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A B S T R A C T

Distributed state estimation has been a significant research topic in recent years due to its applications for
multi-robot and large-scale systems. Several approaches have been proposed in the context of continuous-time
systems with stochastic noise, with limitations regarding observability, assumptions on the noise bounds, or
requirements to pre-compute auxiliary global information offline. Moreover, many of these approaches are
suboptimal with respect to a centralized implementation, and optimal proposals only apply to time-invariant
systems. The present work proposes the ODEFTC algorithm for distributed state estimation based on fixed-
time consensus. The proposal computes state estimates and corresponding covariance matrices online, making
it suitable for time-variant systems. We verify the stability of the proposal through formal analysis, and we
show that the optimal centralized solution, given by the Kalman-Bucy filter, can be recovered asymptotically.
Additionally, we provide numerical results and an in-depth statistical and numerical discussion to show the
advantages of our proposal against other approaches in the literature.
. Introduction

.1. Motivation

Distributed problems are currently a relevant research topic due
o their many potential applications, such as multi-robot cooperation
r control of large-scale networked systems [1]. In particular, for
tate estimation, the distributed case consists of a network of sensing
odes that collectively observe a system using their local measurement
nformation and communication with neighboring nodes.

There are several reasons why the distributed approach can be
eneficial for state estimation. The redundancy of sensors can decrease
he uncertainty of the estimates while also improving the robustness
f the ensemble in the case of single-point failure [2]. The benefits of
edundancy can be exploited to deal with missed detections or false
ositives when measurements from different sensors are available [3].
n addition, sharing information ensures that each node can obtain an
stimate of the full state of the plant, even if it is not completely ob-
ervable using its local measurement alone. Thus, several works in the
iterature address this problem to provide distributed implementations
f popular filters.

In the context of systems affected by stochastic noise, many propos-
ls in the literature address the discrete-time case to develop distributed
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implementations of the Kalman filter [4]. See, for example, the review
in [5], which summarizes different approaches and evaluates their
optimality in recovering the optimal centralized solution. In particular,
consensus-based solutions for discrete-time filtering typically rely on
the application of static average consensus protocols to fuse the infor-
mation available to the nodes at a given sampling instant, requiring
several exchanges of information per sample to reach agreement, re-
covering optimal results as the number of iterations per sample tends
to infinity. Additionally, other issues have been studied in the discrete-
time context, e.g., cyber-attacks [6], model uncertainties [7], missing
data [8,9], transmission delays [10] or communication constraints [11,
12].

Several approaches have been proposed for continuous-time systems
affected by stochastic noise to solve the problem of distributed state
estimation with some limitations. In [13], a distributed implementation
of the Kalman-Bucy filter is provided under a rather restrictive assump-
tion of observability of the system from each node in the network.
Another approach is given in [14], with the restriction of having full
state availability, i.e., the measurement matrix of the nodes being equal
to the identity. Moreover, no proof of the stability of this filter is
provided. These restrictive observability assumptions are relaxed in the
following works to collective observability of the network.
ttps://doi.org/10.1016/j.inffus.2024.102783
eceived 14 December 2023; Received in revised form 6 October 2024; Accepted 4
vailable online 14 November 2024 
566-2535/© 2024 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/ ). 
 November 2024

icle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/inffus
https://www.elsevier.com/locate/inffus
mailto:i.perez@unizar.es
mailto:rodrigo.aldana.lopez@gmail.com
mailto:csagues@unizar.es
https://doi.org/10.1016/j.inffus.2024.102783
https://doi.org/10.1016/j.inffus.2024.102783
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


I. Perez-Salesa et al.

a
H
t
o
e

e

a

v
i
t
g
v
L
(
s
f

i
t
a

a
b
b

b
e
t

a

e
m

v

c

r

s

o

𝑟

Information Fusion 116 (2025) 102783 
The proposal in [15], which builds on the ideas from [16], provides
 filter with proven stability in the mean of the estimation error.
owever, it assumes convergence of the estimated covariance matrices

o the asymptotic value reached in the centralized implementation
f the filter, which is difficult to verify in practice. A proposal to
xtend the filter in [14] to work for measurement matrices different

from the identity is given in [17]. Still, the formal proofs of stability
and optimality are shown to contain technical errors in [18], where
it is shown that consensus may not always be achieved with this
approach. In [2], a distributed Kalman-Bucy filter using consensus of
the measured signals is proposed but requires the assumption of null
or bounded measurement noise rather than Gaussian noise. Moreover,
convergence to the optimal centralized solution is only achieved in
the absence of noise. A similar approach is also used in [19] under
vent-triggered communication, with similar limitations.

In [20], an approximated distributed Kalman-Bucy filter is pro-
posed, which exploits the asymptotic form of the filter. This work
guarantees the optimality and stability of the distributed filter with re-
spect to the centralized implementation and does not require additional
ssumptions on the noise present in the system. However, it requires

pre-computing the asymptotic covariance matrix of the estimation error
ia a separate diffusion protocol. This idea was also similarly used
n [21] for the case with correlated measurement noise. However, note
hat this approach is limited to linear time-invariant (LTI) systems,
iven that there is no constant asymptotic covariance matrix in time-
ariant systems. In addition, most of the mentioned works also address
TI systems as well, and the ones that consider linear time-variant
LTV) systems [2,13] do not achieve optimal results in the presence of
tochastic noise. Thus, designing an optimal distributed state estimator
or continuous-time stochastic systems is still an open problem.

1.2. Innovations

Note that the continuous-time formulation of the problem lends
tself to the application of dynamic consensus algorithms, which allow
he tracking of time-varying signals, in contrast to the static consensus
pproach usually taken in discrete-time setups.

In recent years, fixed-time consensus algorithms have been devel-
oped, that achieve exact agreement after a fixed amount of time, which
does not depend on the initial conditions. Several proposals exist in
the literature, considering different control objectives and applications,
such as formation control of robots or smart grids [22]. Moreover,
some fixed-time consensus protocols, such as [23], guarantee a prede-
fined convergence time according to the choice of parameters in the
consensus algorithm.

Hence, in this work, we leverage a fixed-time dynamic consensus
lgorithm as a tool to design our distributed state estimator. To the
est of our knowledge, fixed-time consensus algorithms have not yet
een exploited for this purpose.

1.3. Contributions

In this work, we propose the ODEFTC algorithm, a distributed
estimator for continuous-time systems affected by stochastic noise un-
der a general assumption of collective observability. Our proposal,
ased on a fixed-time dynamic consensus algorithm, computes the state
stimates and the estimated covariance matrix online without requiring
he pre-computation of any quantities. Thus, it is suitable for LTV sys-

tems. We show through formal analysis that our proposal can recover
the performance of the centralized optimal Kalman-Bucy filter [24]
symptotically. Henceforth, it achieves similar values between the

true covariance of the estimation error and the estimated covariance
computed by each network node. Moreover, we include simulation
xperiments to validate our approach and to show the improvements
ade with respect to other works in the literature.
2 
1.4. Sections

The paper is organized as follows. The preliminaries are given
in Section 2, which contains the problem statement, a summary of
the optimal centralized solution and auxiliary results regarding fixed-
time consensus. Section 3 presents our ODEFTC algorithm and pro-
ides a convergence analysis. A discussion is included in Section 4

to compare our proposal with related works, as well as simulation
experiments to validate our algorithm and its performance compared
to other approaches in the literature. Finally, Section 5 summarizes the
onclusions for this work.

1.5. Notation

Let 𝐈𝑛 ∈ R𝑛×𝑛 be the identity matrix and 1 the vector of ones of
appropriate dimensions. Let 𝗌𝗀𝗇(𝑥) = 1 if 𝑥 > 0, 𝗌𝗀𝗇(𝑥) = −1 if 𝑥 < 0 and
𝗌𝗀𝗇(0) = 0. The trace of a matrix is 𝗍𝗋(∙), and 𝗌𝗍𝖽(∙) represents standard
deviation. Given a set of matrices 𝐏1,… ,𝐏𝑁 , we denote with diag𝑁𝑖=1(𝐏𝑖)
the block diagonal matrix with each 𝐏𝑖 as block components. Let ‖ ∙ ‖
epresent the standard Euclidean norm for vector input and its induced

matrix norm for matrix input, and let ‖ ∙‖F denote the Frobenius norm.
The expectation operator is denoted as E{∙}. The covariance is denoted
by 𝖼𝗈𝗏{∙}. For a matrix 𝑀𝑖 computed at node 𝑖, we use the notation 𝑚𝑖
to refer to an arbitrary element in the proof of Lemma 2.

2. Preliminaries

2.1. Problem statement

Consider a linear system described by a state vector 𝐱(𝑡) ∈ R𝑛

atisfying:

�̇�(𝑡) = 𝐀(𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐰(𝑡), 𝑡 ≥ 0 (1)

where 𝐀(𝑡) ∈ R𝑛×𝑛, 𝐁(𝑡) ∈ R𝑛×𝑛𝐰 and 𝐰(𝑡) ∈ R𝑛𝐰 denotes an
unknown input, typically accounting for any non-modeled dynamics
r disturbances. The unknown input 𝐰(𝑡) is usually modeled as an 𝑛𝐰-

dimensional white Gaussian noise process with known positive definite
covariance matrix 𝐖(𝑡) ∈ R𝑛𝐰×𝑛𝐰 [2], requiring to understand (1) as
a Stochastic Differential Equation (SDE). In this case, 𝐱(𝑡) follows a
Gaussian distribution, with the initial condition 𝐱(0) having a known
mean 𝐱0 and covariance matrix 𝐏0.

The system is collectively observed by 𝑁 sensors comprising a
communication network, with its topology described by an undirected
connected graph . The node set composed by the sensors is denoted by
 = {1,… , 𝑁} for the sensors and  ⊆ × is the edge set representing
the communication links between neighboring nodes. The adjacency
matrix 𝐀 = [𝑎𝑖𝑗 ] ∈ {0, 1}𝑁×𝑁 has elements 𝑎𝑖𝑗 = 1 if (𝑖, 𝑗) ∈  and
𝑎𝑖𝑗 = 0 otherwise. The Laplacian matrix is denoted by 𝐐. We denote
the set of neighbors of node 𝑖 by 𝑖 = {𝑗 ∈  ∶ (𝑖, 𝑗) ∈ }.

