achieve those patterns.

4.5 Conclusions

The potential of the proposed framework combining physics-based and data-
driven modeling opens the door to a novel way of performing biological simu-
lations at a cellular level, understanding how cell functions must coordinate to
generate morphogenetic patterns by replicating how cells make decisions and
adapting dynamically their responses to the variability found in biology.
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Abstract

Prostate cancer is a significant global health concern, with millions of new
cases diagnosed annually. Existing monitoring methods, reliant on Prostate-Spe-
cific Antigen (PSA) measurements in blood tests, exhibit limited precision, of-
ten failing to detect tumor progression especially when PSA levels remain stable.
Thus, this work presents a computational framework integrating physics-based
modeling and ML in digital twins to predict tumor prognosis using PSA blood
tests and image-based biomarkers. Patient-specific tumor evolution is simulated
in the digital twin using a physics-based model that considers PSA secretion and
flux from tissue to blood, depending on the tumor vascular distribution. Fur-
thermore, this physics-based model is enhanced by a deep learning model that
spatially and temporally regulates tumor growth dynamics through the patient’s
PSA blood tests and three-dimensional spatial interactions of physiological vari-
ables. We test and validate our framework by accurately predicting tumor pro-
gression in real patients over the years. Our results reveal scenarios of hidden
tumor growth, where serum PSA levels may not rise despite tumor progression.
Therefore, our framework provides a promising tool in clinical prostate cancer
monitoring, predicting tumor growth and aggressiveness, reducing the uncer-
tainty of PSA blood tests, and minimizing the need for performing magnetic res-
onance imaging scans.

5.1 Introduction

Prostate Cancer (PCa) is one of the most prevalent forms of cancer that affect
men [308]. It is estimated that prostate cancer accounted for 1.4 million new cases
globally and resulted in more than 370,000 deaths in 2020 alone [309]. Prostate
cancer is characterized by the uncontrolled growth and division of luminal cells
within the prostate gland. Over time, these cancerous cells can invade nearby tis-
sues and potentially spread to other parts of the body, mainly to the bones, lymph
nodes, liver, and lungs [310-313] in a process called metastasis [314]. Therefore,
predicting the evolution of prostate cancer is essential for timely detection of
growth and halting the expansion of the disease.

The diagnosis of prostate cancer typically relies on the Prostate Imaging Re-
porting and Data System (PI-RADS), which assigns scores on a five-point scale
to lesions observed in MRI sequences [315], and the Gleason score, which as-
sesses the differentiation of cells in biopsy samples [316], serving as an indicator
of tumor prognosis [317]. Subsequently, prostate cancer monitoring is commonly
based on the Prostate-Specific Antigen (PSA) biomarker [318]. The PSA is a pro-
tein produced by both normal and cancerous cells within the prostate gland. Its
main function is to liquefy semen, aiding in the mobility and transportation of
sperm during ejaculation [319]. PSA levels in the blood have been extensively
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employed as a biomarker for both the detection and ongoing monitoring of pros-
tate cancer. Elevated levels of PSA may indicate various prostate conditions, in-
cluding prostate cancer [320]. While the exact reason for increased PSA levels
in prostate cancer is not fully understood, it is believed that cancerous cells can
disrupt the normal architecture of the prostate gland, leading to increased pro-
duction and leakage of PSA into the bloodstream. Consequently, measuring PSA
levels in the blood can help in the early detection of prostate cancer and moni-
toring its progression over time. Yet, tumor progression often occurs without a
significant rise in PSA levels, thereby obscuring the prognosis of the tumor. The
limited specificity and sensitivity of the PSA as biomarker [321-323] are linked
with poor diagnosis, as well as treatment and screening-related adverse effects
[324]. Consequently, it is essential to deepen our understanding of the relation-
ship between PSA levels and tumor development.

Significant improvements have been made in the comprehension of prostate
cancer through computational models. Jain et al. [325] studied through a sys-
tem of differential equations the progression of prostate cancer under contin-
uous and intermittent antiandrogen treatment regimes, emphasizing the hetero-
geneous nature of the disease and adjusting personalized parameters to the "aver-
age" patients. Colli et al. [326] analyzed prostate cancer growth with chemother-
apy and antiangiogenic therapy effects, suggesting that, while cytotoxic drugs
may suffice to treat mild tumors, the combination of cytotoxic action with the
reduction of intratumoral nutrient availability is essential to kill the aggressive
tumor. Lorenzo et al. [327] formulated a model for the PSA dynamics after radio-
therapy treatment, showing good agreement with the patients’ PSA. However,
these works do not incorporate the anatomical and physiological characteristics
of the prostate gland itself, nor do they fully capture personalized aspects of pros-
tate cancer. By considering the specific features of the prostate through image-
based biomarkers, such as its shape, vascularization, or the spatial distribution
of cancer cells, computational models could provide more detailed and accurate
insights into tumor growth dynamics and treatment response. This enhanced
precision would allow for more personalized and effective treatment strategies
that would ultimately benefit the patients.

Advancing along these lines, digital twins are emerging as a promising ap-
proach. Digital twins [328] are virtual representations of physical objects, pro-
cesses, or systems, that mimic the behavior, characteristics, and functionalities
of their physical counterparts. In the context of biology, digital twins offer a
means to integrate the anatomical and physiological characteristics of patients’
tissues, together with medical records, and other relevant information into com-
putational models [329-331]. Thus, digital twins are a powerful tool for providing
a more accurate and personalized understanding of tumor growth and treatment
response in prostate cancer, allowing for a more comprehensive representation
of the disease. Various authors have made efforts in this direction. For exam-
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ple, Boubaker et al. [332] performed a finite element simulation of the interaction
of the prostate and the surrounding organs to predict their deformation to im-
prove radiotherapy delivery. Lorenzo et al. [129] simulated a patient’s specific
prostate generated from computed tomography (CT) images. Lorenzo et al. [333]
extended the model to include the mechanical interaction of prostate cancer and
benign prostatic hyperplasia. Despite significant advances, the aforementioned
works still present several limitations. First, using only CT imaging to deter-
mine prostate geometry falls short in precisely identifying prostate cancer and
pinpointing its location. Second, these models lack the capability to incorporate
detailed information at the cellular level within the prostate tissue, such as cell
density or cellularity, crucial for accurately simulating tumor growth. Moreover,
the lack of perfusion data eliminates the possibility of accounting for the spa-
tial arrangement of the vascular network. Addressing these limitations holds the
promise of enhancing personalized diagnosis, treatment planning, and disease
management for prostate cancer patients, which could significantly contribute to
improved patient outcomes.

In this work, we present a physics-informed machine-learning framework to
predict the prognosis of prostate cancer using digital twins. Initially, we gener-
ate patient-specific digital twins of the prostate from T2-Weighted Image (T2WTI),
incorporating cellular-level data such as cellularity, vascularization, and tumor
location. These digital twins are then introduced into the computational frame-
work to obtain the tumor’s progresion over time. In this physics-based model of
prostate cancer, we consider the production of tissue PSA by cancer cells and pro-
pose a mathematical model to calculate serum PSA levels based on the prostate’s
vascularization. Consequently, the rise of serum PSA levels is caused by tumor
cell proliferation. To determine the tumor’s evolution from patient data, we in-
corporate a patient-agnostic deep-learning method that regulates the dynamics
of tumor growth in the physics-based model, considering the spatial interaction
of physiological variables and other relevant factors. We calibrate the physics-
based model to reflect patient-specific tumor growth dynamics by integrating
one additional follow-up MRI data. This process enables the determination of
personalized physical parameters, enhancing the accuracy of tumor prognoses.
Subsequent tumor growth predictions are made using only serum PSA and non-
MRI data from follow-up assessments. We validate our approach with real patient
data sourced from the La Fe Hospital (HULAFE) database. Our findings demon-
strate the efficacy of our methodology in accurately predicting the evolution of
prostate cancer, based on patient follow-ups using serum PSA data, thereby im-
proving the interpretability of PSA monitoring and advancing toward a potential
method to serve as a surrogate for MRL
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5.2 Materials and methods

5.2.1 Physics-informed machine learning digital twin framework
for prostate cancer

We present a computational framework to predict the evolution of prostate
cancer in digital twins, combining a physics-based model for tumor progression
with a machine-learning model that regulates its growth dynamics (Figure 5.1).
This patient-specific digital twin of the prostate is generated from the T2WI se-
quences on MRI, which include Diffusion Weighted (DW) and Dynamic Contrast
Enhanced (DCE) image sequences, as well as the tumor segmented by expert ra-
diologists from HULAFE, all common procedures in the evaluation and diagnosis
of prostate cancer (Figure 5.1a). Using these MRI sequences, a 3D voxelized ge-
ometry is generated, containing the patient’s data such as the cellularity obtained
from the Apparent Diffusion Coefficient (ADC) [334] and tumor location. Also,
the spatial distribution of the vascularization is considered through the k4 s, de-
rived from the DCE-MRI [335, 336]. Also, the spatial distribution of vasculariza-
tion is considered through k¢yqns, which represents the volume transfer constant
of contrast agent between the blood plasma and extravascular extracellular space
in DCE-MRI [335, 336], providing crucial information about tissue perfusion and
permeability.
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Figure 5.1: Prostate cancer digital twin framework. a The digital twin geometry is re-
constructed from the T2-weighted image sequences on magnetic resonance imaging, includ-
ing the spatial distributions of cellularity, kiyqns, and the tumor mask. b The computational
model consists of two main parts. First, a physics-based model simulates the evolution of tis-
sue PSA P(x,t), serum PSA Py (t), and tumor growth ¢, (x, t). Second, a ML model based on
NN determines the fraction of proliferating tumor cells ¢ (x, t) in the tumor growth equa-
tion based on the data from the digital twin and the patient follow-up serum PSA blood test.
¢ The outcome of the model is the patient’s tumor evolution from diagnosis to the follow-up
date.

We propose a physics-informed ML model to simulate the evolution of pros-
tate cancer (Figure 5.1b). The purpose of the physics-based model is to repre-

101



CHAPTER 5. PROSTATE CANCER

sent the biological processes involved in prostate cancer within the digital twin
framework to predict the progression of the diagnosed tumor. In this model, we
simulate the tissue PSA distribution P(x, t) as a consequence of the PSA leakage
from cancer cells. Additionally, we incorporate the exchange of PSA between the
tissue and the bloodstream. To achieve this, we consider the capillaries located in
the tissue, represented through spatial maps of kians(). This exchange depends
on the concentration difference between the tissue PSA distribution (P(x, t)) and
the serum PSA (Ps(t)), as well as the permeability of the capillaries. We also con-
sider the natural decay of the tissue PSA. The serum PSA (Ps(t)) is obtained by
integrating the flux between the bloodstream and the tissue, also considering its
natural decay. Finally, we model the evolution of the concentration of tumor
cells ¢;(x, t), which represents tumor growth. This tumor cell concentration is
responsible for the production of tissue PSA, and therefore, for the variations in
the simulated serum PSA concentration. Hence, the dynamics of tumor growth
cause the variations in serum PSA (see Physics-based model for prostate cancer in
Appendix A.3.1 for further details of the physics-based model).

In this physics-based model, we integrate a ML model to determine the dy-
namics of tumor growth (c;(x,t)) based on the patient’s serum PSA tests from
their follow-ups. This ML model approximates, through a fully connected NN, the
fraction of proliferating tumor cells ¢y (x, t), which is incorporated into the equa-
tion describing tumor growth (see next section for further details). To accomplish
this, the deep-learning model receives data from the physics-based model and the
patient follow-up data based on serum PSA blood tests. Consequently, it regu-
lates the tumor growth dynamics in the physics-based model so the simulated
PSA reproduces the patient’s serum PSA values accurately. Finally, we predict
the tumor’s evolution from the time of diagnosis to the follow-up date which is
responsible for the observed serum PSA variations.

5.2.2 Machine learning model for tumor growth dynamics

We propose a deep-learning algorithm to determine tumor growth by regu-
lating the fraction of proliferating tumor cells (¢g(x, t)) in equation (A.18) based
on the serum PSA of the patient’s follow-up (Figure 5.2). To approximate this
function that controls tumor growth, we construct an input matrix with data
from the digital twin and the patient. From each voxel, we extract the cellularity
c(x,t), the normalized tissue PSA P(x,t)/ max(P(x,t)), the normalized Kirans
(Ktrans () / max (kirans (), tumor mask (Tiask(, t)), and the fraction of prolif-
erating tumor cells (¢p(x, t)). Subsequently, we collect this information from the
adjacent voxels, adhering to a standardized sequence. Given the voxel-based ge-
ometry, each voxel is surrounded by up to 26 neighbors, except for edge voxels in
which we insert -1 values to substitute for the missing voxel data. This method
allows us to estimate the proportion of proliferating cells not solely through in-

102



5.2. MATERIALS AND METHODS

Machine learning model

Digital twin ! N Neural Network
- Voxelized geometry : iz,

¥

~ @ Neighbors | Data
@ Voxel data: ' inampy

—

| 4
Cellularity: c(a, t) I 8
Tissue PSA: P(x, ) /maz(P(,t)) | g» €
Kyonst Ktrans (@, 1) /maz(kyans (2, t)) : =z
Tumor mask: Tyqsk (2, t) | 6 do(x,t + At)
Proliferating tumor cells: ¢g(, t) : X {

 Patient follow-up data: : o & Tumor growth equation

Serum PSA: (Ps, — Ps(t))/Ps, ! R

|

|

Follow-up time: (t; — t)/t;

Figure 5.2: Machine learning model for tumor growth dynamics. This model
approximates the evolution of the fraction of proliferating tumor cells in each location
(¢9(x,t)). To do that, it employs data from the digital twin and the patient’s follow-up
serum PSA test to construct an input matrix. The matrix is then processed through a NN
to determine the fraction of proliferating tumor cells. Spatial interactions are considered by
incorporating data from neighboring voxels. This process is repeated at every time step in
the physics-based simulation.

dividual voxel data but also by considering the context of their surrounding envi-
ronment, thereby incorporating spatial dynamics into our analysis. Additionally,
the voxelization of geometry standardizes voxel connections and the number of
inputs, rendering the NN adaptable to the prostate geometry across different pa-
tients. This makes the NN agnostic of the digital twin’s geometry, simplifying the
application of the model without requiring retraining due to geometrical changes.

In addition, for each voxel, we concatenate the patient’s data, consisting of the
serum PSA obtained in the follow-up blood test (P;,) compared with the current
simulated serum PSA at the time step when the NN is called. This data is then
normalized as (Ps, — Ps(t))/Ps,. Similarly, we include the time at which the
follow-up blood test was conducted (t;), compared with the simulated time, and
normalize it as (¢; — t)/t;. Finally, this matrix is fed forward to the NN to obtain
(pg(x,t + At)). This process is repeated at every time step in the physics-based
simulation.

