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Genetic basis of right and left ventricular
heart shape

Richard Burns1, William J. Young 2,3, Nay Aung 2,3,4, Luis R. Lopes 3,5,
Perry M. Elliott 3,5, Petros Syrris 5, Roberto Barriales-Villa 6, Catrin Sohrabi2,
Steffen E. Petersen 2,3,4,7, Julia Ramírez 2,8,9,10, Alistair Young 1,10 &
Patricia B. Munroe 2,4,10

Heart shape captures variation in cardiac structure beyond traditional phe-
notypes of mass and volume. Although observational studies have demon-
strated associations with cardiometabolic risk factors and diseases, its genetic
basis is less understood. We utilised cardiovascular magnetic resonance ima-
ges from 45,683 UK Biobank participants to construct a heart shape atlas from
bi-ventricular end-diastolic surface mesh models through principal compo-
nent (PC) analysis. Genome-wide association studies were performed on the
first 11 PCs that captured 83.6% of shape variance. We identified 43 significant
loci, 14 were previously unreported for cardiac traits. Genetically predicted
PCs were associated with cardiometabolic diseases. In particular two PCs (2
and 3) linked with more spherical ventricles being associated with increased
risk of atrial fibrillation. Our study explores the genetic basis of multi-
dimensional bi-ventricular heart shape using PCA, reporting new loci and
biology, as well as polygenic risk scores for exploring genetic relationships of
heart shape with cardiometabolic diseases.

Cardiovascular disease (CVD) is a major burden for the healthcare
system, with associated morbidity and mortality1. Cardiovascular
performance is intrinsically linked to cardiac structure, which is influ-
enced by environmental and disease processes2, as well as genetic
factors3.

Previously, standard cardiac structural phenotypes have inclu-
ded left ventricular (LV) and right ventricular (RV) mass, volume,
mass to volume ratio, sphericity index, conicity and myocardial
strain4–10. These measures have proven to be important for char-
acterizing CVD and assessing individual outcomes. Higher LV mass
to volume ratio for example, is strongly associated with CVD and
predictive of clinical events such as heart failure, stroke, coronary

heart disease and death7,11–14. Left and right end-diastolic volume,
end-systolic volume, mass, ejection fraction, concentricity, strain
and wall thickness have all demonstrated significant associations
with both dilated and hypertrophic cardiomyopathy (DCM and
HCM, respectively)8,9,15. Sphericity has been associated with atrial
fibrillation (AF) and cardiomyopathy16–19. Importantly, these cardiac
phenotypes have shown high heritability, and several common var-
iants and candidate genes have been identified through genome-
wide association studies (GWAS)3,7,10,20–24. However, these shape
measures are simple one-dimensional metrics and do not capture
the multidimensional shape variations that can be extracted from
advanced imaging examinations.
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Statistical shape atlases, constructed from individual heart
shapes, provide in-depth quantification of cardiac shape variations25

and their relationships with cardiovascular risk factors andCVD26–28 for
both the left29 and right ventricles30. Shape variations are more
strongly related with cardiovascular risk factors such as hypertension,
hyperlipidaemia, diabetes, smoking andobesity30, andmorepredictive
of major adverse cardiovascular events2 than standard cardiac struc-
tural phenotypes. Genetic associations with heart shape variation may
therefore provide information not found from genetic analyses on
standard cardiac structural phenotypes and may assist in under-
standing themechanismsunderlying thedevelopmentofCVD.Genetic
analysis of shape phenotypes has also been previously performed on
other biological domains such as facial landmarks31, illustrating the
utility of shape phenotypes in gene discovery.

Here, we constructed a bi-ventricular statistical shape atlas with
end-diastolic shape variations from 45,683 UK Biobank participants
with cardiac magnetic resonance (CMR) data available. An automated
machine learning pipeline was used to detect cardiac landmarks and
myocardial contours from CMR images in both short and long axis
views. A subdivision surface mesh template was customised to each
participant using diffeomorphic non-rigid registration30,32. Principal
component analysis (PCA) was used to derive principal components
(PCs) from the heart shape models to be used as multi-dimensional
heart shape phenotypic traits. We estimated the heritability and per-
formed GWAS for these PCs, as well as bioinformatics analyses to
identify candidate genes and key biological pathways. Furthermore,
we explored associations between the PCs and their polygenic risk
scores (PRS) with traditional CMR phenotypes and cardiovascular risk
factors and outcomes using correlation metrics and regression
analyses.