Each sensor 𝑖 in the network produces a local measurement

𝐲𝑖(𝑡) = 𝐂𝑖(𝑡)𝐱(𝑡) + 𝐯𝑖(𝑡), ∀𝑡 ≥ 0 (2)

where 𝐂𝑖(𝑡) ∈ R𝑛𝐲×𝑛 and 𝐯𝑖(𝑡) is an 𝑛𝐲-dimensional white Gaussian noise
process with known positive definite covariance matrix 𝐑𝑖(𝑡) ∈ R𝑛𝐲×𝑛𝐲 .

Assumption 1. The pair (𝐀(𝑡),𝐂(𝑡)) is observable ∀𝑡 ≥ 0, with 𝐂(𝑡) ∶=
[𝐂1(𝑡)⊤,… ,𝐂𝑁 (𝑡)⊤]⊤.

Assumption 2. There exist constants 0 ≤ 𝑎, 𝑏, 𝑐 , 𝑤1 ≤ 𝑤2, 𝑟1 ≤ 𝑟2 such
that ‖𝐀(𝑡)‖ ≤ 𝑎, ‖𝐁(𝑡)‖ ≤ 𝑏, ‖𝐂(𝑡)‖ ≤ 𝑐 , 𝑤1 ≤ ‖𝐖(𝑡)‖ ≤ 𝑤2, 𝑟1 ≤ ‖𝐑(𝑡)‖ ≤
2 for all 𝑡 ≥ 0.
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Remark 1. Note that Assumption 1 requires the system to be observ-
able using the collective measurements obtained by the network, but it
oes not pose the requirement of the system being observable from each
ensor node alone. In addition, Assumption 2 is commonly required for
tandard Kalman filtering.

The goal for the network nodes is to collectively estimate the
system’s state, using their own measurements and communication with
neighboring nodes.

2.2. Optimal centralized solution: Kalman-Bucy filter

The Kalman-Bucy filter obtains state estimates �̂�(𝑡) for the state 𝐱(𝑡),
s well as a covariance matrix 𝐏(𝑡) = E{(𝐱(𝑡) − �̂�(𝑡))(𝐱(𝑡) − �̂�(𝑡))⊤} for the

estimation. It is known to be the optimal filter to obtain state estimates
for continuous-time systems affected by stochastic noise, in the sense
hat it minimizes E{(𝐱(𝑡) − �̂�(𝑡))⊤(𝐱(𝑡) − �̂�(𝑡))} = 𝗍𝗋(𝐏(𝑡)). Considering
𝐲(𝑡) = [𝐲1(𝑡)⊤,… , 𝐲𝑁 (𝑡)⊤]⊤, 𝐂(𝑡) defined in Assumption 1, and 𝐑(𝑡) =
iag𝑁𝑖=1(𝐑𝑖(𝑡)), the equations for the centralized filter are given by [24]:

𝐊(𝑡) = 𝐏(𝑡)𝐂(𝑡)⊤𝐑(𝑡)−1 (3a)
̇̂ (𝑡) = 𝐀(𝑡)�̂�(𝑡) +𝐊(𝑡) (𝐲(𝑡) − 𝐂(𝑡)�̂�(𝑡)) (3b)

�̇�(𝑡) = 𝐀(𝑡)𝐏(𝑡) + 𝐏(𝑡)𝐀(𝑡)⊤ + 𝐁(𝑡)𝐖(𝑡)𝐁(𝑡)⊤ − 𝐏(𝑡)𝐂(𝑡)⊤𝐑(𝑡)−1𝐂(𝑡)𝐏(𝑡) (3c)

Moreover, for the time-invariant case, 𝐏(𝑡) is known to converge to
n asymptotic solution 𝐏∞, given by the following Riccati equation:

𝟎 = 𝐀𝐏∞ + 𝐏∞𝐀⊤ + 𝐁𝐖𝐁⊤ − 𝐏∞𝐂⊤𝐑−1𝐂𝐏∞ (4)

which provides the asymptotic form of the filter with gain 𝐊∞ =
𝐏∞𝐂⊤𝐑−1. Note that, in order to solve (3c) or (4), knowledge of the
quantity

�̄�(𝑡) = 𝐂(𝑡)⊤𝐑(𝑡)−1𝐂(𝑡) =
𝑁
∑

𝑖=1
𝐂𝑖(𝑡)⊤𝐑𝑖(𝑡)−1𝐂𝑖(𝑡) (5)

is required, which depends on the matrices 𝐂𝑖(𝑡), 𝐑𝑖(𝑡) of the whole
network, making the problem of distributed estimation challenging.

2.3. Fixed-time stability for consensus

In this work, we address the problem of consensus-based distributed
estimation using fundamentals of fixed-time consensus. Here, we sum-
marize some useful definitions and results that we will use in the
following. Consider a dynamical system

̇ (𝑡) = 𝐟 (𝐱(𝑡)) (6)

where 𝐟 ∶ R𝑛 → R𝑛 is a nonlinear function with initial conditions
𝐱0 = 𝐱(0) ∈ R𝑛 and the origin being an equilibrium point, i.e. 𝐟 (𝟎) = 𝟎.

hen, consider the following definitions pertaining fixed-time stability:

Definition 1 (Global Finite-Time Stability [25]). The origin of system
6) is called globally finite-time stable if it is globally asymptotically

stable and any solution 𝐱(𝑡, 𝐱0) of (6) reaches the equilibrium point at a
inite-time moment. This is, 𝐱(𝑡, 𝐱0) = 𝟎,∀𝑡 ≥ 𝑇 (𝐱0), where 𝑇 ∶ R𝑛 → R≥0

denotes the settling time function.

Definition 2 (Fixed-Time Stability [26]). The origin of system (6) is
fixed-time stable if it is globally finite-time stable and has a bounded
settling time function. This is, there exists 𝑇max > 0 such that 𝑇 (𝐱0) ≤
max,∀𝐱0 ∈ R𝑛.

From Definitions 1 and 2, note that fixed-time stability ensures that
he system under consideration converges to its equilibrium point in a
ime no larger than a fixed time 𝑇max, regardless of the initial conditions
or the system.
 w

3 
Table 1
Design parameters for the ODEFTC algorithm.

Parameter Description Value

𝜅 Gain for consensus on �̂�𝑖(𝑡) in (9b) > 0
𝛼 Gain for consensus on �̂�𝑖(𝑡) in (9e) > 0
𝛾 Exponent for 𝜙(∙, 𝜉 , 𝛾) in (8)–(9e) ∈ (0, 1)
𝜉 Discontinuous term gain in 𝜙(∙, 𝜉 , 𝛾) in (8)–(9e) As in Lemmas 1-2

Based on these definitions, a fixed-time consensus algorithm is a
istributed algorithm that reaches agreement on a quantity of inter-
st by all nodes of the system, in a time no larger than 𝑇max for

any initial conditions, by using only communication with neighboring
nodes. Equivalently, the dynamics of the disagreement in the consensus
protocol are fixed-time stable towards the origin. Note that agreement
is maintained for all 𝑡 ≥ 𝑇max. Fixed-time consensus protocols have
been studied in the literature for a range of different applications, as
illustrated by [22]. In this work, we exploit the following result, which
guarantees convergence of the consensus protocol before a fixed time
𝑇max > 0:

Lemma 1 (Adapted from [23], Th. 6). Let  be a connected undirected
graph with algebraic connectivity 𝜆, formed by 𝑁 nodes and 𝓁 edges.
Moreover, consider a consensus protocol of the form

̇ 𝑖(𝑡) = 𝑑𝑖(𝑡) + 𝛼
∑

𝑗∈𝑖

𝜙(𝑠𝑗 (𝑡) − 𝑠𝑖(𝑡), 𝜉 , 𝛾) (7)

where 𝑠𝑖(𝑡) ∈ R, |𝑑𝑖(𝑡)| ≤ 𝐿′,∀𝑡 ≥ 0,

𝜙(∙, 𝜉 , 𝛾) = (| ∙ |1−𝛾 + | ∙ |1+𝛾 + 𝜉)𝗌𝗀𝗇(∙) (8)

with the constants 𝛼 > 0 and 𝛾 ∈ (0, 1) being design parameters of the con-
sensus algorithm, and 𝜉 ≥ 𝐿′∕(𝛼

√

𝜆). Then, 𝑠𝑖(𝑡) = (1∕𝑁)
∑𝑁

𝑖=1 𝑠𝑖(0), ∀𝑡 ≥
𝑇max,∀𝑖 ∈  , with convergence time 𝑇max = 𝓁𝜋∕(𝛼 𝛾 𝜆). This is, the dynamic
average consensus disagreements 𝑠𝑖(𝑡) − (1∕𝑁)

∑𝑁
𝑖=1 𝑠𝑖(0) are fixed-time

stable towards the origin.
Note that the algorithm in Lemma 1 achieves exact consensus in

fixed-time despite the time-varying variables 𝑑𝑖(𝑡), which enables us
to design a distributed estimator that is suitable for systems with LTV
dynamics.

3. The ODEFTC algorithm

In this Section, we introduce the ODEFTC algorithm, based on
a fixed-time consensus protocol, to achieve optimal distributed state
stimation for continuous-time stochastic systems.