5.2.3 Calibration for patient-specific tumor growth dynamics

The calibration of the framework involves two phases. The initial phase en-
tails training the patient-independent NN of the ML model to learn serum PSA
dynamics. The second phase involves obtaining patient-specific parameters for
the physics-based model for personalized tumor growth (Figure 5.3).
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In the initial phase, the weights of the NN () are obtained to learn serum PSA
dynamics through adequate regulation of tumor growth (Figure 5.3a). It is impor-
tant to note that this training step uses a single case of initial conditions (either
synthetic or from an actual patient) which is subjected to a multi-objective simu-
lation: reach a certain blood level of PSA (target serum PSA dataset (P,)) within
a defined period (target times dataset (£;)). Then, we calculate the loss between
the simulated serum PSA and the target serum PSA at the target times. This loss
is then backpropagated to optimize the NN weights (see Model calibration in Ap-
pendix A.3.3). In this way, the NN learns the underlying relationships between
PSA production and the spatial distribution of cellularity, kt;ans, and tumor growth
that result in the different evolutions of the serum PSA. This deep-learning model
addresses the inverse problem of predicting tumor growth from serum PSA at a
certain date. At this point, the physics-based parameters are not required to be
patient-specific, so this step is performed only once during the model setup.

a b
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Figure 5.3: Calibration of the framework to reproduce patient-specific tumor
growth. a Training of the NN to learn to replicate serum PSA dynamics by controlling
tumor growth. This involves conducting simulations with each serum PSA dataset, fol-
lowed by minimizing the loss between the simulated and dataset serum PSA. b Calibration
of the patient-specific parameters of the physics-based model for personalized predictions.
The serum PSA is integrated into the computational model to predict tumor growth at the
follow-up. Subsequently, the error between the predicted tumor volume and serum PSA and
the clinical outcomes is minimized.

Once the ML model is set up with the trained NN, the next phase involves
obtaining the patient’s specific parameters of the physics-based model to make
personalized predictions from their blood test (Figure 5.3b). This ensures that the
predicted tumor aligns with the patient’s actual tumor when replicating serum
PSA levels. For this purpose, we conduct a simulation incorporating the patient’s
follow-up data as targets for the NN, resulting in the personalized evolution of
the tumor and serum PSA. Subsequently, we calculate the error between the pre-
dicted volume and serum PSA and the actual values obtained from the follow-up
and minimize it by optimizing the parameters of the physics-based model (refer
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to Model calibration in Appendix A.3.3). After determining the patient-specific pa-
rameters of the physics-based model with a single MRI follow-up, we can make
further predictions of tumor growth using only subsequent serum PSA follow-
ups.

5.3 Results

5.3.1 Unveiling patient-specific tumor growth

To demonstrate the potential of the framework for predicting patient-specific
prostate cancer progression, we utilized data from two different anonymized pa-
tients from HULAFE, whom we will henceforth name Patient A and Patient B.
Patient A was diagnosed at the age of 68, with a PI-RADS category 5 and a Glea-
son score of 3+3. Patient B, diagnosed at the age of 60, had a PI-RADS category 4.
Patient B’s biopsy revealed a Gleason score of 3+3 and a 2% concentration of tu-
mor cells. Since the concentration of tumor cells was not measured in the biopsy
of Patient A, we assumed it to be the same as that of Patient B.

We applied the calibration method outlined in Figure 5.3b to determine the
patient-specific parameters of the physics-based model which replicate the serum
PSA and tumor volume evolution from the diagnosis to the first follow-up (Fig-
ure 5.4 a). Notably, the obtained parameters outline substantial differences be-
tween the two patients. The tissue PSA production rate (c,) is 49.05% lower in
the case of Patient A compared to Patient B. Conversely, the tumor growth rate
(o) is 124.07% higher in Patient A than in Patient B. This indicates that while
Patient A’s tumor secretes less PSA, it exhibits a higher growth rate. Regarding
decay rates, Patient B exhibited higher decay rates both in tissue and serum, al-
though our parametric analysis suggested that the serum PSA decay rate () was
the least influential parameter in the computational model.

We illustrate the tumor evolution of Patient A from diagnosis to follow-up
(Figure 5.4b). The serum PSA level at diagnosis is 6.60 ng/mL with a corre-
sponding tumor volume of 579 mm?. Subsequently, after 393 days, the clinical
tumor volume increases to 862 mm?, accompanied by a rise in serum PSA to
7.40 ng/mL. We reproduce this clinical evolution with our computational model,
with a simulated serum PSA of 7.70ng/mL and a tumor volume of 862 mm?3,
resulting in a relative error of 2.82% compared to the clinical tumor volume at
follow-up 1. Furthermore, our model not only accurately replicates the serum
PSA levels and tumor volume, but also captures the shape of the tumor as shown
in the comparison of the tumors in Figure 5.4b. Additionally, we reliably repro-
duce the cellularity histogram of the patient’s follow-up (Figure 5.4b).

We also depict the tumor evolution of Patient B from diagnosis to the follow-
up 1 after 710 days (Figure 5.4c). In this case, the diagnosed tumor volume is
249 mm? with a serum PSA level of 7.64ng/mL. Subsequently, at the follow-
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Figure 5.4: Patient-specific prostate tumor growth. a Calibration of the physics-based
parameters for Patients A and B. b Tumor growth in Patient A. ¢ Tumor growth in Patient
B. For both patients, representations of the actual prostate geometry with the tumor at diag-
nosis and comparisons between the clinical and simulated tumors at follow-up are provided.
Additionally, comparisons between tumor volume, serum PSA, and prostate cellularity data
from clinical and simulation records at follow-up are presented.
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up 1, the clinical serum PSA increases to 10.85 ng/mL and the tumor volume to
407 mm3. Here, we also replicate both the serum PSA (10.94 ng/mL) and tumor
volume (404 mm3), with relative errors of 0.7% and 0.8%, respectively. Moreover,
the simulated tumor mimics the real shape of the tumor at the follow-up, also
matching the histogram of prostate cellularity (Figure 5.4c).

Interestingly, we can observe that the patients have different tumor and PSA
evolutions. Patient A’s tumor volume increased from diagnosis to follow-up 1 at a
rate of 0.72 mm3 /day with only a 2.0 x 1073 ng/mL/day increase in serum PSA,
while Patient B’s tumor volume and serum PSA increased at rates of 0.22 mm? /day
and 4.5 x 1073 ng/mL/day, respectively. Thus, the growth rate of Patient A’s
tumor was 3.27 times higher, while the serum PSA increase rate was 2.25 times
lower. These prognoses of the patients align with the calibration results of the
physics-based parameters, which indicate that Patient A’s tumor grows faster but
secretes less than Patient B’s tumor. In Patient B, given the higher rate of PSA
secretion by tumor cells, variations in tumor size lead to significant fluctuations
in PSA levels, establishing a direct relationship between tumor growth and serum
PSA increase. However, in the case of Patient A, variations in tumor size result
in smaller fluctuations in serum PSA levels, whereas an equivalent increase in
serum PSA suggests a greater extent of tumor growth. Hence, discerning the
prognosis of Patient A’s tumor based on serum PSA variations alone might be
misleading. This finding is consistent with the higher aggressiveness of Patient
A’s tumor as indicated by PI-RADS compared to Patient B. Consequently, our
model demonstrates the capability to precisely simulate the progression of pros-
tate cancer. It enables the extraction of patient-specific tumor growth parameters,
thereby providing valuable insights into the tumor’s characteristics and facilitat-
ing predictions about its aggressiveness or potential risk.

5.3.2 Predicting long-term patient-specific tumor progression from
serum PSA tests

Our framework’s greatest contribution is the capability to predict long-term
tumor progression solely from serum PSA measurements in subsequent follow-
up blood tests, potentially reducing the need for frequent MRI scans and thereby
optimizing patient care. To do this, we fixed the parameters of the physics-based
model obtained from each patient and inferred tumor growth from serum PSA
levels at their subsequent follow-ups (Figure 5.5). Using this approach, we pre-
dicted the evolution of Patient A (Figure 5.5a). The clinical follow-ups for Pa-
tient A’s serum PSA show a 5.94% increase from Follow-up 1 (7.40ng/mL) to
Follow-up 2 (7.84ng/mL) at day 582. Subsequently, in Follow-up 3, the serum
PSA increases by 7.22% (8.45 ng/mL) from Follow-up 2. We incorporate these
measurements into our computational model and accurately replicate the serum
PSA evolution, obtaining the evolution of the tumor that produces these varia-
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Figure 5.5: Prediction of patient-specific prostate tumor progression. a Predictions
for Patient A. b Predictions for Patient B. For both patients, the clinical serum PSA mea-
surements from follow-up blood tests and the simulated evolution of serum PSA are shown.
Additionally, a comparison between the clinical and predicted tumor volumes is provided
(no subsequent image-based follow-up was conducted for Patient B after day 710).

tions. For Patient A, follow-ups included both blood tests and MRI scans. Thus,
we could compare not only the PSA levels but the tumors to further validate our
predictions. At follow-up 1, the clinical tumor volume was 862 mm?. By follow-
up 2, it increased to 991 mm? (a 13% increase from follow-up 1), and at follow-up
3, it further grew to 1181 mm? (a 16% increase from follow-up 2). As shown in
Figure 5.5a, our predictions were in agreement with the actual evolution of Pa-
tient A, confirming that the nature of Patient A’s tumor produces minimal PSA
elevation despite continuous tumor growth and the potential of our model to in-
fer patient-specific parameters and future tumor progression solely from serum
PSA data.

We also predicted the evolution of Patient B based on blood tests conducted
on days 900 and 956 (Figure 5.5b). Patient B’s follow-ups rely solely on serum
PSA tests (no MRI data), so predicted tumor volume at follow-ups 2 and 3 cannot
be compared with clinical data. In this case, the serum PSA levels increased by
29.82% on day 900 compared to Follow-up 1, followed by a further increase of
6.53% on day 956. Our approach predicted a tumor volume increase of 38.61%
on day 900 compared to Follow-up 1, followed by an additional increase of 5.18%
over the next 56 days, consistent with the percentage increases in serum PSA. We
conclude that Patient B’s tumor growth is directly correlated with the increase in
serum PSA levels. Therefore, the correlation between tumor growth and serum
PSA levels allows for better detection in Patient B compared to Patient A.
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5.4 Discussion

We have developed an innovative framework that integrates a digital twin
for the prostate with a physics-informed machine-learning model to predict the
prognosis of prostate cancer. Through this model, we can predict a patient’s spe-
cific prostate tumor evolution based on an initial MRI and subsequent PSA blood
tests. This approach involves employing a deep learning model to regulate tumor
dynamics within the physics-based model, determining the fraction of prolifer-
ating tumor cells in each location of the prostate. The deep NN method we have
developed takes into account the three-dimensional spatial distribution of physi-
ological variables in the prostate, including cellularity levels, vascularization, tu-
mor presence, and other relevant data, to capture the spatial-physical interactions
driving disease progression. Importantly, our approach relies on a deep NN in-
dependent of the prostate’s geometry (geometry agnostic), thereby enhancing
its ability to generalize and apply effectively across patients. We validated our
methodology by predicting tumor progression in two real patients and demon-
strated its potential to accurately reproduce not only clinical tumor volume and
shape over time, but also to offer insights into the aggressiveness or potential
risk for the patient given their particular growth dynamics. The determination of
physics-based patient parameters enabled us to characterize two distinct patient
profiles. In one scenario (Patient B), tumor growth was directly correlated with
the increase in serum PSA levels, which could be readily detected through blood
tests. Conversely, in Patient A, the production rate of PSA was lower while the
tumor growth rate was higher. Consequently, Patient A’s tumor grew without a
significant elevation in PSA levels, highlighting the limitation of relying solely on
serum PSA for screening. This mechanism elucidates the well-known lack of sen-
sitivity of PSA as a standalone biomarker for screening [321-323]. With further
characterization of these parameters across more patients, we could potentially
establish correlations between the model’s parameters and tumor aggressiveness.
Therefore, our model allows for the identification of patients with hidden tumor
growth, where serum PSA levels do not rise despite tumor development, thus ad-
dressing the challenge of monitoring the disease solely through serum PSA and
enabling more timely and tailored therapeutic interventions.

Furthermore, our computational framework allows for the prediction of tu-
mor prognosis from periodic blood tests, offering the potential to predict long-
term outcomes over periods spanning months or even years with remarkable
computational speed (a simulation spanning 956 real-world days takes approx-
imately 23 seconds to complete (see Model implementation in Appendix A.3.4 for
further details). This efficiency facilitates swift, accurate prognostic evaluations,
significantly reducing the reliance on invasive or more costly procedures and
marking a leap forward in personalized cancer management. In our proposed
physics-based model, we integrated biologically relevant aspects of prostate can-
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cer, including the increase in tissue PSA caused by the PSA leakage from cancer
cells. Under normal conditions, PSA produced by healthy cells is delivered to the
urethra, however, in cancer pathological conditions, tumor cells proliferate with-
out generating the necessary ducts for PSA delivery to the urethra, resulting in
leakage. Depending on the prostate’s vascularization, as described by the k¢rqns
distribution, this abnormal concentration of PSA passes into the bloodstream.
Thus, the ks distribution determines the spatial distribution of vasculariza-
tion, tissue perfusion, and permeability in DCE-MRI [335]. The flux of fluid and
substances between tissue and blood through the k4,5 distribution has already
been modeled [140, 337, 338]. However, to the best of our knowledge, this is also
the first computational work in prostate cancer considering the intravasation of
PSA from the tissue to the blood while taking into account the spatial distribution
of vascularization through the k4,5 distribution.

We proposed a mathematical multiscale model to simulate these biological
processes and perform long-term simulations with reduced computational bur-
den (see Multiscale physics-based model in Appendix A.3.2) for further details of
the temporal multiscale model). In this model, certain assumptions were made.
We inferred the concentration of tumor cells from cellularity and the percent-
age of tumor cells from biopsy results. If the biopsy is randomly sampled from
the prostate, there may be samples without tumor, leading to an underestimation
of the percentage. Ideally, our estimation would be more precise if the biopsy
were guided to the tumor location. Additionally, the updating algorithm of the
tumor mask considers an upper threshold for expansion, representing the car-
rying capacity that the voxel cannot exceed in that area. Although this upper
threshold aligns with evidence that the cell population reaches a maximum tis-
sue carrying capacity [339, 340], other algorithms could be introduced, such as
considering this threshold as a stochastic parameter or increasing a certain per-
centage of the initial concentration. Furthermore, clinical segmented tumors may
have inaccuracies, resulting in small deviations in clinical tumor volumes, which
can be minimized with the utilization of available automated segmentation tools
for prostate cancer [341, 342] and for geometry reconstruction [343]. Regard-
ing the ML model, larger datasets of serum PSA at different time points could
be employed, enhancing the capacity to reproduce various dynamic behaviors or
training on different geometries. However, despite these simplifications, we have
demonstrated the robust predictive capabilities of our model in determining the
patient’s prognosis.
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5.5 Conclusions

Therefore, this framework, which integrates physics-informed ML models
into the prostate digital twin, offers a novel approach to creating a potential com-
putational surrogate of MRI imaging to monitor the prognosis of prostate cancer
and reduce the uncertainty of tumor growth from serum PSA blood tests.
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It does not matter how slowly you
go as long as you do not stop.

- Confucius
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6.1 Original contributions and general conclusions

This thesis has presented computational models designed to replicate cell be-
havior and simulate biological systems to advance toward a more comprehensive
understanding of cancer. Various phenomena have been investigated across the
scales, such as cell migration, morphogenesis, and tumor growth. To achieve
this goal, different modeling approaches have been employed, including discrete
models utilizing ABM and continuum approaches involving PDEs. Furthermore,
this thesis emphasizes the validation of these models against experimental data
and develops tools to ensure the computational models accurately capture biolog-
ical phenomena. To this end, diverse calibration techniques have been utilized,
from classical methodologies to ML techniques. Additionally, these models are
designed within frameworks to facilitate their use by other researchers in similar
applications, offering adaptability and modularity to integrate with other models
and experiments.

