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Abstract

Speech enhancement is an important field in signal processing, aim-
ing to improve the clarity and intelligibility of speech in noisy envi-
ronments. This research is crucial for applications like phone calls,
hearing aids, and voice-controlled systems, where clear communica-
tion is essential. However, existing methods often struggle with com-
plex and varying noise conditions, leading to reduced speech qual-
ity and intelligibility. Recent advancements in deep neural networks,
such as Convolutional Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs), have shown significant improvements in han-
dling these challenges. These networks can learn intricate patterns
in speech and noise, offering more robust solutions. However, they
still have limitations, including high computational costs and diffi-
culty in adapting to diverse noise environments. The primary objec-
tive of this research is to develop a novel speech enhancement method
using Wide Residual Networks (WRNs). This new approach aims to
outperform current techniques by providing better speech quality and
intelligibility while balancing computational complexity. The goal is to
create a more effective speech enhancement procedure that can be in-
tegrated into various systems, ensuring clearer and more natural com-
munication in diverse and noisy environments. The proposed architec-
ture processes log magnitude spectrograms, enhancing speech quality
through a series of convolutional layers and residual blocks. Exper-
imental results demonstrate that WRNSs significantly outperform ex-
isting methods, such as RNN-LSTM-based Weighted Prediction Error
(WPE), especially in far-field reverberated speech across various room
sizes.

Bellow, this work focuses on improving the interpretability of deep
learning models used for speech enhancement. Traditional neural net-
work methods often act as "black boxes," making it difficult to under-
stand how they process and enhance speech signals. This issue is ad-
dressed by introducing innovative architectures and techniques to vi-
sualize and interpret the enhancement process. The thesis presents
the Constant Channel Residual Network (CCRN) and the Constant
Channel Residual Network with State Path (CCRN-State). These ar-
chitectures aim to improve speech quality while maintaining a clear



vi

understanding of the internal processes. Progressive Supervision is in-
troduced as a technique to monitor the enhancement process at each
network block. This method ensures incremental improvements in
speech quality and helps identify critical stages that significantly im-
pact the final output. Experimental results show that these methods
not only enhance speech quality but also provide valuable insights
into the network’s internal mechanisms, leading to a better balance be-
tween performance and interpretability. Integrating visualization tech-
niques into deep learning architectures can significantly enhance both
the interpretability and effectiveness of speech enhancement models.

Finally the thesis explores the development and application of pro-
gressive loss strategies to enhance speech quality through deep learn-
ing. The approach involves using Progressive Speech Enhancement
(PSE) methods, which improve speech clarity by incrementally refin-
ing the enhancement process. The research introduces two main archi-
tectures: Progressive Convolutional Neural Networks (P-CNN) and
Progressive Residual Networks (P-ResNet). These architectures use
novel loss functions—Weighted Progressive (WP) and Uniform Pro-
gressive (UP)—to systematically reduce noise and reverberation. Ex-
perimental evaluations demonstrate that PSE methods outperform tra-
ditional approaches, particularly in noisy and reverberant environments.

This thesis highlights the effectiveness of progressive strategies in sta-
bilizing the training process, ensuring robust performance across dif-
ferent conditions, and setting a new benchmark for speech enhance-
ment technologies.
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Resumen

El realce de voz es un campo muy importante en el procesamiento de
sefiales, que busca mejorar la claridad y la claridad del habla en en-
tornos ruidosos. Esta investigacion es crucial para aplicaciones como
llamadas telefénicas, audifonos y sistemas controlados por voz, donde
una comunicaciéon de calidad es esencial. Sin embargo, los métodos
existentes a menudo tienen dificultades con condiciones de ruido com-
plejas y variables, lo que lleva a una reduccién de la calidad y la intel-
igibilidad del habla. Los avances recientes en redes neuronales profun-
das, como las redes convolucionales y las redes neuronales recurrentes,
han demostrado mejoras significativas en el manejo de estos desafios.
Estas redes pueden aprender patrones en el habla y el ruido, ofre-
ciendo soluciones mds robustas. No obstante, atin presentan limita-
ciones, incluyendo alto coste computacional y dificultades para adap-
tarse a entornos de ruido diversos. El objetivo principal de esta investi-
gacion es desarrollar un nuevo método de mejora del habla utilizando
redes residuales anchas o Wide Residual Networks. Este nuevo enfoque
pretende superar las técnicas actuales proporcionando una mejor cali-
dad e inteligibilidad del habla, equilibrando la complejidad computa-
cional. El objetivo es crear un procedimiento de mejora del habla mas
efectivo que pueda integrarse en cualquier sistema, asegurando una
comunicacién més nitida y natural en entornos diversos y ruidosos. La
arquitectura propuesta procesa el logaritmo de la magnitude del espec-
trograma, mejorando la calidad del habla a través de una serie de capas
convolucionales y bloques residuales. Los resultados experimentales
demuestran que las WRNs superan significativamente a los métodos
existentes, como el Error de Prediccion Ponderado (WPE) basado en
RNN-LSTM, especialmente en el habla reverberada en campo lejano a
través de varios tamafios de habitacion.

Esta tesis ademds se centra en mejorar la interpretabilidad de los mod-
elos de aprendizaje profundo utilizados para la mejora del habla. Los
métodos tradicionales de redes neuronales a menudo acttian como "ca-
jas negras," lo que dificulta entender como procesan y mejoran las
seflales de habla. Este problema se aborda introduciendo arquitec-
turas y técnicas innovadoras para visualizar e interpretar el proceso de
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mejora. La tesis presenta las redes residuales con canales constantes
(CCRN) y las redes residuales con canales constantes y camino de es-
tado (CCRN-State). Estas arquitecturas tienen como objetivo mejorar
la calidad del habla manteniendo una comprensién clara de los pro-
cesos de la red. Se introduce la Supervisiéon Progresiva como una téc-
nica para monitorear el proceso de mejora en cada bloque de la red.
Este método asegura mejoras incrementales en la calidad del habla
y ayuda a identificar etapas criticas que impactan significativamente
el resultado final. Los resultados experimentales muestran que estos
métodos no solo mejoran la calidad del habla, sino que también pro-
porcionan valiosas perspectivas sobre el funcionamiento interno de la
red, llevando a un mejor equilibrio entre rendimiento e interpretabili-
dad. Integrar técnicas de visualizaciéon en arquitecturas de aprendizaje
profundo puede mejorar significativamente tanto la interpretabilidad
como la efectividad de los modelos de mejora del habla.

Por tultimo la tesis explora el desarrollo y la aplicacion de estrategias
de pérdida progresiva para mejorar la calidad del habla a través del
aprendizaje profundo. El enfoque implica el uso de métodos de Mejora
Progresiva del Habla (PSE), que mejoran la claridad del habla refi-
nando incrementalmente el proceso de mejora. La investigacién in-
troduce dos arquitecturas principales: redes convolucionales progre-
sivas (P-CNN) y redes residuales progresivas (P-ResNet). Estas ar-
quitecturas utilizan funciones de coste novedosas como la progresion
ponderada (WP) y la progresion uniforme (UP) para reducir sistemati-
camente el ruido y la reverberacién. Las evaluaciones experimentales
demuestran que los métodos PSE superan a los enfoques tradicionales,
particularmente en entornos ruidosos y reverberantes.

La tesis destaca la efectividad de las estrategias progresivas en la esta-
bilizacién del proceso de entrenamiento, asegurando un rendimiento
robusto en diferentes condiciones y estableciendo un nuevo estdndar
para las tecnologias de mejora del habla.
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Chapter 1

Introduction

1.1 Motivation and context

Communication is one of the most essential aptitudes that define hu-
man beings. It is through communication that we are able to express
our thoughts, share knowledge, build relationships, and achieve per-
sonal and collective progress. Among the various modes of communi-
cation, speech holds a main role as it allows for the direct and nuanced
exchange of ideas and emotions. Speech is not just a tool for conveying
information; it is a fundamental aspect of human interaction.

In the model of communication, there are three key components: the
sender, the message, and the receiver. The sender (or emitter) is the
person who articulates the message, while the receiver is the one who
interprets and understands it. This exchange occurs within an envi-
ronment that can either facilitate or hinder effective communication. A
favorable environment enhances clarity and comprehension, enabling
the message to be conveyed accurately. Conversely, an unfavorable en-
vironment, characterized by noise and other distortions, can obstruct
the communication process, leading to misunderstandings and loss of
information.

The necessity for effective speech communication becomes even more
pronounced in environments where background noise is prevalent.
Such environments include busy urban areas, workplaces with ma-
chinery, and crowded public spaces. In these settings, the presence of
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noise can significantly degrade the quality of speech, making it diffi-
cult for the receiver to accurately interpret the message. This is where
speech enhancement becomes crucial. By employing advanced tech-
nologies and methodologies, speech enhancement aims to mitigate the
adverse effects of noise and other distortions, ensuring that the com-
munication process remains clear and effective. This not only aids in
better understanding but also in maintaining the naturalness of speech,
which is vital for meaningful human interactions.

In today’s world, technology plays a crucial role in enhancing our com-
munication. There are several scenarios where speech enhancement is
particularly beneficial because alternative communication aids are un-
available. For instance, in phone calls, we cannot see our interlocutor,
and non-verbal cues are absent. This makes clear and precise speech
even more important.

Since the COVID-19 pandemic, our reliance on phone calls and video
conferences has significantly increased. We now often interact with
colleagues, friends, and family through these mediums. Companies
are very interested in improving the quality of these communications
to provide better remote experiences. This is not only important in
convenient settings like home offices or conference rooms but also in
more challenging environments. These include crowded offices, busy
cafes, or even during conference calls from moving vehicles.

Moreover, the challenge extends to integrating these speech enhance-
ment systems into embedded devices like cell phones, automotive mul-
timedia systems, and even motorcycle communication devices. Ensur-
ing high-quality speech in such varied and often noisy environments
requires sophisticated technology. Effective speech enhancement can
transform these experiences, making conversations clearer and more
natural, regardless of the surroundings.

The push to embed these technologies in everyday devices highlights
their growing importance. As we continue to adapt to new ways of in-
teracting remotely, the demand for effective speech enhancement will
only increase. By improving speech clarity in diverse environments,
we can ensure better communication, fostering more productive and
meaningful interactions across various platforms and scenarios.
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The research work presented in this thesis was conducted within the
Voice Input Voice Output Laboratory (ViVoLab) research group, part of
the Aragon Institute for Engineering Research (I3A) at the University
of Zaragoza. This work was performed under the supervision of Dr.
Antonio Miguel Artiaga.

1.2 Thesis objectives

This thesis focuses on improving speech enhancement using neural
networks. The key idea is to develop new methods that enhance speech
quality more effectively than existing neural network techniques. We
aim to create a speech enhancement procedure that not only outper-
forms current methods but also provides a balance between computa-
tional complexity and performance. This balance is crucial for integrat-
ing these methods into a wide range of systems, from simple devices
to more complex applications.

Additionally, we aim to understand what happens within the neural
network during speech enhancement. To achieve this, we focus on
block-distributed architectures, allowing us to examine each block and
gain insights into the processes occurring within the network. This
approach helps us optimize performance and provides a clearer un-
derstanding of the network’s behavior.

The key technology selected for this thesis is the Wide Residual Neural
Network (WRN). The fundamental idea behind WRNSs is their block-
distributed architecture, which divides the network into manageable
sections or blocks. This approach has proven highly effective in vari-
ous applications, such as image recognition, where WRNs have achieved
state-of-the-art results. Additionally, WRNs help regularize the train-
ing process by allowing better gradient flow through the network, re-
ducing the risk of vanishing or exploding gradients. Given these ad-
vantages, WRNs are the technology we will focus on in this thesis to
enhance speech quality effectively.

The broad objective of this thesis is to develop new speech enhance-
ment methods using a novel neural network technology and to better
understand the internal processes of these networks. This can be di-
vided into the following specific objectives:
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e Introduce and evaluate the Wide Residual Network (WRN) ar-
chitecture specifically for speech enhancement across various con-
ditions

e Enhance the interpretability of neural network models to gain a
better understanding of the enhancement process through visu-
alization techniques and exploit this knowledge to achieve addi-
tional improvements.

e Explore the insights provided by visualization techniques to de-
velop new strategies that effectively reduce noise and reverbera-
tion while maintaining interpretability.

1.3 Thesis organization

This thesis is organized into several chapters, each focusing on differ-
ent aspects of speech enhancement using neural networks. The struc-
ture is designed to guide the reader from a broad introduction to the
tield, through detailed technical developments, and finally to the con-
clusions and implications of the research.

e Chapter 1: Introduction. Provides an overview of the impor-
tance of speech enhancement and sets the context for the research.
It discusses the motivation, objectives, and significance of the
study.

e Chapter 2: Overview. Reviews speech enhancement from two
perspectives: the historical development of speech enhancement
methods, from early techniques to modern advances, highlight-
ing the evolution of the field, and an algorithmic overview focus-
ing on the main different algorithmic approaches.

e Chapter 3: Neural Networks for Speech Enhancement. Explores
the use of neural networks in speech enhancement, detailing fea-
ture extraction techniques, cost functions, and evaluation metrics
used to develop effective models.

e Chapter 4: Wide Residual Neural Network. Introduces and
evaluates the Wide Residual Network (WRN) architecture for
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speech enhancement, demonstrating its effectiveness in various
conditions and comparing it to existing methods.

e Chapter 5: Enhancing Interpretability in Speech Enhancement.
Focuses on improving the interpretability of neural network mod-
els, using visualization techniques to gain insights into the en-
hancement process and evaluating the impact of this understand-
ing on performance.

e Chapter 6: Progressive Loss Strategies for Enhanced Speech.
Examines the development of progressive loss strategies based
on insights from visualization, aiming to reduce noise and rever-
beration while maintaining interpretability.

e Chapter 7: Conclusions. Summarizes the key findings of the
research, discusses the implications, and outlines potential direc-
tions for future work.






Chapter 2

Overview

The development of speech enhancement techniques has been a crucial
area of research, driven by the need to improve the clarity and intelligi-
bility of speech in various noisy environments. The historical context
of this field traces back to the mid-20th century, when initial efforts fo-
cused on basic noise reduction methods. Over the decades, the field
has seen significant evolution, moving from early spectral subtraction
techniques to the sophisticated machine learning models that define
the current state-of-the-art.

Advances in computing power and the development of new algorithms
have been very important in this progression. The integration of sta-
tistical methods marked substantial improvements in the first decades
of research, but the advent of deep learning models in the 2010s rev-
olutionized the field by providing powerful tools for real-time speech
enhancement.

Today, the state-of-the-art in speech enhancement is characterized by
the use of advanced methods like convolutional neural networks, gen-
erative adversarial networks, and transformers. These techniques have
not only improved the quality and intelligibility of speech but also ex-
panded the applications of speech enhancement technology in telecom-
munications, hearing aids, and voice-controlled systems.

Despite these advances, the field continues to face challenges, such as
handling highly variable noise and reverberant environments and de-
veloping models that can generalize well across different contexts with
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the lowest computational cost. These challenges also present opportu-
nities for future research and innovation.

Modern speech enhancement focuses on developing robust process-
ing methods to improve system performance in real-world scenarios,
mainly through larger and more complex systems for better speech sig-
nal intelligibility and robustness in recognition systems (Loizou, 2007).

In addition, the field has significantly advanced in understanding how
environmental noise and reverberation affect speech signals, leading to
the development of more accurate enhancement methods. Techniques
now often distinguish between single-channel and multi-channel ap-
proaches. While multi-channel methods leverage spatial filtering tech-
niques like beamforming to improve performance in complex acous-
tic environments(Nakatani et al., 2010), this thesis focuses on single-
channel techniques. Single-channel methods are applicable in a broader
range of scenarios where only one signal is available, making them
more versatile and practical for many real-world applications.

Speech enhancement plays a crucial role across a variety of applica-
tions, making it an essential area of research and development. In
telecommunications, these techniques are vital for improving voice
communication quality over phone lines and VoIP systems, ensuring
clear conversations even in adverse noise conditions. This is especially
important for mobile communications, where users often encounter
noisy environments.

In hearing aids, advanced speech enhancement methods amplify speech
while reducing background noise, significantly improving the clarity
for individuals with hearing impairments. This enhancement can greatly
enhance the quality of life by enabling better communication in daily
activities.

Voice-controlled systems, such as virtual assistants and automated cus-
tomer service interfaces, also benefit immensely from speech enhance-
ment. Clearer speech signals improve the performance of speech recog-
nition systems, making interactions more efficient and natural espe-
cially devices located at a certain distance from the user in large rooms
where reverberation noise can be harmful. As these systems become
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increasingly prevalent, the importance of robust speech enhancement
continues to grow.

Additionally, speech enhancement is critical in safety and accessibil-
ity technologies. For instance, in emergency response systems, clear
communication is essential. Enhanced speech ensures that instructions
and information are conveyed accurately in high-noise environments,
which can be lifesaving.

Overall, the continuous advance of speech enhancement techniques
is driven by their wide-ranging applications, highlighting the impor-
tance of this field in both everyday life and specialized contexts.

This chapter is organized in two main sections. The first section pro-
vides a detailed timeline of the key developments in speech enhance-
ment, highlighting significant milestones and their impact on the field.
The second section describes with more detail methods of methods of
speech enhancement, categorized based on their algorithmic relation-
ships into sample generation, mask methods, and spectral reconstruc-
tion methods. This structured approach aims to provide a comprehen-
sive overview of the history and current state of speech enhancement
techniques.

2.1 Historical Development of Speech Enhancement
Methods

2.1.1 Early Beginnings in the 1940s - 1970s

Speech enhancement has been a target of research for several decades,
with significant advances in understanding environmental acoustic dis-
tortion of speech signals. The journey began in the mid-20th century,
driven by the need for improved clarity and intelligibility in noisy
environments. This period laid the foundation for many of the tech-
niques and methods that would evolve over the next decades.

One of the earliest significant developments in speech enhancement
was the vocoder, created during World War II in the 1940s (Hoffmann,
2010). The vocoder was primarily used to synthesize and encrypt voice
communications, ensuring secure transmission of voice signals. This
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technology worked by analyzing the speech signal and encoding its
essential characteristics, which could then be used to reconstruct the
original voice signal at the receiving end. The vocoder represented a
significant technological advance and demonstrated the potential of
signal processing techniques in enhancing and manipulating speech
for practical applications.

In the 1950s, spectral subtraction emerged as one of the pioneering
techniques in the field of speech enhancement. Spectral subtraction in-
volves estimating the noise spectrum during non-speech intervals and
subtracting it from the noisy speech spectrum. The primary goal of this
method is to reduce the impact of background noise on the speech sig-
nal, thereby improving its intelligibility and quality. Spectral subtrac-
tion establised a basis for more advanced spectral analysis methods.
These methods are essential for modern speech enhancement systems
(Boll, 1979a).

The initial efforts in speech enhancement during the 1940s and 1950s
primarily focused on basic methods to reduce noise and improve in-
telligibility. These early techniques, such as the vocoder and spectral
subtraction, paved the way for the development of more advanced
spectral analysis techniques. The evolution from these initial methods
marked the beginning of a continuous quest for better and more effec-
tive speech enhancement technologies, driven by the growing demand
for clear and intelligible speech in various noisy environments.

These foundational techniques were crucial in highlighting the impor-
tance of noise reduction and clarity in speech communication, setting
the stage for subsequent advances in the field. As research progressed,
the understanding of acoustic distortion and the methods to counter-
act it became more sophisticated, leading to the diverse and advanced
speech enhancement technologies we have today.

The 1960s and 1970s marked significant advances in speech enhance-
ment, introducing statistical methods that provided foundational ap-
proaches influencing future developments.

Linear Predictive Coding (LPC) was developed in the 1960s. It is a
model that LPC models the resonancies of the human vocal tract, with
the source representing the vocal cords and the filter representing the
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vocal tract. LPC is used for analyzing and creating speech. The filter
coefficients obtained by the LPC method capture essential features of
the speech and have been used in multiple applications. This tech-
nique improved speech compression and synthesis, making speech
transmission and storage more efficient (Makhoul, 1975; Atal, 1974;
Markel & Gray, 1976).

In the 1970s, Kalman filtering was applied to speech enhancement, of-
fering a recursive solution for estimating the speech signal in the pres-
ence of noise. Kalman filters are optimal estimators, assuming that er-
rors have a normal distribution and it operates by predicting the state
of a system over time and updating this prediction based on new mea-
surements. When applied to speech enhancement, Kalman filtering
continuously estimates the clean speech signal by considering the dy-
namic nature of both the speech signal and the noise. This method
provided a more accurate and adaptive approach to noise reduction
compared to earlier techniques, significantly improving the quality of
enhanced speech signals (Paliwal & Basu, 1987; Kalman, 1960; Brown,
1983).

The transition from simple noise reduction techniques to complex math-
ematical models like LPC and Kalman filtering represented significant
progress in speech enhancement. These methods allowed for more ac-
curate modeling of speech signals and better handling of noise, setting
the stage for future innovations in the field.

2.1.2 Growth in the 1980s - 1990s

During the 1980s and 1990s, statistical methods solidified their place
in speech enhancement, with numerous clean speech estimators and
spectral filtering techniques being developed. This era marked signifi-
cant advances in the ability to enhance speech signals in various noise
conditions.