The following equations give the proposed ODEFTC algorithm for
an arbitrary node 𝑖:

𝐊𝑖(𝑡) = 𝑁𝐏𝑖(𝑡)𝐂𝑖(𝑡)⊤𝐑𝑖(𝑡)−1 (9a)
̇̂𝐱𝑖(𝑡) = 𝐀(𝑡)�̂�𝑖(𝑡) +𝐊𝑖(𝑡)

(

𝐲𝑖(𝑡) − 𝐂𝑖(𝑡)�̂�𝑖(𝑡)
)

+ 𝜅𝐏𝑖(𝑡)
∑

𝑗∈𝑖

(�̂�𝑗 (𝑡) − �̂�𝑖(𝑡)) (9b)

�̇�𝑖(𝑡) = 𝐀(𝑡)𝐏𝑖(𝑡) + 𝐏𝑖(𝑡)𝐀(𝑡)⊤ + 𝐁(𝑡)𝐖(𝑡)𝐁(𝑡)⊤ − 𝐏𝑖(𝑡)�̂�𝑖(𝑡)𝐏𝑖(𝑡) (9c)

�̂�𝑖(𝑡) = 𝑁𝐂𝑖(𝑡)⊤𝐑𝑖(𝑡)−1𝐂𝑖(𝑡) −𝐐𝑖(𝑡) (9d)
̇
𝑖(𝑡) = 𝛼

∑

𝑗∈𝑖

𝜙(�̂�𝑖(𝑡) − �̂�𝑗 (𝑡), 𝜉 , 𝛾) (9e)

Here, the function 𝜙 from (8) is applied element-wise. Moreover,
𝜅 , 𝛼 , 𝜉 , 𝛾 > 0 are design parameters yet to be specified. The design
parameters for the algorithm are summarized in Table 1. In addi-
ion, Table 2 summarizes the variables defined so far for the reader’s

convenience.
The filter is initialized at 𝑡 = 0 to ∑𝑁

𝑖=1 𝐐𝑖(0) = 𝟎, �̂�𝑖(0) = 𝐱0, 𝐏𝑖(0) =
0, with 𝐏0 being a R𝑛×𝑛 symmetric non-negative matrix. For simplicity,
e assume that the number of nodes 𝑁 is a known parameter for
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Table 2
List of variables used in this work.

Variables Description

𝐱(𝑡) System state
𝐀(𝑡), 𝐁(𝑡) System matrices
𝐰(𝑡), 𝐖(𝑡) System disturbance and its covariance
𝐲𝑖(𝑡) Measurement at node 𝑖
𝐂𝑖(𝑡) Measurement matrix at node 𝑖
𝐯𝑖(𝑡), 𝐑𝑖(𝑡) Measurement noise and its covariance at node 𝑖
�̂�𝑖(𝑡), 𝐏𝑖(𝑡) State estimate and estimated error covariance at node 𝑖 using ODEFTC
�̂�𝑖(𝑡), 𝐐𝑖(𝑡) Estimate for the inverse covariance matrix at node 𝑖 and auxiliary variable
 𝑖(𝑡) True error covariance of the estimates from (9b) at node 𝑖
𝐊𝑖(𝑡) Filtering gain for ODEFTC at node 𝑖
�̂�(𝑡), 𝐏(𝑡) Estimate and error covariance from centralized Kalman-Bucy filter
𝐊(𝑡) Filtering gain for the centralized Kalman-Bucy filter
�̄�(𝑡) Inverse measurement covariance matrix for the network
𝐂(𝑡), 𝐑(𝑡) Measurement and covariance matrices in the centralized case
𝐏∞ Asymptotic covariance matrix for the centralized LTI Kalman-Bucy filter
Fig. 1. Distributed state estimation setup.
𝑧

the nodes, but it can also be computed in a distributed fashion as in,
e.g., [27]. Due to the online computation of �̂�𝑖(𝑡) and �̂�𝑖(𝑡) through
consensus, both of these values need to be communicated to neigh-
boring nodes. The proposed setup and transmitted information are
summarized in Fig. 1.

Note that (9a)–(9b) is motivated by the filter proposed in [20],
where a similar choice of 𝐊𝑖(𝑡) was shown to recover the performance
of the centralized filter for LTI systems, but we use a time-varying
matrix 𝐏𝑖(𝑡) to extend the proposal to LTV systems, as opposed to
using 𝐏∞ from (4). Then, (9c) is designed similarly to the expres-
sion for 𝐏(𝑡) in the centralized filter (3c). Still, we have substituted
the global information term �̄�(𝑡) defined in (5) with the estimates
�̂�𝑖(𝑡), which are computed through the fixed-time dynamic consensus
protocol (9d)–(9e).

The ODEFTC algorithm provides an expression to compute state
estimates �̂�𝑖(𝑡), as well as an estimated covariance 𝐏𝑖(𝑡) of the estimation
error 𝐱(𝑡) − �̂�𝑖(𝑡). However, note that due to the distributed setting it is
necessary to verify that the estimated covariance 𝐏𝑖(𝑡) computed as (9c)
recovers the true covariance  𝑖(𝑡) = 𝖼𝗈𝗏{𝐱(𝑡) − �̂�𝑖(𝑡)}, for the estimates
generated by consensus in (9b).

In the following, we establish the main properties of ODEFTC.
Particularly, we show that the filter is stable and that the estimation
accuracy with respect to the optimal centralized solution can be made
arbitrarily high as 𝜅 is increased, both in terms of the true covariance
 𝑖(𝑡) of the error, as well as in the estimated covariance matrices 𝐏𝑖(𝑡).

3.1. Convergence of the covariance matrices

To analyze the convergence of 𝐏𝑖(𝑡) obtained with our ODEFTC
algorithm, first note that (9c) depends on the value of �̂� (𝑡), which
𝑖

4 
is computed through a fixed-time consensus algorithm to recover the
matrix �̄�(𝑡) of the network, as defined in (5). Thus, we start by showing
the fixed-time stability of �̂�𝑖(𝑡) towards �̄�(𝑡) in the following result.

Assumption 3. Define 𝐙𝑖(𝑡) = 𝑁𝐂𝑖(𝑡)⊤𝐑𝑖(𝑡)−1𝐂𝑖(𝑡). Then, ‖�̇�𝑖(𝑡)‖ ≤
𝐿, ∀𝑡 ≥ 0 for some known 𝐿 ≥ 0.

Note that Assumption 3 is trivially fulfilled by LTI systems. For
LTV systems, it can still be fulfilled in many cases, such as when
the matrices 𝐂𝑖(𝑡), 𝐑𝑖(𝑡) contain sinusoidal terms. Recalling that these
matrices represent the measurement model and its noise covariance,
assuming bounds on them is reasonable in practice. In addition, similar
assumptions are adopted in related works, e.g. [2]. Now, we can state
our result.

Lemma 2. Let Assumption 3 hold as well as the assumptions and notation
of Lemma 1 for the graph . For given design parameters 𝛼 > 0 and
𝛾 ∈ (0, 1), let 𝐿′ = 2𝐿 and set 𝜉 and 𝑇max as defined in Lemma 1. Then, the
protocol (9d)–(9e) complies with �̂�𝑖(𝑡) = �̄�(𝑡) = 𝐂(𝑡)⊤𝐑(𝑡)−1𝐂(𝑡), ∀𝑡 ≥ 𝑇max.

Proof. Given that the 𝜙(∙, 𝜉 , 𝛾) operator is applied element-wise, in the
following we analyze convergence of an arbitrary element �̂�𝑖(𝑡) of the
matrix �̂�𝑖(𝑡). Let 𝑞𝑖(𝑡) be the corresponding element of 𝐐𝑖(𝑡) and 𝑧𝑖(𝑡) the
corresponding element for the matrix 𝐙𝑖(𝑡). Then, the dynamics for �̂�𝑖(𝑡)
are given by
̇̂
𝑖(𝑡) = �̇�𝑖(𝑡) − �̇�𝑖(𝑡) = �̇�𝑖(𝑡) − 𝛼

∑

𝜙(�̂�𝑖(𝑡) − �̂�𝑗 (𝑡), 𝜉 , 𝛾) (10)

𝑗∈𝑖
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where |�̇�𝑖(𝑡)| ≤ 𝐿 by assumption. Define �̄�(𝑡) = (1∕𝑁)
∑𝑁

𝑖=1 𝑧𝑖(𝑡), i.e. the
corresponding element of the matrix �̄�(𝑡), and let 𝑠𝑖(𝑡) = �̂�𝑖(𝑡) − �̄�(𝑡).
Noting that �̂�𝑖(𝑡) − �̂�𝑗 (𝑡) = −(𝑠𝑗 (𝑡) − 𝑠𝑖(𝑡)), it follows that

̇ 𝑖(𝑡) = (�̇�𝑖(𝑡) − ̇̄𝑧(𝑡)) + 𝛼
∑

𝑗∈𝑖

𝜙(𝑠𝑗 (𝑡) − 𝑠𝑖(𝑡), 𝜉 , 𝛾) (11)

where ∑𝑁
𝑖=1 𝑠𝑖(0) = 0, recalling that ∑𝑁

𝑖=1 𝑞𝑖(0) = 0. Using the result
rom Lemma 1 with |𝑑𝑖(𝑡)| = |

̇̄𝑧(𝑡) − �̇�𝑖(𝑡)| ≤ 2𝐿 = 𝐿′, we obtain that
𝑠𝑖(𝑡) =

∑𝑁
𝑖=1 𝑠𝑖(0) = 0, ∀𝑡 ≥ 𝑇max. This leads to �̂�𝑖(𝑡) = �̄�(𝑡), ∀𝑡 ≥ 𝑇max,

mplying the same for all elements of the matrix �̂�𝑖(𝑡) so that �̂�𝑖(𝑡) =
�̄�(𝑡), ∀𝑡 ≥ 𝑇max. □

Lemma 2 ensures that each node can recover the value of the inverse
ovariance matrix �̄�(𝑡) of the network in a fixed time 𝑇max. Now, we can
tate the following theorem showing the stability and convergence of
𝑖(𝑡).