Different works have been presented throughout this thesis. Firstly, we study
individual cell migration in microfluidic devices (Chapter 2). Here, we aim to
understand whether the conversion of T cells into CAR-T cells affects their mi-
gration capacity, potentially hindering their infiltration into solid tumors, which
could impede the success of the therapy. To achieve this, we develop a framework
to predict 3D migration from 2D experimental microscopy-based data using a 3D
ABM. In this model, we simulate the temporal changes in the migration direc-
tion with a sampling method based on inverse transform sampling. This method
approximates the rotation of the direction of migration over time by generating
pseudo-random numbers from a uniform distribution and applying the inverse
CDF associated with the desired probability distribution. Then, we propose an
optimization procedure based on the pattern search method to obtain the CDFs
that correctly orient cell migration over time and minimize the error between the
simulation and experimental metrics characterizing the migration patterns.

With this model, we simulate cell migration assays of T and CAR-T cells in
microfluidic devices conducted under hydrogels with different concentrations of
type I collagen. We demonstrate that the 2D projections of the simulated 3D tra-
jectories accurately reproduce the experimental 2D trajectories in both cell types
across different density matrices. Hence, our simulations indicate that CAR-T
cell migration is more sensitive to collagen concentration increases than T cells,
resulting in a more pronounced reduction in their invasiveness. Notably, our
computational model reveals significant differences in 3D movement patterns
between T and CAR-T cells. T cells exhibit migratory behavior in 3D within
the collagen concentration matrices, consistent with the high motility typically
observed in immune cells that enable them to access intricate body regions. In
contrast, our simulations show that CAR-T cells predominantly move within the
XY plane, with limited movement in the Z direction, suggesting primarily 2D
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migration. However, the presence of the chemical factor CXCL12 not only stim-
ulates CAR-T cells to migrate within the XY plane but also induces a behavioral
shift, promoting 3D movement similar to T cells. Therefore, enhancing the mi-
grative capacity of CAR-T cells with chemical factors may improve the efficacy
of therapies in solid tumors. We validate these findings with cell migration ex-
periments using light-sheet microscopy to quantify 3D cell migration patterns,
aligning with our predictions. To explain this behavior, we hypothesize that ex-
posure to chimeric antigen receptors during the conversion of T cells into CAR-
T cells, along with the geometrical characteristics of microfluidic devices where
the vertical dimension (Z) significantly differs in scale from the other two dimen-
sions, and the potential influence of fiber alignment occurring in the XY plane,
could influence their migration capabilities, potentially impeding their ability to
navigate through intricate and confined spaces.

Therefore, this work demonstrates that 2D projections of 3D trajectories may
not accurately represent real migration patterns, highlighting the importance of
analyzing migration in 3D. Moreover, it offers a tool to estimate 3D migration
patterns from 2D experimental data, which can be easily obtained with automatic
quantification algorithms. This approach helps reduce the need for sophisticated
and expensive microscopy equipment required in laboratories, as well as the com-
putational burden involved in producing and analyzing 3D experimental data.

Next, we continue at the microscale, focusing on the morphogenetic pro-
cess of lumen formation starting from an individual cell to understand, from a
mechanobiological perspective, how it is formed and the reasons behind its devi-
ation into the tumoral structures found in carcinomas (Chapter 3). Particularly, we
investigate the role of luminal hydrostatic pressure generated during the process
due to fluid secretion by cells, which acts as the driving force, and the regulatory
function of ECM density. Previous studies had neglected the interaction between
fluid and cells and the ECM, mainly concentrating on 2D-lumen formation. To
address these gaps, we develop a 3D multi-ABM that incorporates various types
of agent particles. The first type simulates biological cells and integrates a math-
ematical model for cell proliferation with mechanoregulation feedback from ma-
trix density. We also incorporate a cell fluid secretion process into this biological
agent to generate fluid in the lumen domain. The fluid, generated by this process,
is simulated using the second type of particles, adopting a discrete approach to
simulate fluid dynamics. This discrete approach facilitates the simulation of fluid-
cell interaction, occurring within a deformable interface that expands over time
due to cell movement driven by mechanical interactions and cell proliferation.
Moreover, the particle-based fluid description enables an effective simulation of
fluid deposition resulting from cell secretion, facilitating the formation of lumens
de novo and the gradual increase in fluid volume over time. This aspect is partic-
ularly challenging to capture accurately using both grid-based methods such as
CFD and particle-based methods such as SPH.
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We studied lumen formation under different matrix densities and successfully
replicated the experimental observations achieved by Paszek et al., offering a me-
chanical explanation for the regulatory role of matrix density and fluid secretion.
A physiological-like matrix density provides adequate biomechanical conditions
for lumen formation and a proper structure. However, an increase in matrix den-
sity disrupts normal coordination and promotes aberrant formation, character-
ized by an increase in luminal hydrostatic pressure and the formation of multiple
small lumens. When matrix density is high, the luminal hydrostatic pressure gen-
erated by cell secretion cannot displace cells as easily as when matrix density is
low, as the matrix opposes the cells’ movement. Consequently, the lumen remains
diminished, and hydrostatic pressure increases with successive cell secretions. In
this situation, cell division does not contribute to creating luminal space because
the lumen size is small, and its surface is fully covered by overlapped cells. Con-
versely, with no space around the lumen surface, cell division forces some cells
to leave the monolayer, where they polarize to create a new lumen. Finally, a
dysfunctional structure with numerous small lumens is formed.

Therefore, this model underscores the capacity of mechanistic models to repli-
cate behaviors, identify causality, and subsequently address biological questions,
such as the role of matrix density in lumen formation and its deviation towards
aberrant architectures associated with tumor pathogenesis observed in carcino-
mas.

Subsequently, we extend the lumen morphogenesis model to replicate real in
vitro experiments of pancreatic cystic tumor organoids (Chapter 4). However, the
experimental results display great variability in terms of the final size of the pat-
tern, which is characteristic of the intrinsic stochasticity of biology. This compli-
cates their simulation because it implies that the organoids have different dynam-
ical processes and cannot be effectively reproduced with parameters that coordi-
nate cell behavior, as this behavior must change in each case. Therefore, we aim
to build a model that efficiently adapts to this observed variability in the organoid
patterns to decipher cell behavior. To achieve this, we develop a framework com-
bining ABM and ML to simulate morphogenetic patterns of 3D organoids. Here,
we eliminate any rule-based parameters that model cell behavior in the ABM and
instead introduce a DL model that learns to coordinate temporary cell behavior to
achieve the final morphogenetic pattern. Thus, the ABM only includes physically
relatable parameters, advancing to make ABM more parsimonious, enhancing its
interpretability, and addressing the criticism of reduced realism induced by the
heuristic-type laws typically incorporated. In this framework, after a cell com-
pletes a biological function in the ABM, the NN receives metrics evaluating the
state of the physics-based simulation and data describing the final morphogenetic
pattern to achieve. Subsequently, the NN activates the corresponding next bio-
logical cell function for that cell.

To make the NN learn a morphogenetic pattern, we propose an approach sim-
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ilar to RL. In this method, we simulate an example of the desired pattern, evaluate
the accuracy of the results using a fitness function, and optimize the NN param-
eters to maximize the fitness function. This optimization of the NN is achieved
through a GA, although other algorithms can be implemented. One advantage of
this approach is that it requires minimal information about the morphogenetic
processes and only needs the final morphological information about the pattern
extracted visually. Once the NN is trained, we demonstrate the framework’s po-
tential to accurately replicate the morphogenesis of organoids, both cystic tumor
organoids and solid organoids from the pancreas. In both cases, we showcase the
accuracy of the simulated patterns compared to in vitro experiments, and the ro-
bustness of the NN in coordinating cell functions despite variations in cell cycle
time or fluid secretion time, as well as the introduction of noise in these processes.
Also, it is demonstrated that this methodology can benefit not only from repro-
ducing a final morphogenetic pattern but also from reproducing its evolution
through the incorporation of time-series data. This artificial intelligence-based
method learns the intrinsic mechanisms of the morphogenetic process, enabling
it to generalize and reproduce similar morphogenetic patterns with different dy-
namical processes without the need for ad hoc parameter optimization.

Moreover, this work provides further demonstration of the capability of the
developed discrete model to simulate fluid-like behavior. We conduct a shear test
of the particle-based fluid model and illustrate how to maintain the rheological
properties of the fluid as a Newtonian fluid, despite changes in the discretization
of particle size.

From a biological perspective, our simulations reveal that certain cells are
predisposed to perform specific functions. We observe a heterogeneity of cellular
functions within the organoid, with some cells proliferating more while others
are more inclined to secrete fluid. It appears that initial cells possess a higher
proliferative potential, and as they divide, the daughter cells become more spe-
cialized with a higher level of differentiation. Furthermore, in cystic organoids,
the final size depends on morphology at the initiation of the lumen, with prolif-
erative capacity diminishing as the lumen expands. We hypothesize that initially,
cells exhibit a less differentiated phenotype and have a greater proliferative ca-
pacity. Subsequently, as they proliferate, the daughter cells adopt a higher degree
of differentiation and specialize into secretory cells. Consequently, once secre-
tion begins, the proliferative capacity of the organoid diminishes, and the final
size becomes limited by its size at the time of lumen initiation. Thus, the prolif-
eration capacity of cells may be constrained by the initiation of lumen formation
and the final size may be predicted at the beginning of lumen formation.

Therefore, this work first showcases the potential of combining discrete ABM
and ML in computational biology to reproduce cell behavior. It demonstrates the
synergistic power of ML to learn to replicate data effectively without the need for
recalibrations and solve the inverse problem of deciphering cell behavior from a
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final pattern, along with the mechanistic model to obtain biological interpreta-
tions.

Finally, we transition from the microscale to the macroscale to investigate
patient-specific prostate cancer at the organ level (Chapter 5). In clinical practice,
prostate cancer is typically diagnosed through MRI, and tumor progression is
monitored through routine blood tests to measure the biomarker PSA. However,
there is controversy surrounding this biomarker as an indicator of tumor evolu-
tion due to its lack of specificity and sensitivity. In many cases, tumors progress
without variations in PSA levels, obscuring their monitoring. Hence, this work
presents a novel framework that integrates a physics-based model with a ML me-
thod for predicting patient-specific prostate tumor growth in DTs from PSA blood
tests.

Here, we illustrate the methodology of constructing a DT from MRI scans,
incorporating physiological information. Then, the patient’s DT is introduced
into a physics-based model employing a continuum representation with PDEs to
predict tumor prognosis. This model incorporates biologically relevant aspects
of prostate cancer, including the increase in tissue PSA resulting from PSA leak-
age from cancer cells. Additionally, we consider PSA intravasation from tissue to
blood, taking into account the spatial distribution of vascularization, which had
been neglected in existing works. Furthermore, the model encompasses a math-
ematical representation of tumor growth. To regulate growth dynamics within
the physics-based model, we introduce a novel ML approach not previously pro-
posed. This DL model considers the 3D prostate geometry and spatial interactions
among physiological data to control tumor growth based on patient-specific PSA
blood test results. Importantly, this developed methodology is independent of the
individual patient’s geometry to ensure generalizability across patients without
the need for refittings, offering the potential to forecast long-term outcomes over
periods spanning months or even years with remarkable computational speed.

We validate our methodology by predicting tumor progression in two real
patients and demonstrate its potential to accurately reproduce not only clinical
tumor volume and shape over time, but also to offer insights into the aggres-
siveness or potential risk for the patient given their particular growth dynamics.
We propose a calibration method for the physics-based model to reproduce a pa-
tient’s specific tumor growth. Through mechanistic modeling, we demonstrate
that the parameters of the physics-based model can provide patient-specific in-
sights, particularly regarding the aggressiveness and potential risk of the patient’s
tumor. Thus, our model identifies a clinical scenario of patients with hidden tu-
mor growth, where serum PSA levels do not rise despite tumor development, ad-
dressing the challenge of monitoring the disease solely through serum PSA and
enabling more timely and tailored therapeutic interventions.

Therefore, this framework, which integrates physics-informed machine learn-
ing models into the prostate DT, paves a new way of predicting tumor progres-
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sion with DT and exploring the benefits of mechanistic modeling and ML. More-
over, it offers a novel approach to creating a potential computational surrogate of
MRI imaging to monitor the prognosis of prostate cancer and reduce the uncer-
tainty of tumor growth from serum PSA blood tests. Thus, this work represents a
step towards employing computational biology for clinical applications, offering
patient-specific and accurate real-time predictions of tumor prognosis.

6.2 Future lines

Different future research directions have emerged throughout this thesis to
address some of the limitations presented in the works and to explore new op-
portunities and paths opened by this research.

One aspect that could benefit from improvement in the developed ABM mod-
els is the representation of the ECM. In our simulations, we considered the viscous
component of the matrix and its effect on cells using Stoke’s drag force while
neglecting the elastic component. However, the ECM is a compound material
with a viscoelastic rheological response. Considering this, a more accurate rep-
resentation of the ECM mechanical properties [344] could enhance our ability to
simulate the lumen formation process and better understand its effects. Addition-
ally, incorporating the elastic component would allow us to calculate stresses and
gain a comprehensive understanding of the mechanical environmental variables
involved, not only during healthy formation but also during its deviation into tu-
moral formation. This could lead to a more detailed description of the mechanical
forces arising from cell-ECM interactions and result in greater heterogeneity in
mechanical forces between cells.

Furthermore, future work arising from the framework that combines ABM
and ML for organoid morphogenesis, presented in Chapter 4, involves informing
the NN with physical data. In this model, the NN was provided with data metrics
that evaluate the state of the simulation, facilitating comparison and correlation
with experiments. This enabled effective simulation of experiments as the NN
controlled cell behavior based on differences between experiments and simula-
tions. However, another approach involves considering physical and chemical
aspects such as cell-cell forces, cell-matrix forces, or glucose levels, among oth-
ers, to predict cellular functions with the NN. In this case, the loss function would
integrate the comparison of data metrics between experiments and simulation
results. Therefore, with this approach, when having sufficient data from experi-
ments to train the NN to make it learn multiple behaviors, we can advance into a
ML that integrates all possible cell behaviors behind pattern morphogenesis. Al-
ternatively, another perspective on the combination of ABM and ML involves em-
ploying Convolutional Neural Networks (CNNs) to predict cell behavior directly
from experimental images in simulations. Here, instead of providing physics-
based information to the NN, a CNN would receive an image of the experimen-
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tal outcome to guide cell behavior in the ABM. In this case, the loss function
would integrate the differences between the input images and the images of the
simulation results from the ABM so that we could approximate the experiments
spatially.

Lastly, the integration of ABM with RL schemes offers a wide range of possi-
bilities for simulating biological systems. This approach, in which agents learn by
interacting with the environment and other agents to maximize a reward signal,
aligns nicely and integrates naturally with ABMs. This reward can represent cell
fate and encompass homeostasis, correct physiological functioning, survival, or,
for tumor cells, maximize proliferation or invasion. Thus, this approach can help
us understand cell migration and how mechanical and chemical cues from the
environment guide it, simulate the competition of cells and tumor cells for nutri-
ents such as glucose or oxygen, reproduce tumor growth, or analyze mechanical
interactions regulating developmental processes. Therefore, RL in biology is a
promising field with clear potential for exploration.