The 1980s saw the establishment of spectral filtering techniques as stan-
dard approaches in speech enhancement. Techniques such as Spec-
tral Subtraction (Boll, 1979b) and Wiener Filtering (Lim & Oppenheim,
1979) became widely adopted. Spectral Subtraction involves estimat-
ing the noise spectrum during non-speech intervals and subtracting it
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from the noisy speech spectrum to reduce background noise and im-
prove speech quality. Wiener Filtering, on the other hand, optimizes
the trade-off between noise reduction and signal distortion by mini-
mizing the mean square error between the estimated clean signal and
the actual noisy signal.

Another significant development in the 1980s was the introduction of
Minimum Mean Square Error (MMSE) estimation. This statistical ap-
proach aims to minimize the mean square error between the clean and
noisy speech signals. The MMSE estimator provided a more sophisti-
cated means of enhancing speech by leveraging the statistical proper-
ties of the speech and noise signals. This approach inspired many sub-
sequent methods, such as the Multiplicatively-Modified Log-Spectral
Amplitude (MM-LSA) (Malah et al., 1999) and the Optimally-Modified
Log-Spectral Amplitude (OM-LSA) (Cohen, 2003) techniques, which
further improved speech enhancement performance (Ephraim & Malah,
1984, 1985).

In the 1990s, Hidden Markov Models (HMMs) (Rabiner, 1989) were
employed for speech recognition and enhancement. HMMs model
the statistical properties of speech signals by considering the temporal
variability and sequential nature of speech. These models provided
a powerful framework for both recognizing and enhancing speech by
capturing the underlying structure and dynamics of the speech sig-
nal. HMM-based methods significantly improved the robustness and
accuracy of speech enhancement systems, particularly in noisy envi-
ronments (Veisi & Sameti, 2013).

The integration of statistical methods such as MMSE and HMMs dur-
ing the 1980s and 1990s significantly improved the ability to enhance
speech in varying noise conditions. These methods provided a robust
foundation for subsequent developments in speech enhancement, al-
lowing for more accurate modeling and processing of speech signals
in diverse acoustic environments.

2.1.3 The 2000s: Machine Learning and Beyond

The 2000s brought significant advances in speech enhancement through
learning-based methods, introducing new paradigms that boosted the
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field.

Wavelet transform (Daubechies, 1990) emerged as a powerful time-
frequency analysis tool in the 2000s, providing better resolution for
transient signals compared to traditional Fourier methods. This capa-
bility makes it particularly useful for speech enhancement, where the
precise localization of signal features in both time and frequency do-
mains is crucial for effective noise reduction and signal reconstruction.

Non-negative Matrix Factorization (NMF) (Mohammadiha et al., 2013;
Fan et al., 2014) was explored for its application in decomposing speech
signals for enhancement. NMF works by factorizing a matrix into two
non-negative matrices, effectively decomposing the speech signal into
its constituent parts. This method is particularly advantageous for
identifying and separating different sources in a noisy environment,
making it a valuable tool for speech enhancement.

The introduction of Deep Neural Networks (DNNs) in the late 2000s
had a deep impact in the field by leveraging large datasets and com-
plex architectures to significantly improve performance (Wan et al.,
1999). DNNSs, with their ability to learn hierarchical representations
of data, have been applied to various aspects of speech enhancement,
including noise reduction and feature extraction. These models out-
perform traditional methods by adapting to diverse and complex noise
environments, enhancing the overall quality and intelligibility of speech
signals.

The application of machine learning, particularly deep learning, trans-
formed speech enhancement, enabling the handling of more complex
noise environments and improving the overall quality and intelligibil-
ity of speech. The shift from traditional statistical methods to learning-
based approaches marked a significant milestone, demonstrating the
potential of these technologies to address longstanding challenges in
speech enhancement.

214 The 2010s: Deep Learning and Real-time Processing

Deep learning methods continued to evolve in the 2010s, with new ar-
chitectures and techniques being developed to further enhance speech
signals.
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Recurrent Neural Networks (RNNs) were utilized for their ability to
model temporal sequences in speech signals (Maas et al., 2012). RNNs
are particularly effective in capturing the dependencies in sequential
data, making them ideal for tasks such as speech enhancement, where
the temporal context of the signal is crucial.

Generative Adversarial Networks (GANs) were applied to generate
clean speech signals by learning from noisy examples in an adversarial
training setup (Pascual et al., 2017). GANs consist on two main neural
networks that are trained simultaneously to create data that is as real-
istic as possible (Generator) and to distinguish between real data and
generated data (Discriminator). This approach has shown significant
promise in producing high-quality, clean speech signals from noisy in-
puts.

Phase-aware methods were developed as an alternative to traditional
magnitude-based enhancement techniques (Mowlaee & Kulmer, 2015;
Mowlaee et al., 2016), focusing on improving phase information for
better speech quality. These methods recognize that accurate phase re-
construction is critical for natural-sounding speech and aim to enhance
both the magnitude and phase components of the speech signal.

The refinement and specialization of neural network architectures, such
as RNNs, GANSs, and phase-aware methods, provided powerful tools
for real-time speech enhancement and more natural-sounding results.
These advances in deep learning have enabled significant improve-
ments in the ability to handle complex noise environments and en-
hance the overall quality of speech signals.

2.1.5 The 2020s: State-of-the-Art Techniques

The latest advances in speech enhancement are characterized by the
use of advanced neural network architectures and self-supervised learn-
ing methods.

Transformers have been employed for their superior capability in mod-
eling long-range dependencies in speech signals (Vaswani et al., 2017;
Oostermeijer et al., 2021). Their attention mechanisms allow for cap-
turing complex relationships in the data, making them highly effective
for speech enhancement tasks.
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Self-supervised learning has leveraged vast amounts of unlabeled data
to improve speech enhancement models, making them more robust
and versatile. This approach enables models to learn useful representa-
tions from the data itself, without relying on extensive labeled datasets
(Qiu et al.,, 2021; Huang et al., 2022). These methods have significantly
enhanced the capability to process and enhance speech signals in di-
verse and complex acoustic environments.

2.2 Algorithmic Overview of Speech Enhancement
Methods

In the quest to improve speech intelligibility and quality in noisy envi-
ronments, a diverse array of speech enhancement techniques has been
developed. These techniques can be broadly categorized into three
major algorithmic blocks: sample generation methods, mask methods,
and spectrum reconstruction methods. This section aims to provide a
comprehensive overview of these categories, highlighting the funda-
mental ideas behind each algorithmic block and illustrating how these
concepts are implemented in various speech enhancement methods.

The motivation for this algorithmic overview is to offer a structured
understanding of the different approaches to speech enhancement. By
grouping the methods into three distinct blocks, we can better grasp
the core principles that drive each approach. Sample generation meth-
ods focus on creating clean speech samples from noisy inputs, leverag-
ing advanced generative models to achieve high-quality output. Mask
methods, on the other hand, involve applying a mask to the noisy
speech to isolate and enhance the speech components, a technique that
has proven effective in a range of noise conditions. Spectrum recon-
struction methods aim to reconstruct the clean speech spectrum from
the noisy spectrum, utilizing various statistical and machine learning
techniques to achieve this goal.

Understanding these blocks is crucial for understanding modern speech
enhancement strategies and identifying each approach’s strengths and
limitations. This structured perspective not only aids in the theoretical
comprehension of the field but also provides practical insights for the
development and improvement of speech enhancement technologies.
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By analyzing each algorithmic block, we can uncover the innovative
techniques that have advanced the field and explore how these meth-
ods can be further refined to meet the challenges of real-world appli-
cations.

2.2.1 Mask Methods

Mask-based methods work by applying a mask to the noisy speech
to isolate the clean speech components. These methods are particu-
larly effective in separating speech from noise in the time-frequency
domain, making them widely used in various speech enhancement ap-
plications.

Mask-based methods were a key advance of modern speech enhance-
ment, leveraging the concept of masking to separate clean speech com-
ponents from noisy inputs. These methods operate in the time-frequency
domain. By applying a mask to the spectrogram, these methods can se-
lectively attenuate the noise while preserving the speech components,
resulting in a cleaner and more intelligible output.

The fundamental principle behind mask methods is the creation of

a time-frequency mask that differentiates between speech and noise.
This mask can be binary or continuous, depending on the specific method
employed. Binary masks, such as the Ideal Binary Mask (IBM) (Wang,
2005), classify each time-frequency bin as either speech or noise, retain-
ing only the bins classified as speech. Continuous masks, such as the
complex Ideal Ratio Mask (cIRM) (Williamson et al., 2015), provide a
ratio that scales each time-frequency bin according to the proportion of
speech and noise present including phase, allowing for more nuanced
separation.

The significance of mask methods in today’s speech enhancement land-
scape lies in their effectiveness, versatility and lower computational
cost comparing with other methods. These methods are particularly
advantageous in scenarios where the noise characteristics are complex
and non-stationary, such as in crowded public places, urban environ-
ments, or dynamic workspaces.

In real-time communication systems, mask methods enhance the clar-
ity of conversations, ensuring that users can communicate effectively
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even in noisy settings while remaining cost-effective. For hearing aids,
these methods improve the user’s ability to understand speech, sig-
nificantly enhancing their quality of life. Additionally, mask methods
play a crucial role in voice-controlled systems, where accurate speech
input is essential for reliable performance.

The continued development of mask methods has been driven by ad-
vances in machine learning and deep learning. Modern techniques of-
ten involve training neural networks to generate optimal masks based
on large datasets of noisy and clean speech pairs. These neural net-
works learn to identify the complex patterns and structures of speech
and noise, resulting in highly effective masks that significantly im-
prove speech enhancement performance. As technology advances,
mask methods are expected to become even more sophisticated, lever-
aging larger datasets and more powerful computational resources.

Time-Frequency Masking (TFM) (Miller, 1947; Yilmaz & Rickard, 2004)
utilizes masks derived from neural networks to enhance speech in the
time-frequency domain. These masks are generated based on the learned
characteristics of clean and noisy speech, allowing for more sophisti-
cated separation of speech components. TFM methods often involve
training deep neural networks to predict the ideal mask for each time-
frequency bin, resulting in improved speech quality and intelligibility.
Two main types of masking have been studied in the literature.

The Ideal Binary Mask (IBM) (Wang, 2005) method classifies each time-
frequency bin of the speech signal as either speech or noise. This bi-
nary decision results in a mask that retains bins classified as speech
and discards those classified as noise. The goal of IBM is to maximize
the signal-to-noise ratio (SNR) in the enhanced speech signal by pre-
serving only the components that are most likely to be speech.

The Ideal Ratio Mask (IRM) (Narayanan & Wang, 2013; Ribas et al.,
2022) estimates the ratio of the clean speech to the noisy speech for
each time-frequency bin. Unlike IBM, which uses a binary decision,
IRM provides a continuous mask that scales each bin by a ratio, re-
flecting the proportion of speech and noise. This method aims to im-
prove speech quality by more accurately representing the contribution
of speech and noise in each bin.
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2.2.2 Spectrum Reconstrucion Methods

Spectrum reconstruction methods focus on reconstructing the clean
speech spectrum from the noisy spectrum. These methods aim to re-
construct the clean speech spectrum from a noisy input, effectively
reducing noise while preserving the intelligibility and naturalness of
the speech signal. By generating a clean estimated version of the fre-
quency domain, these techniques can target specific noise frequencies,
providing a more nuanced and effective enhancement compared to
masked approaches which have more problems to reconstruct clean
signal when the time-frequency bin is contaminated with noise by mask-

mng

The fundamental principle behind spectrum reconstruction methods
is to separate the speech components from the noise by estimating and
modifying the spectral properties of the signal. This process typically
involves transforming the noisy speech signal into the frequency do-
main using techniques like the Short-Time Fourier Transform (STFT).
Once in the frequency domain, various algorithms are applied to es-
timate the noise and clean speech spectra. The estimated noise spec-
trum is then subtracted or filtered out, and the remaining clean speech
spectrum is transformed back into the time domain to produce the en-
hanced speech signal. In Appendix A we make a explanation of this
process.

These methods are particularly valuable in environments with unpre-
dictable and varying noise conditions, as they provide a flexible and
adaptive approach to noise reduction. Furthermore, advances in com-
putational power and machine learning have significantly improved
the performance of spectrum reconstruction techniques, making them
more effective and efficient than ever before.

Spectral Subtraction (Boll, 1979b; Berouti et al., 1979) is one of the ear-
liest and most straightforward spectrum reconstruction techniques. It
works by estimating the noise spectrum during non-speech intervals
and subtracting it from the noisy speech spectrum. This method effec-
tively reduces background noise, improving the clarity of the speech
signal.
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Wiener Filtering (Lim & Oppenheim, 1979) is a more advanced tech-
nique that applies a filter designed to minimize the mean square error
between the estimated clean signal and the actual noisy signal. This
method balances noise reduction and signal distortion, providing a
more refined approach to speech enhancement.

MMSE (Ephraim & Malah, 1984; Griffin & Lim, 1984) Estimation aims
to minimize the mean square error between the clean and noisy speech
signals. Techniques such as MMSE Short-Time Spectral Amplitude
(MMSE-STSA) and Log-Spectral Amplitude (MMSE-LSA) (Ephraim &
Malah, 1985) estimators fall under this category, offering sophisticated
methods for enhancing speech by leveraging statistical properties of
the speech and noise signals.

NMF (Mohammadiha et al., 2013; Fan et al., 2014) is used for decom-
posing the speech spectrogram into non-negative components to sep-
arate speech from noise. This method is advantageous for its ability to
identify and isolate different sources within the noisy input, making it
a powerful tool for speech enhancement.

Deep Neural Networks (DNNs) (Xu et al., 2014) predict the clean speech
spectrum from the noisy spectrum using large datasets and complex
architectures. These networks are trained to learn the mapping from
noisy to clean speech, significantly improving the performance and ro-
bustness of speech enhancement systems.

The evolution of spectrum reconstruction methods has been character-
ized by increasing sophistication and effectiveness in handling noisy
speech signals. Early techniques like Spectral Subtraction laid the ground-
work, while more advanced methods such as Wiener Filtering and
MMSE Estimation provided greater accuracy and adaptability. The in-
troduction of machine learning and deep learning techniques, particu-
larly DNNSs, has transformed the field, allowing for more precise and
robust speech enhancement. This ongoing evolution reflects the con-
tinuous effort to refine these methods to address the challenges posed
by complex and dynamic acoustic environments.
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2.2.3 Sample Generation Methods

Sample generation methods focus on generating clean speech samples
directly from noisy inputs. The key idea behind these methods is to use
advanced generative models to produce high-quality speech signals,
effectively transforming noisy inputs into clean outputs. These meth-
ods are particularly preferred in situations where the noise character-
istics are highly variable or unknown, making traditional noise reduc-
tion techniques less effective. Applications include real-time commu-
nication systems, hearing aids, and any scenario where high-quality
speech reconstruction is critical.

Sample generation methods represent a significant advance in the field
of speech enhancement, leveraging the power of modern generative
models to address the limitations of traditional noise reduction tech-
niques. These methods work by learning the underlying distribution
of clean speech signals and using this knowledge to reconstruct clean
speech from noisy inputs. This approach contrasts with traditional
methods that primarily focus on filtering or subtracting noise, often
resulting in artifacts and reduced speech quality.

The process begins with the collection of a large dataset of paired noisy
and clean speech samples. Generative models, such as Generative Ad-
versarial Networks (GANs), Variational Autoencoders (VAEs) (Pas-
cual et al., 2017; Bando et al., 2018), and advanced architectures like
WaveNet (Qian et al., 2017), are then trained on this dataset. These
models learn to map noisy inputs to their clean counterparts, captur-
ing intricate patterns and features of the speech signal that are often
lost in noisy environments.

These methods excel in environments where noise characteristics are
non stationary, such as public spaces, urban environments, and dy-
namic work settings. By generating clean speech samples directly,
these methods ensure that the enhanced speech is not only intelligi-
ble but also natural-sounding, preserving the speaker’s original tone
and nuances.

As technology continues to advance, the capabilities of generative mod-
els are expected to grow, further improving the effectiveness of sample
generation methods in speech enhancement. The integration of these



2.2. Algorithmic Overview of Speech Enhancement Methods 21

methods into consumer and professional audio devices will likely be-
come standard practice, setting new benchmarks for speech quality in
noisy environments.

Variational Autoencoders (VAEs) (Vincent et al., 2010) are another type
of generative model used for speech enhancement. VAEs work by en-
coding noisy speech into a latent space, a lower-dimensional represen-
tation that captures the essential features of the speech signal. This
latent representation is then decoded to produce clean speech. The
VAE framework encourages the latent space to follow a known distri-
bution, allowing for smooth and continuous reconstructions of speech
signals. This method leverages the global idea of sample generation
by learning a compact representation of speech that is robust to noise,
enabling the generation of clean speech from noisy inputs.

Generative Adversarial Networks (GANs) (Pascual et al., 2017; Good-
fellow et al., 2014) are a type of neural network architecture that con-
sists of two components: a generator and a discriminator. The gen-
erator creates synthetic speech signals from noisy inputs, while the
discriminator evaluates the authenticity of the generated speech. The
two networks are trained simultaneously in an adversarial process,
where the generator aims to produce speech indistinguishable from
clean speech, and the discriminator aims to distinguish between real
and generated speech. This setup allows GANSs to generate high-quality
speech signals that effectively mask the noise present in the input.

WaveNet (Qian et al., 2017; Van Den Oord et al., 2016) is a generative
model specifically designed for audio signal generation, developed by
DeepMind. It models the conditional probability distribution of the
audio waveform, allowing it to generate high-fidelity speech signals.
WaveNet generates speech one sample at a time, conditioning each
new sample on the previous ones, thus capturing the temporal depen-
dencies in the speech signal. This approach makes WaveNet particu-
larly effective in producing natural-sounding speech that closely mim-
ics the characteristics of human speech. By directly modeling the audio
signal, WaveNet embodies the sample generation concept, producing
clean speech from noisy inputs with high accuracy.

Diffusion-based generative models (Ho et al., 2020; Gonzalez et al.,
2024)create new data by gradually transforming random noise into
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meaningful patterns through a series of small, guided changes. They
share some similarity with the ideas presented in this thesis since they
can transform the signal progressively to match a target. This approach
can offer a promising new path for research and development in creat-
ing clean speech from noisy inputs.

The continuous evolution in this field reflects the growing capabili-
ties of generative models to handle complex noise environments and
produce natural-sounding speech, making these methods increasingly
relevant in various applications. However, it is important to consider
that their computational cost is very high.
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Chapter 3

Neural Networks for Speech
Enhancement

Neural networks have brought significant advances to the field of speech
enhancement, offering sophisticated methods to improve speech clar-
ity and intelligibility in noisy environments. This chapter delves into
the critical aspects of data preparation, feature extraction, cost func-
tions, and speech quality measurements necessary for developing ef-
fective neural network-based speech enhancement systems.

Data preparation is critical for any machine learning model, partic-
ularly in speech enhancement, where the quality and type of data di-
rectly influence the model’s performance. We will explore the different
types of data used in speech enhancement, focusing on the distinction
between labeled and unlabeled data. Labeled data is more challeng-
ing to obtain but allows for targeted training, while unlabeled data,
though easier to acquire, presents its own set of training challenges.
Both types require careful preprocessing to maximize their utility, such
as classification and cleaning to distill more relevant data.

Next, we will discuss feature extraction, a critical step that involves
transforming raw audio data into a format suitable for neural network
processing. Various features can be used, such as Mel-Frequency Cep-
stral Coefficients (MFCC) and Filter Banks, each offering unique bene-
fits for speech enhancement. MFCCs are particularly effective in cap-
turing the phonetic content of speech, while Filter Banks provide a per-
ceptual representation of the spectral properties of the audio signal.
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Data augmentation is essential for creating robust and generalizable
speech enhancement models. We will examine two main types of noise
used for data augmentation: additive noise and convolutive noise. Ad-
ditive noise involves adding background noise to clean audio to sim-
ulate real-world conditions, while convolutive noise, such as reverber-
ation, is simulated using room impulse responses to mimic the effects
of acoustic environments. Understanding how to simulate these noise
conditions effectively is crucial for training effective models.

Selecting appropriate cost functions is another critical aspect of train-
ing neural networks for speech enhancement. Cost functions guide
the training process by quantifying the difference between the model’s
predictions and the clean speech. We will discuss various cost func-
tions, including the widely used minimum mean-square error (MMSE),
and explain key concepts such as Short-Time Fourier Transform (STFT)
and overlap-add methods, needed by to many speech enhancement al-
gorithms.

Finally, the chapter will address methods for measuring speech quality,
an essential part of evaluating the performance of speech enhancement
models. We will cover both objective and subjective measures, empha-
sizing the importance of assessing both intelligibility and naturalness.
Objective measures, such as Segmental Signal to Noise Ratio (Segmen-
tal SNR), Log Likelihood Ratio (LLR), Speech-to-Reverberation Modu-
lation Energy Ratio (SRMR), Perceptual Evaluation of Speech Quality
(PESQ), and Short-Time Objective Intelligibility (STOI), provide quan-
tifiable metrics for evaluation. Subjective measures, often involving
listener tests, provide insights into the perceived quality and user sat-
isfaction.