Theorem 1. Let Assumptions 1, 2 and 3 hold as well as the conditions
in Lemma 2. The estimated covariance 𝐏𝑖(𝑡) computed as (9c) fulfills the
ollowing properties:

1. 𝐏𝑖(𝑡) is uniformly bounded ∀𝑡 ≥ 0.
2. After a fixed time 𝑇max, 𝐏𝑖(𝑡) evolves as (3c) from the optimal

centralized filter.
3. lim𝑡→∞(𝐏𝑖(𝑡) − 𝐏(𝑡)) = 𝟎 with 𝐏(𝑡) from the optimal centralized filter

(3c).
4. If the system is LTI, lim𝑡→∞ 𝐏𝑖(𝑡) = 𝐏∞, with 𝐏∞ being the solution

to the Riccati Eq. (4).

Proof. Recalling the fixed convergence time 𝑇max of �̂�𝑖(𝑡) to �̄�(𝑡), we
irst prove that the solution for the Riccati differential equation for 𝐏𝑖(𝑡)
iven in (9c) exists for 𝑡 ∈ [0, 𝑇max], i.e. a finite-time escape towards
nfinity does not occur while the matrices �̂�𝑖(𝑡) converge towards �̄�(𝑡).
his is ensured by [24, Theorem 1], which points out that the solution

to this Riccati equation is uniquely determined for 𝑡 ≥ 0. Its proof
follows from the existence theorem presented in [28], where existence
of solutions for the Riccati equation of the ‘‘dual’’ optimal control
problem is shown, starting at any symmetric non-negative initial con-
dition, and noticing that the variance of 𝐱(𝑡) must be finite in any
finite time interval. Note that the existence of solution holds regardless
f the value taken by �̂�𝑖(𝑡) during 𝑡 ∈ [0, 𝑇max], which is always a
ymmetric non-negative matrix by construction and bounded due to the
onvergence towards �̄�(𝑡) as per Lemma 2, where �̄�(𝑡) is also bounded

due to Assumption 2. Moreover, note that 𝐏𝑖(𝑡) is also always symmetric
and non-negative.

For 𝑡 ≥ 𝑇max, we have that �̂�𝑖(𝑡) = �̄�(𝑡). By substituting the value of
̄ (𝑡) in (9c) it follows that, for 𝑡 ≥ 𝑇max,

̇
𝑖(𝑡) = 𝐀(𝑡)𝐏𝑖(𝑡) + 𝐏𝑖(𝑡)𝐀(𝑡)⊤ + 𝐁(𝑡)𝐖(𝑡)𝐁(𝑡)⊤ − 𝐏𝑖(𝑡)𝐂(𝑡)⊤𝐑(𝑡)−1𝐂(𝑡)𝐏𝑖(𝑡)

(12)

which precisely matches the expression for 𝐏(𝑡) in the centralized im-
lementation (3c). Therefore, 𝐏𝑖(𝑡) is ruled by the same dynamics as the

centralized solution 𝐏(𝑡) after time 𝑇max, proving item 2. Moreover, [24,
Theorem 4] ensures that every solution for 𝑡 ≥ 𝑇max starting at a sym-
metric non-negative matrix 𝐏𝑖(𝑇max) converges asymptotically towards
the condition lim𝑡→∞(𝐏𝑖(𝑡) − 𝐏(𝑡)) = 𝟎 for arbitrary 𝐏(0), concluding
the proof of items 1 and 3. Finally, for an LTI system, [24, Theorem
5] states that lim𝑡→∞ 𝐏(𝑡) = 𝐏∞, which is the solution for the Riccati
Eq. (4), showing item 4. □

3.2. Convergence of the state estimates

Now, we analyze the performance of ODEFTC in terms of the
state estimates �̂�𝑖(𝑡). Before stating the main theorem of this work, we
introduce an auxiliary Lemma to aid its proof.
 p

5 
Lemma 3. Define

𝐀∗(𝜅 , 𝑡) = diag𝑁𝑖=1
(

𝐀(𝑡) −𝐊𝑖(𝑡)𝐂𝑖(𝑡)
)

− 𝜅 diag𝑁𝑖=1(𝐏𝑖(𝑡))
(

𝐐 ⊗ 𝐈𝑛
)

(13)

Then, there exist 𝜅0 > 0 such that ∀𝜅 > 𝜅0 the origin of the system
�̇�(𝑡) = 𝐀∗(𝜅 , 𝑡)𝐞(𝑡) is asymptotically stable.

Proof. The proof is given in the Appendix. □

Finally, we can state the following result for our ODEFTC algorithm,
showing that the estimates obtained with it can achieve the same
performance as with the centralized implementation.

Theorem 2. Let 𝜅0 as in Lemma 3. For 𝜅 > 𝜅0, the ODEFTC algorithm
(9) complies the following properties for the estimates �̂�𝑖(𝑡) and the true
ovariance of the estimation error,  𝑖(𝑡) = 𝖼𝗈𝗏{𝐱(𝑡) − �̂�𝑖(𝑡)}:

1. The estimates �̂�𝑖(𝑡) are unbiased.
2.  𝑖(𝑡) is uniformly bounded ∀𝑡 ≥ 0 and sufficiently large 𝜅 > 0.
3. For the LTI case, lim𝑡→∞  𝑖(𝑡) = 𝐏∞ as 𝜅 → ∞, 𝑡 → ∞.

Proof. Let 𝐞𝑖(𝑡) = 𝐱(𝑡) −�̂�𝑖(𝑡) be the estimation error at node 𝑖. According
o the system dynamics (1) and the estimation dynamics defined in

(9b), we can write the error dynamics as follows:
�̇�𝑖(𝑡) = �̇�(𝑡) − ̇̂𝐱𝑖(𝑡)
= 𝐀(𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐰(𝑡) − 𝐀(𝑡)�̂�𝑖(𝑡) −𝐊𝑖(𝑡)

(

𝐲𝑖(𝑡) − 𝐂𝑖(𝑡)�̂�𝑖(𝑡)
)

− 𝜅𝐏𝑖(𝑡)
∑

𝑗∈𝑖

(

�̂�𝑗 (𝑡) − �̂�𝑖(𝑡)
)

= 𝐀(𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐰(𝑡) − 𝐀(𝑡)�̂�𝑖(𝑡) −𝐊𝑖(𝑡)𝐂𝑖(𝑡)𝐱(𝑡) −𝐊𝑖(𝑡)𝐯𝑖(𝑡)

+𝐊𝑖(𝑡)𝐂𝑖(𝑡)�̂�𝑖(𝑡) − 𝜅𝐏𝑖(𝑡)
∑

𝑗∈𝑖

(

�̂�𝑗 (𝑡) − �̂�𝑖(𝑡)
)

=
(

𝐀(𝑡) −𝐊𝑖(𝑡)𝐂𝑖(𝑡)
)

𝐞𝑖(𝑡) − 𝜅𝐏𝑖(𝑡)
∑

𝑗∈𝑖

(

𝐞𝑖(𝑡) − 𝐞𝑗 (𝑡)
)

+ 𝐧𝑖(𝑡)

(14)

where we have defined 𝐧𝑖(𝑡) = 𝐁(𝑡)𝐰(𝑡) −𝐊𝑖(𝑡)𝐯𝑖(𝑡).
Let 𝐞(𝑡) = [𝐞1(𝑡)⊤,… , 𝐞𝑁 (𝑡)⊤]⊤. Then, we can write

�̇�(𝑡) = diag𝑁𝑖=1
(

𝐀(𝑡) −𝐊𝑖(𝑡)𝐂𝑖(𝑡)
)

𝐞(𝑡)
− 𝜅 diag𝑁𝑖=1(𝐏𝑖(𝑡))

(

𝐐 ⊗ 𝐈𝑛
)

𝐞(𝑡) + 𝐧(𝑡)
= 𝐀∗(𝜅 , 𝑡)𝐞(𝑡) + 𝐧(𝑡)

(15)

with 𝐀∗(𝜅 , 𝑡) defined in Lemma 3 and denoting 𝐧(𝑡) = [𝐧1(𝑡)⊤,… ,
𝐧𝑁 (𝑡)⊤]⊤.

Item 1: Recall that the estimates are initialized as �̂�𝑖(0) = 𝐱0, which
orresponds to the mean of the initial state 𝐱(0). Then, E{𝐞𝑖(0)} =
{𝐱(0) − �̂�𝑖(0)} = 𝟎 and E{𝐞(0)} = 𝟎 as well. The evolution of the error

s given by (15). Note that for the elements of the term 𝐧(𝑡) we have
E{𝐧𝑖(𝑡)} = E{𝐁(𝑡)𝐰(𝑡) −𝐊𝑖(𝑡)𝐯𝑖(𝑡)} = 𝟎 due to E{𝐰(𝑡)} = 𝟎 and E{𝐯𝑖(𝑡)} =
. Then, given the dynamics (15), it follows that E{𝐞(𝑡)} = 𝟎, ∀𝑡 ≥ 0,
howing that the estimates are unbiased.

Item 2: To show boundedness of  𝑖(𝑡), we prove that the dynamics
induced by 𝐀∗(𝜅 , 𝑡) are stable for some sufficiently large 𝜅, and that the
rror term 𝐧(𝑡) related to the stochastic noise has bounded covariance.
ote that the noiseless error system �̇�(𝑡) = 𝐀∗(𝜅 , 𝑡)𝐞(𝑡) is already shown

o be stable in Lemma 3 for a large enough 𝜅. Moreover, the covariance
of 𝐧(𝑡) is given by

𝖼𝗈𝗏{𝐧(𝑡)} = 11⊤ ⊗ 𝐁(𝑡)𝐖(𝑡)𝐁(𝑡)⊤ + diag𝑁𝑖=1(𝐊𝑖(𝑡)𝐑𝑖(𝑡)𝐊𝑖(𝑡)⊤) (16)

where we have used 𝖼𝗈𝗏{𝐰(𝑡)} = 𝐖(𝑡), 𝖼𝗈𝗏{𝐯𝑖(𝑡)} = 𝐑𝑖(𝑡). Recalling that
𝑖(𝑡) = 𝑁𝐏𝑖(𝑡)𝐂𝑖(𝑡)⊤𝐑𝑖(𝑡)−1, its value is bounded due to Assumption 2

and 𝐏𝑖(𝑡) being uniformly bounded, as shown in Theorem 1. Thus, 𝐧(𝑡)
has uniformly bounded covariance. As a result, the same conclusion
applies to the covariance of (15).