Moving to the organ scale, another approach to predict cancer evolution in
DTs involves a fully ML model with Graph Neural Networks (GNNs) [345]. Here,
a graph from the DT is generated, with each node condensing all the informa-
tion derived from the MRI. The GNN then creates an embedding of the graph,
capturing the geometrical interactions between the physiological data from the
MRI. Subsequently, an ML model with a NN can make predictions about tumor
evolution considering the holistic information of the graph representing the DT.
This model can be trained using a dataset of diagnostic MRIs to generate the graph
and their corresponding follow-up MRIs to validate the predictions. Furthermore,
certain GNN models can also consider changes in the graph over time, predict-
ing not only tumor growth but also changes in the geometry. Therefore, this
approach holds promise for improved prediction of cancer growth, leveraging all
the information condensed in the MRI.

6.3 Thesis contributions

This section presents the contributions of this thesis.

6.3.1 Publications in peer-reviewed journals

The publications in international peer-reviewed journals achieved during the
thesis period are listed below:

1. Juste-Lanas, Y., Guerrero, P. E., Camacho-Gomez, D., Hervas-Raluy, S.,
Garcia-Aznar, J. M., & Gomez-Benito, M. J. (2022). Confined Cell Migration
and Asymmetric Hydraulic Environments to Evaluate the Metastatic Poten-
tial of Cancer Cells. ASME. Journal of Biomechanical Engineering, 144(7):
074502. https://doi.org/10.1115/1.4053143.
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2. Camacho-Gomez, D., Garcia-Aznar, J. M., & Gomez-Benito, M. J. (2022).
A 3D multi-agent-based model for lumen morphogenesis: the role of the bio-
physical properties of the extracellular matrix. Engineering with Computers,
38(5), 4135-4149. https://doi.org/10.1007/s00366-022-01654-1.

3. Camacho-Gomez, D., Sorzabal-Bellido, I., Ortiz-de-Solorzano, C., Garcia-
Aznar, ]J. M., & Gomez-Benito, M. J. (2023). A hybrid physics-based and
data-driven framework for cellular biological systems: Application to the mor-
phogenesis of organoids. iScience, 26(7). https://doi.org/10.1016/j.isci.2023.
107164.

4. Camacho-Gomez, D., Movilla, N., Borau, C., Martin, A., Ofiate-Salafranca,
C., Pardo, J., Gomez-Benito, M. J., & Garcia-Aznar, J. M. (2024). An agent-
based method to estimate 3D cell migration trajectories from 2D measure-
ments: Quantifying and comparing T vs CAR-T 3D cell migration. Under
review.

5. Camacho-Gomez, D., Borau, C., Garcia-Aznar, J. M., Gomez-Benito, M.
J., Girolami, M., & Perez, M. A. (2024). A physics-informed machine learn-
ing digital twin framework for prostate cancer: predicting tumor growth via
serum PSA blood tests. Submitted.

6.3.2 Conferences contributions

The following communications have been presented at national and interna-
tional conferences and meetings (underlines indicate the work was presented by
the author):

1. Camacho-Gomez, D., Borau, C., Garcia-Aznar, J. M., Gomez-Benito, M. J.,
Girolami, M., & Perez, M. A. A data-driven physics-based model for pre-
dicting prostate cancer progression from the PSA blood test. 9th European
Congress on Computational Methods in Applied Sciences and Engineering
(ECCOMAS). 3 - 7 June 2024. Lisbon, Portugal. In-person oral participation.

2. Gomez-Benito, M. J., Camacho-Gomez, D., Aparicio, R., Garcia-Aznar, J.
M. Advancing our understanding of pathological and physiological pro-
cesses through Computational Mechanobiology. 7th Barcelona VPH Sum-
mer School. 7 - 9 June 2023. Barcelona, Spain. Co-author oral presentation.

3. Camacho-Gomez, D., Garcia-Aznar, J. M., Bellido-Sorzabal, 1., Ortiz de So-
lorzano Aurusa, C., & Gomez-Benito, M. J. A hybrid model of organoids mor-
phogenesis. International Symposium on Computer Mechanics in Biome-
chanics and Biomedical Engineering (CMBBE2023). 3 - 5 May 2023, Paris,
France. In-person oral participation.
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4. Camacho-Gomez, D., Guerrero, P. E., Garcia-Aznar, J. M., Gomez-Benito,
M. J. An agent-based model to simulate DIPG migration in microfluidic de-
vices. Virtual Physiological Human (VPH22). 6 - 9 September 2022, Porto,
Portugal. In-person oral participation.

5. Camacho-Gomez, D., Perez, A., Borau, C., Gomez-Benito, M. J., Garcia-
Aznar, J. M., Perez, M. A. Simulation of Tumors using Computational Models.
Disfrutar Divulgando Desinteresadamente Conference. 2022. Zaragoza.

6. Camacho-Gomez, D., Garcia-Aznar, J. M., Gomez-Benito, M. J. A compu-
tational model to study the interplay between cell fluid secretion and matrix
stiffness in lumen morphogenesis. 11th European Solid Mechanics Confer-
ence (ESMC22). 4 - 8 July 2022, Galway, Ireland. In-person oral participa-
tion.

7. Camacho-Gomez, D., Guerrero, P. E., Garcia-Aznar, J. M., Gomez-Benito,
M. J. Hybrid discrete-continuum model to evaluate DIPG cells invasion and
matrix degradation. USACM Thematic Conference on the Role of Math-
ematical and Computational Modeling in Cancer Research. Virtual oral
participation.

8. Camacho-Gomez, D., Garcia-Aznar, J. M., Gomez-Benito, M. ]J. Computa-
tional model for cell-matrix interaction as a regulator of lumen formation.
X Reunidn del Capitulo Espariol de la Sociedad Europea de Biomecanica
(ESB). 25-26 de octubre de 2021, Granada. In-person oral participation.

9. Camacho-Gomez, D., Garcia-Aznar, J. M., Gomez-Benito, M. J. A 3D agent-
based model to explore DIPG cell invasion in different stiffness matrices. 6th
U.S. National Congress on Computational Mechanics (USNCCM16). 2021.
Virtual oral participation

10. Guerrero, P. E., Camacho-Gomez, D., Mendoza, N., Schuhmacher, A., Gomez-
Benito, M. J., Garcia-Aznar, J. M. Mechanobiology of extracellular matrix
on diffuse intrinsic pontine glioma (DIPG) tumor growth and migration.
American Society of Cell Biology (ASCB). 2021. Co-author - Poster Presen-
tation.

11. Guerrero, P.E., Camacho-Gomez, D., Mendoza, N., Schuhmacher, A., Gomez-
Benito, M. J., Garcia-Aznar, J. M. Diffuse Intrinsic Pontine Glioma (DIPG)
tumor growth and migration using 3D biomimetic hydrogels. Organoids
in Cancer Research an Agora - EPFL Workshop. 2021. Co-author - Poster
Presentation.

12. Goncalves, 1., Camacho-Gomez, D., P. E. Guerrero, Gomez-Benito, M. J.,
Garcia-Aznar, J. M. Mechanobiology of extracellular matrix on the tumor
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growth. 26th Congress of the European Society of Biomechanics. 2021.
Co-author - Virtual Oral Presentation.

6.3.3 Open-source software

The author has contributed with three open repositories of the frameworks
developed:

« https://github.com/daniel-camacho-gomez/AIOrganoids
« https://github.com/daniel-camacho-gomez/2D_Data-to-3D_Migration

» https://github.com/daniel-camacho-gomez/ProstateNet

6.4 Teaching, supervising and mentoring activities

The author has co-supervised one Master’s thesis entitled A hybrid physics-
based and deep learning model for the simulation of cell migration in confined chan-
nels, one Bachelor’s thesis entitled Study of cell dynamics through agent-based
modeling, and has fully supervised one Bachelor’s thesis entitled Computational
study of the influence of extracellular matrix anisotropy on cell migration.

The author has also taught the following courses:

1. 2022. Pre-course "Agent-Based Models in Biomedical Applications” at the
XI Meeting of the Spanish Chapter of the European Society of Biomechan-
ics (ESB), Zaragoza.

2. 2022-2024. Interdisciplinary seminar course titled ’Agent-based Models for
Cell Simulation’” within the Master’s Degree Program in Biomedical Engi-
neering at the University of Zaragoza.

6.5 Collaborations

During the development of the thesis, the author has participated and estab-
lished the following collaborations:

Individual and Collective Migration of Immune Cellular Systems (ICoMICS)
project. This EU-funded project aims to develop a modeling approach capable
of predicting how therapeutic immune cells migrate, interact with the tumor
microenvironment, and contribute to the improvement of immunotherapy out-
comes. The results of this work are presented in Chapter 2.

Microfluidics mechanobiology and image analysis for the simulation of tu-
moral growth in 3D (TUMOR-ON-CHIP) project. This project establishes a collab-
oration between Fundacidn para la Investigacion Médica Aplicada (FIMA), Uni-
versity of Navarra, experts in image analysis and quantitative microscopy applied
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to the study of biomedical problems, and the University of Zaragoza. The objec-
tive is to study the growth of tumor organoids cultured in microfluidic devices.
This collaboration involves complementary work, where the computational mod-
els developed by the University of Zaragoza would be experimentally validated
using the quantitative microscopy tools developed by FIMA. The outcomes of this
joint project are presented in Chapter 4.

ProCanAid project. This initiative aims to utilize a digital twin of the prostate
for aiding in detection, diagnosis, and simulating the effects and effectiveness of
various oncological treatments for prostate cancer. The project entails collabora-
tion between La Fe Hospital, which provides patient data, the company Quibim,
which employs image analysis to automate segmentation and extraction of imag-
ing biomarkers, and the University of Zaragoza, which utilizes this data to develop
computational models for predicting prostate cancer growth. Chapter 5 presents
the work carried out within this project.

Moreover, the author conducted a research stay lasting three months at the
Computational Statistics and Machine Learning Group at the Department of En-
gineering, University of Cambridge, led by Prof. Mark Girolami. During this stay,
the author developed the machine learning model for the ProCanAid project pre-
sented in Chapter 5.

Additionally, the author contributed by performing computational fluid simu-
lations of asymmetric hydraulic environments in microfluidic devices in the study
to evaluate the metastatic potential of cancer cells within confined channels, aim-
ing to understand the influence of pressure gradients on cell migration [49].

Finally, the author has also participated in the European PRIMAGE project.
This project, financed by the European Commission, has 16 European partners
that participate in the consortium and has an implementation duration of 4 years.
This project proposes an open cloud-based platform to support decision-making
in the clinical management of two pediatric cancers, Neuroblastoma (NB), the
most frequent solid cancer of early childhood, and Diffuse Intrinsic Pontine Glioma
(DIPG) the leading cause of brain tumor-related death in children. PRIMAGE
platform implements the latest advancement of in silico imaging biomarkers and
modeling of tumor growth towards a personalized diagnosis, prognosis, and ther-
apy follow-up.

6.6 Funding

This doctoral thesis has been supported by PRedictive In-silico Multiscale An-
alytics to support cancer personalized diaGnosis and prognosis, Empowered by
imaging biomarkers (PRIMAGE) (G.A. no. 826494) and Procanaid Next Gener-
ation EU (Grant No. PLEC2021-007709). The research stay at the University of
Cambridge was additionally supported by the Erasmus+ program managed by
Campus Iberus and Fundacién Ibercaja-Cai (No IT 5/23).
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CHAPTER 7. CONCLUSIONES

7.1 Contribuciones originales y conclusiones genera-
les

En esta tesis se han presentado modelos computacionales para replicar el com-
portamiento celular y simular sistemas bioldgicos con el fin de avanzar nuestro
conocimiento sobre el cancer. Se han investigado diversos fenémenos en distintas
escalas, tales como la migracioén celular, la morfogénesis y el crecimiento de tu-
mores. Para ello, se han empleado diferentes enfoques de modelado, incluyendo
modelos discretos que utilizan Modelos Basados en Agentes (ABM, de sus siglas
en inglés) y enfoques continuos que involucran Equaciones en Derivadas Parciales
(PDE, de sus siglas en inglés). Ademas, esta tesis hace hincapié en la validacién
de estos modelos con datos experimentales y desarrolla herramientas para ga-
rantizar que los modelos computacionales capturen con precisiéon los fenémenos
biolégicos. Con este fin, se han utilizado diversas técnicas de calibracion, desde
metodologias clésicas hasta técnicas de Aprendizaje Automatico (ML, de sus siglas
en inglés). Ademas, estos modelos se han disefiado dentro de entornos automati-
zados para facilitar su uso por parte de otros investigadores en aplicaciones simi-
lares, ofreciendo adaptabilidad y modularidad para integrarse con otros modelos
y experimentos.

Diversos trabajos han sido presentados a lo largo de esta tesis. En primer lugar,
se ha estudiado la migracién celular individual en dispositivos de microfluidica
(Capitulo 2). El objetivo es comprender si la conversién de células T en células
CAR-T afecta a su capacidad de migracion, potencialmente obstaculizando su in-
filtracién en tumores solidos, lo que podria dificultar el éxito de la terapia. Con
tal fin, se ha desarrollado un marco de trabajo para predecir la migracion tridi-
mensional a partir de datos experimentales basados en microscopia bidimensional
utilizando un modelo tridimensional basado en agentes. En este modelo, se han
calculado los cambios temporales en la direccion de migraciéon con un método
de muestreo basado en muestreo de transformada inversa. Este método aproxi-
ma la rotacién de la direcciéon de migracion en el tiempo generando numeros
pseudoaleatorios a partir de una distribucién uniforme y aplicando la funcién de
distribucién acumulativa inversa asociada con la distribucién de probabilidad de-
seada. Posteriormente, se ha propuesto un procedimiento de optimizacion basado
en el método de busqueda de patrones para obtener las funciones de distribucién
acumulativa que orientan correctamente la migracion celular en el tiempo y que
minimizan el error entre la simulacién y las métricas experimentales que carac-
terizan los patrones de migracion.

Con este modelo, se han simulado ensayos de migracion celular de células Ty
CAR-T en dispositivos de microfluidica llevados a cabo con hidrogeles de diferen-
tes concentraciones de colageno tipoI. Asi, se ha demostrado que las proyecciones
2D de las trayectorias 3D simuladas reproducen con precision las trayectorias 2D
experimentales en ambos tipos de células en las distintas matrices. Por tanto, las
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simulaciones indican que la migracion de las células CAR-T es mas sensible a
los aumentos de concentracién de colageno que las células T, lo que resulta en
una reduccidon més pronunciada de su invasividad. Cabe destacar que el modelo
computacional revela diferencias significativas en los patrones de movimiento 3D
entre las células T y CAR-T. Las células T muestran un comportamiento migra-
torio en 3D dentro de las matrices de colageno, consistente con la alta movilidad
tipicamente observada en las células inmunes que les permite acceder a regio-
nes corporales intrincadas. Por el contrario, las simulaciones muestran que las
células CAR-T se mueven predominantemente dentro del plano XY, con movi-
miento limitado en la direccion Z, sugiriendo principalmente una migracioén 2D.
Sin embargo, la presencia del factor quimico CXCL12 no solo estimula a las cé-
lulas CAR-T a migrar dentro del plano XY, sino que también induce un cambio
de comportamiento, promoviendo un movimiento 3D similar al de las células T.
Por lo tanto, mejorar la capacidad migratoria de las células CAR-T con factores
quimicos puede mejorar la eficacia de las terapias en tumores solidos. Asi, se han
validado estos hallazgos con experimentos de migracién celular utilizando mi-
croscopia de fluorescencia de lamina de luz, los cuales confirman los patrones de
migracion celular predichos por las simulaciones. Para explicar este comporta-
miento, se ha hipotetizado que la exposicion a receptores antigénicos quiméricos
durante la conversion de células T en células CAR-T, junto con las caracteristicas
geométricas de los dispositivos microfluidicos donde la dimensién vertical (Z)
difiere significativamente en escala de las otras dos dimensiones, y la posible in-
fluencia de la alineacién de fibras que ocurre en el plano XY, podrian influir en
sus capacidades de migracion, potencialmente obstaculizando su capacidad para
navegar a través de espacios intrincados y confinados.