In this chapter, we review the data preparation processes, feature ex-
traction techniques, cost function selection, and speech quality mea-
surement methods necessary for developing and evaluating neural network-
based speech enhancement systems. This knowledge will provide to

the tools to design experiments and develop models that effectively
enhance speech signals in various noisy environments.
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3.1 Data Sources and Data Preprocessing

In speech enhancement, the data primarily consists of two types: la-
beled and unlabeled. Labeled data includes paired noisy and clean
speech samples, where the clean speech serves as the target, guiding
the model during training to learn the mapping from noisy to clean
speech. This type of data is invaluable for precise and targeted train-
ing but is difficult to obtain because it requires manual annotation and
careful curation. In the context of speech enhancement it would re-
quire a very careful and expensive experimental setup with a parallel
recording of noise and clean condition, for example a close talk and
a room microphone which captures reverberation. Conversely, un-
labeled data, which comprises any speech recordings without corre-
sponding clean versions, is significantly easier to collect as it does not
necessitate pairing or annotation, leading to an abundance of accessi-
ble data given a minimum quality so that we can consider the signals
as clean. However the lack of multichannel databases of sufficient size
to train large models makes the use of data augmentation over clean
dataset the most convenient method. Understanding the importance
of preprocessing, and data augmentation is crucial for developing ro-
bust speech enhancement models. Understanding these data types
and the importance of preprocessing is crucial for developing robust
speech enhancement models.

3.1.1 Data Preprocessing

Effective data preprocessing is a critical step in preparing datasets for
training neural networks in speech enhancement. This process in-
volves several key tasks, including data classification, data cleaning,
and data augmentation, each contributing to the overall quality and
robustness of the training data.

3.1.2 Considerations for Data Preparation

When preparing data for training neural networks in speech enhance-
ment, several considerations must be addressed to ensure the effective-
ness and efficiency of the training process.
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Balance and Diversity

Ensuring a balanced and diverse dataset is essential to prevent model
bias and overfitting. A balanced dataset includes a wide range of
speech samples with different speakers, accents, speaking styles, and
noise conditions. Diversity in the dataset helps the neural network
generalize better to unseen data by exposing it to various scenarios
during training. Without balance and diversity, the model may become
overly specialized in certain conditions, leading to poor performance
in real-world applications. In this study, we have utilized reverbera-
tion datasets, home noise datasets, and datasets like MUSAN (Snyder
et al., 2015), which include continuous and impulsive noises, music,
and babble noise.

Scalability

Preparing data pipelines that can handle large datasets efficiently is
vital for training robust speech enhancement models. Scalability in-
volves creating automated and streamlined processes for data collec-
tion, preprocessing, and augmentation. Efficient data pipelines ensure
that large volumes of data can be processed quickly and accurately,
enabling extensive and effective training of neural networks. Scala-
bility is particularly important as the size and complexity of datasets
continue to grow, necessitating robust infrastructure to manage and
utilize this data effectively (Dean et al., 2012).

3.2 Data Augmentation

Data augmentation is essential for improving the dataset with syn-
thetic variations. It helps make the model more robust. This involves
creating new training samples by transforming the original audio record-
ings. In speech enhancement, finding clean-noise signal pairs is diffi-
cult. Our goal is to reverse the noise generation process and create
realistic clean-noise pairs. We must simulate these pairs as accurately
as possible. Key augmentation techniques include:

1. Adding Various Types of Noise: By introducing background noise,
such as white noise, pink noise, convolutional noise (Diaz-Guerra
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et al., 2021), or real-world environmental sounds, we simulate
different noisy conditions that the model will encounter in real-
world scenarios. This helps the model learn to distinguish speech
from various types of noise.

2. Pitch Shifting: Altering the pitch of the speech without chang-
ing its speed can make the model more resilient to variations in
speaker characteristics, such as different genders and ages.

3. Time-Stretching: Changing the speed of the audio while preserv-
ing the pitch provides additional variations for the model to learn
from. This helps in making the model more robust to variations
in speaking rates (Ko et al., 2015; Hannun et al., 2014).

These augmentation techniques collectively contribute to creating a di-
verse and comprehensive training set. They enhance the model’s abil-
ity to generalize to unseen data, making it more effective in real-world
applications.

By systematically applying data classification, cleaning, and augmen-
tation techniques, we can prepare high-quality, diverse datasets that
are essential for training robust neural networks for speech enhance-
ment. These preprocessing steps ensure that the data used for training
accurately reflects the complexities of real-world conditions, thereby
enabling the development of more effective and reliable speech en-
hancement models. From these techniques discussed in this thesis, we
only use the first and the third; however, in other studies, all three have
been tested.

3.2.1 Additive Noise

Additive noise refers to any unwanted sound that is directly added to
the clean audio signal. This type of noise is typically independent of
the speech signal and can include a variety of environmental sounds
such as traffic, crowd chatter, white noise, and mechanical noises. The
relevance of additive noise in speech enhancement lies in its ability to
simulate the diverse and often unpredictable conditions that speech
enhancement models will encounter in real-world scenarios. By train-
ing models on speech signals with additive noise, we can improve their
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robustness and ability to generalize to different noise environments
(Virtanen et al., 2012).

To add additive noise to clean audio, we follow these detailed steps:

1. Selecting Noise Types: Choose various types of noise that are
representative of real-world conditions the model is expected to
encounter. This can include white noise, pink noise, and specific
environmental sounds. In the experiments in this thesis we have
several noise datasets to choose from.

2. Add the selected noise to the clean audio at different signal-to-
noise ratios (SNRs). The SNR is a measure of the level of the
desired signal relative to the level of background noise. Adjust-
ing the SNR allows the creation of datasets with varying levels of
difficulty. The formulation for adding noise to a clean signal x(f)
with a noise signal n(t) is given by:

y(t) = x(t) +an(t) (3.1)

where « is a scaling factor that adjusts the noise level relative to
the clean signal. The value of « is chosen based on the desired
SNR in dBs. For example, to achieve a specific SNR, it can be
calculate & using the following relationship:

Py
W= —F (3.2)
P, -10°%"

where P, and P, are the power of the clean signal and noise, re-
spectively. During the training we select SNR randomly in an
interval of desired minimum and maximum SNRs.

Additive noise is crucial for creating realistic training scenarios that
enhance the model’s performance. Here are some common types of
additive noise used in data augmentation:

e Environmental Noise: Sounds from specific environments pro-
vide context-specific augmentation. For instance, adding traffic
noise helps in training models intended for use in urban areas.
The type of noise can be stationary, like car, HVAC; and non sta-
tionary like street, restaurant, office, etc.
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e Babble Noise: Simulates the background noise of multiple peo-
ple talking simultaneously, which is common in crowded places
such as restaurants and conferences. This type of noise is particu-
larly challenging and helps to improve the model’s performance
in social settings.

By incorporating these types of additive noise into the training data,
we can create robust speech enhancement models that perform well
under various real-world conditions.

3.2.2 Convolutive Noise

Convolutive noise refers to the modifications of an audio signal caused
by reflections and reverberations in an environment. Unlike additive
noise, which is directly added to the clean signal, convolutive noise al-
ters the audio signal by convolving it with a Room Impulse Response
(RIR). An RIR captures how sound reflects off surfaces such as walls,
ceilings, and floors, causing delays and echoes. The impact of convo-
lutive noise on audio signals includes temporal smearing and spectral
coloration, making speech less intelligible and more challenging for
enhancement models to process effectively. Reverberation, a specific
type of convolutive noise, is the persistence of sound in a space after
the original sound is produced, caused by multiple reflections from
surfaces. It blurs the temporal and spectral features of the speech sig-
nal, reducing intelligibility and clarity. Handling reverberation is cru-
cial in speech enhancement because it significantly affects the quality
and intelligibility of the enhanced speech (Naylor & Gaubitch, 2010).

To add convolutive noise to clean audio, we follow these steps:

1. Obtaining RIRs: Collect or generate Room Impulse Responses
to capture the acoustic characteristics of different environments.
RIRs can be recorded in real rooms using specialized equipment,
or sourced from existing RIR databases for experimentation. They
can also be synthesized using acoustic modeling software. A
common method for synthesizing RIRs is the image method (Allen
& Berkley, 1979a), and new technologies like GPU-based gener-
ation (Diaz-Guerra et al., 2021) offer advanced implementations.
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2. Applying RIRs: Convolve the clean audio signal x(¢) with an RIR

h(t) to produce the reverberated signal y(t). The convolution
process is mathematically represented as:

y(n) = Z h(k) - x(n—k) (3.3)

Where x(n) is the input signal, h(n) is system impulse response,
usually limited to a finite size K by the room simulators, 7 is
the time index and k is a sum variable. This process effectively
simulates how the clean speech would sound if it were played in
the environment characterized by the RIR.

As mentioned before, the images method is a widely used technique
to generate synthetic RIRs by modeling the reflections of sound within
a room. This method involves:

1. Modeling the Room Geometry: Define the dimensions and shape

of the room, as well as the locations of the sound source and re-
ceiver.

. Simulating Reflections: Calculate the paths of sound waves as

they reflect off the room’s surfaces. Each reflection path is treated
as if it were coming from an "image source" outside the room.
These image sources are virtual sources that help simulate how
sound waves bounce off surfaces.

. Generating the RIR: Sum the contributions of all image sources,

accounting for the distance traveled and the absorption charac-
teristics of the surfaces. The resulting RIR captures the complex
pattern of reflections within the room, which can then be used to
add convolutive noise to clean audio signals. As we will explain
in Chapter 4 and Chapter 6, in the experiments in this thesis we
sample randomly the room size, the positions and other configu-
ration options to increase the variability in the training set.
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3.3 Cost functions

A cost function, also known as a loss function, is a mathematical for-
mula used to evaluate how well a neural network’s predictions match
the actual desired outcomes. In the context of training neural net-
works for speech enhancement, the cost function plays a critical role
in guiding the learning process. By quantifying the difference between
the predicted enhanced speech and the actual clean speech, the cost
function provides a measure of the model’s performance. The goal of
training is to minimize this difference, thereby improving the model’s
ability to produce high-quality enhanced speech.

They provide the feedback necessary for the model to adjust its param-
eters during training. This adjustment process, typically carried out
through optimization algorithms like gradient descent, iteratively re-
duces the error as measured by the cost function. Without an effective
cost function, the model would have no systematic way of improving
its performance. For speech enhancement, this means that the chosen
cost function directly impacts the clarity and intelligibility of the en-
hanced speech output (Goodfellow et al., 2016).

The effectiveness of a cost function is crucial for the overall success of
the speech enhancement model. Different cost functions can be em-
ployed depending on the specific requirements of the task, such as
minimizing mean squared error, mean absolute error, or more com-
plex metrics that better capture perceptual aspects of speech quality
(Virtanen et al., 2012).

3.3.1 Mean Squared Error (MSE)

Mean Squared Error (MSE) (Bishop, 2006) is a common cost function
that measures the average of the squares of the errors between the pre-
dicted values and the actual values. It is formulated as:

Y (i (3.4)

i=1

MSE(y, 9

:\»—\

where y; is the actual value, ; is the predicted value, and n is the num-
ber of observations.



32 Chapter 3. Neural Networks for Speech Enhancement

MSE is simple and computationally efficient, making it suitable for a
wide range of applications. Its sensitivity to large errors can be bene-
ficial for certain tasks as it encourages the model to focus on reducing
larger discrepancies between predictions and actual values.

The primary drawback of MSE is its sensitivity to outliers. Since errors
are squared, large deviations disproportionately increase the overall
error, which can negatively affect model performance if outliers are
present.

In speech enhancement, MSE is often used due to its straightforward
calculation and effectiveness in minimizing the overall error between
the enhanced and clean speech signals. By focusing on reducing the
mean squared error, models can improve the general quality of en-
hanced speech (Virtanen et al., 2012).

3.3.2 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) measures the average magnitude of er-
rors in a set of predictions, without considering their direction. It is
formulated as:

R 1 .
MAE(y,7) = ” Y lyi — 9il (3.5)
iz

where y; is the actual value and 7; is the predicted value (Goodfellow
etal., 2016).

MAE is robust to outliers because it does not square the errors. This
means that large errors do not disproportionately affect the overall er-
ror metric, making it more stable when outliers are present.

However, it is less sensitive to smaller errors compared to MSE. This
can result in a less precise adjustment of model parameters when fine-
tuning to minimize the error.

MAE is particularly useful in speech enhancement when robustness
to outliers is critical. It ensures that large errors, such as sudden noise
spikes, do not disproportionately affect the training process, leading to
a more stable and reliable model performance in noisy environments
(Bishop, 2006).
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3.3.3 Other Cost Functions

Other notable cost functions include Huber loss and Kullback-Leibler
divergence. Huber loss combines the robustness of MAE with the
sensitivity of MSE, making it effective in handling outliers and small
errors in speech enhancement (Huber, 1992). Kullback-Leibler diver-
gence is useful in probabilistic models for comparing predicted and ac-
tual probability distributions, offering an approach to measuring model
performance in speech enhancement tasks (Siniscalchi, 2021).

3.4 Feature Extraction

Feature extraction is an important process in speech enhancement, trans-
forming raw audio signals into a format that neural networks can effec-
tively process. This step is essential because it condenses the relevant
information in the speech signal, making it easier for models to ana-
lyze and enhance the signal. By extracting key features, we can reduce
the dimensionality of the data and focus on the most important aspects
that contribute to speech clarity and intelligibility. In this thesis these
features are used as auxiliary information to the network besides the
spectrogram of the noisy signal, this way we intend to provide the net-
work useful information that we expect it can improve the enhacement
process.

Various feature extraction methods have been developed to capture
different characteristics of speech signals. Among these, Mel-Frequency
Cepstral Coefficients (MFCC) and Filter Banks (FB) are widely used
due to their inspired design in the human auditory perception. These
techniques are integral in many speech processing applications, in-
cluding automatic speech recognition and speech enhancement.

Beyond MFCC and FB, other methods like Perceptual Linear Predic-
tion (PLP) offer alternative ways to emphasize perceptually important
features of speech. PLP, incorporates aspects of human auditory per-
ception to provide a more nuanced representation of speech signals.

In the following subsections, we will explain the feature extraction in
more detail.



34 Chapter 3. Neural Networks for Speech Enhancement

3.4.1 Filter Banks (FB)

Filter banks are a collection of band-pass filters designed to capture the
energy in various frequency bands of the speech signal. Each filter in
the bank isolates a specific portion of the frequency spectrum, allowing
for detailed analysis of the signal’s spectral content.

The process of generating filter bank features involves several steps:

1. Pre-emphasis: This step involves filtering the signal to empha-
size higher frequencies. This is done by applying a high-pass
filter to the input signal x(t):

y(t) = x(t) —ax(t—1) (3.6)
where « is typically set to 0.97.

2. Framing: The continuous speech signal is divided into overlap-
ping frames, typically 20-40 milliseconds long and 10 millisec-
ondss hop, to capture the short-term characteristics of the speech.

3. Windowing: Each frame is windowed using a Hamming win-
dow to reduce spectral leakage. The window function w(t) is
applied as:

y(t) = x(t) - w(t) (37)

where,
27t

N—1)

w(t) = 0.54 — 0.46c0s( (3.8)

4. Discrete Fourier Transform (DFT): The windowed frames are trans-
formed from the time domain to the frequency domain using the
Fast Fourier Transform (FFT) he fast implementation of the DFT:

X(f) = ¥ x(me v (39)

5. Mel-Filterbank: The power spectrum obtained from the FFT is
passed through a Mel-scale filterbank, which consists of triangu-
lar filters spaced according to the Mel scale. The Mel frequency
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fmer s calculated as:

el = 2595l0g10(1 + 7&) (3.10)

6. Log-Amplitude: The log-amplitude of each of the Mel-filterbank
outputs is computed, which compresses the dynamic range of
the values.

N-1
E; = log(') |X(k)H;(k)?) (3.11)
k=0

where E; is the log energy of the i-th filter, X (k) is the FFT of the
windowed signal, and H;(k) is the frequency response of the i-th
filter.

Filter banks are widely used in speech enhancement for their simplic-
ity and effectiveness in capturing spectral information. They provide
a perceptual representation of the speech signal’s frequency content as
we can see in Figure 3.1. By capturing the energy distribution across
different frequency bands, filter banks allow speech enhancement al-
gorithms to focus on the most relevant parts of the signal, improving
the clarity and intelligibility of the enhanced speech. Their straight-
forward implementation and computational efficiency make them a
popular choice in various speech processing applications.

3.4.2 Mel-Frequency Cepstral Coefficients (MFCC)

Mel-Frequency Cepstral Coefficients (MFCCs) are a set of coefficients
that collectively represent the short-term power spectrum of a sound.
They are derived from the Mel-frequency cepstrum, which is a repre-
sentation of the signal’s power spectrum on a non-linear Mel scale of
frequency (Mermelstein, 1976).

The computation of MFCCs involves the same steps of previous FB
features but adding an additional step:

1. Discrete Cosine Transform (DCT): The log-Mel spectrum is trans-
formed into the cepstral domain using the DCT. The resulting
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FIGURE 3.1: Representation of filter bank features

coefficients are the MFCCs:

tk(2n + 1)} (3.12)

=Y log(Su(m)
ck—ngaog n(n cos{ N

where S, (n) is the log-Mel spectrum and c are the cepstral co-
efficients.

MEFCCs are widely used in speech technologies due to their ability to
mimic the human ear’s response. The Mel scale reflects the human
ear’s perception of sound. This makes MFCCs particularly effective
in capturing the perceptual features of speech, improving the perfor-
mance of speech enhancement systems by aligning more closely with
human auditory characteristics (Davis & Mermelstein, 1980). Addi-
tionally, MFCCs provide a compact representation of the speech sig-
nal, reducing computational complexity while retaining essential in-
formation for processing. In Figure 3.2 we can see an example of audio
represented by its MFCC features, where we can see that most of the
information and energy is concentrated in the lower index cepstrum
features.
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FIGURE 3.2: Representation of MFCC features

3.4.3 Other Features

In addition to Mel-Frequency Cepstral Coefficients (MFCC) and Filter
Banks (FB), several other feature extraction techniques are employed in
speech enhancement. These methods offer unique advantages and are
suited to different applications based on their ability to capture specific
characteristics of speech signals.

e Perceptual Linear Prediction (PLP): PLP emphasizes perceptu-
ally important aspects of the speech signal by modifying the Lin-
ear Predictive Coding (LPC) model to better reflect the human
auditory system. It was widely used in speech recognition and
enhancement for its ability to provide a perceptually accurate
representation of speech (Hermansky, 1990).

e Linear Predictive Coding (LPC): LPC represents the spectral en-
velope of a speech signal in a compressed form using linear pre-
dictive models. It is commonly used in speech compression, syn-
thesis, and enhancement due to its efficiency in capturing the
speech signal’s spectral properties.

e Relative Spectral Transform (RASTA): RASTA emphasizes the tem-
poral dynamics of the speech signal by band-pass filtering the log



38 Chapter 3. Neural Networks for Speech Enhancement

spectrum, which enhances robustness to noise and channel dis-
tortions. It is particularly effective in noisy and variable acoustic
environments, improving the performance of speech recognition
and enhancement systems (Hermansky & Morgan, 1994).

3.5 Speech Quality Measurement Methods

Measuring the quality of audio is a critical aspect of speech enhance-
ment, encompassing two primary dimensions: intelligibility and nat-
uralness. Intelligibility refers to how easily the speech can be under-
stood, while naturalness pertains to how natural and pleasant the speech
sounds. Although related, these two aspects are not equivalent.

In speech enhancement, accurately measuring audio quality is vital
to evaluate and improve the performance of enhancement algorithms.
High-quality measurement methods help ensure that enhanced speech
is not only intelligible but also sounds natural, which is crucial for ap-
plications in telecommunications, hearing aids, and voice-controlled
systems. The challenge lies in developing metrics that can objectively
quantify these subjective qualities (Hu & Loizou, 2007).

This section will discuss various methods for measuring speech qual-
ity, categorized into objective and subjective measures, with further
distinctions between those requiring a reference signal and those that
do not.

3.5.1 Types of Measures

Evaluating speech enhancement involves two main classifications: ob-
jective vs. subjective measures, and reference vs. non-reference mea-
sures

Objective vs. Subjective

Objective measures provide quantifiable assessments of speech qual-
ity using mathematical models and algorithms. These measures do
not rely on human listeners and are typically faster and more consis-
tent. Examples include Mean Squared Error (MSE), Segmental Signal
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to Noise Ratio (Segmental SNR), and Short-Time Objective Intelligibil-
ity (STOI). Objective measures are particularly useful for large-scale
evaluations and when quick, repeatable assessments are needed.

Subjective measures involve human listeners who rate the quality and
intelligibility of speech signals. These assessments are often consid-
ered the gold standard because they reflect human perception. Meth-
ods such as Mean Opinion Score (MOS) and listening tests are com-
mon. While subjective measures provide valuable insights, they are
time-consuming and may vary between listeners. This thesis did not
employ subjective measures due to their higher costs and complexity.

Reference vs. Non-Reference

Reference measures require a clean, original signal to compare with the
processed or enhanced signal. They quantify the difference between
the two signals to assess the quality of enhancement. Examples include
Perceptual Evaluation of Speech Quality (PESQ) and Log Likelihood
Ratio (LLR). These measures are effective in controlled environments
where the reference signal is available.

Non-reference measures, also known as "no-reference" measures, do
not require a clean reference signal. They evaluate the quality of speech
based solely on the processed signal. Examples include Speech-to-
Reverberation Modulation Energy Ratio (SRMR) and certain no-reference
objective measures. These measures are particularly useful in real-
world scenarios where a reference signal is not available, for example
when the noisy data has been artificially generated, but they are more
difficult to obtain in real scenarios.

