000147132 001__ 147132
000147132 005__ 20250923084439.0
000147132 0247_ $$2doi$$a10.1021/acsami.4c11565
000147132 0248_ $$2sideral$$a141038
000147132 037__ $$aART-2024-141038
000147132 041__ $$aeng
000147132 100__ $$aKoutsogiannis, Panagiotis
000147132 245__ $$aAtomic-Scale Characterization of 180° Conductive Domain Walls in PbZr<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>3</sub>
000147132 260__ $$c2024
000147132 5060_ $$aAccess copy available to the general public$$fUnrestricted
000147132 5203_ $$aConductive domain walls (DWs) in ferroic materials have emerged as promising candidates for applications in nanoelectronics due to their unique properties such as high conductivity and nonvolatility. In this study, we investigate the atomic structure and conductivity of nominally neutral 180° DWs artificially created in an epitaxial thin film of tetragonal PbZr0.1Ti0.9O3. Using piezoresponse force microscopy and scanning transmission electron microscopy, we elucidate the complex structure of these 180° DWs and their coupling with ferroelastic domains, revealing that they exhibit a complex structure due to the strain-mediated interplay with the ferroelastic domains. Our results demonstrate that the 180° DWs conductivity is associated with the emergence of polar discontinuities, including the formation of tail-to-tail charged segments, which has been further confirmed by electron energy loss spectroscopy. Additionally, we investigated the long-term performance of these domain boundaries, demonstrating their unique mobility and structural stability. Our findings provide insights into the atomic-scale mechanisms that turn nominally neutral DWs into highly conductive channels, paving the way for their use in advanced nanoelectronic devices.
000147132 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/DGA/E13-23R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER E28-23R$$9info:eu-repo/grantAgreement/EC/H2020/ 861153/EU/Materials for Neuromorphic Circuits/MANIC$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 861153-MANIC$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-112914RB-I00
000147132 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000147132 590__ $$a8.2$$b2024
000147132 592__ $$a1.921$$b2024
000147132 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b31 / 147 = 0.211$$c2024$$dQ1$$eT1
000147132 593__ $$aMaterials Science (miscellaneous)$$c2024$$dQ1
000147132 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b83 / 460 = 0.18$$c2024$$dQ1$$eT1
000147132 593__ $$aNanoscience and Nanotechnology$$c2024$$dQ1
000147132 593__ $$aMedicine (miscellaneous)$$c2024$$dQ1
000147132 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000147132 700__ $$aRisch, Felix
000147132 700__ $$0(orcid)0000-0002-0111-8284$$aPardo, José A.$$uUniversidad de Zaragoza
000147132 700__ $$aStolichnov, Igor
000147132 700__ $$0(orcid)0000-0002-6761-6171$$aMagén, César
000147132 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000147132 773__ $$g16, 48 (2024), 66341-66349$$pACS appl. mater. interfaces$$tACS applied materials & interfaces$$x1944-8244
000147132 8564_ $$s2706868$$uhttps://zaguan.unizar.es/record/147132/files/texto_completo.pdf$$yVersión publicada
000147132 8564_ $$s3369011$$uhttps://zaguan.unizar.es/record/147132/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000147132 909CO $$ooai:zaguan.unizar.es:147132$$particulos$$pdriver
000147132 951__ $$a2025-09-22-14:49:20
000147132 980__ $$aARTICLE