De este modo, este trabajo demuestra que las proyecciones bidimensionales
de las trayectorias tridimensionales pueden no representar con precision los pa-
trones reales de migracion, resaltando la importancia de analizar la migracion en
3D. Ademas, el modelo desarrollado constituye una herramienta computacional
para estimar los patrones de migracion tridimensional a partir de datos experi-
mentales bidimensionales, los cuales pueden obtenerse facilmente con algoritmos
de cuantificacion automatica. Este enfoque, por tanto, ayuda a reducir la necesi-
dad de equipos de microscopia sofisticados y costosos requeridos en laboratorios,
asi como la carga computacional involucrada en la produccion y analisis de datos
experimentales tridimensionales.

A continuacién, siguiendo en la escala microscopica, el objetivo se ha centrado
en el proceso morfogénesis de formacion del lumen a partir de una célula indivi-
dual para comprender, desde una perspectiva mecanobioldgica, como se forma y
las razones detras de su desviacion hacia las estructuras tumorales encontradas
en carcinomas (Capitulo 3). En particular, se ha investigado el papel de la presién
hidrostatica luminal generada durante el proceso debido a la secrecion de fluido
por las células, que actia como la fuerza impulsora, y la funciéon reguladora de
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la densidad de la matriz extracelular. Los estudios previos habian despreciado la
interaccion entre el fluido y las células y la matriz extracelular, concentrandose
principalmente en la formacion de limenes en 2D. Para abordar estas limitacio-
nes, se ha desarrollado un modelo multiagente 3D que incorpora varios tipos de
particulas agentes. El primer tipo simula células e integra un modelo matematico
para la proliferacion celular con una retroalimentacién mecanorregulada por la
densidad de la matriz. También se ha incorporado al agente biologico un proceso
de secrecion de fluido para generar fluido en el dominio del lumen. El fluido, ge-
nerado por este proceso, se ha simulado utilizando el segundo tipo de particulas,
adoptando un enfoque discreto para esta simulacién de la dinamica de fluidos.
Este enfoque discreto facilita la simulacion de la interaccion fluido-célula, la cual
ocurre en una interfaz deformable que se expande en el tiempo debido al movi-
miento celular consecuencia de las interacciones mecanicas y proliferacién celu-
lar. Ademas, la descripcion del fluido basada en particulas permite una simulacion
efectiva de la deposicion de fluido resultante de la secrecion celular, facilitando la
formacion de limenes de novo y el aumento gradual del volumen de fluido con el
tiempo. Este aspecto es particularmente delicado de capturar con precisién utili-
zando tanto métodos basados en malla como Dinamica de Fluidos Computacional
(CFD, de sus siglas en inglés) como en métodos basados en particulas como Hi-
drodinamica de Particulas Suavizadas (SPH, de sus siglas en inglés).

Asi, se ha estudiado la formacion del lumen bajo diferentes densidades de ma-
triz y se ha logrado replicar con éxito las observaciones experimentales realizadas
por Paszek et al., ofreciendo una explicacion mecéanica del papel regulador de la
densidad de la matriz y la secrecion de fluido en el lumen. Una densidad de matriz
fisiolégicamente similar proporciona condiciones biomecanicas adecuadas parala
formacion de una estructura apropiada del lumen. Sin embargo, un aumento en
la densidad de la matriz impide la coordinacion normal y promueve una forma-
cion aberrante, caracterizada por un aumento en la presion hidrostatica luminal
y la formacion de multiples limenes pequefios. Cuando la densidad de la matriz
es alta, la presion hidrostatica luminal generada por la secrecion de fluido inters-
ticial no puede desplazar a las células tan facilmente como cuando la densidad
de la matriz es baja, ya que la matriz se opone al movimiento de las células. En
consecuencia, el lumen permanece disminuido y la presion hidrostatica aumenta
con las sucesivas secreciones celulares. En esta situacion, la division celular no
contribuye a crear espacio luminal porque el tamarfio del lumen es pequefio y su
superficie esta completamente cubierta por células superpuestas. Por el contrario,
al no haber espacio alrededor de la superficie del lumen, la division celular obli-
ga a algunas células a abandonar la monocapa, donde se polarizan para crear un
nuevo lumen. Finalmente, se forma una estructura disfuncional con numerosos
limenes pequernios.

Por lo tanto, este modelo subraya la capacidad de los modelos mecanicistas
para replicar comportamientos, identificar causalidad y posteriormente abordar
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preguntas bioldgicas, como el papel de la densidad de la matriz en la formacion del
lumen y su desviacion hacia arquitecturas aberrantes asociadas con la patogénesis
tumoral observada en carcinomas.

Posteriormente, se ha extendido el modelo de morfogénesis del lumen para
replicar experimentos in vitro reales de organoides tumorales quisticos pancrea-
ticos (Capitulo 4). En este sentido, los resultados experimentales muestran una
gran variabilidad en cuanto al tamafo final del patrén, lo cual es caracteristico
de la estocasticidad intrinseca de la biologia. Esto complica su simulacién porque
implica que los organoides tienen diferentes procesos dinamicos por lo que no
pueden reproducirse eficazmente con parametros fijos que coordinen el compor-
tamiento celular en todos los casos, ya que este comportamiento debe cambiar en
cada uno de ellos. Por lo tanto, el objetivo es construir un modelo que se adapte
eficientemente a esta variabilidad observada en los patrones de organoides para
descifrar el comportamiento celular. Para tal fin, se ha desarrollado un marco de
trabajo que combina ABM y ML para simular patrones morfogenéticos de orga-
noides 3D. Asi, este modelo ABM elimina cualquier parametro basado en reglas
que modele el comportamiento celular y, en su lugar, se ha introducido un modelo
de Aprendizaje Profundo (DL, de sus siglas en inglés) que aprende a coordinar el
comportamiento temporal de las células para lograr el patron morfogenético final.
Por lo tanto, el ABM solo incluye parametros con significado fisico, avanzando en
hacer modelos ABMs mas parsimoniosos, mejorando su interpretabilidad y abor-
dando la critica de reduccién de realismo inducida por las leyes tipo heuristica
tipicamente incorporadas. En este marco de trabajo, después de que una célula
completa una funcién biolégica en el ABM, la Red Neuronal (NN, de sus siglas en
inglés) recibe métricas que evalian el estado de la simulacién basada en fisica y
datos que describen el patron morfogenético final a alcanzar. Posteriormente, la
NN activa la siguiente funcién biologica correspondiente para esa célula.

Para hacer que la NN aprenda un patrén morfogenético, se ha propuesto un
enfoque similar al Aprendizaje por Refuerzo (RL, de sus siglas en inglés). En este
método desarrollado, se simula un ejemplo del patréon deseado, se evalda la pre-
cision de los resultados utilizando una funcién de recompensa y se optimiza los
parametros de la NN para maximizar esta funciéon de recompensa. La optimiza-
cion de la NN se ha realizado a través de un Algoritmo Genético (GA, de sus siglas
en inglés), aunque se pueden implementar otros algoritmos. Una ventaja de este
enfoque es que requiere informacion minima sobre los procesos morfogenéticos
y solo necesita la informacion morfolégica sobre el patrén final extraido visual-
mente. Una vez que la NN esta entrenada, se ha demostrado el potencial del marco
de trabajo para replicar con precisién la morfogénesis de los organoides, tanto los
organoides tumorales quisticos como los organoides solidos del pancreas. En am-
bos casos, se muestra la precisién de los patrones simulados en comparacién con
los experimentos in vitro, y la robustez de la NN en la coordinacién de las funcio-
nes celulares a pesar de las variaciones en el tiempo del ciclo celular o el tiempo
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de secrecion de fluidos, asi como la introduccion de ruido en estos procesos. Ade-
mas, se demuestra que esta metodologia puede beneficiarse no solo de reproducir
un patréon morfogenético final, sino también de reproducir su evolucion mediante
la incorporacion de datos de series temporales. Este método basado en inteligen-
cia artificial aprende los mecanismos intrinsecos del proceso morfogenético, lo
que le permite generalizar y reproducir patrones morfogenéticos similares con
diferentes procesos dinamicos sin necesidad de optimizacién de parametros ad
hoc.

Ademas, este trabajo proporciona una demostracion de la capacidad del mo-
delo discreto desarrollado para simular el comportamiento similar al de un fluido.
Para ello, se ha llevado a cabo un ensayo de cizalladura del modelo de fluido ba-
sado en particulas para obtener la curva de flujo estacionaria y se ha ilustrado
como mantener las propiedades reologicas del fluido como un fluido newtoniano,
a pesar de los cambios en la discretizacién del tamarfio de las particulas.

Por lo tanto, este novedoso trabajo muestra el potencial de combinar modelos
discretos mediante ABM y ML en biologia computacional para reproducir el com-
portamiento celular. Demuestra el poder sinérgico de ML para aprender a replicar
datos de manera efectiva sin necesidad de recalibraciones y resolver el problema
inverso de descifrar el comportamiento celular a partir de un patrén final, junto
con el modelo mecanicista para obtener interpretaciones biologicas.

Finalmente, el foco se ha trasladado de la microescala a la macroescala para
investigar el cancer de prostata especifico del paciente a nivel de 6rgano (Capi-
tulo 5). En la practica clinica, el cancer de prostata se diagnostica tipicamente
mediante Imagen por Resonancia Magnética (MRI, de sus siglas en inglés), y la
progresion del tumor se monitoriza a través de analisis de sangre rutinarios para
medir el biomarcador Antigeno Prostatico Especifico (PSA, de sus siglas en inglés).
Sin embargo, existe controversia en torno a este biomarcador como indicador de
la evolucidn del tumor debido a su falta de especificidad y sensibilidad. En muchos
casos, los tumores progresan sin variaciones en los niveles de PSA, lo que dificulta
su monitoreo. Por lo tanto, este trabajo presenta un nuevo marco computacional
que integra un modelo basado en la fisica con un método de ML para predecir
el crecimiento especifico del tumor de prostata del paciente en Gemelos Digitales
(DTs, de sus siglas en inglés) a partir de pruebas de sangre de PSA.

En este trabajo, se ilustra una metodologia de construccioén de un DT a par-
tir de imagenes de MRI, incorporando informacién fisiologica. Luego, el DT del
paciente se introduce en un modelo basado en fisica que emplea una represen-
taciéon continua con PDEs para predecir el prondstico del tumor. Este modelo
incorpora aspectos biolégicamente relevantes del cancer de prostata, incluido el
aumento en el PSA tisular resultante de la filtracion de PSA de las células can-
cerosas. Ademas, consideramos la intravasaciéon de PSA desde el tejido hacia la
sangre, teniendo en cuenta la distribucion espacial de la red vascular, la cual no
ha sido considerada en los trabajos existentes en la literatura. Ademas, el modelo
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incorpora una representacion matematica del crecimiento tumoral. Para regular
la dinamica de crecimiento dentro del modelo basado en fisica, se ha adoptado un
enfoque de ML novedoso no propuesto anteriormente. Este modelo de ML basado
en DL considera la geometria 3D de la prostata y las interacciones espaciales entre
los datos fisiologicos para controlar el crecimiento tumoral basado en los resulta-
dos de pruebas de sangre de PSA especificos del paciente. Es importante destacar
que esta metodologia desarrollada es independiente de la geometria individual
del paciente para garantizar la generalizaciéon entre pacientes sin necesidad de
reajustes, ofreciendo el potencial para predecir prognoésticos de tumores a largo
plazo abarcando meses o incluso afios con una notable velocidad computacional.

Asi, la metodologia propuesta se ha validado prediciendo la progresién del
tumor de dos pacientes reales, demostrando el potencial del modelo para repro-
ducir con precision no solo el volumen y la forma clinicos del tumor a lo largo
del tiempo, sino también para ofrecer informacién sobre la agresividad o el riesgo
potencial para el paciente dadas sus dinamicas de crecimiento particulares. Para
ello, se ha propuesto un método de calibracion para el modelo basado en la fisi-
ca para reproducir el crecimiento especifico del tumor de un paciente. A través
de la modelizacién mecanicista, se ha demostrado que los parametros del mode-
lo basado en la fisica pueden proporcionar informacién especifica del paciente,
especialmente en lo que respecta a la agresividad y el riesgo potencial del tumor
del paciente. De este modo, el modelo ha identificado un escenario clinico de pa-
cientes con crecimiento tumoral oculto, donde los niveles de PSA en sangre no
aumentan a pesar del desarrollo del tumor, constatando el desafio de monitorear
la enfermedad tinicamente a través del PSA en sangre y permitiendo mediante
simulaciones intervenciones terapéuticas méas oportunas y personalizadas.

Por tanto, este marco computacional, que integra modelos de aprendizaje au-
tomatico informados por la fisica en el DT de la prostata, abre un nuevo camino
para predecir la progresion del tumor con DT y explorar los beneficios de la mo-
delizacion mecanicista y ML. Ademas, ofrece un enfoque novedoso para crear un
posible sustituto computacional de MRIs para monitorizar el prondstico del can-
cer de prostata y reducir la incertidumbre del crecimiento tumoral determinado a
partir de pruebas de sangre de PSA. Por lo tanto, este trabajo representa un paso
hacia el empleo de la biologia computacional para aplicaciones clinicas, ofrecien-
do predicciones precisas y en tiempo real del prondstico del tumor especificas del
paciente.

7.2 Lineas futuras

Diferentes direcciones de investigacion futura han surgido a lo largo de esta
tesis tanto para abordar algunas de las limitaciones presentadas en los trabajos
como para explorar nuevas oportunidades y caminos abiertos por esta investiga-
cién.
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Un aspecto que podria beneficiarse de mejoras en los modelos de ABM desa-
rrollados es un refinamiento de la representacion de la Matriz Extracellular (ECM,
de sus siglas en inglés). En las simulaciones, se ha considerado el componente vis-
coso de la matriz y se ha calculado la friccién de las células con la matriz mediante
la ley de Stokes, mientras que se ha despreciado el componente elastico de la mis-
ma. Sin embargo, la ECM es un material compuesto que presenta una respuesta
reoldgica viscoelastica. Considerando esto, una representacion mas precisa de las
propiedades mecanicas de la ECM podria mejorar nuestra capacidad para simular
el proceso de formacién del lumen y comprender mejor sus efectos. Ademas, in-
corporar el componente elastico nos permitiria calcular tensiones y entender de
forma integral la influencia de las variables ambientales mecanicas involucradas,
no solo durante la formacion fisiolégica, sino también durante su desviacion ha-
cia la formacion tumoral. Esto podria llevar a una descripciéon mas detallada de
las fuerzas mecénicas resultantes de las interacciones célula-ECM vy resultar en
una mayor heterogeneidad en las fuerzas mecénicas entre las células.