Item 3: Note that, if we consider the LTI case with constant matrices
,𝐁,𝐂𝑖,𝐖,𝐑𝑖 and we substitute 𝐏𝑖(𝑡) with 𝐏∞, the asymptotic filter
roposed in [20] is recovered. For that filter, it is shown in [20,
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Table 3
Summary of related methods for distributed state estimation of continuous-time systems with stochastic noise.

Filter LTV system Observability Communication Computation of 𝐏𝑖(𝑡) Stability Optimality

[13] Yes Local �̂�𝑖(𝑡) Online, non optimal Convergence of estimates
to true state in absence
of noise

–

[14] No Full state �̂�𝑖(𝑡), 𝐏𝑖(𝑡) Online, non optimal – –
[15] No Collective �̂�𝑖(𝑡), 𝐏𝑖(𝑡) Online, non optimal Convergence of estimates

to true state in absence
of noise, assuming
𝐏𝑖(𝑡) → 𝐏∞

–

[17] No Collective �̂�𝑖(𝑡), 𝐏𝑖(𝑡) Online, non optimal Contains technical errors
(see [18])

Contains technical errors
(see [18])

[2] Yes Collective �̂�𝑖(𝑡), �̂�𝑖(𝑡) Online, convergence to
optimal

Bounded error w.r.t.
centralized assuming
bounded noise

Convergence to optimal
only in absence of
measurement noise

[19] No Collective �̂�𝑖(𝑡), �̂�𝑖(𝑡),
event-triggered

Online, convergence to
optimal

No analysis given No analysis given

[20] No Collective �̂�𝑖(𝑡) 𝐏∞ computed beforehand Boundedness of
covariance of the
estimation error

Covariance converges to
optimal centralized
solution

ODEFTC Yes Collective �̂�𝑖(𝑡), �̂�𝑖(𝑡) Online, fixed-time
algorithm, convergence
to optimal

Boundedness of
covariance of the
estimation error

Covariance converges to
optimal centralized
solution
v
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Theorem 3] that, when 𝜅 → ∞, the true covariance of the estimation
error tends to the covariance 𝐏∞ in the centralized implementation as
𝑡 → ∞.

Recall that we have shown that 𝐏𝑖(𝑡) → 𝐏∞ as 𝑡 → ∞ in Theorem 1.
Thus, considering the filter from [20] as a ‘‘nominal’’ system, we can
nalyze the behavior of the ODEFTC algorithm as a ‘‘perturbed’’ system
ith respect to the nominal one, with a vanishing perturbation due to

he difference between 𝐏𝑖(𝑡) and 𝐏∞.
For ODEFTC, the estimation error dynamics are given by (15).

Therefore, the evolution for the true covariance  (𝑡) = 𝖼𝗈𝗏{𝐞(𝑡)} is given
by
̇ (𝑡) =𝐀∗(𝜅 , 𝑡) (𝑡) +  (𝑡)𝐀∗(𝜅 , 𝑡)⊤

+ 11⊤ ⊗ 𝐁𝐖𝐁⊤ + diag𝑁𝑖=1(𝐊𝑖(𝑡)𝐑𝑖𝐊𝑖(𝑡)⊤)
(17)

For the nominal system from [20] we have that

�̇�′(𝑡) = 𝐀′(𝜅)𝐞′(𝑡) + 𝐧′(𝑡) (18)

where 𝐧′(𝑡) is defined similarly to 𝐧(𝑡) in (15) with 𝐊′
𝑖 = 𝑁𝐏∞𝐂⊤

𝑖 𝐑
−1
𝑖

and

𝐀′(𝜅) = diag𝑁𝑖=1(𝐀 −𝐊′
𝑖𝐂𝑖) − 𝜅(𝐐 ⊗ 𝐏∞) (19)

Then, its true covariance  ′(𝑡) evolves as
̇ ′(𝑡) =𝐀′(𝜅) ′(𝑡) +  ′(𝑡)𝐀′⊤(𝜅)

+ 11⊤ ⊗ 𝐁𝐖𝐁⊤ + diag𝑁𝑖=1(𝐊
′
𝑖𝐑𝑖𝐊′

𝑖
⊤)

(20)

Comparing both systems, we can write the evolution for our covariance
s that of the nominal system with an added perturbation 𝐆(𝑡, (𝑡))
̇ (𝑡) =𝐀′(𝜅) ′(𝑡) +  ′(𝑡)𝐀′⊤(𝜅) + 11⊤ ⊗ 𝐁𝐖𝐁⊤

+ diag𝑁𝑖=1(𝐊
′
𝑖𝐑𝑖𝐊′

𝑖
⊤) +𝐆(𝑡, (𝑡))

(21)

where the perturbation is given by
𝐆(𝑡, (𝑡)) = (𝐀∗(𝜅 , 𝑡) − 𝐀′(𝜅)) (𝑡) +  (𝑡)(𝐀∗(𝜅 , 𝑡) − 𝐀′(𝜅))⊤

+ diag𝑁𝑖=1(𝐊𝑖(𝑡)𝐑𝑖𝐊𝑖(𝑡)⊤) − diag𝑁𝑖=1(𝐊
′
𝑖𝐑𝑖𝐊′

𝑖
⊤)

(22)

Note that
𝐀∗(𝜅 , 𝑡) − 𝐀′(𝜅) =
= diag𝑁𝑖=1(𝐀 −𝑁𝐏𝑖(𝑡)𝐂⊤

𝑖 𝐑
−1
𝑖 𝐂𝑖) − 𝜅 diag𝑁𝑖=1(𝐏𝑖(𝑡))

(

𝐐 ⊗ 𝐈𝑛
)

− diag𝑁𝑖=1(𝐀 −𝑁𝐏∞𝐂⊤
𝑖 𝐑

−1
𝑖 𝐂𝑖) − 𝜅(𝐐 ⊗ 𝐏∞)

= diag𝑁𝑖=1(𝑁(𝐏∞ − 𝐏𝑖(𝑡))𝐂⊤
𝑖 𝐑

−1
𝑖 𝐂𝑖) + 𝜅 diag𝑁𝑖=1(𝐏∞ − 𝐏𝑖(𝑡))(𝐐 ⊗ 𝐈𝑛)

(23)

and
diag𝑁𝑖=1(𝐊𝑖(𝑡)𝐑𝑖𝐊𝑖(𝑡)⊤) − diag𝑁𝑖=1(𝐊

′
𝑖𝐑𝑖𝐊′

𝑖
⊤)

= diag𝑁𝑖=1(𝑁𝐏𝑖(𝑡)𝐂⊤
𝑖 𝐑

−1
𝑖 𝐂𝑖𝐏𝑖(𝑡)⊤) − diag𝑁𝑖=1(𝑁𝐏∞𝐂⊤

𝑖 𝐑
−1
𝑖 𝐂𝑖𝐏∞)

𝑁 ⊤ −1

(24)
= diag𝑖=1(𝑁(𝐏𝑖(𝑡) − 𝐏∞)𝐂𝑖 𝐑𝑖 𝐂𝑖(𝐏𝑖(𝑡) − 𝐏∞)) n

6 
Defining the following terms
𝜂(𝑡) = 2‖𝐀∗(𝜅 , 𝑡) − 𝐀′(𝜅)‖

𝜀(𝑡) = ‖diag𝑁𝑖=1(𝐊𝑖(𝑡)𝐑𝑖𝐊𝑖(𝑡)⊤) − diag𝑁𝑖=1(𝐊
′
𝑖𝐑𝑖𝐊′

𝑖
⊤)‖

(25)

we can write

‖𝐆(𝑡, (𝑡))‖ ≤ 𝜂(𝑡)‖ (𝑡)‖ + 𝜀(𝑡) (26)

Moreover, note that

lim
𝑡→∞

𝜂(𝑡) = 0, lim
𝑡→∞

𝜀(𝑡) = 0 (27)

due to lim𝑡→∞ 𝐏𝑖(𝑡) = 𝐏∞. Therefore, given that ‖ (𝑡)‖ in (26) is also
bounded as a result of item 2 of Theorem 2, the perturbation 𝐆(𝑡, (𝑡))
anishes as 𝑡 → ∞. Moreover, 𝐀′(𝜅) being Hurwitz as a consequence
f [20, Theorem 1] implies exponential convergence of the nominal

system as well as the existence of an appropriate Lyapunov function
uch that an argument of continuity of solutions in the infinite interval
an be applied [29]. This is, for any 𝛿 , 𝛿′ > 0 there exist sufficiently

large 𝑇 > 0 such that ‖𝐆(𝑡, (𝑡))‖ ≤ 𝛿 from (26) and ‖ (𝑡) −  ′(𝑡)‖ ≤ 𝛿′

from [29, Theorem 9.1]. Henceforth, lim𝑡→∞ ‖ (𝑡) −  ′(𝑡)‖ = 0, and as
 consequence lim𝑡→∞  (𝑡) = lim𝑡→∞  ′(𝑡) = 11⊤ ⊗ 𝐏∞. Note that the
esult in [29, Theorem 9.1] is given for a system with an equilibrium
oint at the origin, but it can be straightforwardly applied without loss

of generality to our case with an equilibrium at 11⊤ ⊗ 𝐏∞. □

Remark 2. The main results of this work, namely Theorems 1 and 2,
show that the ODEFTC algorithm (9) can recover the performance of
the optimal centralized filter (3), both in terms of the true covariance

𝑖(𝑡) of the estimation error as well as the estimated covariance 𝐏𝑖(𝑡).
n particular, for the LTI case, both 𝐏𝑖(𝑡) and  𝑖(𝑡) converge to the
ovariance 𝐏∞ from the centralized setting. Thus, (9c) asymptotically

recovers the covariance of the estimates from (9b).