3.5.2 Segmental Signal to Noise Ratio (Segmental SNR)

Segmental Signal to Noise Ratio (Segmental SNR) measures the signal-
to-noise ratio in short, individual segments of the speech signal. It pro-
vides a localized assessment of the enhancement process by evaluating
the clarity of speech on a segment-by-segment basis. Mathematically,
it is defined as:
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1Y YM . x2(n) )
Segmental SNR = — Y 10logio ( = (3.13)
N z; Yota[xi(n) — %i(n)]2

where x;(n) is the clean speech segment,£;(n) is the enhanced speech
segment, M is the number of the samples in each segment, and N is
the number of segments.

Segmental SNR is used to evaluate the clarity of speech enhancement
by comparing the power of the clean signal to the power of the noise
within each segment. This measure provides a more detailed analy-
sis than the overall SNR by focusing on short-term variations in the
speech signal, making it particularly useful for assessing the perfor-
mance of enhancement algorithms that operate on a frame-by-frame
basis.

As an objective measure, Segmental SNR requires a reference signal
(clean speech) to calculate the ratio. It helps in quantifying the en-
hancement performance by providing an average improvement in SNR
across all segments. This measure is beneficial in understanding how
well the enhancement algorithm performs in different parts of the speech
signal, highlighting its effectiveness in both high and low SNR condi-
tions (Hu & Loizou, 2007).

3.5.3 Log Likelihood Ratio (LLR)

og Likelihood Ratio (LLR) measures the difference between the origi-
nal and enhanced speech signals based on their Linear Predictive Cod-
ing (LPC) coefficients. It evaluates how closely the enhanced signal’s
LPC coefficients match those of the original signal. Mathematically,
LLR is defined as:

T
LLR = log <Z€TII:) (3.14)

where a and a, are the LPC coefficient vectors for the original and en-
hanced signals, respectively, and R is the autocorrelation matrix of the
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original signal. The expression in the numerator calculates the energy
of the prediction error when the original signal is modeled with co-
efficients a, and the denominator when the model coefficientes are a,.
If the enhanced signal spectral envelope is close to the original signal,
this ratio will be lower, and in the limit if the enhancement is perfect,
the quotient is 1 and the LLR is then 0.

LLR assesses how well the enhanced speech maintains the character-
istics of the original signal. By comparing LPC model errors, it pro-
vides a measure of the spectral distortion introduced by the enhance-
ment process. A lower LLR indicates that the enhanced signal closely
matches the original, preserving the spectral characteristics of the speech.

As an objective measure, LLR requires a reference signal (the origi-
nal speech) to calculate the ratio. It is particularly useful for quantify-
ing the degree of distortion introduced by speech enhancement algo-
rithms, ensuring that the enhanced signal retains the essential spectral
properties of the original speech (Gray & Markel, 1976).

3.5.4 Speech-to-Reverberation Modulation Energy Ratio (SRMR)

Speech-to-Reverberation Modulation Energy Ratio (SRMR) evaluates
the amount of reverberation in the speech signal by analyzing the mod-
ulation spectrum. It quantifies the ratio of the energy in the speech-
modulated components to the energy in the reverberation-modulated
components. Mathematically, SRMR is defined as:

K
Zkzl ):mespeech|Mk/m |2

SRMR = (3.15)

Zk:1 Zmereverb\Mk,m |2

where My ,, represents the modulation spectrum coefficients for sub-
band k and modulation frequency m, with speech and reverberation
components classified acordingly (Falk et al., 2010b)

SRMR is used to assess the naturalness and clarity of speech in rever-
berant environments. It helps determine how much the reverberation
affects the speech signal, thereby evaluating the effectiveness of dere-
verberation techniques in enhancing the speech quality.
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As an objective measure, SRMR does not require a reference signal.
This makes it particularly useful for evaluating real-world recordings
where clean references are not available. SRMR provides a robust
means of assessing speech quality based on the modulation charac-
teristics of the signal.

3.5.5 Perceptual Evaluation of Speech Quality (PESQ)

Perceptual Evaluation of Speech Quality (PESQ) compares the orig-
inal and enhanced speech signals using a perceptual model to pre-
dict subjective quality scores (Rix et al., 2001; ITU-T Recommendation,
2001). PESQ simulates the human auditory system by evaluating how
changes in the speech signal are perceived. Mathematically, PESQ in-
volves transforming the original and enhanced signals into a percep-
tual domain and computing a difference measure that reflects the per-
ceived quality. The PESQ score is derived from this comparison and
typically ranges from -0.5 to 4.5, with higher scores indicating better
quality.

The PESQ score is calculated using the following general steps:

1. Perceptual Transform: Transform the original x(t) and enhanced
%(t) speech signals into the perceptual domain using auditory
models.

2. Comparison: Compute the difference between the transformed
signals.

3. Aggregation: Aggregate the differences over time and frequency
to produce the final PESQ score.

PESQ is widely used in telecommunications to assess the overall speech
quality of various codecs and speech enhancement algorithms. It pro-
vides a standardized way to measure and compare the performance
of different systems based on how listeners perceive the quality of the
processed speech. This makes PESQ an invaluable tool for ensuring
high-quality speech transmission and enhancement in real-world ap-
plications .
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As an objective measure, PESQ requires a reference signal (the original
speech) to evaluate the enhanced signal. It bridges the gap between ob-
jective measurements and subjective listening tests by predicting how
users would perceive the quality of the enhanced speech. This pre-
dictive capability makes PESQ a trusted metric in both research and
industry settings for evaluating speech enhancement performance.

3.5.6 Short-Time Objective Intelligibility (STOI)

Short-Time Objective Intelligibility (STOI) measures the intelligibility
of speech by comparing the original and enhanced signals over short
time frames (Taal et al., 2011). It quantifies how well the speech en-
hancement process has preserved or improved the intelligibility of speech
in noisy conditions. Mathematically, STOI is computed as the average
correlation coefficient between the temporal envelopes of the original
and processed speech segments, calculated in short, overlapping time
windows.

The STOI score is calculated using the following steps:

1. Short-Time Segmentation: Segment both the original x(¢) and en-
hanced £(t) signals into overlapping short-time frames.

2. Temporal Envelope Extraction: Extract the temporal envelopes
of each segment.

3. Correlation Calculation: Compute the linear correlation coeffi-
cient between the corresponding segments of the original and
enhanced signals.

4. Averaging: Average the correlation coefficients over all segments
to obtain the final STOI score.

STOI is commonly used to evaluate how well speech enhancement al-
gorithms improve the intelligibility of speech in noisy conditions. It
is particularly valuable in scenarios where maintaining or enhancing
speech intelligibility is critical, such as in hearing aids, communica-
tion systems, and voice-controlled devices. The STOI measure pro-
vides a reliable and objective way to assess the effectiveness of differ-
ent speech enhancement techniques in improving intelligibility under
various noise conditions.
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As an objective measure, STOI requires a reference signal (the original
speech) to compare with the enhanced signal. This comparison allows
STOI to quantify the degree of intelligibility improvement provided by
the enhancement algorithm, making it a vital tool in the development
and evaluation of speech-processing technologies.
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Chapter 4

Wide Residual Neural
Network

4.1 Introduction

In the preceding chapters, we have traced the development of speech
enhancement techniques from their early beginnings to the present
day. In this chapter we explore with more detail some models along the
line of more modern systems in the overview of Chapter 2, since Deep
Neural Networks (DNNs), including Convolutional Neural Networks
(CNNs) (LeCun et al., 1998) and Recurrent Neural Networks (RNNs)
(He et al., 2016) with Long Short-Term Memory (LSTM) (Hochreiter
& Schmidhuber, 1997) units, demonstrated unprecedented capabilities
in modeling the complex relationships between data (Maas et al., 2012;
Hinton & Salakhutdinov, 2006; Deng & Li, 2013).

Deep learning has provided a dramatic improvement in modern speech
enhancement, offering powerful tools to uncover and model the intri-
cate relationships between corrupted and clean speech data. Among
these, CNN-based architectures have shown exceptional capability in
handling the structural aspects of corrupted speech signals (Fu et al.,
2016; Park & Lee, 2017). CNNs excel in capturing spatial hierarchies
within the data, making them particularly effective for tasks involving
spatially coherent distortions like reverberation.

In addition to CNNs, Recurrent Neural Networks (RNNs) and their
advanced variant, Long Short-Term Memory (LSTM) networks, have
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proven highly effective in speech enhancement tasks, especially in han-
dling temporal dependencies and dynamic variations in the speech
signal (Maas et al., 2012; Weninger et al., 2015; Chen & Wang, 2016; Ki-
noshita et al., 2017; Gao et al., 2018). These architectures are well-suited
for modeling sequential data, allowing them to maintain context over
time and effectively mitigate noise and reverberation effects.

Both convolutional and recurrent networks have been further enhanced
by incorporating residual connections, which enable the construction
of deeper networks with improved convergence and reduced gradi-
ent vanishing issues. The residual connection mechanism allows the
networks to learn more detailed representations of the speech signal,
thereby enhancing the overall performance of speech enhancement
systems (Santos & Falk, 2018).

Wide Residual Neural Networks (WRNs) (Zagoruyko & Komodakis,
2017) represent an evolution in deep learning architectures, specifically
designed to leverage the benefits of residual connections while increas-
ing the width of the network layers. Unlike traditional deep networks
that primarily focus on depth, WRNs expand the layer width, which
enhances the network’s capacity to learn from data. This architecture
is particularly significant in speech enhancement due to its ability to
model complex relationships in the spectral domain effectively.

As we show in this chapter, WRNs allow us to address some of the
persistent challenges in speech enhancement, such as reverberation
and spectral distortion. Reverberation, which occurs when sound re-
flects off surfaces and causes overlapping echoes, can significantly de-
grade speech intelligibility. Traditional methods often struggle to ac-
curately separate reverberant components from the desired speech sig-
nal. WRNs, with their increased capacity and residual connections, can
better capture the nuances of reverberant speech, enabling more effec-
tive dereverberation as we show in the experimental section.

This chapter introduces a novel speech enhancement method based
on the WRN architecture, utilizing single-dimensional convolutional
layers. As we will show, this approach is particularly effective in deal-
ing with reverberation with respect to previous work. By focusing on
the log magnitude spectrum, the method makes a direct regression
from the reverberant speech spectrum to the clean speech spectrum.
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This spectral domain analysis reinforces the importance of low-energy
bands, which play a significant role in the perception of speech. This
approach ensures that the enhanced speech retains its naturalness and
intelligibility, addressing the challenges posed by reverberation and
spectral distortion.

The performance of the proposed WRN-based method is evaluated
through various speech quality metrics, focusing on both dereverbera-
tion levels and the spectral distortion introduced by the enhancement
process. These metrics provide a comprehensive assessment of the
method’s effectiveness in improving speech intelligibility and quality.

To benchmark the proposed method, its performance is compared with
the state-of-the-art Weighted Prediction Error (WPE) technique within
an experimental framework inspired by the REVERB Challenge. The
WPE method, which is based on the LSTM architecture, has demon-
strated top performances in handling reverberant speech (Kinoshita et
al., 2017).

By comparing the WRN-based approach with the WPE method, this
study aims to highlight the advantages of using wide residual net-
works for speech enhancement. The analysis includes examining how
the WRN architecture mitigates the effects of reverberation and spec-
tral distortion, thereby providing clearer and more natural-sounding
speech.

This chapter makes significant contributions to the overall thesis by in-
troducing a novel speech enhancement method based on Wide Resid-
ual Neural Networks (WRNSs). The application of WRNs in this context
leverages the benefits of residual connections and increased network
width, which together enhance the network’s ability to model and im-
prove speech signals corrupted by noise and reverberation. This in-
novative approach addresses some of the most persistent challenges
in speech enhancement, providing a robust framework for improving
speech quality.

The chapter also includes a comprehensive performance analysis of the
WRN-based method. Various speech quality metrics are used to eval-
uate the method, with a particular focus on dereverberation levels and
the spectral distortion introduced during the enhancement process.
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To provide a benchmark, the performance of the proposed method is
compared with the state-of-the-art Weighted Prediction Error (WPE)
technique, which is based on the LSTM architecture and has demon-
strated top performance in handling reverberant speech. This compar-
ison highlights the effectiveness of the WRN approach in mitigating
the effects of reverberation and spectral distortion.

The experimental framework for this study is inspired by the REVERB
Challenge, ensuring a rigorous and standardized evaluation of the pro-
posed method. This setup allows for a detailed and fair compari-
son with existing techniques, further underscoring the strengths of the
WRN-based approach.

4.2 Wide Residual Network for Speech enhance-
ment
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FIGURE 4.1: Proposed WRN architecture. From left to
right, the diagram shows the composition of the network
blocks, with Cy representing the number of channels in layer

As we have explained in the introduction the input to the WRN is the
log magnitude spectrogram. Then, the network architecture proposed
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(Figure 4.1) processes input features with a first convolutional layer fol-
lowed by four Wide Residual Blocks (WRB). The first WRB processes
the output of the first convolutional layer and also its input. Follow-
ing the WRBs, there is a Batch Normalization (BN) stage and a non-
linearity (PReLU: Parametric Rectified Linear Unit). The combination
of BN and PReLU blocks provides a smoother representation in regres-
sion tasks compared to using ReLU. This WRN architecture increases
the number of channels in each stage. In our architecture, we start with
32 channels in the input block and in the first block, but then increase
up to 64 channels in the second block and even 128 channels in the last
block.

Finally, there is another convolutional layer with a ReLU activation
function, reducing the number of channels to 1 and obtaining the pre-
dicted enhancement. Each WRB progressively increases the number of
channels in its outputs, with the widening operation occurring in the
first convolution of the first residual block of each WRB.

To compute the residual connection via a summation operation, the
number of channels in both the straight path and the convolutional
path must be the same. Therefore, when the number of channels in-
creases, a Conv1D layer with kernel size k = 1 is introduced. This acts
as a position-wise fully connected layer, aligning the number of chan-
nels in the residual path with those in the convolutional path to allow
their addition.

In this work, we aim to enhance the logarithmic spectrum of a noisy
input signal Xpyis. For this purpose, we use the Mean Square Error
(MSE) as the training cost function to produce an enhanced signal Xg,,,
that closely resembles the clean reference Y. Drawing from our pre-
vious work (Llombart et al., 2018), instead of enhancing each frame
individually, we process the entire input signal as a sequence. This
approach propagates the accumulated regression error across the en-
tire sentence, rather than frame by frame. This strategy significantly
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reduces computational complexity, as each training example is a com-
plete input sequence, rather than hundreds of frames, reusing the con-
text needed by the convolution layers. The cost function, which aver-
ages the MSE over all input frames, is described by the equation (4.1):

1 T-1 1 N-1
](Y/ XEnh) i 2 § MSE(yt,rz/ xEnh,t,n) (41)
T N
t=0 n=0

where T is the number of frames in the example, N is the feature di-
mension, Y, are the frames of Y, and xg, ;,, are the frames of Xg,,.

4.3 Experimental setup

The experimental framework used in this work is based on the RE-
VERB Challenge task!. We measure the performance of speech en-
hancement methods using speech quality metrics. Our goal is to bal-
ance dereverberation and avoid adding too much spectral distortion
during the enhancement process.

To achieve this, we evaluated the approaches using the official Devel-
opment and Evaluation sets provided by the REVERB Challenge (Ki-
noshita et al., 2013). This dataset includes simulated speech, created
by convolving clean speech from the WSJCAMO Corpus (Robinson et
al., 1995) with Room Impulse Responses (RIRs) recorded in three dif-
ferent rooms. These rooms have varying reverberation times (RTgp)
of 0.25, 0.5, and 0.7 seconds, respectively. The recordings were made
at two different distances between the speaker and the microphone: a
near distance of 0.5 meters and a far distance of 2 meters. Addition-
ally, stationary noise recordings from the same rooms were added to
the dataset, maintaining a Signal-to-Noise Ratio (SNR) of 20 dB. This
ensures that the simulated data not only has reverberation but also in-
cludes realistic background noise.

The dataset also features real-world recordings, captured in a rever-
berant meeting room with a reverberation time (RT¢g) of 0.7 seconds.
These recordings were made at two distances: near (1 meter) and far
(2.5 meters) from the speaker to the microphone, and are part of the

1ht’cp: / /reverb2014.dereverberation.com
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MC-WS]J-AV corpus (Lincoln et al., 2005). Moreover, we incorporated
real speech samples from the VoiceHome dataset, including versions
v(.2 (Bertin et al., 2016) and v1.0 (Bertin et al., 2019). The VoiceHome
dataset was recorded in actual domestic environments, capturing typi-
cal household background noises such as those from a vacuum cleaner,
dishwashing activities, or television interviews. This variety ensures
the dataset covers a wide range of realistic acoustic conditions.

For training the Deep Neural Network (DNN), we utilized 16 kHz
sampled data from multiple sources: Timit (Garofolo et al., 1993), Lib-
rispeech (Panayotov et al., 2015), and Tedlium (Rousseau et al., 2014).
To enhance the robustness of our model, we augmented this training
data. The augmentation process involved adding artificially generated
Room Impulse Responses (RIRs) (Allen & Berkley, 1979a) with rever-
beration times ranging from 0.05 to 0.8 seconds. We also included both
stationary and non-stationary noises from the Musan dataset (Snyder
et al., 2015), with SNR levels varying between 5 and 25 dB. These
noises include different types of background sounds such as music and
other speech recordings. Furthermore, we applied time axis scaling at
the feature level to create a more diverse training set, thereby improv-
ing the generalization capability of our model.

To assess the effectiveness of our proposed WRN speech enhancement
method, we compared it with the state-of-the-art dereverberation tech-
nique known as Weighted Prediction Error (WPE). WPE is recognized
for its effectiveness in reducing reverberation, particularly within the
REVERB dataset framework (Kinoshita et al., 2017). For our com-
parison, we utilized the latest version of the WPE method, which is
available online? and is also based on Deep Neural Networks (DNN)
(Kinoshita et al., 2017). Unlike our approach, WPE employs an archi-
tecture centered around Long Short-Term Memory (LSTM) networks.
This allows us not only to compare the dereverberation performance
but also to assess the differences and advantages of our WRN-based
solution from a DNN architecture perspective.

Zhttps:/ /github.com/fgnt/nara_wpe
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Next, we measured speech quality by evaluating the distortion intro-
duced by the enhancement process. This was done using the Log-
likelihood ratio® (LLR) (Loizou, 2011). The LLR was computed only
for active speech segments, which were identified using a Voice Activ-
ity Detection (VAD) algorithm (Ramirez et al., 2004). For this measure,
smaller values indicate better speech quality because they show less
spectral distortion. Additionally, we assessed the reverberation level of
the signal using the Speech-to-Reverberation Modulation Energy Ratio
(SRMR) (Falk et al., 2010a). In this case, higher values indicate better
speech quality. It is important to note that SRMR can be used with real
data, whereas LLR requires both the observed/enhanced signal and a
clean reference for computation.

Finally, the front-end of the system begins by segmenting speech sig-
nals into frames. These frames are 25 ms, 50 ms, and 75 ms long, with
each frame being windowed using a Hamming window. The frames
are created every 10 ms. This approach helps to capture as much of the
reverberant impulse response as possible within each window, with-
out losing the temporal resolution of the acoustic events. For each
frame segment, we compute and stack three types of acoustic feature
vectors to form a single input feature vector for the network. These fea-
ture vectors include a 512-dimensional Fast Fourier Transform (FFT),
log magnitude Mel filterbanks of dimensions 32, 50, and 100, and cep-
stral features that match the dimension of the corresponding Mel fil-
terbank. This combination ensures that a wide range of spectral and
temporal information is captured.

After computing the feature vectors, we normalize each vector by its
variance. This step helps in stabilizing the training process by ensuring
that all features are on a similar scale. The input features are generated
and augmented dynamically, processing continuous blocks of 200 sam-
ples. This allows for efficient time-domain convolutions. The network
architecture includes four Wide Residual Network (WRN) blocks, each
with a widening factor of 8. The AdamW algorithm is used to train
the network, which combines the benefits of Adam optimization with
weight decay regularization. We also use Parametric Rectified Linear
Units (PReLUs) as the activation function, as described by (He et al.,

30riginally known as Itakura distance



4.4. Analysis of Results and Insights

53

2015). PReLUs help in addressing the dying ReLU problem by allow-
ing a small, trainable gradient when the unit is not active.

4.4 Analysis of Results and Insights
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FIGURE 4.2: Visual example of enhancement applied to a
signal from the REVERB Dev dataset.

Figure 4.2 provides a qualitative example of the enhancement perfor-
mance using the signal c31c0204.wav from the REVERB Development
dataset. This signal has a reverberation time (RTgp) of 0.25 seconds and
a speaker-to-microphone distance of 200 cm.

In the top-right side of the figure, we can see the spectrogram of the
corrupted speech. The distortion caused by reverberation is evident.
Reverberation leads to a significant temporal spreading of the power
spectrum during active speech segments. This spread blurs the speech
signal, making it less clear and harder to understand.

The bottom left part of the figure shows the enhanced speech using the
Weighted Prediction Error (WPE) method. WPE reduces some of the
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reverberation effects, but it does not completely eliminate them. The
enhanced speech is clearer than the corrupted version, but there are
still noticeable artifacts.

The bottom right part of the figure displays the enhanced speech us-
ing our WRN method. The WRN method more effectively reduces
the reverberation and reconstructs the speech signal with greater accu-
racy as we will show later with the objective metrics evaluated. Com-
pared to WPE, the WRN method produces a cleaner and more natural-
sounding speech signal. This demonstrates the superior performance
of the WRN approach in handling reverberation and improving speech
quality.

4.4.1 Spectral Distortion Analysis

Table 5.1 shows the speech quality results in terms of distortion mea-
sured by the Log-Likelihood Ratio (LLR) distance for simulated speech
samples. The first row represents the unprocessed reverberant speech.
This row serves as a baseline to compare the quality of the enhanced
speech signals produced by the WPE method and our proposed WRN
enhancement method.