Otro trabajo futuro que se plantea consiste en profundizar en la metodolo-
gia combinando ABM y ML para la morfogénesis de organoides, presentado en el
Capitulo 4. En este caso, otro camino a explorar radica en proporcionar a la NN
datos fisicos. En el modelo desarrollado, a la NN se le proporcionaban métricas
de datos que evaluaban el estado de la simulacién, facilitando la comparacion y
correlacion con experimentos. Esto permitio la simulacion efectiva de los expe-
rimentos, ya que la NN controlaba el comportamiento celular en funcién de las
diferencias entre los experimentos y las simulaciones. Sin embargo, otro enfoque
implica considerar aspectos fisicos y quimicos como fuerzas célula-célula, fuerzas
célula-matriz o niveles de glucosa, entre otros, para predecir funciones celulares
con la NN. En este caso, la funcién de pérdida integraria la comparaciéon de métri-
cas de datos entre los experimentos y los resultados de simulacién. Por lo tanto,
con este enfoque, al tener datos suficientes de experimentos para entrenar a la
NN y hacer que aprenda multiples comportamientos, podemos avanzar hacia un
ML que integre todos los posibles comportamientos celulares detras de la mor-
fogénesis de patrones con una interpretacién de la causalidad entre la fisica y el
comportamiento celular. Alternativamente, otra perspectiva sobre la combinacion
de ABM y ML implica el empleo de Convolutional Neural Networks (CNNs) para
predecir el comportamiento celular directamente a partir de imagenes experimen-
tales en simulaciones. En este caso, en lugar de proporcionar informacién basada
en la fisica a la NN, una Red Neuronal Convolucional (CNN, de sus siglas en in-
glés) recibiria la imagen del resultado experimental para guiar el comportamiento
celular en el ABM. En este caso, la funcién de pérdida integraria las diferencias
entre las imagenes de entrada y las imagenes de los resultados de simulacion del
ABM para aproximar los experimentos espacialmente.

Siguiendo esta linea de combinacién de modelos discretos con ML, la inte-
gracion de ABM con esquemas de RL ofrece una gran amplitud de posibilidades
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para simular sistemas biologicos. En este enfoque, en el cual los agentes apren-
den interactuando con el entorno y otros agentes para maximizar una sefal de re-
compensa, se alinea e integra naturalmente con los ABM. Esta recompensa puede
representar el destino celular e incluir la homeostasis, el funcionamiento fisiol6-
gico correcto, la supervivencia o, en el caso de las células tumorales, maximizar la
proliferacién o la invasion. Por lo tanto, este enfoque tiene el potencial de ofrecer
nuevas perspectivas para comprender procesos como la migracion celular y co-
mo las sefiales mecanicas y quimicas del entorno la guian, simular la competicién
de células tumorales y sanas por la obtencion de nutrientes como la glucosa u
oxigeno, reproducir el crecimiento tumoral o analizar las interacciones mecéni-
cas que regulan los procesos de desarrollo. Por lo tanto, el RL en biologia es un
campo prometedor aun por investigar.

Centrando la atencién en la macroescala a nivel de 6rgano, otro enfoque para
predecir la evolucion del cancer en DTs consistiria en un modelo completamente
de ML mediante Redes Neuronales de Grafos (Graph Neural Networks (GNNs), de
sus siglas en inglés) [345]. En este nuevo modelo, en primer lugar se generaria
un grafo a partir del DT, con cada nodo condensando toda la informacion de-
rivada de la MRI. La GNN luego crearia un embebido del grafo, capturando las
interacciones geométricas entre los datos fisiologicos de la MRI. Posteriormente,
un modelo de ML con una NN puede hacer predicciones sobre la evolucion del
tumor considerando la informacion holistica del grafo que representa al DT. Este
modelo puede ser entrenado utilizando un conjunto de datos de diagnosticos me-
diante MRIs para generar el grafo y sus correspondientes MRIs de seguimiento
para validar las predicciones. Ademaés, ciertos modelos de GNN también pueden
considerar cambios en el grafo con el tiempo, prediciendo no solo el crecimien-
to del tumor, sino también cambios en la geometria. Por lo tanto, este enfoque
promete una mejor prediccion del crecimiento del cancer, aprovechando toda la
informacién condensada en la MRI.

7.3 Contribuciones de la tesis

En esta seccion se recogen las contribuciones de esta tesis.

7.3.1 Publicaciones en revistas internacionales revisadas por pa-
res

Las publicaciones en revistas internacionales revisadas por pares logradas du-
rante el periodo de tesis se enumeran a continuacion:

1. Juste-Lanas, Y., Guerrero, P. E., Camacho-Gomez, D., Hervas-Raluy, S.,
Garcia-Aznar, J. M., & Gomez-Benito, M. J. (2022). Confined Cell Migration
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and Asymmetric Hydraulic Environments to Evaluate the Metastatic Poten-
tial of Cancer Cells. ASME. Journal of Biomechanical Engineering, 144(7):
074502. https://doi.org/10.1115/1.4053143.

2. Camacho-Gomez, D., Garcia-Aznar, J. M., & Gomez-Benito, M. J. (2022). A
3D multi-agent-based model for lumen morphogenesis: the role of the biophy-
sical properties of the extracellular matrix. Engineering with Computers,
38(5), 4135-4149. https://doi.org/10.1007/s00366-022-01654-1.

3. Camacho-Gomez, D., Sorzabal-Bellido, 1., Ortiz-de-Solorzano, C., Garcia-
Aznar, J. M., & Gomez-Benito, M. J. (2023). A hybrid physics-based and data-
driven framework for cellular biological systems: Application to the morpho-
genesis of organoids. iScience, 26(7). https://doi.org/10.1016/j.is¢i.2023.107164.

4. Camacho-Gomez, D., Movilla, N., Borau, C., Martin, A., Ofnate-Salafranca,
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7.3.3 Software de codigo abierto

Ademés del desarrollo de los trabajos, se ha contribuido publicando el cédigo
de tres de los modelos desarrollados en repositorios abiertos:

« https://github.com/daniel-camacho-gomez/AIOrganoids
« https://github.com/daniel-camacho-gomez/2D_Data-to-3D_Migration

« https://github.com/daniel-camacho-gomez/ProstateNet

7.4 Docenciay supervisiones

El autor ha co-supervisado un trabajo fin de master titulado Un modelo hibrido
basado en fisica y aprendizaje profundo para la simulacién de la migracion celular en
canales confinados, un trabajo fin de grado titulado Estudio de la dinamica celular
a través de modelado basado en agentes y ha supervisado un trabajo de fin de
grado titulado Estudio computacional de la influencia de la anisotropia de la matriz
extracelular en la migracion celular.

Ademas, el autor ha impartido los siguientes cursos:

1. 2022.Precurso "Modelos de agentes en aplicaciones biomédicas." enla XI
Reunion del Capitulo Espariol de la Sociedad Europea de Biomecéanica
(ESB), Zaragoza.

2. 2022-2024. Curso titulado "Modelos de agentes para la simulacién de

células" en el seminario interdisciplinar (69723) del Master en Ingenieria
Biomédica de la Universidad de Zaragoza.

7.5 Colaboraciones

Durante el desarrollo de la tesis, el autor ha participado y establecido las si-
guientes colaboraciones:

Individual and Collective Migration of Immune Cellular Systems (ICoMICS).
Este proyecto financiado por la Unién Europea tiene como objetivo desarrollar
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un enfoque de modelado capaz de predecir como migran las células inmunes te-
rapéuticas, interactiian con el microambiente tumoral y contribuyen a la mejora
de los resultados de la inmunoterapia. Los resultados de este trabajo se presentan
en el Capitulo 2.

Proyecto de Mecanobiologia y Anélisis de Imagenes en Microfluidica para
la Simulacién del Crecimiento Tumoral en 3D (TUMOR-ON-CHIP). Este proyec-
to establece una colaboracion entre la Fundacion para la Investigacion Médica
Aplicada (FIMA) de la Universidad de Navarra, expertos en analisis de image-
nes y microscopia cuantitativa aplicada al estudio de problemas biomédicos, y la
Universidad de Zaragoza. El objetivo es estudiar el crecimiento de organoides tu-
morales cultivados en dispositivos de microfluidica. Esta colaboracién implica un
trabajo complementario, donde los modelos computacionales desarrollados por la
Universidad de Zaragoza serian validados experimentalmente utilizando las he-
rramientas de microscopia cuantitativa desarrolladas por FIMA. Los resultados
de este proyecto conjunto se recogen en el Capitulo 4.

Proyecto ProCanAid. Esta iniciativa tiene como objetivo utilizar un gemelo
digital de la prostata para ayudar en la deteccion, diagnéstico y simulacion de
los efectos y la efectividad de varios tratamientos oncologicos para el cancer de
prostata. El proyecto implica la colaboracion entre el Hospital La Fe, que propor-
ciona datos de pacientes, la empresa Quibim, que emplea analisis de imagenes
para automatizar la segmentacién y extraccion de biomarcadores de imagenes,
y la Universidad de Zaragoza, que utiliza estos datos para desarrollar modelos
computacionales para predecir el crecimiento del cancer de prostata. El Capitulo
5 presenta el trabajo realizado dentro de este proyecto.

Ademas, el autor ha realizado una estancia de investigacion de tres meses en el
grupo de Estadistica Computacional y Aprendizaje Automético del Departamento
de Ingenieria de la Universidad de Cambridge, dirigido por el Prof. Mark Girolami.
Durante esta estancia, el autor desarrollé el modelo de aprendizaje automaético
para el proyecto ProCanAid presentado en el Capitulo 5.

Adicionalmente, el autor ha contribuido realizando simulaciones computacio-
nales de fluidos en entornos hidraulicos asimétricos en dispositivos microfluidi-
cos en el estudio para evaluar el potencial metastasico de las células cancerosas
dentro de canales confinados, con el objetivo de comprender la influencia de los
gradientes de presion en la migracion celular [49].

Finalmente, el autor también ha participado en el proyecto europeo PRIMA-
GE. Este proyecto, financiado por la Comisién Europea, cuenta con 16 socios eu-
ropeos que participan en el consorcio y tiene una duracion de implementacion
de 4 aflos. Este proyecto propone una plataforma en la nube abierta para apo-
yar la toma de decisiones en el manejo clinico de dos canceres pediatricos, el
neuroblastoma (NB), el cancer s6lido mas frecuente en la primera infancia, y el
glioma pontino intrinseco difuso (DIPG), la principal causa de muerte relacionada
con tumores cerebrales en nifios. La plataforma PRIMAGE implementa los ulti-
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mos avances en biomarcadores de imagenes in silico y modelado del crecimiento
tumoral hacia un diagndstico, prondstico y seguimiento de la terapia personali-
zados.

7.6 Financiacion

Esta tesis doctoral ha sido llevada a cabo gracias al apoyo de PRedictive In-
silico Multiscale Analytics to support cancer personalized diaGnosis and progno-
sis, Empowered by imaging biomarkers (PRIMAGE) (G.A. no. 826494) y Procanaid
Next Generation EU (Subvenciéon No. PLEC2021-007709). La estancia de investi-
gacion en la Universidad de Cambridge también fue respaldada por el programa
Erasmus+ gestionado por Campus Iberus y la Fundacién Ibercaja-Cai (No IT 5/23).
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What we know is a drop, what we
don’t know is an ocean.

— Isaac Newton
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A.1. APPENDIX OF CHAPTER 3 - LUMEN MORPHOGENESIS

A.1 Appendix of Chapter 3 - Lumen morphogenesis
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Figure A.1: Lumen volume after 7 days for each of the twenty simulations in the
intermediate-density matrix (n = 50 Pas). The numbers in parentheses indicate the
number of lumens produced, the red circles represent the discrete volume of each lumen, the
green crosses show the sum of the volumes of all lumens in each simulation and the blue line
is the median. The bars represent the volume of the largest lumen, which are plotted for the
sake of the visualization.

A.2 Appendix of Chapter 4 - Organoid morphogenesis

A.2.1 Murine PDAC cells culture and maintenance

Cystic organoids formed from PDAC93-GFP and solid organoids formed from
PM12500-GFP pancreatic ductal adenocarcinoma (PDAC) cells derived from Pdx1-
Cre; Kras+/LSL-G12D; Trp53+/LSL-R172H male mice (KPC) were kindly donated
by Dr. Mariano Ponz and Dr. Silvestre Vicent. Authentication of cell lines was not
required. The cell line used to generate the organoids was a primary line donated
by a collaborator, generated from a transgenic mouse model of pancreatic cancer.
It is not a commercial line, thus authentication is not possible. The organoid cell
line was tested for mycoplasma contamination using MycoAlert® Mycoplasma
Detection Kit (Lonza). Cells were thawed from frozen stock in 50 ml Falcon tubes
containing 10 ml of DMEM and centrifuged to remove any traces of the cryopro-
tectant DMSO. Then, the cells were incubated in T75 flasks (TC treated; Nunc
EasyFlask, Thermo Scientific) containing 10 ml of DMEM supplemented with 10%
FetalClone III (SH30109.02, Cytiva) at 37 °C and 5% CO2. Once cells reached 90%
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confluence, cell cultures were passed to a new T75 flask using 0.05% Trypsin-
EDTA (25300-096, Gibco) followed by centrifugation and resuspension in 10 mL
of fresh DMEM supplemented with serum and subsequent incubation at 37 °C
and 5% CO2.

A.2.2 3D cultures of murine PDAC cells in Matrigel

PDAC93-GFP and PM12500-GFP cells were grown in T75 flasks (TC treated,;
Nunc EasyFlask, Thermo Scientific) containing 10 mL of DMEM supplemented
with 10% FetalClone III (SH30109.02, Cytiva). Once the cells reached 90% con-
fluence, they were detached using 0.05% trypsin-EDTA (25300-096, Gibco), cen-
trifuged, and resuspended in 1 mL of fresh DMEM supplemented with serum.
Then, the cell suspensions were embedded in 4 mg/mL growth factor reduced
(GFR) Matrigel at a final concentration of 300.000 cells/mL. A total of 20 uL.
of this cell-hydrogel mixture was added to individual 5 mm diameter wells of a
homemade PDMS device followed by a 15 min incubation at 37 °C to complete the
Matrigel gelation process. Finally, 800 pL of organoid feeding media (a detailed
description of the cell culture media used is available in Table A.1) was added to
the organoid culture device, and the 3D cell culture was incubated at 37 °C and
5% C'O4 as needed.

Table A.1: Detailed description of the cell culture media.

Reagent Concentration
Advanced DMEM F12 1X, (Base medium)
HEPES 1X

GlutaMax 1X
Penicillin/Streptomycin  1X

A83-01 0.5 uM

mEGF 50 ng/ml
hFGF10 100 ng/ml
Gastrin I 10 nM
mNoggin 100 ng/ml
Y-27632 14 M
N-acetylcysteine 1.25 mM
Nicotinamide 10 mM

B-27 1X
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A.2.3 Cell functions

To reproduce the biological characteristics of tumor pancreatic organoids with
lumen, three cell functions are considered within the ABM: proliferation, quies-
cence, and fluid secretion. Proliferation is modeled by a growth phase, in which
the cell progressively increases its volume as a result of DNA replication, and by
a mitosis phase, in which the cell divides into two daughter cells. Thus, we track
the volume of each cell V;(t) and calculate the volume growth from [303]:

dvi(t)
dt

= aV;(t), (A1)

where o = 1/7T, is the growth rate, which is related to the cell cycle time 7.
When the volume of the cell reaches twice its initial volume, DNA replication is
concluded, and the cell divides. In this regard, cell division is performed using a
random cleavage plane that contains the line that passes through the cell center
and the lumen center of mass.