4. Discussion and validation

4.1. Comparison to related work

In Table 3, we summarize the comparison of different approaches
n the literature and our ODEFTC algorithm.

First, note that only [2,13] and our ODEFTC apply to LTV systems,
hile other works only address the LTI case. However, for [13,14],

restrictive assumptions on the system’s observability are required while
he rest of the proposals in the literature need the system to be collec-
ively observable using the aggregated information of the whole sensor

etwork.
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Regarding the computation of 𝐏𝑖(𝑡), the information that needs to be
communicated in each approach varies. Generally, if 𝐏𝑖(𝑡) is computed
online, this requires the transmission of either the matrix 𝐏𝑖(𝑡) itself
r the estimate �̂�𝑖(𝑡) for the inverse covariance matrix �̄�(𝑡) of the

network. The exception is [13], which computes 𝐏𝑖(𝑡) using only local
information, requiring stronger observability assumptions and leading
to non-optimal results. Moreover, [20] pre-computes the asymptotic
matrix 𝐏∞ through a separate distributed protocol. In addition, all
approaches communicate the state estimates �̂�𝑖(𝑡), except [2,19] which
communicate their estimate �̂�𝑖(𝑡) of the average measurement of the
network (in information form) given by 𝐂(𝑡)⊤𝐑(𝑡)−1𝐲(𝑡).

In terms of the stability of the state estimates, [13,15] show con-
vergence to the true state in absence of noise, with [15] requiring
an assumption that the estimated covariance matrices 𝐏𝑖(𝑡) computed
by the nodes converge to the asymptotic centralized solution 𝐏∞,
which may not be fulfilled in practice. In [2], stability is only shown
nder the assumption of null or bounded measurement noise, rather
han Gaussian noise, reaching a bounded error with respect to the
entralized implementation. For [20] and our ODEFTC, it is shown
hat the true covariance  𝑖(𝑡) of the estimates is bounded, without the
eed to consider an absence of noise in the proof. As for the other

works, [14,19] do not provide proof of stability for the state estimates,
and the one in [17] contains technical errors (also in the proof of
optimality), which are critical in some cases according to [18].

Regarding the optimality of the estimates, both [20] and ODEFTC
are shown to recover the performance of the optimal centralized fil-
er. The approach in [2] would only recover similar estimates as the

centralized filter in absence of measurement noise, i.e. if 𝐯𝑖(𝑡) = 𝟎.
owever, note that in Kalman filtering it is assumed that measurement
oise with a given covariance 𝐑𝑖(𝑡) ≻ 𝟎 is present, so having null noise
s contradictory with this assumption. The other works either do not
nalyze this aspect, or the proofs contain errors.

In regards to the computation of the estimated covariance matrices
𝐏𝑖(𝑡), the works [13–15,17] compute them online, but obtain matrices
that do not necessarily correspond to the true covariance  𝑖(𝑡) of the
stimation error. This means that the matrices 𝐏𝑖(𝑡) in these works may
ot be useful to evaluate the confidence on their state estimates. The
roposals in [2,19] recover the same covariance matrix 𝐏𝑖(𝑡) as in the

centralized approach, but this estimated covariance does not necessar-
ily match the true covariance of the state estimates produced by the
distributed filter (in [2], they match only in absence of measurement
oise, while no analysis is given in [19]).

A different approach is taken in [20], where the asymptotic matrix
𝐏∞ of the centralized solution is pre-computed by the nodes of the
network before running the filter to generate state estimates. Then,
since the estimates recover the performance of the centralized solution
as 𝑡 → ∞, their true covariance  𝑖(𝑡) also tends to 𝐏∞. However, the
approximation of using 𝐏∞ from the start may cause overconfidence
during the transient period.

In contrast, with ODEFTC we compute the estimated covariance
matrices online, through a fixed-time consensus algorithm. After the
fixed convergence time 𝑇max, the estimated covariance 𝐏𝑖(𝑡) computed
at each node evolves through the same dynamics as 𝐏(𝑡) in the optimal
centralized filter, and converges to the value 𝐏∞ as well, as 𝑡 → ∞.
Additionally, note that computing the matrices 𝐏𝑖(𝑡) online makes our
algorithm applicable for LTV systems, as opposed to [20].

In summary, our approach improves the results from [20] by ex-
ending the optimal proposal to the LTV case, and provides an advan-
age with respect to previous works addressing LTV systems [2,13] by
econstructing the covariance value 𝐏(𝑡) of the centralized filter using

only local communication and providing stable estimates even in the
presence of Gaussian noise, without assuming noise bounds.

Remark 3. In terms of the computational complexity of the different
approaches, note that the main bottleneck for our ODEFTC and for the
related works lies on the matrix multiplications, with complexity (𝑛2)
7 
Fig. 2. Sensor network used in the simulation experiments.

per iteration where 𝑛 is the state dimension, and matrix inversions,
which can be performed offline beforehand in the LTI case. Concerning
the number of neighbors, all approaches, including our own, have a
comparable complexity (|𝑖|) per iteration.

4.2. Simulation experiments

We now provide simulation examples to validate our proposal and
compare its results with previous approaches. The experiments have
been executed on Matlab R2022a, on a computer equipped with an Intel
Core i7-8700 CPU.

In all experiments we consider a sensor network consisting of 𝑁 = 6
ensing nodes, represented in Fig. 2. The pseudo-code for the imple-

mentation of ODEFTC is given in Algorithm 1, where we omit the time
dependence for simplicity and use the superindex ∙− to indicate the
alue of a variable in the previous simulation step. We have set the
imulation step to ℎ = 10−4 s.
Algorithm 1: ODEFTC
Initialize estimates �̂�𝑖 ← 𝐱0, 𝐏𝑖 ← 𝐏0, 𝐊𝑖 ← 𝑁𝐏𝑖𝐂⊤

𝑖 𝐑
−1
𝑖

nitialize auxiliary variables 𝐐𝑖 = 𝟎 (which comply ∑𝑁
𝑖=1 𝐐𝑖 = 𝟎)

or each time step do
for each node 𝑖 ∈ {1,… , 𝑁} do

Get measurement 𝐲−𝑖
�̂�𝑖 ← �̂�−𝑖 +ℎ

(

𝐀−�̂�−𝑖 +𝐊−
𝑖
(

𝐲−𝑖 − 𝐂−
𝑖 �̂�

−
𝑖
)

+ 𝜅𝐏−
𝑖
∑

𝑗∈𝑖
(�̂�−𝑗 − �̂�−𝑖 )

)

𝐏𝑖 ← 𝐏−
𝑖 + ℎ

(

𝐀−𝐏−
𝑖 + 𝐏−

𝑖 𝐀
−⊤ + 𝐁−𝐖−𝐁−⊤ − 𝐏−

𝑖 �̂�
−
𝑖 𝐏

−
𝑖

)

𝐐𝑖 ← 𝐐−
𝑖 + ℎ

(

𝛼
∑

𝑗∈𝑖
𝜙(�̂�−

𝑖 − �̂�−
𝑗 , 𝜉 , 𝛾)

)

�̂�𝑖 ← 𝑁𝐂⊤
𝑖 𝐑

−1
𝑖 𝐂𝑖 −𝐐𝑖

𝐊𝑖 ← 𝑁𝐏𝑖𝐂⊤
𝑖 𝐑

−1
𝑖

Broadcast �̂�𝑖 to neighbors 𝑗 ∈ 𝑖
end

end

In the following, we test our approach on both LTI and LTV systems
f the form (1) to validate our theoretical results. We explore the

effect of the tuning parameter 𝜅 on the performance of the proposal,
particularly in recovering the optimal solution as 𝜅 → ∞. In addition,
we compare the performance of our approach with the centralized
Kalman-Bucy filter, as well as with other distributed approaches for LTI
and LTV systems.

For the comparison with other approaches in the literature, we run
simulations with a length of 𝑇 , for each of the considered approaches.
𝑓
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Fig. 3. Estimation example for a LTI system with our ODEFTC algorithm. The shaded blue area represents the confidence interval, according to the estimated covariance.
As performance metrics for comparison, we compute the following
quantities:

 𝑖
�̂� = 1

𝑇𝑓 ∫

𝑇𝑓

0
‖𝐱(𝑡) − �̂�𝑖(𝑡)‖2d𝑡

�̂� = 1
𝑁

𝑁
∑

𝑖=1
 𝑖
�̂� , �̂� = 𝗌𝗍𝖽( 𝑖

�̂�)

 𝑖
𝐏 = 1

𝑇𝑓 ∫

𝑇𝑓

0
‖𝐏∗(𝑡) − 𝐏𝑖(𝑡)‖F d𝑡

𝐏 = 1
𝑁

𝑁
∑

𝑖=1
 𝑖
𝐏, 𝐏 = 𝗌𝗍𝖽( 𝑖

𝐏)

(28)

where we use 𝐏∗(𝑡) = 𝐏∞ for the LTI case and 𝐏∗(𝑡) = 𝐏(𝑡) from the
centralized filter in the LTV case. Note that �̂� represents the mean
square error of the estimates of a node with respect to the true state,
𝐏 represents the error between the estimated covariance matrix and
the desired optimal solution, and �̂� , 𝐏 represent the disagreement
between nodes in terms of the standard deviation between error values
of the nodes. Small values of these metrics are desirable.