Both WPE and WRN methods are based on Deep Neural Networks
(DNNs) and are designed to enhance corrupted speech data. How-

ever, our WRN method significantly reduces spectral distortion more
effectively than WPE.

The LLR values in the table illustrate this improvement. Lower LLR
values indicate better speech quality due to reduced distortion. For the
REVERB Development (REV-Dev) and Evaluation (REV-Eval) datasets,
the unprocessed speech has LLR distances of 0.63 and 0.64, respec-
tively. The WPE method improves these values to 0.60 for both datasets.
In contrast, our WRN method achieves even lower LLR distances of
0.50 for REV-Dev and 0.51 for REV-Eval, highlighting its superior per-
formance in enhancing speech quality.
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TABLE 4.1: LLR distance in simulated reverberated speech
samples from REVERB Dev & Eval datasets.

Methods REV-Dev | REV-Eval
Unprocessed 0.63 0.64
WPE (Drude et al., 2018) 0.60 0.60
WRN 0.50 0.51

4.4.2 Robustness of WRN in Simulated and Real Environ-
ments

Table 4.2 presents the average Speech-to-Reverberation Modulation
Energy Ratio (SRMR) results for both simulated and real speech sam-
ples under various conditions. The first column shows the SRMR val-
ues for the unprocessed speech data, serving as a baseline for compar-
ison. The cells highlighted in gray indicate the best results for each
dataset.

TABLE 4.2: Speech quality through SRMR results for sim-
ulated and real reverberated speech samples.

Datasets H Unprocessed ‘ WPE (Drude et al., 2018) ‘ WRN
Simulated
REVERB Dev 3.67 3.90 4.75
REVERB Eval 3.68 3.91 4.63
Real
REVERB Dev 3.79 417 4.79
REVERB Eval 3.18 3.48 4.20
VoiceHome v(0.2 3.19 3.28 5.03
VoiceHome v1.0 451 4.96 5.92

The WRN method outperforms the baseline methods across all eval-
uated datasets. This consistent performance across different datasets
demonstrates the robustness of the WRN method. Unlike some meth-
ods that may be fine-tuned for specific datasets, the WRN model seems
to better generalize, which is a desirable trait for speech enhancement.

These positive results suggest that the WRN method is not only effec-
tive in simulated environments but also in real-world scenarios. It is
noteworthy that the WRN model, trained with artificially synthesized
reverberation, also excels in handling real reverberated speech. This
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indicates the potential for practical applications where real-world re-
verberation conditions are present.

Reverberation Time and Room Size Effects on Speech Quality

Figure 4.3 shows how the SRMR results change with increasing levels
of reverberation for different room sizes: Rooml with RTgg = 0.25s,
Room?2 with RTgy = 0.5s, and Room3 with RTgg = 0.75s.

The proposed WRN method consistently achieves higher speech qual-
ity than the reference methods across all conditions. The results demon-
strate that the WRN method is robust, as it shows less variability in
SRMR values across different reverberation times (RTp).

Additionally, the improvement in speech quality using the WRN method
becomes more pronounced as the reverberation time increases. This
means that the method is particularly effective in more challenging re-
verberation conditions. However, in Room1 with RTg) = 0.25s, there
is less room for improvement, making it harder to enhance the speech
quality significantly in this scenario.

Performance in Near-Field and Far-Field Conditions

Figure 4.4 shows the average SRMR results for both far-field (250 cm)
and near-field (50 cm) conditions in the simulated REVERB Develop-
ment and Evaluation datasets.

In these tests, the WRN method significantly outperformed the WPE
baseline. For far-field conditions, WRN achieved a 34.88% improve-
ment over WPE. In near-field conditions, WRN showed an 8.44% im-
provement. These results highlight that the WRN method is particu-
larly effective in far-field scenarios, which are generally more challeng-
ing due to the increased distance between the speaker and the micro-
phone.

The performance of the WRN method in far-field conditions demon-
strates its robustness and capability to handle difficult reverberation
scenarios effectively.
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FIGURE 4.3: Speech quality through SRMR measure
for different reverberation levels in simulated reverberated
speech samples from REVERB Dev & Eval datasets.

4.4.3 Challenges of Training-Testing Misalignment

As we observed earlier, enhancing speech quality in Room1 with RTgy =
0.25 and a near speaker-microphone distance was particularly chal-
lenging. These conditions involve low reverberation, which provides
limited room for improvement. Because of this, focusing data aug-
mentation on these specific conditions during network training could
potentially enhance performance.

One of the challenges faced was the lack of precise room size values
in the test dataset description. The WRN training data included esti-
mated small room sizes based on reasonable assumptions. However,
these estimates might not have been accurate enough for the actual
small size of Room1. This mismatch likely contributed to the difficul-
ties in achieving better enhancement in these scenarios.

Moreover, the training data augmentation configuration assumed that
the speaker and microphone could be randomly placed throughout the
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FIGURE 4.4: SRMR results for simulated reverberated
speech in near- and far-field conditions from REVERB Dev
& Eval datasets.

room. This setup modeled the environment with a uniform data distri-
bution. Consequently, this approach resulted in a low probability for
encountering specific test distances such as near (50 cm) and far (250
cm).

To address these issues and improve performance in these challenging
scenarios, future training data should incorporate smaller room sizes
and, in general, a wider set of room configurations in the data augmen-
tation. Additionally, the function used to model speaker-microphone
distances should be adjusted. Increasing the probability of encounter-
ing specific distances during training can help the model better handle
these conditions. However, it is crucial to avoid overfitting the training
data to specific scenarios and our design policy during the experiments
has been to have a balanced approach, ensuring both generalization
and alignment with test data.



4.5. Conclusions 59

4.4.4 Advancements Over Existing Methods

The experimental results clearly demonstrated that the proposed WRIN
architecture outperformed the reference WPE method in various con-
ditions. While the RNN-LSTM architecture used in WPE is powerful
and has its advantages, our WRN approach, which combines CNNs
with residual connections, offered more expressive representations of
reverberant speech.

The structure of the WRN method allows it to enhance the entire utter-
ance by applying convolutions across the full temporal domain of the
signal. This is particularly beneficial as the depth of the network in-
creases, allowing for more complex and detailed feature extraction. In
contrast, the WPE method, based on RNN-LSTM, only considers the
previous context when processing the speech signal. This limitation
can affect the enhancement quality, as it does not account for future
context, which can be crucial for certain speech characteristics.

Our WRN method, on the other hand, implements this forward-looking
perspective through convolutional layers, which consider all the con-

text around the analysis window. This approach results in a more com-

prehensive enhancement, improving the overall speech quality. The

WRN architecture successfully reconstructed the clean speech signal,

achieving higher speech quality than the WPE method. It maintained

a proper balance between the level of dereverberation and the amount

of spectral distortion.

Furthermore, these positive results were not limited to simulated envi-
ronments. They were also validated through tests on real distorted
speech, demonstrating the model’s strong generalization capability.
The ability to perform well on real-world data highlights the practi-
cal applicability of the WRN method, making it a robust choice for
various speech enhancement tasks.

4.5 Conclusions

This chapter introduced a novel speech enhancement method based on
a Wide Residual Network (WRN) architecture. This method leverages
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the powerful representations provided by a wide topology of Convo-
lutional Neural Networks (CNNs) with residual connections. The re-
sults demonstrated that the WRN method outperforms the state-of-
the-art RNN-LSTM-based method, known as Weighted Prediction Er-
ror (WPE), especially in far-field reverberated speech across three dif-
ferent room sizes.

The residual connections were particularly beneficial because they al-
low the network to maintain a linear shortcut for the signal, while the
non-linear path can enhance the signal by adding or subtracting correc-
tions at specific steps. This characteristic is highly valuable in practical
applications, where the system might encounter a variety of challeng-
ing conditions (Ribas et al., 2016).

Although the results are promising, there is room for improvement.
The subsequent chapters of this thesis address these improvements
and further explore the potential of the WRN method. In particular,
Chapter 5 explores how we can visualize the process of enhancing
speech. This visualization aims to provide deeper insights into how
the WRIN model processes and enhances speech signals. By visualiz-
ing different stages of the enhancement process, we can better under-
stand the transformations occurring within the network, addressing
the "black box" nature of deep learning models.

The visualization approach presented in Chapter 5 allows us to track
the enhancement process step-by-step through visualization probes at
each network block. This method helps us supervise the enhancement
process and gather relevant details on how it is performed. Such in-
sights are crucial for identifying which steps are most meaningful in
the enhancement process and which can be optimized or discarded.
This contributes to achieving a proper trade-off between accuracy and
computational effort.

In this chapter, we have shown some encouraging initial results of the
WRN architecture. The next chapters will provide a detailed analy-
sis and visualization of the enhancements. These chapters introduce
methodological improvements that enhance the model’s performance
and interpretability. These advancements collectively ensure that the
WRN method remains robust and effective for various speech enhance-
ment applications.
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Chapter 5

Enhancing Interpretability in
Speech Enhancement
through Deep Learning
Architectures

5.1 Introduction

Fields of speech processing like speech enhancement (SE) have been
dramatically improved with the advent of Deep Neural Networks (DNN).
These techniques have become the center of interest of the research
community for their ability to extract and process information, show-
ing significant improvements over traditional methods (Xia & Bao,
2013; Feng et al., 2014; Tu & Zhang, 2017; Karjol et al., 2018).

Previous chapters have discussed various methodologies and the evo-
lution of neural networks that aid in the enhancement of speech. How-
ever, despite their success, a significant challenge persists—the opacity
of these methods. Commonly known as the "black box" problem, this
lack of transparency in DNN operations makes it hard to understand
how they work. As a result, people often have to rely on empirical
methods.

This chapter aims to address these concerns by focusing into the inter-
pretability of neural networks, an emerging field that seeks to unravel
how DNNs manage feature selection and decision-making processes.
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The increasing focus on interpretability is evidenced by its prominence
in recent top scientific conferences.

Motivated by the need for clarity and precision in SE solutions, this
chapter introduces an innovative SE architecture that employs a feature-
mapping strategy. This architecture allows for the visualization of the
enhancement process at each step of the network. Such visualization
not only aids in understanding the transformations occurring within
the network but also enables the evaluation and refinement of the pro-
cess, even post-training. This adaptability ensures an optimal balance
between accuracy and computational efficiency tailored to specific ap-
plication needs.

Building on the robust foundations of Residual Networks (RN) dis-
cussed in the previous chapter and leveraging one-dimensional convo-
lution layers, the proposed architecture aims to match state-of-the-art
performance while providing a granular view of the network’s step-
by-step processing. The utility of residual connections is explored in
depth, highlighting their dual role in linear and non-linear path en-
hancements, which dynamically adjusts to the distortion levels in the
signal (Qian et al., 2017; He et al., 2016; Park & Lee, 2017).

This chapter extends the discussion on deep learning in speech en-
hancement from previous chapters by providing a detailed exploration
of a novel RN-based architecture. It also offers a comprehensive anal-
ysis of its performance on reverberated speech through various speech
quality measures.

5.2 Proposed architectures

This section introduces the architectures designed for enhancing speech
signals, particularly focusing on addressing the challenges depicted in
the following figure. Figure 5.1 visually demonstrates the initial state
of audio signals before processing. On the left the reference clean sig-
nal and on the right the distorted signal with reverberation. These
visualizations serve as a clear example of the types of noise and dis-
tortions that our proposed architectures aim to mitigate. By analyzing
these differences in time-frequency patterns displayed in the log mag-
nitude spectrogram, we can better adjust our methods to enhance the
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audio. We will go into more detail about how we do this for each ar-
chitecture later in this chapter.
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(A) Sample 1
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FIGURE 5.1: Comparative log magnitude spectrogram

analysis of two audio samples, illustrating the clean and

corresponding noisy signals. These visualizations highlight

the challenges faced in speech enhancement tasks discussed
later in this chapter.

5.2.1 Constant Channel Residual Network

In our effort to improve speech without losing detail in each process-
ing step, we have developed a Residual Network (RN) that keeps the
same number of channels through all residual connections. We call this
design the Constant Channel Residual Network (CCRN).
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Figure 5.2 displays our system. It uses various input sources to cap-
ture a wide range of signal representations. We aim to keep as much of
the reverberant characteristics as possible. Using a window that is too
short compared to the effective RIR length of the channel would cre-
ate unwanted artifacts. Therefore, we provide time-frequency analysis
with several window lengths as input to the system.

The initial processing of speech signals splits them into segments us-
ing 25, 50, and 75 ms Hamming window frames, repeating every 10
ms. Each segment calculates three types of acoustic features based on
the window size. These features include the the log magnitude of the
512 - dimensional Fast Fourier Transform (FFT) and Mel filterbank &
cepstral features of dimensions 32, 50, and 100. These are then com-
bined into a single input feature vector for the network, totaling 876
dimensions. Each feature vector undergoes variance normalization for
consistency.

The network’s first layer processes the input features and is followed
by 14 Residual Blocks (RB). This layer matches the input dimension
with the number of input channels and uses the dimension of the log-
arithmic spectrum for the output channels. Each RB includes a Batch
Normalization (BN) layer (Ioffe & Szegedy, 2015), a Parametric Recti-
fied Linear Unit (PReLU) (He et al., 2015), and a 1-dimensional con-
volution layer with a kernel size of 3. The number of output channels
remains consistent with the input, ensuring stability in feature repre-
sentation. The combination of BN and PReLU yields a smoother output
ideal for regression tasks, superior to the typical ReLU.

The residual connection simply adds the input of the RB to its output,
which helps in maintaining the integrity of the signal through each
block. Our objective is to derive the clean signal’s logarithmic spec-
trum from the noisy input, treated as a continuous sequence rather
than segmented frames, based on insights from prior work (Llombart
etal., 2018).

We apply a Mean Square Error (MSE) loss function of the predicted
output with respect to the clean signal across frames as follows:

J(Y, Xs1) = i i MSE (Y z, X5, 1) (5.1)
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FIGURE 5.2: Constant Channel Residual Network (CCRN) ar-
chitecture for progressive speech enhancement. L = 14,Cg = 512

where N represents the feature dimension, T is the sequence length,
Yn,t are the frames of Y the clean signal log magnitude spectrogram,
and xgs 1+ are the frames of Xs 1, the last block L output.

To observe the enhancement process in action, we position an output
probe at each block, made possible by keeping the channel count con-
sistent across all RBs. Figures 5.3 and 5.4 illustrate how the spectrum
evolves at various stages of processing.

Interestingly, a standard convolution layer mixes all input channels, af-
fecting each output channel differently. Consequently, the 512 - dimen-
sional output matrix does not accurately represent a true spectrum.
Certain frequency channels gather a lot of the spectral information,
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making them appear more defined, while others look blurred. This
selective emphasis, noted in (Santos & Falk, 2018), indicates that the
network prioritizes specific frequencies based on the varying levels of
distortion across the spectrum.

At the beginning and end of the processing chain, notable changes are
evident. Initially, the network modifies the spectrum by either inten-
sifying or blurring channels depending on the outputs from the con-
volution. This transformation is focused primarily on sections con-
taining speech, as shown by the significant alterations in these areas
compared to the relatively unchanged non-speech sections. Through-
out the depth, as the processing progresses through the intermediate
blocks, this clear distinction between speech and non-speech segments
becomes obscured due to the scrambling of network channels, making
structural patterns difficult to discern. Remarkably, by the final step,
the network reorganizes and enhances the signal, effectively reinstat-
ing the separation between speech and non-speech sections, suggest-
ing a reordering of channel organization forced by the reconstruction
loss objective.

This detailed observation of the network’s processing at various stages
underscores the dynamic nature of speech enhancement within our
proposed architecture, highlighting its ability to adapt and refine the
audio signal thanks to several additive correction steps throughout the
residual blocks.

5.2.2 Constant Channel Residual Network with State Path

The CCRN architecture aims to improve the input signal while preserv-
ing its log-spectral integrity progressively. However, despite incorpo-
rating a shortcut that allows the input to pass through with minimal
changes, the training of the CCRN sometimes results in a disordered
spectral representation. As discussed in section 5.2.1, it appears that
much of the information is concentrated in certain channels.

To enable the input to travel along the residual path without altering its
representation, we have introduced a state path between the Residual
Blocks (RBs). This design allows the signal representation generated
by the network to have its own distinct pathway.
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Additionally, this state path facilitates an increase in the number of
channels at each layer while keeping the number of channels in the
residual path consistent. We refer to the updated design illustrated in
figure 5.5 as the Constant Channel Residual Network with State path
(CCRN-State).
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FIGURE 5.5: Constant Channel Residual Wide Network with
State path (CCRN-State) architecture for progressive speech en-
hancement. L = 14,Cs = 512,C; =32« 1,1 € [1,L]

In this architecture, the channels from both paths are combined at the
input of each block. Drawing inspiration from Wide Residual Net-
works (Zagoruyko & Komodakis, 2016), we increase the number of
channels in the first convolution of each block. Then, to separate the
residual and state paths, we employ two convolutional layers at the
output of each block. One layer reduces the number of channels back
to the dimension of the residual connection, maintaining the original
behavior of the architecture. The other layer extends the state path for
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use in the subsequent block.

Despite these modifications, as we can see in Figures 5.6 and 5.7 quali-
tative results once again reveal a spectrum with disorganized frequency
channels, reflecting a pattern similar to that observed in the previous
architecture.

5.2.3 Progressive Supervision

To ensure each network step accurately reconstructs the signal, we in-
corporate a Mean Square Error (MSE) cost term at every block output.
This approach, inspired by similar strategies in classification tasks (Lee
et al., 2015), adapts well to our regression task. The idea of progres-
sive fitting and additive reconstruction can also be found in modern
boosted decision tree algorithms (Chen & Guestrin, 2016).

In equation (5.2), we augment the training cost by adding the MSE
between the clean reference and each block output Xg; foralll € [1,L].
This addition to the cost function is controlled by a weighting factor «.
In our experiments, we determined a = 0.1 based on development
trials. We refer to this method as Progressive Supervision, as it ensures
the network progressively refines the signal at each stage.

L

Jps(Y, Xsp) = J(Y, XsL) + f’% Y J(Y, Xs,) (5.2)
=1

Figures 5.8 and 5.9 displays two spectrogram examples demonstrating
the evolutionary enhancement pattern achieved through this method.

The initial blocks focus on more noticeably distorted parts of the spec-
trum, such as reverberation trails. This suggests the network learns to
distinguish between distorted and normal speech patterns. Notably,
the network prioritizes the valleys of the spectrum, gradually elimi-
nating finer distortions.

The process gradually reduces the reverberation effects, making the
sound clearer and smoother. This helps avoid sharp changes in the
sound that might cause unwanted noises, like static. By looking at the
differences between the input and the output in each block in Figures
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5.8 and 5.9, we can see that each block makes specific changes to im-
prove the speech quality progressively. However, too much smoothing
can make the sound feel unnatural.

The visual interpretation of the enhancement process provides insight
but does not fully confirm the impact on SE performance. The subse-
quent sections will evaluate the model’s accuracy objectively.

5.3 Experimental setup

Training input examples were dynamically generated by distorting con-
tiguous random sequences of 200 samples from the Timit (Garofolo et
al., 1993), Librispeech (Panayotov et al., 2015), and Tedlium (Rousseau
et al., 2014) databases. The network was trained using the AdamW
algorithm (Kingma & Ba, 2015; Loshchilov & Hutter, 2017).

Approaches were evaluated using the official Development and Eval-
uation sets of the REVERB Challenge (Kinoshita et al., 2013). This
dataset includes simulated speech created by convolving the WSJCAMO
Corpus (Robinson et al., 1995) with three different measured Room Im-
pulse Responses (RIR) (RTgo = 0.25,0.5,0.75) at two speaker-microphone
distances: near (0.5m) and far (2m). Stationary noise recordings from
the same rooms were added to achieve a Signal-to-Noise Ratio (SNR)
of 20 dB. Additionally, the dataset contains real recordings from a re-
verberant meeting room (RTgy = 0.7s) at two speaker-microphone dis-
tances: near (1m) and far (2.5m), taken from the MC-WSJ-AV corpus
(Lincoln et al., 2005). Real speech samples from VoiceHome v0.2 (Bertin
et al., 2016) and v1.0 (Bertin et al., 2019) were also utilized. Voice-
Home samples were recorded in a domestic environment from three
real homes, incorporating typical household background noises such
as dishwashers, vacuum cleaners, and televisions.

Performance was compared with the state-of-the-art dereverberation
method known as Weighted Prediction Error (WPE) (Nakatani et al.,
2010), which is effective in reducing reverberation and enhancing speech
quality. The version of WPE employed is the more recent DNN-based
(Drude et al., 2018) which utilizes an LSTM architecture (Kinoshita et
al., 2017).
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To assess the enhancement quality, distortion reduction was measured
using the Log-likelihood ratio (LLR) (Loizou, 2011), calculated over the
active speech segments. Lower LLR values indicate reduced spectral
distortion and thus better speech quality. Conversely, the reverbera-
tion level of the signal was evaluated using the Speech-to-Reverberation
Modulation Energy Ratio (SRMR) (Falk et al., 2010a), where higher val-
ues suggest improved speech clarity.

5.4 Results and Discussion

5.4.1 Comparative Analysis of Speech Quality Enhancement
Methods

Table 5.1 shows how well different methods improved speech quality
by reducing distortion. The first row compares the original reverber-
ant speech with the outcomes after applying WPE or our CCRN-based
techniques.