Quiescent cells remain inactive for 6 minutes (At;,) and do not perform any
cell function.

Finally, through the fluid secretion function, cells generate particles inside the
lumen after fluid production time At¢,,. First, when the lumen does not yet have
any fluid, the cell secretes into the cell’s center of mass. Then, when another cell
secretes, some random particles are duplicated to recreate the increment in the
fluid volume.

A.2.4 Multiphoton Microscopy of PDAC organoids

3D cultures of PDAC93-GFP and PM12500-GFP cells were generated and in-
cubated for 5 days as described in the previous section. Then, samples were
fixed with 4% paraformaldehyde in DPBS solution at 37 °C for 30 minutes and
washed thoroughly with DPBS followed by cell nuclei staining with a 5 pg/mL
solution of Hoechst 33342 for 16 h at room temperature. Image acquisition was
performed using a Zeiss LSM 880 AxioObserver inverted confocal microscope
equipped with a 25x LD LCI Plan-Aprochomat 0.8 NA W objective. A total sam-
ple volume of approximately 1065x1065x200 pm?® was acquired using a Mai Tai®
DeepSee™ Ti:Sapphire laser sequentially set to 740 nm and 920 nm for multipho-
ton microscopy of stained nuclei and endogenous cytoplasmic GFP, respectively.

A.2.5 Quantification of 3D PDAC organoid morphology

Nuclei and cytoplasmic GFP segmentation masks were generated using StarDist
3D [346] and the Trainable Weka Segmentation 3D [347] plugin for Fiji, respec-
tively. The StarDist 3D model was trained from scratch for 50 epochs on 45 paired
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image patches (patch size: (72,72,32), batch size 1, number of rays: 32, augmenta-
tion: true) [348], accelerated using an NVIDIA Quadro P1000 GPU. Afterward, the
generated masks were analyzed using a homemade script for Fiji. Briefly, cyto-
plasmic GFP masks were preprocessed using a GPU-accelerated 3D median filter
and binary closing available in the CLIJ2 library [349]). Then, each individual or-
ganoid was labeled, and the intersection between the cytoplasmic GFP mask and
the nuclear mask was calculated using a logical AND operator. The number of
nuclei and morphological descriptors, such as the organoid volume or sphericity,
were quantified using Morpholib]J [350]. Statistical analyses and figure generation
were performed using MATLAB (MathWorks). The exact number of simulations
conducted to test the robustness in Figure 4.4 was indicated in the legend. The
R-squared values of the linear regressions in Figure A.5 and Figure A.6 were also
specified in the legend.

A.2.6 Learning algorithm

In order to make the neural network learn, we employed a genetic algorithm
based on selection, crossover, and mutation algorithms. For the sake of simplicity,
we illustrate how the weights of one node of the neural network are updated.

« Selection: selection is how the progenitors are chosen from the generation.
Thus, the two fittest progenitors of the actual generation are chosen as
parents of the next generation. Let A be the best of its generation and B
the second best. These two are also selected as offspring (parent A = off.1
and parent B = off.2). Then, the rest of the offspring (off.3, off 4, ..., off.10)
are obtained through crossover and mutation algorithms.

+ Crossover: parent A and parent B are mixed to obtain the offspring. Four
different crossover algorithms are implemented:

— single point crossover: beginning with one parent ending with other:
Parent A Parent B Off.3 Parent A  Parent B Off. 4
—_— A= A= —_~— = A=
@ 5 1 1 5 5
@ 6| |2 2 ©| _ |6
st Tl T 7 @ T |7 T |3
4 8 @ 8 4
— two point crossover: first and final values are chosen from one parent
and middle values from the other parent:

Parent A  Parent B Off.5 Parent A  Parent B Off.6
—~ —~ = = —~ —~ = ~ =
@ 5 1 1 5 5
21 . |©®] _ |6 @, 6] _ |2
3 @l ~ |7 3) 7 3
@ 8 4 4 8
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— arithmetic crossover: sum of parents:
Parent A  Parent B Off. 7
—_—

=~
1 5 6
2 . 6] |8
3 7 10
4 8 12
- uniform crossover: offspring values are randomly copied from A or B
parent:

Parent A  Parent B Off.8

~ —~ ~ =~
1 5) 5

2| . |®

© 7

4

« Mutation: the purpose of mutation is to introduce diversity into the sam-
pled population, avoid local minima, and get faster to the solution (rand(—1,1)
is a function that chooses the value -1 or 1 and mut, 4. is a parameter):

oo W O

Parent A Parent A
A~
1 rand(—1,1) 1
|2 rand(—1,1) 2
off. 9 = 3 +mut,qte - and(—1,1) ® 3 (A.2)
4 rand(—1,1) 4
Parent B Parent B
~~ ~~
5 rand(—1,1) 5
|6 rand(—1,1) 6
off. 10 = 7 +mut,rgte - rand(—1,1) ® 7 (A.3)
8 rand(—1,1) 8

A.2.7 Agent-based modeling

Mechanical interactions between agents make them move and change their
positions. To describe these interactions we follow our previous work [303].
We illustrate how the cell position x. and particle position x,, are calculated.
Let N, be the set of cells N, = {1,..., N.}, and let N,, be the set of particles
N, = {1, ..., Np}. First, the velocity of each i-cell v., and each k-particle v,, are
calculated from the balance of forces:

dv,,
mci ;’tcl = Z (FCiCj) + Z (Fcipj) + Fcidr‘ag ~ 07 (A4)
JEN. jEN,
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dv
Pr _ ~
Mpx =g~ Z (Fpep;) + Z (Fpre;) + Fpypray =0 (A.5)
JEN, jEN,

Here, m., and my, are the cell and particle masses, respectively, F'¢,.; repre-
sents cell-cell interaction force, F',, ; indicates the cell-particle interaction force,
F'p, p; is the particle-particle interaction force, F'p, ., denotes the particle-cell in-
teraction force and F'¢; ~and F'j, ~ are the friction of the cell and particle

rag rag

dve, dv
with the ECM, respectively. The inertial terms m.,—— and m,, Pk are ne-

dt
glected because Re << 1. The drag forces Fc; —and F' ph,,,, Are obtained
rag rag

from Stoke’s law:
= —6mnR. v, (A.6)

= —6mnRyvp, , (A.7)

Cidrag

Pkrag
where 7 is the dynamic viscosity of the ECM, R, is the radius of the i-cell, R,
is the radius of the particle and v., and v, are the velocities of the i-cell and
k-particle.

Cell-cell interaction forces are usually modeled as repulsive-attractive forces.
The repulsion between cells arises from cell resistance to deformation when their
membranes touch, and the attractive forces are the result of the junctions that
cells form between themselves through specialized protein complexes ([271]). In
the case of particles, the repulsive-attractive forces represent the intermolecu-
lar forces in fluids. Accordingly, we modeled the interaction forces F's,, (both
subindexes ¢ and « denote ¢ or p, depending on whether the i and j agents are
cells (c) or particles (p)) following [272], as follows:

o T
Fsr, = F&ym (A.8)
where:
Tij = Ty, — T, (A.9)
and:
Fr — Frepan(—S)S/a s < 0 (repulsion),
T —Fladng, x{(s + so)e Ms+s0)® e rs’) g > () (adhesion).
(A.10)

Consequently, x, s, z¢ and vy are defined as:

R(;v 1 1 d— mz’ndist
=20 = o st A1l
X 2<%+R), 8 Ry (A.11)

1
To = B3R vy = xge_)‘mg. (A.12)
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Freps., and F,q, 5, AT€ the strengths of the adhesive and repulsive forces, re-
spectively. r;; is the distance between the centers of the agents, and R;, and R,
are the radii of the corresponding agents. xg, vg and A are matching constants,
and Y is a geometric correction factor. The value of ming;ss = —0.1Rs, is cho-
sen such that the equilibrium state where the adhesive and repulsive forces are
balanced is slightly less than zero, following [272], and d = ||7;;|| — Rs, — R, is
the distance between the agents’ surfaces.

Since cells do not present any attraction towards the lumen fluid, the inter-
action force between cells and particles is only repulsive (Fyqn,, = Fudn,. = 0).

Finally, the velocity of the i-cell and the k-particle at time ¢ can be calculated
explicitly:

dx.,(t 1
3ndt( ) = veilt) = 6mn Ry, Z (Fcicf) + Z (FCin) ’ (A.13)

dxp, (1) 1
_— = t) =
dt V(1) 6mnR,

A.2.8 Cell division

When the volume of the cell reaches twice the value of its initial volume,
DNA replication is concluded, and the cell divides. A spatially controlled divi-
sion is a fundamental condition to maintain the lumen architecture and enhance
its growth by enlarging the lumen volume. In this regard, a complex molecularly
controlled process regulates the spindle orientation, so mitosis occurs in the plane
of the monolayer [260-265]. Here, we distinguish the division between nonpo-
larized cells and polarized cells. Nonpolarized cells are those that have not yet
formed a lumen, and polarized cells are those that belong to a lumen and face
it. In the case of nonpolarized cells, the division direction is chosen randomly.
Polarized cell division is performed using a random cleavage plane that contains
the line that passes through the cell center and the lumen center of mass. The
position of the two daughter cells (Z4qughters) are calculated similarly to other
models [266, 267] from the center of the parent cell T4 ens at:

1
Ldaughters — Lparent + (Rc - %RC> n, (A.15)

where R, is the radius of the parent cell and 7 is the unit orientation vector. When
a nonpolarized cell divides, the unit orientation vector n is chosen randomly.
However, when a polarized cell divides, the unit orientation vector n is normal
to the random cleavage plane that contains the line that passes through the cell
center and the lumen center of mass.
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A.2.9 Fitness function

The fitness function is an objective function that assesses NN performance.
When the simulation finishes, a fitness value is given to the neural network de-
pending on how close the obtained result is with respect to the target solution.
Let N} and V' be the number of cells and lumen volume target values. The fitness
function for cystic organoids is formed by three components: the first relates to
the number of cells, the second to the lumen volume and the third is a penalty
term for the eccentricity. Therefore, the fitness is evaluated through this equa-
tion:

_ (Ne=NH? _i-vh?
Fitness(N¢, Vi, demn) = 0.5-100 292 4+0.5- 100 2(vH?
2
€c
=250 | A.16
((v;/m) ’ (810

where N/ is the target number of cells, V! is the target lumen volume and e, is the
eccentricity (the distance between the cells’ center of mass and the lumen’s center
of mass). Thus, the better the neural network approximates the target number of
cells and target lumen volume, the better the solution. However, the higher the
eccentricity e, is, the worse the solution. In the case of the fitness function for
solid organoids, the fitness function is only dependent on the number of cells.

A.2.10 Eccentricity

In the process of the generation of a cystic organoid, fluid secretion, prolif-
eration, and quiescence must be orchestrated. If cells secrete fluid too early, the
preapical patch, which is the closed volume necessary to secrete fluid would not
form, so the fluid would leak. Also, if cells secrete too much the lumen would
open. Also, if they do not proliferate, they would not create more inner space
for the fluid and it would leak. To maintain the structure, there is competition
between these processes. Therefore, to make the neural network understand that
these cell functions must coordinate to preserve the structure, we introduce a
metric called eccentricity that permits us to take into account the structure. This
metric refers to the distance between the cells’ center of mass and the lumen’s
center of mass. The lower this value is, the more spherical the organoid is (Fig-
ure A.2a). Conversely, the higher this value is, the less spherical the organoid
is, reaching a certain moment that it opens (Figure A.2b). Therefore, the neural
network uses this metric to evaluate the state of the cystic structure.
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b

X Cells' center of mass
Lumen's center of mass

Figure A.2: Sketch of the impact of the eccentricity on the structure. a Case with
a low eccentricity. b Case with a high eccentricity, which predicts fluid leakage.

A.2.11 Organoid seeds

Figure A.3 shows the real 3D cultures of murine pancreatic ductal adenocar-
cinoma seeds grown in a biomimetic matrix made of Matrigel (4 mg/ml). Here,
we generated a randomly distributed population of organoid seeds ranging from
single cells to small clusters of 2-3 cells.

PDAC93

PM12500

Figure A.3: Maximum intensity projection of PDAC93 and PM12500 organoid
seeds. Nuclei were stained with DAPI (cyan) and F-actin with phalloidin-TRITC (magenta).

A.2.12 Simulation parameters for pancreatic tumor cystic orga-
noids

The parameter values used for the simulation of the pancreatic tumor orga-
noids with lumen are presented in Table A.2.
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Table A.2: Parameters of the model for the simulation of pancreatic tumor cystic orga-
noids.

Parameter Description Value Source

teyele Cell cycle time 30h Estimated

Aty Quiescence time 6 min Estimated

Atezo Fluid production time 15 min Estimated

n Dynamic viscosity of the matrix 20 Pas  [275]

R, Particle radius 2 um Estimated

Frep.. Cell-cell repulsive force -4.80 pN  [272, 303], estimated
Foan,. Cell-cell adhesive force 24 pN [272, 303], estimated
Freppp Particle-particle repulsive force -4.830 pN  [272, 303], estimated
Fadn,, Particle-particle adhesive force 24 pN [272, 303], estimated
Frepey Cell-particle repulsive force 0.60 pN  [272, 303], estimated
Fudn,, Cell-particle adhesive force 0 [272, 303], estimated
A Matching constant of the potential function 7 [272, 303]

A.2.13 Characterization of the lumen fluid

We conducted a shear test to validate that our approach represents an actual
fluid. In this regard, we used a bulk domain consisting of fluid particles with a
radius R, = 2 pm (Figure A.4). The top layer of particles (depicted in black in
Figure A.4) was subjected to a velocity u in the X direction, while the bottom
layer (depicted in blue in Figure A.4) had fixed displacements in the X and Y
directions.

Figure A.4: Discretization of the fluid volume with R, = 2 pym.

Then, to obtain the steady flow curve to assess the behavior of particles, we set
the shear stress experiment with a time duration of ¢.;;, = 30 min and varied the
velocity of the top layer within the values u = [0.01, 0.05, 0.1, 0.2, 0.5]/tcqp
pm/min. Finally, we were able to determine the viscosity of the fluid (1) by mea-
suring the shear stress (7) as the sum of the reaction forces (F) of the particles
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forming the bottom XY -plane of the cube of side length [ in the X direction

F, .
<T = ZZQ > for each shear rate (¥ = dv/0z).

T
"
0z

(A.17)

We show the linear regression of the shear stress on the deformation rate
(Figure A.5). We obtained that the shear stress is linearly proportional to the shear
strain, resulting in a constant viscosity of 1.072 - 10~3 Pas, with an R-Squared
value of 0.9996. Therefore, this analysis confirms that our approach accurately
reproduces the expected velocity and shear stress profiles for a Newtonian fluid
similar to water (~ 1073 Pas) and demonstrates the capability of our method
to model real fluids, serving as a minimal model that aims to recapitulate certain
features such as mass conservation and momentum exchange. However, it does
not rigorously reproduce bulk-scale physical properties.

x1077

0 1 2 3 4 5
F(min1) x1071

Figure A.5: Linear regression of the shear stress on the deformation rate for a
particle radius of 2 um. The calculated viscosity of the fluid is 1.072 - 1072 Pas, with an
R-squared value of 0.9996.