4.2.1. LTI systems
Let the system be described by (1) with

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐁 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
0 0
1 0
0 1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐖 =
[

1 0
0 1

]

(29)

where the state is given by 𝐱(𝑡) = [𝑥(𝑡), 𝑦(𝑡), 𝑣𝑥(𝑡), 𝑣𝑦(𝑡)]⊤. The sensors
obtain measurements in the form of (2) with
𝐂1 = 𝐂5 =

[

1 0 0 0
]

𝐂2 = 𝐂4 =
[

1 0 0 0
0 1 0 0

]

[ ]

(30)
𝐂3 = 𝐂6 = 0 2 0 0

8 
and the noise covariances for the measurement noises 𝐯𝑖(𝑡) are given by
𝐑1 = 0.01, 𝐑3 = 𝐑6 = 0.03, 𝐑5 = 0.05 and

𝐑2 = 𝐑4 =
[

0.01 0
0 0.01

]

(31)

Note that for the LTI case, the computation of �̂�𝑖(𝑡) from (9d)–(9e)
reduces to
̇̂𝐙𝑖(𝑡) = −𝛼

∑

𝑗∈𝑖

𝜙(�̂�𝑖(𝑡) − �̂�𝑗 (𝑡), 𝜉 , 𝛾) (32)

with �̂�𝑖(0) = 𝐙𝑖, due to 𝐙𝑖 = 𝑁𝐂⊤
𝑖 𝐑

−1
𝑖 𝐂𝑖 being constant. Thus, since

‖�̇�𝑖‖ = 0, we can set 𝜉 = 0 as per Lemma 2. For the other parameters,
we have set 𝜅 = 100, 𝛼 = 10, 𝛾 = 0.5.

We have initialized the system state at 𝑡 = 0 to 𝐱(0) = [0, 0, 0, 0]⊤. For
the estimates, we have initialized them at random values for �̂�(0) and
random symmetric covariance matrices 𝐏(0), in order to verify that con-
vergence is achieved even if the initial conditions 𝐱0,𝐏0 are unknown in
practice. Figs. 3 and 4 show the resulting estimates and the convergence
of the covariance matrices to the desired asymptotic value, respectively.
The shaded area in Fig. 3 represents the confidence interval for the
estimates, given by twice the estimated standard deviation (as given by
the estimated covariance matrix 𝐏𝑖(𝑡) for each node). The estimates for
all nodes are plotted in an overlapping manner. Note that, despite the
random initialization, convergence to the agreement values is quickly
achieved.

To further investigate the effect of 𝜅 on the steady state true covari-
ance  𝑖(𝑡) of the estimation error, we have run simulations for a range
of values of 𝜅. The results are represented in Fig. 5, where we denote
as  𝑖,∞ the true covariance obtained in steady state (i.e. excluding the
initial transitory period while variables converge). In addition, recall
that 𝗍𝗋( 𝑖,∞) is equivalent to the mean squared error (MSE) of the
state estimates in steady state, so this figure can also be read as the
estimation accuracy of our ODEFTC for LTI systems in this sense. Note
that the system is locally observable from nodes 2 and 4, so these nodes
achieve a small covariance even for small values of 𝜅. Moreover, for
𝜅 = 1 the true covariance is very high, which might mean that 𝜅 ≯ 𝜅 ,
0
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Fig. 4. Convergence of 𝐏𝑖(𝑡) for all nodes 𝑖 ∈  towards the asymptotic value of the
optimal centralized filter 𝐏∞ in the LTI case.

Fig. 5. Convergence of the steady state true covariance of the estimation error,  𝑖,∞,
o the optimal centralized solution 𝐏∞ as the consensus gain 𝜅 is increased.

recalling 𝜅0 from Lemma 3 as the minimum gain that ensures stability
of the algorithm. However, as expected from the theoretical analysis,
in steady state the true covariance of the estimates  𝑖(𝑡) tends to the
optimal centralized solution 𝐏∞ as 𝜅 is increased, without needing
𝜅 → ∞ in practice to achieve acceptable results.

For the comparison with other approaches in the literature, we
computed the performance metrics (28) on 20 simulations with 𝑇𝑓 =
100 s each, for the LTI filters in Table 3 that can be applied to the case of
a network with collective observability, as well as the optimal solution
obtained with the centralized Kalman-Bucy filter. We have initialized
all simulations at �̂�(0) = 𝐱0 = [0, 0, 0, 0]⊤ and 𝐏𝑖(𝑡) = 𝐈𝑛. We have
maintained 𝜅 = 100, 𝛼 = 10, 𝛾 = 0.5 as the parameters for ODEFTC
and 𝜅 = 100 as the consensus gain for [20].

The results are summarized in Table 4, where the average value of
ach metric over the 20 simulations is shown. In terms of the mean
quare error �̂�, our proposal as well as [17,20] obtain comparable
esults. However, the disagreement between nodes is smaller for our
roposal and [20]. In terms of the estimated covariance matrix 𝐏𝑖(𝑡),
ur proposal has similar performance to the centralized filter, with
9 
Table 4
Comparison of performance for LTI filters, in terms of the error in the state estimates
�̂� and estimated covariance 𝐏, as well as the corresponding disagreement between
odes, �̂� and 𝐏.
Filter �̂� �̂� 𝐏 𝐏

Centralized filter 0.4871 – 0.0035 –
ODEFTC 0.5530 0.0242 0.0035 3 × 10−5
[15] 0.8726 0.1316 0.4253 0.1508
[17] 0.5402 0.1103 4.3264 1.8493
[20] 0.5535 0.0242 – –

all nodes recovering 𝐏∞ asymptotically. The proposals in [15,17] do
not converge to the optimal value 𝐏∞. Moreover, the nodes do not
chieve consensus for 𝐏𝑖(𝑡). Similar values with respect to [20] are to

be expected, since our proposal recovers the asymptotic filter from [20]
in steady state. However, in the following we show that our proposal
can also be applied to LTV systems, as opposed to [20].

4.2.2. LTV systems
Consider similar dynamics as for the previous case, but with a

time-varying matrix

𝐀(𝑡) =
⎡

⎢

⎢

⎢

⎢

⎣

0 0 𝗌𝗂𝗇(𝑡) 0
0 0 0 𝗌𝗂𝗇(𝑡)
0 0 𝖼𝗈𝗌(𝑡) 0
0 0 0 𝖼𝗈𝗌(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

(33)

For the measurements, we consider the same matrices 𝐂𝑖(𝑡) as in the
revious case, but we include the time-varying covariance matrices
1(𝑡) = 0.05 + 0.01𝗌𝗂𝗇(0.1𝑡), 𝐑3(𝑡) = 0.03 + 0.01𝖼𝗈𝗌(0.1𝑡). The rest of

he matrices are kept the same as in the LTI example. We have set
𝜅 = 1000, 𝛼 = 24, 𝛾 = 0.7, 𝜉 = 100. Fig. 6 shows the estimation
result with our ODEFTC. Fig. 7 shows the recovery of the time-varying
matrix 𝐏(𝑡) from the centralized filter, with the Table 5 providing a
numerical comparison of the variances for each state variable computed
t each node. The values are shown for different instants in the simu-

lation, to show that agreement is reached and maintained despite the
ime-variant dynamics.

Furthermore, Fig. 8 shows the recovery of the matrix �̄�(𝑡) in a
time smaller than the theoretical convergence time 𝑇max. As seen in
the Figure, the convergence time is approximately 0.015s. Considering
the choice of parameters 𝛼 , 𝛾, 𝓁 = 8 edges and algebraic connectivity
𝜆 = 0.7639, along with the relation given in Lemmas 1–2, the the-
oretical guaranteed convergence time is 𝑇max = 1.9584 s, providing a
conservative upper bound.

To illustrate the true estimation accuracy of our filter in the time-
variant case, Fig. 9 shows a comparison of the mean squared error
(MSE) of our ODEFTC with the theoretical expected value, recalling
that it is given by 𝗍𝗋(𝐏𝑖(𝑡)) in the context of Kalman filtering. Note
that, due to the time-varying matrices, the expected MSE varies over
time. For this experiment, we have run 100 simulations in order to
have different noise realizations, and we compute the MSE over the
realizations. We include the results obtained for our ODEFTC algorithm
with different choices of the gain 𝜅, and for the centralized Kalman-
Bucy filter, over the same 100 realizations. We have initialized the
stimates and covariance matrices of the nodes to random values, to

account for the fact that the initial conditions 𝐱0, 𝐏0 may not be known
n practice. In addition, we have computed the values for each node
eparately and plotted them in the figure. While each node will have

a different noise realization for each simulation, they behave similarly
in MSE, producing estimates that are consistent with the value given
by 𝗍𝗋(𝐏𝑖(𝑡)). In addition, increasing 𝜅 leads to better agreement between
nodes and it improves the estimation accuracy, achieving results closer
to the centralized filter.

Similarly, Fig. 10 shows the estimation error for the nodes in
comparison to the estimation error from the centralized filter for one
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Fig. 6. Estimation example for a LTV system with our ODEFTC algorithm. The shaded blue area represents the confidence interval of the state estimates, according to their
estimated covariance.
Table 5
Numerical comparison of variances for each state variable computed by each node at several times. Agreement is reached and maintained
despite the LTV dynamics.

Centralized
filter

ODEFTC

𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5 𝑖 = 6

𝑡 = 2 s

𝑥(𝑡) 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231 0.0231
𝑦(𝑡) 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177 0.0177
𝑣𝑥(𝑡) 0.3352 0.3352 0.3351 0.3351 0.3351 0.3351 0.3352
𝑣𝑦(𝑡) 0.3092 0.3092 0.3092 0.3092 0.3092 0.3092 0.3092

𝑡 = 5 s

𝑥(𝑡) 0.0245 0.0245 0.0245 0.0245 0.0245 0.0245 0.0245
𝑦(𝑡) 0.0187 0.0187 0.0187 0.0187 0.0187 0.0187 0.0187
𝑣𝑥(𝑡) 0.3888 0.3888 0.3888 0.3888 0.3888 0.3888 0.3888
𝑣𝑦(𝑡) 0.3552 0.3552 0.3553 0.3552 0.3552 0.3552 0.3553

𝑡 = 7 s

𝑥(𝑡) 0.0346 0.0346 0.0346 0.0346 0.0346 0.0346 0.0346
𝑦(𝑡) 0.0251 0.0251 0.0251 0.0251 0.0251 0.0251 0.0251
𝑣𝑥(𝑡) 1.4734 1.4736 1.4734 1.4735 1.4733 1.4733 1.4734
𝑣𝑦(𝑡) 1.1174 1.1173 1.1175 1.1173 1.1174 1.1174 1.1175
noise realization, confirming that comparable results to the centralized
filter can be obtained even in the time-variant case.