Although all the methods discussed in this chapter improved the clar-
ity of distorted speech, our CCRN-based architectures performed bet-
ter than WPE in reducing distortion. Notably, the CCRN + Progressive
Supervision approach achieved the best results, even though the CCRN-
State architectures had more flexibility.

TABLE 5.1: LLR distance in simulated reverberated speech sam-
ples from REVERB Dev & Eval datasets.

Methods REV-Dev | REV-Eval
Unprocessed 0.63 0.64
WPE (Drude et al., 2018) 0.60 0.60
CCRN 0.52 0.53
+Prog Sup 0.49 0.49
CCRN-State 0.51 0.53
+Prog Sup 0.53 0.54
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5.4.2 Speech Dereverberation Across Real and Simulated En-
vironments

Table 5.2 presents the average Speech-to-Reverberation Modulation
Energy Ratio (SRMR) scores for both simulated and real speech sam-
ples. The first row shows the scores for speech that has not been pro-
cessed.

The best results across all tested datasets came from using CCRN +
Progressive Supervision. This top performance is consistent with ear-
lier findings using the LLR metric. Such consistency across different
datasets demonstrates the robustness of this method—it works well
across various types of speech and noise, not just specific ones.

This method also shows promising results in real environments, not
just with simulated data. This suggests it could be effective in practical,
everyday situations.

Despite being trained only with artificial reverberation, all CCRN mod-
els performed well with real-world reverberated speech, indicating
they can handle actual reverberation effectively.

TABLE 5.2: Speech quality through SRMR results for real re-
verberated speech samples.

Methods REV-Dev | REV-Eval | VH-v0.2 | VH-v1.0
Unprocessed 3.79 3.18 3.19 4.51
WPE (Drude et al., 2018) 4.17 3.48 3.28 4.96
CCRN 4.70 4.11 5.14 5.98
+Prog Sup 5.01 4.44 6.13 7.01
CCRN-State 4.65 3.87 5.09 6.43
+Prog Sup 4.88 4.20 5.35 0.62

Reverberation level, Room sizes, and Near & Far field

Figure 5.10a displays how the Speech-to-Reverberation Modulation
Energy Ratio (SRMR) scores change as the reverberation level increases
in different room sizes, each with specific reverberation times (RTg(s)).

All methods based on CCRN perform better than the WPE baseline.
Particularly, the CCRN + Progressive Supervision method delivers the
best speech quality under all tested conditions.
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FIGURE 5.10: Speech quality through SRMR measure in
simulated reverberated speech samples from REVERB Dev
& Eval datasets.

This trend is consistent in both "Far" (250 meters) and "Near" (50 me-
ters) conditions, as shown in Figure 5.10b. Notably, CCRN + Progressive
Supervision improves the results, especially in far-field conditions.

The Progressive Supervision technique significantly enhances the net-
work’s performance, moving beyond mere frequency adjustments. It
helps to fine-tune the network’s parameters and progressively shapes
the spectrum towards an improved final speech output.

5.4.3 Progressive Supervision in Speech Enhancement Archi-
tectures

The enhancement processes in both the CCRN and CCRN-State archi-
tectures produce complex spectral outputs that do not clearly reveal
the internal opperation of the networks. It is possible that these repre-
sentations are simply encodings of the input.

With the introduction of Progressive Supervision, the networks begin
to demonstrate how the signal improves step-by-step throughout the
processing blocks. This cost function also helps regulate the network
by discouraging the network from storing auxiliary information differ-
ent from the spectrum in the residual path, leaving the residual blocks
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the task of reconstructing the objective spectrum from the signal at the
current stage.

The enhancing patterns at each stage can be viewed as subtracting
unwanted components from the spectral power of the signal. Each
Residual Block (RB) calculates a portion of this power to be subtracted
or added, and through the residual connections, these corrections are
incrementally applied to the distorted signal being the process fully
traceable.

In this framework, the CCRN + Progressive Supervision approach shares
similarities with the WPE method, where both aim to subtract esti-
mated spectral power. However, CCRN + Progressive Supervision dif-
fers as it performs multiple subtractions, corresponding to the number
of blocks in the architecture, using convolutional layers in each RB,
whereas WPE utilizes an LSTM for its calculations.

An added benefit of CCRN + Progressive Supervision is the interpretabil-
ity it provides during training and inference operations. We can moni-
tor the reconstruction error at each block, which allows for the efficient
training of larger networks. By understanding which blocks contribute
to significant improvements, we can optimize the network to operate
just with the essential RBs, enhancing efficiency especially when pro-
cessing a clean signal since we could derive from this architecture net-
works were the number of blocks to process was variable depending
the quality of the signal.

5.5 Conclusions

This chapter introduced a deep learning approach for enhancing speech,
utilizing residual networks. Through a detailed examination of how
the network modifies the log magnitude spectrum step by step, we
were able to design an improved architecture aimed specifically at en-
hancing speech clarity.

The use of "Progressive Supervision" effectively guided the network
towards more accurate enhancements by focusing on incremental changes
that can be made at each stage to decrease the loss function, allow-
ing the interpretability of the intermediate results in the process. Our
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approach has advanced beyond existing methods, finding a good bal-
ance between reducing reverberation and minimizing changes to the
sound’s natural qualities as shown in the objective metrics evaluated.

The insights gained from a detailed analysis of the network’s internal
processes proved invaluable. They helped us develop more effective
methods for improving speech quality.

The next chapter, titled "Progressive Loss for Dereverberation and Noise
Reduction,"” will expand on the concept of progressive loss. It will ex-
plore how to adapt this innovative supervision technique also to re-
duce noise, aiming to refine our models for handling more complex
sound environments. This next step will build directly on the founda-
tions laid in this chapter, using the robust framework of residual net-
works and the benefit of traceability and interpretability of the model.
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Chapter 6

Progressive Loss Strategies
for Enhanced Speech

6.1 Introduction

Most Deep Neural Network Speech Enhancement (DNN-SE) methods
typically operate as a black-box taking a noisy signal and producing
an enhanced one. This process is dificult to interprete and organize
as classical algorithmic steps. However, speech enhancement can be
thought of as a gradual process. Initially, the system performs raw
cleaning, then focuses on finer details. This raises a question: Is grad-
ual cleaning useful for better enhancement?

Recently, researchers explored this gradual approach through Progres-
sive Speech Enhancement (PSE) (Gao et al., 2018, 2016; Llombart et al.,
2019a). PSE breaks down the learning process into multiple stages, op-
timizing the target progressively. Each stage’s subproblem helps im-
prove the next stage’s learning. Previous work shows that PSE often
yields better results compared to traditional DNN-SE methods.

In (Gao et al., 2018, 2016), the focus was on improving the Signal-to-
Noise Ratio (SNR) in steps. First, a Feed-Forward Deep Neural Net-
work (FF-DNN) used a regression scheme to learn an Ideal Binary
Mask, enhancing SNR in 10dB increments (Gao et al., 2016). Later, this
approach was extended using LSTM architectures (Gao et al., 2018),
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which initially showed performance degradation but eventually im-
proved by incorporating knowledge from previous steps. In (Llom-
bart et al., 2019a), a Wide Residual Network (WRN) was used for step-
by-step enhancement, providing insights that helped modify the net-
work architecture for better results. This design calculates the Mean
Square Error (MSE) of the Log-Spectral Amplitude (LSA) between the
enhanced signal and the reference at each stage, helping to avoid van-
ishing gradients and enabling interpretability of the process.

Previous results indicate that PSE can improve enhancement perfor-
mance. This study extends PSE by focusing on its regularization effect
when training DNN-SE models. We compare PSE applied to two ar-
chitectures: Convolutional Neural Network (CNN) and Residual Neu-
ral Network (ResNet). CNNs are common in speech technologies but
suffer from vanishing gradients in deeper structures. ResNets, an evo-
lution of CNNS5s, use residual connections to mitigate this problem. We
also compare two criteria for progressive loss function optimization:
Weighted Progressive (WP) (Llombart et al., 2019a) and a new Uniform
Progressive (UP) criterion. The UP criterion treats all blocks” recon-
struction errors equally in the final optimization. We evaluate these
conditions with simulated and real samples for dereverberation and
denoising using the REVERB and VoiceHome corpora.

6.2 Foundational Concepts and Evolution

This work builds on the use of CNN architectures and their evolution
into ResNet, as presented in Chapter 5. To adapt these architectures
to the progressive paradigm, it is necessary to add additional con-
straints and modify the loss function. In Chapter 5, we introduced a
progressive architecture based on ResNet to understand the enhance-
ment process step by step, employing a visualization probe at each
network block to visualize the enhanced signal reconstruction at each
stage. The following subsections provide an overview of the architec-
ture design and the modified loss function, which form the foundation
of this work.
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6.2.1 Architecture

CNN architectures can exploit local patterns in the spectrum from both
frequency and temporal domains (Fu et al., 2016; Park & Lee, 2017).
Noise and reverberation affect the signal’s spectral shape over specific
time-frequency areas. The natural structure of speech or distortion pat-
terns can show correlation in consecutive time-frequency bins. CNN-
based architectures handle this well, making them suitable for speech
enhancement. CNNs can also combine with recurrent blocks to model
dynamic correlations among frames (Zhao et al., 2018). Figure 6.1a
shows a typical CNN structure with different configurations for con-
volutional layers, batch normalization, and non-linearities.

Adding residual connections enhances the regularization potential of
CNNis (Chen et al., 2017). This architecture, known as Residual Neural
Network (ResNet), uses shortcut connections between layers. These
connections enable deeper and more complex networks, leading to
fast convergence and minimal gradient vanishing. Deeper networks
offer more detailed representations of the signal’s structure, resulting
in more accurate speech enhancement being more expressive. Figure
6.1b illustrates the connection among convolutional blocks in a resid-
ual approach.

In (Llombart et al., 2019a), we added a constraint to ResNet, main-
taining a constant number of channels in all successive blocks. This
allowed output reconstruction and visualization at any internal block
improving model robustness. Additionally, this architecture uses a
weighted composition of reconstruction errors by block for loss func-
tion optimization. Each block performs partial reconstruction, with the
next block using a previously enhanced signal representation as input.

6.2.2 Optimization Criteria

In (Llombart et al., 2019a), we proposed a Speech Enhancement (SE)
system that reconstructs the Log-Spectral Amplitude (LSA) of a noisy
signal. The overlap-add mechanism uses the enhanced logarithmic
output spectrum and the phase of the original noisy speech to recon-
struct the audio signal. The loss function is the classical Mean Square
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Error (MSE) between the LSA of the reference and the LSA of the en-
hanced signal, as expressed in Chapter 3 with the equation 3.4. Here,
we express it in terms specific to this chapter:

1 D—1

MSE(]/n,T/ kn,r) = 5 Z (yd,n,"r - J’ed,n,"r)z (6.1)
d=0

In this equation, D is the signal input dimension. y,, . and %;, . are
the frequency bins of the logarithmic spectrum for tréihing example n
and frame 7. y, _ is the target vector of the clean LSA reference, and
Xy,¢ is the reconstructed vector of the enhanced signal.

From our experience in previous works (Llombart et al., 2018; Llom-
bart et al., 2019a, 2019b), we learned that using a sequence-based loss
function instead of a frame-by-frame loss improves performance. The
base loss function is the MSE of the LSA over all examples and the
sequence length of an update step as used in Chapters 4 and 5 in equa-
tions 4.1 and 5.1. To simplify training, all examples have the same
number of frames. This is achieved by randomly cropping the input
signals, ensuring that any example selected for training is a random
segment of the input.

Finally, (Llombart et al., 2019a) implemented the progressive paradigm
by modifying the objective loss function. The MSE between the noisy
input LSA and the enhanced LSA is calculated at different network
levels or blocks. This progressive loss function is a specific case of the
proposal in this thesis. A preliminary experimental study has been
presented in the previous chapter which will be expanded with more
detail in this chapter.

6.3 Progressive Neural Networks

This chapter explores the potential of the Progressive Speech Enhance-
ment (PSE) paradigm. Previous research has shown that progressive
architecture designs can improve SE performance. Building on these
findings, we hypothesize that the progressive paradigm not only en-
hances SE performance but also aids in the regularization of neural



86 Chapter 6. Progressive Loss Strategies for Enhanced Speech

network training. In the following sections, we describe the PSE archi-
tecture proposed in this thesis, which is based on the work presented
in the previous chapter (Llombart et al., 2019a). Additionally, the study
presented in this chapter introduces several novel contributions specif-
ically designed to advance this research.

6.3.1 Architecture

This study explores two DNN architectures: Progressive CNN (P-CNN)
and Progressive ResNet (P-ResNet). Building on our previous work

(Llombart et al., 2019a) using the ResNet topology, we extend the study

to include the CNN topology for comparative purposes and to gener-

alize the progressive paradigm to different architectures.

Figure 6.1 shows the structures of the two architectures under study.
The P-CNN and P-ResNet architectures utilize the same convolutional
block to ensure comparability. This block starts with a batch normal-
ization stage, followed by a Parametric Rectified Linear Unit (PReLU)
non-linearity. Next, a 1D-convolutional layer is applied, maintain-
ing the same number of channels in the output as in the input. This
structure is repeated to complete the block, ensuring consistency in
the number of channels throughout the architecture. This consistency
allows for a reconstructed version of the input using the proposed pro-
gressive criteria.

Figure 6.2a depicts the front-end of both architectures. The input sig-
nal, x(t), is windowed, and the logarithm of the absolute value of the
Short-Term Fourier Transform (STFT) of the input is computed, result-
ing in the LSA, X. Additionally, Mel-Scaled Filter-bank and Mel Fre-
quency Cepstral Coefficients (MFCC) with different windowing pro-
cesses are obtained to provide extra information to the network, Xc.

Maintaining the same number of channels throughout all convolu-
tional blocks ensures that both architectures can produce a consistent
enhancement output. This design provides a basis for comparing P-
CNN and P-ResNet effectively, ensuring that any differences in per-
formance can be attributed to the architectural variations rather than
inconsistencies in the convolutional blocks.
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In our previous work (Llombart et al., 2019a), we discovered that main-
taining the same number of channels as the input signal and achieving
full reconstruction through the loss function allows us to track the en-
hancement progress through the architecture stages during training.
After each convolutional block, we minimize the MSE between the
clean reference Y and the block output X, (Fig. 6.3). The general def-
inition of the progressive loss function as a weighted sum over the
reconstruction loss of each convolutional block is given by:

B
Ip(Y,X) =) Wy J(Y, X,). (6.2)
b=1

By adjusting the weights in Equation (6.2), we can define different pro-
gressive loss function criteria. In (Llombart et al., 2019a), we proposed
the Weighted Progressive (WP) loss function. Based on the general
definition in Equation (6.2), we describe the WP criterion and intro-
duce the Uniform Progressive (UP) criterion. In the following sections,
both criteria are experimentally evaluated with P-CNN and P-ResNet
architectures.

6.3.3 Weighted Progressive (WP)

The WP loss function primarily focuses on the final cost, typical in ap-
proximation tasks. The cost of all the architecture blocks is uniformly
distributed and added in a weighted sum:

B
Jwe (Y, Xn) = J(¥, Kn) + a5 Y J(V, %) ©3)
b=1

Here, B is the number of blocks in the architecture. Equation (6.3) is a
specific case of the general progressive loss function in Equation (6.2),
where W, = a/Bforb = 1,..,B—1and W = 1+ «/B. This loss
function implements progressive processing along blocks, where every
intermediate block reconstructs the enhanced signal. This design pro-
motes a progressive enhancement process, transforming from initial to
detailed cleaning. In addition it has the benefit of helping the gradient



6.4. Experimental setup 89

propagation in deeper architectures and complements the traditional
gradient back-propagation across the entire architecture.

6.3.4 Uniform Progressive (UP)

The UP loss function proposes a uniform distribution of the block losses
across the architecture:

1 B
Jur(Y, X3) E Z (6.4)

This is a special case of Equation (6.2) where W, = a/B forb =1, ..., B.
With this strategy, all outputs have the same impact on the reconstruc-
tion. Each block equally contributes to the final loss, ensuring that the
entire architecture makes a uniform effort in signal reconstruction.

6.4 Experimental setup

This section presents the experimental procedure and data used in this
study. We employ the REVERB and VoiceHome datasets for testing.
Our evaluation focuses on dereverberation and noise reduction in both
simulated and real samples through various experiments.

6.4.1 Training Data

For DNN training, we have used three different public datasets: Tedlium
(Rousseau et al., 2014) from Ted talks; Librispeech (Panayotov et al.,
2015), audio-books; and Timit (Garofolo et al., 1993), a phonetically
ballanced distributed read speech. These datasets are fully employed,
without any partition. See Table 6.1 for the characteristics of the datasets.

TABLE 6.1: Training Datasets Description

Dataset Timit | Librispeech TedLium
Files 6299 292329 56704
Speakers 630 2484 698
Speech type Read speech Conference
Interface Close Microphone | Auditorium microphone
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6.4.2 Data augmentation: Reverberated and Noisy training
data

Data augmentation using reverberation and additive noise was ap-
plied to the training set. For each random training example, we per-
formed three transformations:

1. Impulse Responses: We simulated random rooms and source-
receiver distances using Room Impulse Responses (RIR) gener-
ated with the Python package rir-generator’ (Allen & Berkley,
1979b). Table 6.2 details the characteristics of the RIRs used.
During the data augmentation loop, we simulated three types of
rooms: small, medium, and large, selected with probabilities of
0.5, 0.3, and 0.2, respectively with random sizes and source and
microphone position according to the table ranges.

2. Additive Noise: Noise was added with a Signal-to-Noise Ratio
(SNR) uniformly sampled from SNR ~ U(5,25) dB, using the
Musan dataset (Snyder et al., 2015). We included music and noise
files but excluded speech files. Table 6.3 describes the noise char-
acteristics. Among the noise files, crowd noise is included, but
no intelligible speech is present.

3. Time Scaling: We randomly selected a scale between 0.8 and 1.2.
Some signals were unscaled (original speed), while others were
either slowed down or sped up.

TABLE 6.2: RIR for training data augmentation.

Room Impulse Responses
Small Medium Large
Probability 0.5 0.3 0.2
x~U(1,6) | x~U6,10) | x ~ U(10,20)
Size (x,y,z)[m] y~U(,e6) | y~1Uu(610) | y~ U(10,20)
z~U(2,35) | z~U(3,5) z~U(4,6)
RTgol[s] RTg ~ U(0.1,0.25)
Distance[m] 0.5,1.0,15,2.0,2.5
Microphone type bidirectional, hypercardiodid, cardioid
subcardoid, omnidirectional

Thttps:/ /github.com /Marvin182 /rir-generator
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TABLE 6.3: Noise for training data augmentation.

Noise
Music 659 files
Noise 929 files
SNR [dB] || SNR ~ U(5,25)

6.4.3 Evaluation Data

For evaluation purposes, we use two databases: REVERB (Kinoshita
et al., 2013) and VoiceHome (v0.2 (Bertin et al., 2016) and v1.0 (Bertin
et al.,, 2019)). REVERB consists of a development set (REVERB-Dev)
for intermediate evaluations and an evaluation set (REVERB-Eval) for
confirming results and evaluating the system. VoiceHome evaluates
the system in a realistic domestic environment with noise and rever-
beration. These databases allow us to assess two conditions:

Simulated Data The REVERB dataset provides simulated conditions
with speech samples from the WSJCAMO corpus (Robinson et al., 1995).
It includes three types of Room Impulse Responses (RIRs): small, medium,
and large rooms with reverberation times of RTg = 0.25,0.5, and
0.7s, respectively. Each room has two source-microphone distances:
near (0.5m) and far (2m). Additionally, stationary noise at SNR =
20dB was added from the same rooms. While the dataset provides
eight channels, we only use the first channel for this study. We further
augmented the signals with five types of noise at varying SNR levels
(0,5,10,15,20, and 25dB), including babble noise, café environment
noise, music, street traffic noise, and noise from inside a moving tram.

Real Data We use two evaluation sets with real conditions: the real
part of REVERB and the VoiceHome datasets (v0.2 and v1.0). The real
part of REVERB was recorded in a meeting room with RTgy = 0.7s at
two distances: near (1m) and far (2.5m), sourced from the MC-WSJ-AV
corpus (Lincoln et al., 2005). The VoiceHome dataset reflects a realistic
domestic environment with everyday noises such as a vacuum cleaner,
dishwashing, and TV sounds.
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6.4.4 Speech Quality Measures

To evaluate the denoising and dereverberation performance of the Pro-
gressive Speech Enhancement (PSE) method, we use several key met-
rics. As discussed in Chapter 3, we measure the segmental Signal-to-
Noise Ratio (SNR) (Kim & Stern, 2008) and the Speech-to-Reverberation
Modulation Energy Ratio (SRMR) (Falk et al., 2010b; Santos et al., 2014).
Higher values in these metrics indicate better speech quality, as they
reflect reduced noise and reverberation.

However, speech enhancement can introduce distortion to the output
speech. To assess this, we measure the distortion between the clean ref-
erence and the enhanced speech using the Log-Likelihood Ratio (LLR)
(Loizou, 2011). Lower LLR values indicate less distortion and thus bet-
ter speech quality. Balancing noise/reverberation reduction and min-
imizing distortion is crucial for a comprehensive assessment of the SE
method’s performance. The optimal enhancement system improves
SNR or SRMR while keeping LLR as low as possible.