A.2.14 Particle radius influence on the rheological properties of
the fluid

The particle radius in a particle-based model has a great influence on the me-
chanical and rheological properties of the fluid. Viscosity is a physical property
of a fluid that describes its resistance to deformation or flow. In particle-based
approaches, the viscosity coefficient is typically calculated from the smoothing
length and the particle spacing and depends on the strength of the interaction
forces between neighboring particles.
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Reducing the particle radius while keeping all other properties constant, re-
sults in a change in the mechanical and rheological properties of the fluid. There-
fore, to maintain the rheological properties of the fluid while changing the par-
ticle radius it is necessary to modify other parameters such as the interaction
forces between the particles to maintain a consistent viscosity coefficient so that
the macroscopic behavior of the fluid remains the same. On the one hand, if the
particle radius is reduced for a given volume, the number of particles increases.
Consequently, the fluid becomes more viscous than when the particle radius is
greater since more particles oppose the shear stress. On the other hand, increas-
ing the particle radius reduces the viscosity of the fluid. Thus, it is necessary to
adjust the interacting forces so that the behavior remains the same when inte-
grating the response of the fluid to deformation.

We have modified the interacting forces between particles for particle radii
of 1, 4 and 6 pm, through the optimization of the parameters F.p,, and Fyuap,,
in Equation A.10 so we obtain the same response of the rheological properties
of the fluid as for the particle radius of R, = 2 pm (Figure A.6a). In this case,
the mean value of the viscosity obtained for all particle sizes is 1.078 - 1073 Pas
with a standard error of 1.210- 10~°. Finally, we show a comparison between the
interacting forces for R, = 2 pm and the modified interacting forces for particle
radii of 1, 4 and 6 pm to obtain the same response (Figure A.6b). Since the
number of particles increases when the particle radius decreases, the interacting
forces reduce so when integrating the contribution of the particles to the viscosity
it is equivalent across different particle sizes.

a b
6 X107
—R,=1pm
5t |——R,=2pum
R, =4 pm
4 R, =6 pum
s %
s 3.
- &
2 9 —R,=1pm| |
—R,=2pm
1 —R, =4 pum
-3V R,=6pum| A
0
3 4 5 -0.5 0 0.5 1

0 1 2 K
F(min~t) x107* d (pm)

Figure A.6: Particle radius influence on the rheological properties of the fluid.
a. Comparison of the linear regression of the shear stress on the deformation rate for a
particle radius of 1ym (n = 1.112 - 1073 Pas, R? = 0.9979), 2um (n = 1.072 -
1073 Pas, R? = 0.9996), 4um (n = 1.072 - 1073 Pas, R? = 0.9999), and 6 ym
(m = 1.055 - 1073 Pas, R? = 0.9999). b. Interacting forces versus the distance between
particles for different particle sizes to maintain the same viscosity.
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A.2.15 Particle radius influence on fitness

We analyze the effect of the variation of the particle radius. For this purpose,
we simulated an intermediate-size cystic organoid (organoid 2 from Table 4.1 of
the Chapter 4) with different particle radii to determine how it affects the results.
We show the influence of particle radii on the fitness value and computation time
while keeping the interacting forces the same as for the case of R, = 2 pm (Fig-
ure A.7a). We found that increasing the particle radius from 1 pm to 2 pm causes
an absolute decrease of the fitness value of 0.15% and a relative decrease in the
computation of 96.02% (from 1029 min to 41 min). An increase of the particle
radius from 2 pm to 4 pm entails an absolute worsening of the fitness of the ap-
proximation of 4.16% and a relative improvement of the computing time of 93.88%
(from 41 min to 3 min). Therefore, this analysis shows that the rheological prop-
erties of the fluid are important in the cystic morphogenetic process and require
proper interaction to develop the organoid correctly. In particular, making the
fluid less viscous (increasing the particle radius) entails a worsening of the simu-
lated organoid. Then, we studied the influence of the particle radii on the fitness
value and computation time with the interacting forces obtained in Figure A.6b
to have the same viscosity as water. In this case (Figure A.7b) the fitness is above
0.91 for all particle sizes simulated. However, increasing the particle radius re-
sults in a slight decrease in fitness due to a higher increase in lumen volume per
fluid secretion compared to smaller particle sizes, leading to a reduced sensitivity
in the secretion process. Therefore, a particle radius of 2 ym is optimal for main-

taining low computational costs while having sufficient sensitivity in the fluid
secretion process.
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Figure A.7: Influence of the particle radius on the fitness value and the compu-
tation time. a. The interacting forces for each particle size are the same as for the case of

R, = 2 ym. b. Interacting forces are modified for each particle radius according to Fig-
ure A.6b.
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A.2.16 Sensitivity analysis

Figure A.8 and Figure A.9 show the sensitivity analysis performed in Chapter

Figure A.8: Influence of the cell cycle time on cell coordination. a. t.y.;. = 30 h.
b.teyce =24h.c. Leyele = 36 h.

a b c
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Figure A.9: Influence of the fluid production time on cell coordination. a.
Ateoro = 15 min. b. At., = 6 min. ¢. At.,, = 60 min.
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A.2.17 Random effects analysis
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Figure A.10: Analysis of random effects of the cell cycle and fluid secretion time
parameters. a. Coordination of cell functions without the variation of parameters. b. Coor-
dination of cell functions of the ten simulations performed with the variation of parameters.
Blue color represents proliferation, red color represents secretion, green color represents qui-
escence, and white color represents an unborn cell. ¢. Evolution of the normalized number
of proliferating cells (left), secreting cells (middle), and quiescent cells (right) without the
variation of parameters (control) and with the variation of parameters (simulations 1 to 10).

d. Boxplot of the fitness value of the ten simulations performed with the variation of the
parameters.
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A.2.18 Application of the framework to solid tumor organoids

Agent-based model

Mechanical interactions
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Figure A.11: Particularization of the framework for solid organoids. The physics-
based model consists in an agent-based model which integrates mechanical interactions and
cell functions. Two cell functions are considered; proliferation and quiescence. At is the
minimum period of time that a cell remains quiescent.

A.2.19 Simulation parameters for pancreatic solid tumor organoids

The parameter values used for the simulation of the pancreatic solid tumor
organoids are presented in Table A.3.

Table A.3: Parameters of the model for the simulation of pancreatic solid tumor

organoids.
Parameter Description Value Source
teyele Cell cycle time 24 h Estimated
Aty Quiescence time 6 min Estimated
i Dynamic viscosity of the matrix 20 Pas [275]
Frep.. Cell-cell repulsive force -4.80 pN  [272,303], estimated
Foan,, Cell-cell adhesive force 24 pN [272, 303], estimated
A Matching constant of the potential function 7 (272, 303]
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A.2.20 Application of the framework to the evolution of solid or-

ganoids
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Figure A.12: Particularization of the framework for the evolution of solid orga-
noids. Coordination between physics-based and the data-driven models for the simulation
of the evolution of solid organoids. In this case, just proliferation and quiescence functions
are considered. The target data is specified in different time points.

A.2.21 Simulation parameters for the evolution of solid organoids

Table A.4: Parameters of the model for the simulation of the evolution of solid
organoids

Parameter Description Value Source

teyele Cell cycle time 30 h Estimated

Aty Quiescence time 6 min Estimated

n Dynamic viscosity of the matrix 20 Pas [275]

Frepee Cell-cell repulsive force -4.80 pN  [272,303], estimated
Fodhe. Cell-cell adhesive force 24 pN [272, 303], estimated
A Matching constant of the potential function 7 [272,303]
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A.2.22 Simulation of the evolution of larger solid organoids

Table A.5: Target data for the simulation of the evolution of larger solid orga-
noids.

Target number of cells (JV, 5)

Organoid 7 days 10 days
A 7 500
a b
500
o Target values
100 400 | |~ Total number of cells
——Number of proliferative cells

/E\ 300 Number of quiescent cells
X 0
N

-100

100

Y (um) -100 -100 X (pum)

Figure A.13: Simulation of the evolution of a large solid tumor organoid. a. Snap-
shot at day 10 inserted in a cube of 200 ym side. The spheres represent the full cell volume,
and the green hull is an estimation of the cell membranes through alpha shapes of the cells
with « = 2R, b. Temporal evolution of the number of cells.

A.2.23 Cell count analysis of the in vitro cysic organoids
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Figure A.14: Number of cells for each PADC93 cystic organoid. Black dotted line
indicates the minimum number of cells observed on cystic organoids. Solid black line indi-
cates median, dotted red lines indicate 25% and 75% percentiles.
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A.3 Appendix of Chapter 5 - Prostate cancer

A.3.1 Physics-based model for prostate cancer

The physics-based model has three main variables, the tissue PSA P(x, ),
the serum PSA Ps(t), and the concentration of tumor cells ¢;(x,t). First, we
introduce a mathematical model to simulate the evolution of the concentration
of tumor cells:

Oci(z,t)
ot
where ¢y (x,t) is a function approximated by a NN that determines temporarily
and spatially the fraction of tumor cells that are proliferating and a; the tumor
growth rate. The initial concentration of tumor cells ¢;(x, t() is derived from the
image data of cellularity (c(z,tp)), the fraction of tumor cells estimated in the
patient’s biopsy (py), and the tumor mask (T},qs1(, to)):

= gf)g(:{:,t)atct(:n,t), (A18)

Ct(matO) = prmask(m>t0)c(mat0)' (A~19)

We consider that when the concentration of cells reaches a maximum tissue-
carrying capacity equal to 0.8 [339, 340], the tumor mask is expanded to the
neighboring voxels. Then, we compute the concentration of tumor cells in the
expanded regions. The temporal evolution of the tumor volume T,,(t) can be
obtained by integrating tumor mask across the prostate domain (£2,):

Tvol(t) = /Q Tmask(m7 t)d$ (A~20)

The tissue PSA increase is a consequence of the PSA leakage of cancer cells.
Thus, the tissue PSA (P(x, t)) is calculated from:

M = OtpCt(iB,t) - ’pr(l', t) - Mhogad ktrans(z) (P(il?,t) -

ot Muwpga

Ps(t)>
Q’UO{Z‘ .
(A.21)
Here, o, is the tissue PSA production rate by tumor cells, 7, denotes the nat-
ural tissue PSA decay rate, m,, 4, represents the molecular weight of PSA [351]
(Mwps, = 26Da), my,,, denotes the molecular weight of gadolinium [352],
and {2,,, the volume of the interchanging region. The gadolinium-based con-
trast agent used for the MRI scans was Gadoterate Meglumine [353], which has
a molecular weight of 753.9 Da. The last term represents the PSA exchange be-
tween the tissue and blood in vascularized regions of the prostate, as depicted
by the spatial distribution of kiqqns(x). We neglect the diffusive term and as-
sume constant and sufficient blood flow, allowing for a steady concentration of
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serum PSA (Ps(t)) through the capillaries. The serum PSA’s evolution (Ps(t)) is
determined by integrating the PSA exchange between the tissue and blood:

DO [ ety @) (Plant) - o0 ) Plt) (a22)

dt Q. Mwpga vox

with 7, the natural serum PSA decay rate.

Finally, the temporal scale of the PSA exchange between blood and tissue
through kyqns () occurs within seconds, whereas the dynamics of tumor growth
typically occur over months. To simulate time frames spanning years and en-
able follow-ups at any time point, we elaborated a multiscale temporal method to
implement this physics-based model (refer to Multiscale physics-based model in
Appendix A.3.2).

A.3.2 Multiscale physics-based model

To solve the physics-based model, we introduce a multiscale model in time,
as the time scales of the processes involved in the equations vary significantly.
Specifically, the PSA flux between the capillary and the extracellular space oper-
ates on a scale of seconds, whereas tumor growth dynamics occur over months.
Therefore, to discretize the equations and achieve a stable solution, it is needed a
time step of 1 x 10~° days. However, this renders the simulation of even a single
day computationally burdensome. Consequently, we have devised a multiscale
model in time to simulate PSA dynamics efficiently. The complete expression for
tissue PSA is described as follows:

P w.
aéf’t) = apcr(x,t) — P, t) — Mawgaq — (P(w,t) _
Mwpsa

Ps<t>>
Q'on '

(A.23)
where «, is the tissue PSA production rate by tumor cells, -y, denotes the natural
tissue PSA decay rate, m,,,, represents the molecular weight of PSA (m,pq, =
26 Da), Mawyqqy denotes the molecular weight of gadolinium, and €,,,, the volume
of the interchanging region. The last term represents the PSA exchange between
the tissue and blood in vascularized regions of the prostate, as depicted by the
spatial distribution of k¢yqns(x). Here, we neglect the diffusive term and assume
that tissue PSA is already in equilibrium within the prostate, thus eliminating
the need for a diffusive term. Additionally, in this equilibrium state, there is no
flux between tissue PSA and serum PSA. Therefore, the change in tissue PSA
between time steps results solely from the production of PSA by tumor cells and
its subsequent decay:

OP*(, 1)

o = apc(x,t) — yP*(x,t) = P*(x, ). (A.24)
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Then, we calculate the serum PSA that circulates through the blood, equili-
brating the flux between the tissue and the blood as a result of variations in tissue
PSA due to production or decay:

dPs(t) _ Mutga po () <P*(zc,t) B Ps(t)> dz—sPs(t) — Py(t+At),

dt Qr Mwpgsa Vox
(A.25)

with ), the prostate domain and -, the natural serum PSA decay rate.
Finally, we update the tissue PSA with the value of the serum PSA that bal-
ances the flux.

W = apc(x,t) — yP*(x,t) = P*(x,t) — P(x,t + At)  (A.26)

A.3.3 Model calibration

The NN is trained with 20% dropout employing a training and validation
dataset. We employed the Python package Optuna [354] for hyperparameter
tuning. The loss function used was mean squared error (squared L2 norm). At
each epoch, we used a stochastic gradient optimizer (Adam) [355] for the training
dataset and then tested over the validation dataset. The training dataset included
three different serum PSA values, P, . = [1.5, 3, 5] ng/mL at 60 days, rep-
resenting a slow, medium and fast serum PSA increase. The validation dataset
comprised three different serum PSA values, Ps , = [1, 2, 4] ng/mL at day
60. We tuned the hyperparameters until minimizing the loss over the valida-
tion dataset. The optimized NN hyperparameters resulted in 2 hidden layers of
353 nodes each one, trained with a learning rate of 0.001 and 4585 epochs. The
patient-specific parameters of the physics-based model are also optimized using
the Optuna framework. In this case, we minimize the error based on the mean
squared error (squared L2 norm) between the predicted and the clinical tumor
volume and the serum PSA.

A.3.4 Model implementation

The digital twin’s geometry generation and discretization were performed in
Matlab R2023b. The entire computational model was implemented in Python,
utilizing the library PyTorch for the machine learning model. The simulations
were performed using an Intel(R) Core(TM) 19-7900X CPU @ 3.30GHz, 32.0 GB
RAM, and NVIDIA GeForce GTX 1050 Ti GPU. For Patient A, a full simulation
spanning 786 real-world days, with a geometry discretization of 1 mm? and 66,691
voxels, takes approximately 25 s on the GPU and 53 s on the CPU. For Patient B, a
simulation covering 956 real-world days, with a geometry discretization of 1 mm?®
and 52,709 voxels, takes approximately 25 s on the GPU and 52s on the CPU.
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