For the comparison with other approaches, we take into account [2,
13], which consider LTV systems. We compute the metrics (28), setting
the consensus gains to 𝜅 = 1000 for all algorithms. The results are
summarized in Table 6. Note that the table shows results including the
transitory period while convergence is not yet achieved. Our ODEFTC
achieves similar results to the centralized filter, with a high level of
agreement between nodes. In contrast, [13] produces a higher esti-
mation error with increased disagreement between nodes. Moreover,
this last method produces diverging covariance matrices in this case,
with no agreement between nodes, since the system is not locally
observable for each agent. This can be seen in Fig. 11, where the same
simulation example from Fig. 6 is replicated with this algorithm. While
our ODEFTC achieves agreement in both estimate �̂�𝑖(𝑡) and covariance
matrix 𝐏𝑖(𝑡), here the nodes produce different covariance matrices,
which increase in magnitude for nodes that cannot completely observe
the system using their local measurement. Therefore, the covariance
10 
matrices produced by [13] in this context do not accurately represent
the expected error of the state estimates, in contrast to our proposal.
For [2], acceptable results are achieved on average, but our algorithm
still outperforms this approach, achieving a closer performance to
the centralized implementation. In addition, recall the guarantees for
the proposal in [2] are given in absence of measurement noise. For
bounded noise, a bounded estimation error compared to the estimates
from the centralized filter is expected, but the assumption in Kalman
filtering is that the noise is Gaussian, and therefore has an unbounded
distribution. As shown in Fig. 12, the performance of the filter degrades
significantly in the interval where the noise covariances are higher and
the measurement noise takes larger values, producing a loss of agree-
ment on the estimates from the nodes. In comparison, recalling Fig. 6
and our theoretical results, our proposal is able to handle stochastic
noise without assuming a bounded noise distribution.
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Fig. 7. Convergence of 𝐏𝑖(𝑡) for all nodes 𝑖 ∈  to the matrix 𝐏(𝑡) from the centralized
filter in the LTV case.

Fig. 8. Convergence of �̂�𝑖(𝑡) for all nodes 𝑖 ∈  to �̄�(𝑡). The theoretical guaranteed
convergence time is 𝑇max = 1.9584 s, but agreement is reached before that in practice,
in approximately 0.015 s.

Table 6
Comparison of performance for LTV filters, in terms of the error in the state estimates
�̂� and estimated covariance 𝐏, as well as the corresponding disagreement between
nodes, �̂� and 𝐏.

Filter �̂� �̂� 𝐏 𝐏

Centralized filter 0.6918 – 0 –
ODEFTC 0.7141 0.0024 0.0012 8 ×10−4

[13] 1.0518 0.0322 63.4073 48.8591
[2] 0.8693 0.0743 0.0256 0.0082

5. Conclusions

In this work, we have proposed the ODEFTC algorithm to achieve
distributed state estimation of continuous-time systems with stochas-
tic noise. The proposal, which is based on fixed-time consensus, can
recover the optimal centralized solution, with the covariance of the
estimation error tending to that of the centralized Kalman-Bucy filter.
Moreover, each node computes an estimated covariance matrix online,
which also recovers the value for the centralized implementation,
thus serving as means to evaluate the confidence on the estimates.
11 
Fig. 9. Mean square error of ODEFTC compared to its expected value, given by 𝗍𝗋(𝐏𝑖(𝑡)),
computed over 100 noise realizations. The values for all nodes are plotted. As the gain
𝜅 is increased, better agreement between nodes and improved estimation accuracy is
achieved, closer to that of the centralized filter.

Fig. 10. Estimation error for the nodes in the distributed LTV case, compared to the
error of the centralized Kalman-Bucy filter, for different values of consensus gain 𝜅.
Increasing 𝜅 leads to better agreement and to recovering the solution of the centralized
filter.

Due to this online computation, our proposal can be applied to time-
variant systems, in contrast to previous approaches. We have validated
our proposal through several experiments and shown its effectiveness
against the approaches from the state of the art.
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Fig. 11. Estimation example for a LTV system with the algorithm from [13]. The covariance matrices 𝐏𝑖(𝑡) do not reach agreement and might diverge towards infinity for systems
that are not locally observable from each node.

Fig. 12. Estimation example for a LTV system with the algorithm from [2]. The algorithm converges to the solution from the centralized filter only if 𝐯𝑖(𝑡) = 𝟎 but, when larger
measurement noise is present, its performance degrades.
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Appendix. Proof of Lemma 3

Take the Lyapunov function

𝑉 (𝐞(𝑡)) = 𝐞(𝑡)⊤diag𝑁𝑖=1(𝐏𝑖(𝑡)−1)𝐞(𝑡) (A.1)

recalling that 𝐏𝑖(𝑡) is uniformly bounded as a result of Theorem 1, posi-
ive definite and symmetric. Then, using d

d𝑡 (𝐏𝑖(𝑡)−1) = −𝐏𝑖(𝑡)−1�̇�𝑖(𝑡)𝐏𝑖(𝑡)−1

e have that
̇ (𝐞(𝑡)) =2𝐞(𝑡)⊤diag𝑁𝑖=1(𝐏𝑖(𝑡)−1)�̇�(𝑡)+𝐞(𝑡)⊤diag𝑁𝑖=1(�̇�𝑖(𝑡)−1)𝐞(𝑡)

=2𝐞(𝑡)⊤diag𝑁𝑖=1(𝐏𝑖(𝑡)−1)𝐀∗(𝜅 , 𝑡)𝐞(𝑡)
− 𝐞(𝑡)⊤diag𝑁𝑖=1(𝐏𝑖(𝑡)−1�̇�𝑖(𝑡)𝐏𝑖(𝑡)−1)𝐞(𝑡)

(A.2)

Note that

diag𝑁
𝑖=1(𝐏𝑖(𝑡)−1)𝐀∗(𝜅 , 𝑡)

= diag𝑁
𝑖=1(𝐏𝑖(𝑡)−1)(diag𝑁

𝑖=1
(

𝐀(𝑡) −𝐊𝑖(𝑡)𝐂𝑖(𝑡)
)

− 𝜅 diag𝑁
𝑖=1(𝐏𝑖(𝑡))

(

𝐐 ⊗ 𝐈𝑛
)

)

= diag𝑁
𝑖=1(𝐏𝑖(𝑡)−1𝐀(𝑡) −𝑁𝐂𝑖(𝑡)⊤𝐑𝑖(𝑡)−1𝐂𝑖(𝑡)) − 𝜅

(

𝐐 ⊗ 𝐈𝑛
)

(A.3)

and
𝐏𝑖(𝑡)−1�̇�𝑖(𝑡)𝐏𝑖(𝑡)−1

= 𝐏𝑖(𝑡)−1(𝐀(𝑡)𝐏𝑖(𝑡) + 𝐏𝑖(𝑡)𝐀(𝑡)⊤

+ 𝐁(𝑡)𝐖(𝑡)𝐁(𝑡)⊤ − 𝐏𝑖(𝑡)�̂�𝑖(𝑡)𝐏𝑖(𝑡))𝐏𝑖(𝑡)−1

= 𝐏𝑖(𝑡)−1𝐀(𝑡) + 𝐀(𝑡)⊤𝐏𝑖(𝑡)−1 + 𝐏𝑖(𝑡)−1𝐁(𝑡)𝐖(𝑡)𝐁(𝑡)⊤𝐏𝑖(𝑡)−1 − �̂�𝑖(𝑡)

(A.4)

Denote the following matrices as
𝐌1(𝑡) =diag𝑁𝑖=1(𝐏𝑖(𝑡)−1𝐀(𝑡) −𝑁𝐂𝑖(𝑡)⊤𝐑𝑖(𝑡)−1𝐂𝑖(𝑡))

𝐌2(𝑡) =diag𝑁𝑖=1(𝐏𝑖(𝑡)−1𝐀(𝑡) + 𝐀(𝑡)⊤𝐏𝑖(𝑡)−1

+ 𝐏𝑖(𝑡)−1𝐁(𝑡)𝐖(𝑡)𝐁(𝑡)⊤𝐏𝑖(𝑡)−1 − �̂�𝑖(𝑡))

(A.5)

and note that both matrices are uniformly bounded, given that 𝐀(𝑡),
(𝑡), 𝐖(𝑡), 𝐂𝑖(𝑡), 𝐑𝑖(𝑡) are bounded due to Assumption 2, 𝐏𝑖(𝑡) ≻ 𝟎

uniformly bounded according to Theorem 1, and �̂�𝑖(𝑡) is bounded due to
he convergence to �̄�(𝑡) shown in Lemma 2, where �̄�(𝑡) is also bounded
s a consequence of Assumption 2.

Considering 𝐌1(𝑡) and 𝐌2(𝑡), we have
̇ (𝐞(𝑡)) = 2𝐞(𝑡)⊤𝐌1(𝑡)𝐞(𝑡) − 2𝜅𝐞(𝑡)⊤(𝐐 ⊗ 𝐈𝑛)𝐞(𝑡) − 𝐞(𝑡)⊤𝐌2(𝑡)𝐞(𝑡)

≤ 2𝜆1‖𝐞(𝑡)‖2 + 𝜆2‖𝐞(𝑡)‖2 − 2𝜅 𝜆‖𝐞(𝑡)‖2
(A.6)

where 𝜆 is the smallest non-zero eigenvalue of 𝐐, i.e. the alge-
raic connectivity of , and 𝜆1 = sup𝑡≥0 ‖𝐌1(𝑡)‖, 𝜆2 = sup𝑡≥0 ‖𝐌2(𝑡)‖.
herefore, if

𝜅 > 2𝜆1 + 𝜆2
2𝜆

= 𝜅0 (A.7)

then, all trajectories 𝐞(𝑡) asymptotically converge to the origin.

Data availability

Data will be made available on request.
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