Other commonly used measures in speech enhancement include the
Perceptual Evaluation of Speech Quality (PESQ), Perceptual Objective
Listening Quality Analysis (POLQA), and Short Term Objective Intel-
ligibility (STOI). These metrics aim to estimate speech quality percep-
tually. However, they can be complex, difficult to use, and sometimes
not publicly available.

Recent studies suggest a high correlation between perceptual speech
quality and commonly used measures such as SNR, SRMR, and LLR
(Gelderblom et al., 2018; Santos & Falk, 2019). These simpler mea-
sures often correlate well with more complicated metrics like PESQ
and STOI. Therefore, in this work, we focus on SRMR, SNR, and LLR
to provide clear and reliable results.

6.4.5 Neural Network Configuration

The input for the CNN, ResNet, P-CNN, and P-ResNet architectures is
the logarithm of the magnitude of the 512-point Short-Time Fourier
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Transform (STFT) of the corrupted signal sampled at 16 kHz, com-
puted every 10 ms using a 25 ms sliding Hamming window. Addi-
tionally, we concatenate the Mel-Scaled Filter-bank and the Mel Fre-
quency Cepstral Coefficients (MFCC) as auxiliary inputs, providing
different frequency and temporal resolution views with 32, 50, and 100
frequency bins, respectively. These are computed every 10 ms with
sliding Hamming windows of 25 ms, 50 ms, and 75 ms.

For all experiments, we use the AdamW optimizer with 0.001 learning
rate and 5¢°. Each layer contains 512 neurons, adhering to the prin-
ciple of maintaining a consistent number of channels throughout the
architecture. The training process runs for 900 epochs, each consisting
of 10,000 input files randomly selected from the training set, ensuring
each file is used once before repeating.

For the Jyp loss function, we set « = 0.1, as in (Llombart et al., 2019a),
which provided the best SRMR value on the REVERB-Dev dataset.

6.5 Preliminary gradient study

This section presents a preliminary study on gradient behavior to ex-
plore the hypothesis that the progressive paradigm aids in training
regularization by addressing vanishing gradient problems. When gra-
dients back-propagate through many layers, they often lose energy,
reducing their ability to adjust the weights of layers close to the input.
The proposed PSE method injects a fresh and stronger gradient after
each block, helping to move the weights of each layer effectively.

We designed an experiment to observe the gradient energy that mod-
ifies the weights of the first convolutional block during the first 100
optimization updates. This procedure was repeated 100 times with
different weight initializations to observe the variance among differ-
ent starts and the variation of gradient energy during optimization.

Figure 6.4 shows the results for P-CNN and P-ResNet architectures,
comparing non-progressive baselines with each proposed progressive
procedure. There is a noticeable difference in gradient behavior be-
tween the two structures. In P-CNN, there is a significant difference
in gradient energy among the compared systems. The lowest energy
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corresponds to the baseline architecture without any progressive as-
sumption. In contrast, the progressive mechanisms show a significant
increase in gradient energy. These boosted gradients are more effec-
tive adjusting the weights, allowing better optimization of the entire
architecture.

In contrast, P-ResNet shows no relevant difference between the gradi-
ent energy of the progressive techniques and the non-progressive base-
line at the first convolutional block. P-ResNet is designed to handle
the vanishing gradient problem, and thanks to residual connections,
the gradients can propagate to the first layers without vanishing. In
this case, injecting new gradients does not significantly enhance the
existing gradients. However, the new gradients are more accurate be-
cause they come directly from the target evaluation at the output of
each architecture block.
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6.6 Results and discussion

6.6.1 Architecture depth analysis

TABLE 6.4: Speech quality in terms of SRMR for sim-

ulated and real reverberated speech samples through

architecture depth for REVERB-Dev dataset. The last

rows represent the mean and standard deviation along
the experiments presented in each column.

Archictecture Blocks Simulated | Real || AVG+STD
Depht

8 7.33 6.05 6.69+0.64
16 7.60 5.98 6.7940.81
CNN 24 8.87 4.76 6.81+2.05
32 7.01 3.35 5.18+1.83
8 8.23 6.82 7.52+0.70
ResNet 16 8.27 5.81 7.04+1.23
24 8.14 5.77 6.97+1.16
32 8.56 6.33 7.44+1.11
8 6.49 4.90 5.6940.79
P-CNN 16 8.96 3.74 6.35+2.61
with WP 24 6.18 2.07 4.1242.05
32 7.65 2.33 4.99+42.66
8 7.53 6.32 6.924-0.60
P-CNN 16 7.70 7.26 7.48+0.22
with UP 24 8.09 6.90 7.4940.59
32 7.41 6.34 6.8740.53
8 8.31 7.06 7.6840.62
P-ResNet 16 8.41 7.14 7.77+0.63
with WP 24 8.03 6.53 7.28+0.75
32 7.98 5.97 6.97+1.00
8 7.91 6.91 7.41+0.50
P-ResNet 16 8.05 6.85 7.4540.60
with UP 24 8.02 6.91 7.46+0.55
32 7.78 6.62 7.2040.58

Progressive SE methods use multiple steps to enhance the signal, re-
quiring us to determine the optimal number of blocks for the architec-
ture. Table 6.4 shows the architecture depth study in terms of SRMR
over the REVERB-Dev dataset, presenting results for both simulated
and real conditions, as well as their average.
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Results indicate that the configuration with 16 blocks achieves the best
performance across all evaluated conditions. Progressive systems demon-
strate high SRMR for both simulated and real conditions, showcasing
the consistency and better generalization capability of the progressive
strategy in DNN training.

For the CNN topology, the reference system’s performance in real con-
ditions degrades quickly with increased architecture depth. However,
the P-CNN with the Uniform Progressive (UP) criterion performs bet-
ter than the CNN reference system, indicating that P-CNN with UP
does not degrade as rapidly as the reference system as depth increases.

For the ResNet topology, residual connections effectively support larger
block configurations. For instance, the ResNet reference system achieves
the best performance in simulated conditions with a deeper architec-
ture (32 blocks). However, in real conditions, the ResNet reference
system performs best with 8 blocks. Notably, the P-ResNet with the
Weighted Progressive (WP) criterion surpasses the reference system’s
best result in real conditions with 16 blocks, which is also the optimal
configuration for P-ResNet in simulated conditions.

6.6.2 Progressive enhancement along architecture blocks

In this section, we analyze the behavior of the Progressive Speech En-
hancement (PSE) method on speech data affected by different reverber-
ation levels. We use signals from large and small rooms in the simu-
lated condition of REVERB-Dev, which provides samples with varying
room sizes and source-microphone distances.

Figure 6.5 shows the evolution of the Mean Square Error (MSE) be-
tween the clean reference and the reconstruction at each block output
for P-CNN and P-ResNet with Weighted Progressive (WP) and Uni-
form Progressive (UP) supervisions.

Firstly, we observe that the reconstruction error decreases with the
proximity between the source and the microphone, resulting in less
error for near samples compared to far samples. In near conditions,
the direct path speech energy is higher than the reverberant path en-
ergy, reducing the impact of reverberation and thereby lowering the
error during evaluation.
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Regarding room size, the far distance in a large room yields the high-
est errors for all evaluated cases, which is expected due to the higher
reverberation level in this condition. However, in small rooms, there is
no significant difference between far and near conditions because the
reverberation level is generally lower.

For progressive supervision, P-CNN with WP shows a noticeable drop
in error at the last block. In P-ResNet with WD, there is also a drop
at the last block, but the error reduction is more evenly distributed
across all blocks. WP focuses significant reconstruction effort on the
final block. Conversely, UP distributes the reconstruction effort more
gradually through the blocks. In P-CNN with UP, the error remains
relatively stable across all blocks. In the small room condition, the er-
ror initially increases at the first block before stabilizing, suggesting
that improving SE performance might benefit from early layer recon-
struction. In the large room condition, the error decreases consistently
across the blocks. P-ResNet with UP shows a constant decrease in error
through the blocks as expected.

Results indicate that progressive supervision benefits the SE system,
although the effectiveness of a particular strategy may vary with the
architecture. Overall, we conclude that PSE contributes positively to
neural network regularization.

6.6.3 Dereverberation

To assess the impact of the PSE proposal in dereverberation tasks, we
use the SRMR quality measure and LLR to evaluate the distortion in-
troduced by the method (the latter only for simulated conditions). Ex-
periments are conducted on REVERB-Eval and VoiceHome v0.2 and
v1.0 datasets, which also include some noisy conditions. For com-
parison, we use a DNN variation of the state-of-the-art dereverbera-
tion method, Weighted Prediction Error (WPE) (Nakatani et al., 2010),
enhanced with Long Short-Term Memory (LSTM) cells (Drude et al.,
2018).

Table ?? presents the SRMR and LLR results for both reference and
progressive systems. PSE methods show the best results. In simu-
lated conditions, P-CNN with WP achieves the highest SRMR but also
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introduces more distortion. Conversely, P-ResNet with WP achieves
slightly lower SRMR but with significantly less distortion, offering a
better trade-off for speech quality. We conclude that while PSE intro-
duces some additional distortion, it is not significant compared to the
improvement in SRMR.

TABLE 6.5: Speech quality in terms of SRMR and LLR

for simulated and real reverberated speech. The last

row represents the mean and standard deviation along

the experiments presented in each column. Dark gray

corresponds with the best dataset value, light gray
shows the second best value.

REVERB | REVERB | Voice Voice
AVG
Eval Eval Home | Home SRMR
Simulated Real V0.2 V1.0
Unproc. SRMR 6.34 3.44 3.23 4.04 | 4.26+1.24
LLR - - - - -
WPE SRMR 6.64 3.74 3.38 447 | 4.56+1.26
LLR 0.57 - - - -
SRMR 7.37 5.86 5.80 5.89 | 6.2340.66
NN IR 0.49 ) ) - ]
ResNet SRMR 7.90 5.79 5.69 6.13 | 6.38+0.89
LLR 0.47 - - - -
P-CNN | SRMR 8.16 3.84 2.58 2.78 | 4.34+2.26
with WP LLR 0.79 - - - -
P-CNN | SRMR 7.46 7.23 5.49 5.81 6.504+0.86
with UP LLR 0.53 - - - -
P-ResNet | SRMR 8.08 7.00 7.32 7.31 7.43+0.40
with WP LLR 0.48 - - - -
P-ResNet | SRMR 7.84 6.83 5.72 6.27 | 6.66+0.78
with UP LLR 0.49 - - - -

In real conditions, the best result for the REVERB dataset is achieved
by P-CNN with UP, whereas for the VoiceHome dataset, the best re-
sult is obtained by P-ResNet with WP. P-ResNet with WP is the most
consistent across both datasets; although it is not the top performer for
REVERSB, it is a close second. P-CNN with UP shows high variability
between simulated and real conditions, possibly due to over-fitting to
simulated conditions.
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Table ?? also shows the average (AVG) and standard deviation (STD)

of the evaluated systems for each architecture. P-ResNet with WP
achieves the best result with the least variability across evaluation datasets.
This outcome demonstrates that P-ResNet with WP is the most regu-
larizing structure and the most general-purpose architecture for dere-
verberation tasks.

6.6.4 Noise reduction in reverberant environment

This section discusses the performance of the proposed systems on
noise reduction using the noisy simulated data on REVERB (see sec-
tion 6.4.3 ). The SNR measures the speech quality performance of SE
for denoising level, and LLR, for distortion level.
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FIGURE 6.6: ASNR = SNRp,; — SNR},, and LLR after
enhancement for both architectures in REVERB-Eval
with noise.

Figure 6.6 illustrates the SNR increase (ASNR) and Log-Likelihood Ra-
tio (LLR) after speech enhancement (y-axis) versus the initial SNR at
the input (x-axis). ASNR represents the improvement in the estimated
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TABLE 6.6: Summary of speech quality in terms of

ASNR and LLR for simulated reverberated and noisy

speech samples in REVERB-Eval. Mean through all

noise types and initial SNR levels conditions evalu-
ated.

Reference Systems Progressive Systems
CNN CNN ResNet | ResNet
CNN | ResNet | vith WP | with UP | with WP | with UP

A[ZI;]R 21.29 20.36 10.46 34.36 36.28 22.23

LLR 0.58 0.54 0.83 0.61 0.57 0.58

output SNR, calculated using the Wada method (Kim & Stern, 2008),
compared to the input SNR: ASNR = SNRo,+ — SNRyy,.

The results align with the dereverberation findings discussed in Sec-
tion 6.6.3. For the CNN topology, P-CNN with UP achieves the best
outcome, while for the ResNet topology, P-ResNet with WP delivers
the best performance.

During evaluation, we used input signals with an SNR of 0, which
were not included in the training process. Despite this, all systems
performed well in enhancing these signals. Additionally, as the input
SNR improves, the systems’ performance increases until the input is
so clean that further enhancement is minimal.

In terms of distortion, systems without progressive supervision exhibit
lower LLR values, although P-ResNet systems are close to them. In the
CNN architecture, UP does not significantly increase distortion com-
pared to its reference system. However, in the ResNet architecture, all
systems introduce similar levels of distortion, with the reference sys-
tem causing the least distortion at low input SNR levels.

Table 6.6 summarizes the noise reduction evaluation results, showing
the average ASNR and distortion for all noise types and initial SNRs
for each evaluated system (detailed results are available in Appendix
B). The best denoising system is P-ResNet with WP, followed by P-
CNN with UP. These systems significantly outperform their respective
reference architectures.
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Considering the best trade-off between SNR improvement and distor-
tion, the reference ResNet introduces the least distortion but performs
poorly in denoising. The second-best system in terms of distortion is
P-ResNet with WP, which also excels in denoising tasks. Therefore,
we conclude that the progressive strategy is effective for noise reduc-
tion, with P-ResNet with WP offering the best balance between SNR
improvement and minimal distortion.

6.7 Conclusions

This study investigated the Progressive Speech Enhancement (PSE)
method using both CNN and ResNet architectures. We explored two
criteria for progressive loss function optimization: the Weighted Pro-
gressive and the Uniform Progressive strategies, with the latter being a
novel proposal. The results demonstrated that progressive supervision
is valuable for regularization in both CNN and ResNet architectures.

The PSE method effectively achieves regularization in dereverbera-
tion and denoising tasks without significantly increasing distortion.
Among the architectures studied, P-ResNet with Weighted Progressive
showed the most consistent performance across various conditions,
providing a positive trade-off in terms of result quality. This archi-
tecture remained competitive in all experiments, making it a reliable
choice for speech enhancement tasks.

Overall, the architectures evaluated in this study, particularly P-ResNet
with Weighted Progressive, achieved excellent results in both derever-
beration and denoising, proving their suitability for speech enhance-
ment applications.
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Chapter 7

Conclusions

In this thesis, we aimed to improve speech enhancement using deep
neural networks, focusing on developing and evaluating new methods
that surpass existing techniques. The main contributions have been to
introduce the Wide Residual Network (WRN) architecture for speech
enhancement, enhance model interpretability, and explore progressive
loss strategies.

Our research demonstrated that the WRN architecture significantly
outperforms traditional methods in various noisy environments. Ad-
ditionally, visualization techniques provided valuable insights into neu-
ral network behavior, leading to the development of effective progres-
sive loss strategies that improve speech quality.

The findings contribute to the field by offering a robust architecture
for speech enhancement that balances performance and computational
complexity. Our interpretability enhancements help bridge the gap
between 'black box” models and user understanding, providing more
trust in neural network applications.

7.1 WRN-based Speech Enhancement

In Chapter 4, WRN-based Speech Enhancement introduced a novel ap-
proach to speech enhancement using a Wide Residual Network (WRN)
architecture. By leveraging the powerful representations provided by a
wide topology of Convolutional Neural Networks (CNNs) with resid-
ual connections, this method demonstrated significant improvements



104 Chapter 7. Conclusions

over existing state-of-the-art methods, particularly in handling far-field
reverberated speech. The following points summarize the key findings
and insights:

e Superior Performance: The WRN method significantly outper-
formed the state-of-the-art RNN-LSTM-based Weighted Predic-
tion Error (WPE) method, particularly in handling far-field rever-
berated speech across various room sizes. These promising re-
sults and methodological improvements provide a strong foun-
dation for further research, ensuring the ongoing relevance and
effectiveness of the WRN method in speech enhancement.

¢ Benefits of Residual Connections: The inclusion of residual con-
nections allowed the network to maintain linear signal pathways
while enhancing non-linear corrections, improving practical ap-
plication performance.

¢ Visualization for Enhanced Interpretability: Visualization tech-
niques in subsequent chapters help to understand the WRN model’s
enhancement process, addressing the "black box" nature of deep
learning and identifying key steps for optimization.

In conclusion, the WRN method presented in this chapter offers a ro-
bust and effective solution for speech enhancement, outperforming
existing methods in challenging conditions. The subsequent chapters
provide detailed analyses and methodological improvements that en-
hance both the performance and interpretability of the model. These
advancements ensure that the WRN method remains a solid founda-
tion for further research and development in the field of speech en-
hancement, culminating in the publication of these findings in:

¢ J. Llombart, D. Ribas, A. Miguel, L. Vicente, A. Ortega, and E.
Lleida, “Speech Enhancement with Wide Residual Networks
in Reverberant Environments” Proc. Interspeech 2019, 2019, pp.
1811-1815.
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7.2 Visualization Techniques in Speech Enhance-
ment

In Chapter 5, Visualization is focused on enhancing the interpretabil-
ity of speech enhancement through deep learning architectures. The
exploration of new architectures aimed to make the enhancement pro-
cess more transparent and understandable. By employing various vi-
sualization techniques, the chapter aimed to demystify the "black box"
nature of neural networks and improve the overall design and effec-
tiveness of speech enhancement solutions. Outlined below are the pri-
mary findings and insights:

e Proposed Architectures: The chapter introduced new architec-
tures, including the Constant Channel Residual Network (CCRN)
and the Constant Channel Residual Network with State Path (CCRN-
State), which improved speech enhancement performance and
interpretability. These architectures showed promising results in
enhancing speech quality and provided valuable insights into the
models” internal workings, suggesting a good trade-off between
performance and interpretability.

e Visualization Techniques: Visualization probes were employed
to monitor and understand the enhancement process at each net-
work block. This step-by-step supervision provided insights into
how different network components contribute to the overall en-
hancement.

e Progressive Supervision: The concept of progressive supervi-
sion was implemented to track the enhancement process incre-
mentally, which helped to identify critical stages that significantly
impact speech quality.

In conclusion, we successfully demonstrated that integrating visual-
ization techniques into deep learning architectures for speech enhance-
ment can significantly enhance the interpretability and performance of
the models. The insights gained from this study provide a solid foun-
dation for further research and development in creating more trans-
parent and effective speech enhancement solutions. The findings of
this chapter have been published in:
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¢ J. Llombart, D. Ribas, A. Miguel, L. Vicente, A. Ortega, and E.
Lleida, “Progressive Speech Enhancement with Residual Con-
nections” Proc. Interspeech 2019, 2019, pp. 3193-3197.

7.3 Progressive Loss Strategies in Speech Enhance-
ment

In Chapter 6, We explored progressive loss strategies for enhanced
speech using neural network architectures. The aim was to improve
speech enhancement by refining the training process and optimizing
performance through innovative loss strategies. The following key
points summarize the conclusions drawn:

e Progressive Loss Strategies: The implementation of progressive
loss strategies, including Weighted Progressive (WP) and Uni-
form Progressive (UP) methods, significantly improved the model’s
ability to enhance speech quality by systematically reducing noise
and reverberation throughout the network.

e Gradient Analysis: Preliminary gradient studies indicated that
progressive loss strategies help in stabilizing the training process
of deep architectures, leading to more consistent and robust per-
formance across different noise conditions and environments.

e Architecture Depth Analysis: Deeper neural network architec-
tures, when combined with progressive loss strategies, showed
enhanced performance in speech quality measures, indicating
the importance of depth in achieving superior results.

In conclusion, this highlighted the effectiveness of progressive loss
strategies in enhancing speech quality. These strategies provide a ro-
bust framework for further advancements in speech enhancement tech-
nology. The findings presented underscore the potential for progres-
sive loss strategies to set new benchmarks in the field, contributing
valuable insights for future research and practical implementations.
The results of this study have been published in:

¢ J. Llombart, D. Ribas, A. Miguel, L. Vicente, A. Ortega, and E.
Lleida, “Progressive loss functions for speech enhancement with
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deep neural networks” EURASIP Journal on Audio, Speech, and
Music Processing, vol. 2021, pp. 1-16, 2021.

7.4 Future Lines of Research

Building on the promising findings and insights from this thesis, sev-
eral future research directions can be pursued to further advance the
field of speech enhancement using deep neural networks. The follow-
ing points outline potential areas for future exploration and develop-
ment:

e Optimization of WRN Architectures: Further refinement and
optimization of Wide Residual Network (WRN) architectures could
lead to even greater performance improvements. This includes
exploring different configurations and hyperparameters to en-
hance their ability to handle various noisy environments more
effectively.

e Advanced Visualization Techniques: Expanding on the visual-
ization methods introduced in Chapter 5, future work could de-
velop more sophisticated tools to provide deeper insights into
the neural network’s enhancement processes. This could involve
real-time visualization techniques that allow for dynamic mon-
itoring and adjustment during the training phase, for example
learning the optimal number of denoising steps in the progres-
sive framework.

o Integrating Additional Deep Learning Models: Incorporating
other advanced deep learning models, such as transformers (Vaswani
et al., 2017), state-space models (Gu & Dao, 2023), new recurrent
models (Beck et al., 2024), self-supervised learning frameworks
(Chen et al., 2022) and Diffusion-based generative models (Ho
et al., 2020), could provide complementary strengths to WRN ar-
chitectures. This integration has the potential to further improve
speech enhancement, especially in more challenging acoustic en-
vironments, but some methods may generate new speech not
present in the source audio, so preventing this is one of the main
lines of investigation.
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Exploration of Progressive Loss Strategies: Continued research
on progressive loss strategies, as discussed in Chapter 6, can fo-
cus on refining these methods to achieve even better noise reduc-
tion and speech quality. Investigating different combinations of
progressive loss functions and their application to various neural
network architectures could yield valuable results.

