ODEFTC: Optimal Distributed Estimation based on Fixed-Time Consensus

Perez-Salesa, Irene (Universidad de Zaragoza) ; Aldana-López, Rodrigo (Universidad de Zaragoza) ; Sagüés, Carlos (Universidad de Zaragoza)
ODEFTC: Optimal Distributed Estimation based on Fixed-Time Consensus
Resumen: Distributed state estimation has been a significant research topic in recent years due to its applications for multi-robot and large-scale systems. Several approaches have been proposed in the context of continuous-time systems with stochastic noise, with limitations regarding observability, assumptions on the noise bounds, or requirements to pre-compute auxiliary global information offline. Moreover, many of these approaches are suboptimal with respect to a centralized implementation, and optimal proposals only apply to time-invariant systems. The present work proposes the ODEFTC algorithm for distributed state estimation based on fixed-time consensus. The proposal computes state estimates and corresponding covariance matrices online, making it suitable for time-variant systems. We verify the stability of the proposal through formal analysis, and we show that the optimal centralized solution, given by the Kalman-Bucy filter, can be recovered asymptotically. Additionally, we provide numerical results and an in-depth statistical and numerical discussion to show the advantages of our proposal against other approaches in the literature.
Idioma: Inglés
DOI: 10.1016/j.inffus.2024.102783
Año: 2024
Publicado en: Information Fusion 116 (2024), 102783 [13 pp.]
ISSN: 1566-2535

Factor impacto JCR: 15.5 (2024)
Categ. JCR: COMPUTER SCIENCE, THEORY & METHODS rank: 3 / 147 = 0.02 (2024) - Q1 - T1
Categ. JCR: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE rank: 4 / 204 = 0.02 (2024) - Q1 - T1

Factor impacto SCIMAGO: 4.128 - Hardware and Architecture (Q1) - Software (Q1) - Signal Processing (Q1) - Information Systems (Q1)

Tipo y forma: Article (Published version)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2025-09-22-14:49:09)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Ingeniería de Sistemas y Automática



 Record created 2024-12-12, last modified 2025-09-23


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)