Scalability and Real-Time Application: Future research should
address the scalability of the proposed methods for real-time ap-
plications. This includes optimizing computational efficiency to
ensure that advanced speech enhancement techniques can be de-
ployed effectively in real-world scenarios, such as mobile devices
and embedded systems.

Multimodal Speech Enhancement: Exploring the integration of
multimodal data (e.g., combining audio with visual cues) to en-
hance speech signals. This could be particularly useful in scenar-
ios where visual information is available, such as video calls or
augmented reality environments.

User-Centric Adaptation: Developing adaptive systems that can
tailor speech enhancement parameters or models based on indi-
vidual user preferences and specific use cases. This personaliza-
tion can significantly improve user experience and satisfaction.

By pursuing these future research directions, we can continue to build
on the foundational work presented in this thesis, driving further ad-
vancements in speech enhancement technology and its practical appli-
cations.
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Chapter 8

Conclusiones

En esta tesis, nos propusimos mejorar el realce del habla utilizando re-
des neuronales profundas, centrdndonos en el desarrollo y evaluacién
de nuevos métodos que superen las técnicas existentes. Las princi-
pales contribuciones han sido introducir la arquitectura de Wide Resid-
ual Network (WRN) para la mejora del habla, mejorar la interpretabili-
dad del modelo y explorar estrategias de coste progresivo.

Nuestra investigacion demostré que la arquitectura WRN supera sig-
nificativamente a los métodos tradicionales en diversos entornos rui-
dosos. Ademds, las técnicas de visualizacion proporcionaron valiosas
percepciones sobre el comportamiento de las redes neuronales, lo que
llev6 al desarrollo de estrategias de fucion de coste progresivo efecti-
vas que mejoran la calidad del habla.

Los hallazgos contribuyen al campo al ofrecer una arquitectura robusta
para la mejora del habla que equilibra el rendimiento y la complejidad
computacional. Nuestros avances en interpretabilidad ayudan a cer-
rar la brecha entre los modelos de “caja negra” y la comprensién del
usuario, proporcionando mds confianza en las aplicaciones de redes
neuronales.

8.1 Mejora del Habla Basada en WRN

En el Capitulo 4, la Mejora del Habla Basada en WRN introdujo un en-
foque novedoso para la mejora del habla utilizando una arquitectura
de Wide Residual Network (WRN). Al aprovechar las representaciones
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proporcionadas por una topologia Wide de Convolutional Neural Net-
works (CNNs) con conexiones residuales, este método demostré mejo-
ras significativas sobre los métodos actuales mas avanzados, particu-
larmente en el manejo del habla con reverberacién de campo lejano.
Los siguientes puntos resumen los hallazgos y perspectivas clave:

e Rendimiento Superior: El método WRN super6 significativa-
mente al método RNN-LSTM-based Weighted Prediction Error (WPE),
particularmente en el manejo del habla con reverberacién de campo
lejano en varias tamafios de habitaciones. Estos resultados prom-
etedores y las mejoras metodolégicas proporcionan una base sél-
ida para futuras investigaciones, asegurando la relevancia con-
tinua y la eficacia del método WRN en la mejora del habla.

¢ Beneficios de las Conexiones Residuales: La inclusién de conex-
iones residuales permiti6é que la red mantuviera vias de sefial lin-
eales mientras mejoraba las correcciones no lineales, mejorando
el rendimiento de la aplicacion practica.

e Visualizacién para Mejorar la Interpretabilidad: Las técnicas
de visualizacion en capitulos posteriores ayudan a comprender
el proceso de mejora del modelo WRN, abordando la naturaleza
de "caja negra" del aprendizaje profundo e identificando pasos
clave para la optimizacion.

En conclusién, el método WRN presentado en este capitulo ofrece una
solucién robusta y efectiva para la mejora del habla, superando a los
métodos existentes en condiciones desafiantes. Los capitulos subsigu-
ientes proporcionan andlisis detallados y mejoras metodolégicas que
mejoran tanto el rendimiento como la interpretabilidad del modelo.
Estos avances aseguran que el método WRN siga siendo una base s6l-
ida para investigaciones y desarrollos futuros en el campo del realce
del habla, culminando en la publicacién de estos hallazgos en:

e J. Llombart, D. Ribas, A. Miguel, L. Vicente, A. Ortega, y E.
Lleida, “Speech Enhancement with Wide Residual Networks
in Reverberant Environments” Proc. Interspeech 2019, 2019, pp.
1811-1815.
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8.2 Técnicas de Visualizaciéon en la Mejora del Habla

En el Capitulo 5, la Visualizacion se centra en mejorar la interpretabil-
idad del realce del habla a través de arquitecturas de aprendizaje pro-
fundo. La exploracién de nuevas arquitecturas apuntaba a hacer el
proceso de mejora mds transparente y comprensible. Al emplear di-
versas técnicas de visualizacién, el capitulo buscaba desmitificar la
naturaleza de "caja negra" de las redes neuronales y mejorar el dis-
efio general y la efectividad de las soluciones de realce del habla. A
continuacién, se resumen los principales hallazgos y percepciones:

e Arquitecturas Propuestas: El capitulo present6 nuevas arquitec-
turas, incluyendo la Constant Channel Residual Network (CCRN)
y la Constant Channel Residual Network with State Path (CCRN-
State), que mejoraron el rendimiento y la interpretabilidad de
la mejora del habla. Estas arquitecturas mostraron resultados
prometedores en la mejora de la calidad del habla y proporcionaron
valiosas percepciones sobre el funcionamiento interno de los mod-
elos, sugiriendo un buen equilibrio entre rendimiento e inter-
pretabilidad.

e Técnicas de Visualizacién: Se emplearon sondas de visualizacién
para monitorear y entender el proceso de mejora en cada bloque
de la red. Esta supervision paso a paso proporciond percepciones
sobre como diferentes componentes de la red contribuyen a la
mejora general.

e Supervisién Progresiva: Se implement6 el concepto de super-
visién progresiva para seguir el proceso de mejora de manera in-
cremental, lo que ayud¢ a identificar etapas criticas que impactan
significativamente en la calidad del habla.

En conclusién, demostramos con éxito que integrar técnicas de visu-
alizacién en arquitecturas de aprendizaje profundo para la mejora del
habla puede mejorar significativamente la interpretabilidad y el rendimiento
de los modelos. Las percepciones obtenidas de este estudio propor-
cionan una base sélida para futuras investigaciones y desarrollo en la
creacién de soluciones de mejora del habla més transparentes y efecti-

vas. Los hallazgos de este capitulo han sido publicados en:
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e J. Llombart, D. Ribas, A. Miguel, L. Vicente, A. Ortega, y E.
Lleida, “Progressive Speech Enhancement with Residual Con-
nections” Proc. Interspeech 2019, 2019, pp. 3193-3197.

8.3 Estrategias de Coste Progresivo en el Realce del
Habla

En el Capitulo 6, exploramos estrategias de coste progresivo para el
realce del habla utilizando arquitecturas de redes neuronales. El obje-
tivo era mejorar el realce del habla mediante el ajuste del proceso de
entrenamiento y la optimizaciéon del rendimiento a través de estrate-
gias de coste innovadoras. Los siguientes puntos clave resumen las
conclusiones obtenidas:

o Estrategias de Coste Progresivo: La implementacién de estrate-
gias de coste progresivo, incluyendo los métodos Weighted Pro-
gressive (WP) y Uniform Progressive (UP), mejord significativamente
la capacidad del modelo para realzar la calidad del habla al re-
ducir sistematicamente el ruido y la reverberacién a través de la

red.

e Anadlisis de Gradientes: Estudios preliminares de los gradientes
indicaron que las estrategias de pérdida progresiva ayudan a es-
tabilizar el proceso de entrenamiento en arquitecturas profundas,
llevando a un rendimiento mds consistente y robusto en difer-
entes condiciones de ruido y entornos.

e Anailisis de la Profundidad de la Arquitectura: Las arquitec-
turas de redes neuronales méas profundas, combinadas con es-
trategias de coste progresivo, mostraron un rendimiento mejo-
rado en las medidas de calidad del habla, indicando la impor-
tancia de la profundidad para alcanzar resultados superiores.

En conclusién, esto destaco la efectividad de las estrategias de coste
progresivo en la mejora de la calidad del habla. Estas estrategias pro-
porcionan un marco robusto para avances futuros en la tecnologia de
realce del habla. Los hallazgos presentados subrayan el potencial de
las estrategias de coste progresivo para establecer nuevos estdndares
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en el campo, aportando valiosas percepciones para futuras investiga-
ciones e implementaciones practicas. Los resultados de este estudio
han sido publicados en:

e J. Llombart, D. Ribas, A. Miguel, L. Vicente, A. Ortega, y E.
Lleida, “Progressive loss functions for speech enhancement with
deep neural networks” EURASIP Journal on Audio, Speech, and
Music Processing, vol. 2021, pp. 1-16, 2021.

8.4 Lineas Futuras de Investigacion

Basandonos en los hallazgos y perspectivas prometedoras de esta tesis,
se pueden perseguir varias direcciones de investigacién futuras para
avanzar atin mas en el campo del realce del habla utilizando redes neu-
ronales profundas. Los siguientes puntos esbozan &dreas potenciales
para futuras exploraciones y desarrollos:

e Optimizacién de las Arquitecturas WRN: Un refinamiento y op-
timizacion adicionales de las arquitecturas Wide Residual Network
(WRN) podrian llevar a mejoras de rendimiento atin mayores.
Esto incluye explorar diferentes configuraciones y hiperparamet-
ros para mejorar su capacidad de manejar diversos entornos rui-
dosos de manera mas efectiva.

e Técnicas de Visualizacién Avanzadas: Expandiendo los méto-
dos de visualizacién introducidos en el Capitulo 5, trabajos fu-
turos podrian desarrollar herramientas mas sofisticadas para pro-
porcionar percepciones méas profundas sobre los procesos de mejora
de las redes neuronales. Esto podria involucrar técnicas de vi-
sualizacién en tiempo real que permitan un monitoreo y ajuste
dindmicos durante la fase de entrenamiento, por ejemplo, apren-
diendo el ndmero 6ptimo de pasos de limpieza de ruido en el
marco progresivo.

e Integraciéon de Modelos Adicionales de Aprendizaje Profundo:
Incorporar otros modelos avanzados de aprendizaje profundo,
como los transformers (Vaswani et al., 2017), modelos state-space
(Gu & Dao, 2023), nuevos modelos recurrentes (Beck et al., 2024),
frameworks de aprendizaje auto-supervisado (Chen et al., 2022)
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y modelos generativos basados en Diffusion (Ho et al., 2020), po-
dria proporcionar fortalezas complementarias a las arquitecturas
WRN. Esta integracion tiene el potencial de mejorar atin mas la
mejora del habla, especialmente en entornos actsticos méas de-
safiantes, pero algunos métodos pueden generar habla nueva no
presente en el audio fuente, por lo que prevenir esto es una de
las principales lineas de investigacion.

e Exploracién de Estrategias de Coste Progresivo: La investigacion
continua sobre estrategias de coste progresivo, como se discutié
en el Capitulo 6, puede centrarse en refinar estos métodos para
lograr una mejor reduccién de ruido y calidad del habla. Investi-
gar diferentes combinaciones de funciones de coste progresivos y
su aplicacién a diversas arquitecturas de redes neuronales podria
arrojar resultados valiosos.

e Escalabilidad y Aplicacién en Tiempo Real: La investigacion
futura deberia abordar la escalabilidad de los métodos propuestos
para aplicaciones en tiempo real. Esto incluye optimizar la efi-
ciencia computacional para garantizar que las técnicas avanzadas
de mejora del habla se puedan implementar de manera efectiva
en escenarios del mundo real, como dispositivos méviles y sis-
temas integrados.

e Mejora del Habla Multimodal: Explorar la integracién de datos
multimodales (por ejemplo, combinando sefiales de audio con
sefiales visuales) para mejorar las sefiales del habla. Esto podria
ser particularmente 1til en escenarios donde la informacién vi-
sual estd disponible, como en videollamadas o entornos de reali-
dad aumentada.

e Adaptaciéon Centrada en el Usuario: Desarrollar sistemas adapt-
ables que puedan personalizar los pardmetros o modelos de mejora
del habla basados en las preferencias individuales del usuario y
casos de uso especificos. Esta personalizacién puede mejorar sig-
nificativamente la experiencia y satisfaccién del usuario.

Al seguir estas direcciones de investigacion futuras, podemos contin-
uar construyendo sobre el trabajo fundacional presentado en esta tesis,
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impulsando avances adicionales en la tecnologia de realce del habla y
sus aplicaciones précticas.
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Appendix A

STFT and Overlap-Add
Method

The Short-Time Fourier Transform (STFT) and the overlap-add method
are two fundamental techniques in speech enhancement that work to-
gether to process and reconstruct speech signals. The STFT transforms
a time-domain signal into a time-frequency representation, allowing
for detailed analysis and manipulation of the signal’s spectral content.
Once the speech enhancement process modifies the magnitude spec-
trum, the overlap-add method is employed to reconstruct the time-
domain signal. By overlapping and adding the modified segments,
this method ensures a smooth and continuous reconstruction, preserv-
ing the naturalness and intelligibility of the speech. Together, these
techniques enable effective enhancement of speech signals by leverag-
ing the frequency domain’s detailed information and ensuring accu-
rate time-domain reconstruction.

A.1 Short-Time Fourier Transform (STFT)

The Short-Time Fourier Transform (STFT) is a fundamental tool in sig-
nal processing for analyzing signals in the frequency domain. It trans-
forms a time-domain signal x(t) into a time-frequency representation
by applying the Fourier transform to short, overlapping segments of
the signal. Mathematically, the STFT is defined as:
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where x(7) is the input signal, w(7 — t) is a window function centered
at time t and ¢ /27 is the complex exponential function represent-
ing the Fourier transform. This allows for the examination of the sig-
nal’s frequency content over time, which is crucial for analyzing non-
stationary signals like speech (Oppenheim et al., 2011).

In speech enhancement, the STFT is used to decompose the speech sig-
nal into small, overlapping frames to capture transient features effec-
tively. Each frame is windowed to reduce edge effects, and the Fourier
transform is applied to convert it into the frequency domain. This pro-
cess creates a spectrogram that represents the magnitude and phase
of the signal’s frequency components over time. Typically, the mag-
nitude spectrum is used for enhancement because it contains most of
the perceptual information, while the noisy phase is retained for recon-
struction (Griffin & Lim, 1984).

In speech enhancement, only the magnitude of the STFT is typically
used because it captures the essential features of the speech signal.
The noisy phase is retained because accurate phase estimation is chal-
lenging, and imperfect phase reconstruction can introduce artifacts.
Therefore, models enhance the magnitude spectrum while keeping the
phase unchanged, ensuring a more natural reconstructed speech signal
(Ephraim & Malah, 1984).

A.2 Overlap-Add

The overlap-add method is a technique used to reconstruct a time-
domain signal from its Short-Time Fourier Transform (STFT) repre-
sentation (Griffin & Lim, 1984). It involves overlapping and adding
the inverse Fourier-transformed segments to synthesize the enhanced
speech signal. This method ensures the continuity and naturalness of
the reconstructed signal.

These are the two steps:
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1. Inverse STFT: Compute the inverse STFT for each frame to con-
vert it back from the frequency domain to the time domain. The
inverse STFT for each frame X (¢, f) is given by:

xa(t) = [ X(t, f)ePoltag (A2)
where x,(t) is the time-domain signal for the n-th frame, and
e/t is the complex exponential function for the inverse Fouriere
transform.

2. Overlap and Add: Overlap each time-domain segment according
to the original segmentation, typically with a 50% overlap, and
add the segments together to form the continuous signal. The
procedure can be described as:

x(t) =Y xu(t —nH) (A.3)

where H is the hop size (i.e., the interval between the start of con-
secutive frames), and x(f) is the reconstructed signal. The over-
lap helps to smooth the transitions between frames and reduce
artifacts.

The overlap-add method is essential in reconstructing the enhanced
speech signal from its STFT representation. By accurately overlap-
ping and adding the inverse-transformed frames, it ensures that the
enhanced speech maintains continuity and naturalness. This method
effectively combines the enhanced magnitude spectrum with the re-
tained noisy phase, resulting in a more intelligible and natural-sounding
speech output. The overlap-add technique mitigates discontinuities
and artifacts that might arise from the frame-based processing, pre-
serving the integrity of the speech signal.






121

Appendix B

Results of noise experiment

This apendix show the complete sets of results obtained using the dif-
ferent architectures of the Chapter 6. This is also shown in Figure 6.6.



122 Appendix B. Results of noise experiment
TABLE B.1: Results in Simulated REVERB-Eval set for
different noises at different initial SNR.
SNR Babble Cafe Music Traffic Tram Average
CNN (Estimated SNR / LLR)
0 12.74 /0.84 20.00 /0.77 1324 /093 29.68/0.71 26.09/0.76 20.35/0.80
5 2924 /0.64 3423 /060 26.62/0.66 42.24/056 4228 /0.59 34.92/0.61
10 38.65/0.54 4057 /053 3245/054 4283 /051 4210/0.53 39.32/0.53
15 37.14 /051 37.31/051 3395/051 3847 /050 37.78/0.51 36.93/0.51
20 35.86 /050 35.76 /050 34.71/050 3595/0.50 3588/0.50 35.63/0.50
25 35.61 /050 3559 /050 35.37/050 3565/050 3563/050 3557/0.50
P-CNN with WP (Estimated SNR / LLR)
0 1045 /093 1538 /090 11.11/1.06 17.56/0.89 16.35/0.92 14.17 /094
5 1918 /0.83 2231/0.82 1873/0.89 2451/081 24.01/082 21.75/0.84
10 24.06 /0.80 25.32/0.80 23.09/0.81 26.33/0.79 26.00/0.80 24.96/0.80
15 2541/0.79 2571/0.79 2477 /0.79 2612/0.79 25.81/0.79 2557 /0.79
20 25.66 /079 25.69/0.79 2534/0.79 2574/0.79 25.68/0.79 25.62/0.79
25 2569 /079 2570/0.79 25.61/0.79 2573/0.79 2570/0.79 25.68/0.79
P-CNN with UP (Estimated SNR / LLR)
0 14.34 /0.84 34.01/0.78 1558 /0.99 31.38/0.72 41.89/0.78 2744 /0.82
5 3457 /065 51.18/0.63 3437 /0.71 46.58/0.61 5558 /0.62 44.46/0.64
10 49.16 / 057 54.36 / 0.56 47.56 /057 53.47 /0.55 5558 /0.56 52.03/0.56
15 52.56 / 0.54 53.52 /0.54 50.77 /054 5454 /054 54.40/0.54 53.16/0.54
20 52.19 /053 5228 /053 51.36/0.53 5242 /0.53 5246/0.53 52.14/0.53
25 5199 /053 5195/053 51.78/0.53 5198 /0.53 51.94/0.53 51.93/0.53
ResNet (Estimated SNR / LLR)
0 1294 /079 2771/0.73 1539/084 2758/0.67 32.64/073 2325/0.75
5 2644 /059 38.18 /055 27.15/0.59 35.72/0.53 43.03/0.55 34.11/0.56
10 3451 /051 37.63 /050 31.89/050 36.97/049 39.25/0.49 36.05/0.50
15 3496 /048 3546 /048 33.55/048 36.04/047 3594/048 3519 /0.48
20 3441 /047 3445/047 33.86/047 3450/047 34.51/047 34.35/047
25 3421 /047 3424/047 34.07 /047 34.26/047 34.23/047 34.20/047
P-ResNet with WP (Estimated SNR / LLR)
0 1522 /0.86 3258/0.79 14.14/1.02 29.04/075 3948 /079 26.09/0.84
5 3897 /064 5725/0.60 36.74/0.70 51.67/0.59 62.66/0.61 49.46 /0.63
10 5323 /052 5793 /051 49.75/053 58.03/050 59.30/0.51 55.65/0.51
15 54.03 /049 55.02/048 51.38/049 56.45/0.48 b55.36/048 54.45/0.48
20 53.71 /048 53.73 /048 5231 /048 54.07/0.48 53.80/048 53.52/0.48
25 53.60 / 048 5358 /048 53.28 /048 53.68/0.48 53.56/0.48 53.54/0.48
P-ResNet with UP (Estimated SNR / LLR)
0 10.65/0.86 20.78 /0.82 11.41/099 20.74/077 2291/083 17.30/0.85
5 2449 /0.65 3468 /0.62 2354/0.69 31.38/0.59 38.09/0.62 30.44/0.63
10 38.09 /054 40.87 /053 34.71/054 40.11/0.51 42.19/052 39.19/0.53
15 41.02 /050 41.27 /050 38.70/0.50 42.06/0.49 41.65/0.50 40.94/0.50
20 40.53 /049 4041/049 39.40/049 40.56/0.49 40.50/049 40.28/0.49
25 40.26 / 049 40.25/049 40.02/049 40.31/049 40.28/049 40.22/0.49
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