In thiswork, wediscover there is a significant genetic contribution
to PC-derived multidimensional bi-ventricular cardiac shape pheno-
types and demonstrate their associations with several prominent car-
diometabolic diseases.

Results
Bi-ventricular shape analysis pipeline
The CMR images from the 45,683 UK Biobank participants were ana-
lysed using an automated image analysis, model customization and
statistical atlasing pipeline (Fig. 1). Participants with suitable short and
long axis imaging studies had diffeomorphic subdivisionmeshmodels
customized at end-diastole, as described previously30,32. Of these, 450
imaging studies were incomplete, and 1562 contour sets had missing
data; PCA was performed on 43,676 participants mesh models, to
identify the independent modes of variation accounting for the
greatest amount of shape variation across the cohort. The result is a set
of PCs, each with a Z-score value for each participant reflecting their
difference from the mean shape in the direction of the PC. These
Z-scores between different PCs were uncorrelated.

Since PCA is an unsupervised method of dimensionality reduc-
tion, the PCs are not readily interpreted cardiac morphological fea-
tures. By plotting cardiac shape ± 2 standard deviations from themean
in the direction of each PC, the associated biological shape variation
can be visualised (Fig. 2). Animations of these plots are given in the
Supplementary Movies 1–33. Descriptively, PC1 was associated with
overall heart size, PC2 with apex-base length, PC3 with anterior-
posterior width, PC4 with relative orientation of the RV respective to
the LV, and PC5 with lateral width. Other PCs had more complicated
shape changes; for example, PC9 was associated with relative size and
length of the LV respective to the RV. PCs 2, 3 and 5 also represent
variations of cardiac sphericity in different dimensions (variation in
length in different dimensions causing the ventricles to be more
spherical). Together, the first 11 PCs (the PCs that individually captured
> 1% variance) accounted for 83.6% of the total shape variation; 83.7%
in European individuals (n = 41,235), 83.0% in non-Europeans

(n = 2,441) and 80.7% in participants with previous myocardial infarc-
tion (n = 671).

From the 39,538 individuals with models that passed QC in the
atlas (1081 did not pass our QC constraints Fig. 1, Supplementary
Methods, 3057 were identified to have erroneous CMR images during
modelling), we included 35,055 participants of European ancestrywith
CMR imaging data and no prior history of cardiovascular disease in
subsequent analyses (Supplementary Data 1).

Correlations between shape PCs and cardiac structural traits,
risk factors and disease
To explore the biologicalmanifestations of the PCs, we examined their
associations with traditional cardiac structural measures and CVD risk
factors using correlation analyses. PC1 was strongly positively corre-
lated with LV and RV structural measures (volumes, mass, stroke
volume, r20.81 –0.94), andnegatively correlatedwith ejection fraction
of both ventricles (r2 −0.16 (left) and −0.22 (right)) and RV mass to
volume ratio (r2 −0.41). Regarding CVD risk factors, PC1 was positively
correlated with different anthropometric measures, including height
(r20.73), heart rate (r2 0.32) and blood pressure (r2 0.16 diastolic, 0.12
systolic), and negatively correlated with age (r2 −0.13) (Fig. 3, Sup-
plementary Data 2). The other PCs also had significant correlations
with these measures.

To ascertain relationships between the PCs and disease, we tested
their associations with seven major cardiometabolic diseases: heart
failure (HF), myocardial infarction (MI), f (AF, HCM, DCM, 2nd or 3rd

degree atrioventricular (AV) block and diabetes, adjusting for covari-
ates using logistic regression (Supplementary Data 3–9 (A)). We found
significant odds ratios (p <0.0071, Bonferroni corrected) per standard
deviation increase in PC score with several cardiometabolic diseases,
with top associations for AFwith PC3 (OR 1.52, p = 2.32 × 10−60) and PC5
(OR 0.70, p = 2.94 × 10−33), and diabetes for PC1 (OR 0.50,
p = 6.17 × 10−41) (Table 1, Supplementary Data 3–9 (A), Fig. 4). Other
associations were also observed for HF, DCM, HCM, MI and AV block,
in particular PC5 had significant associations with all tested outcomes.

Heritability and genotypic correlations
All 11 PCs were heritable [h2

g single nucleotide variant (SNV)], as
defined using a variance component analysis with BOLT-REML33

(Methods), with estimates ranging from 8.5% (PC6) to 36.3% (PC1)
(Table 2). The highest genetic correlation amongst PCs was between
PCs 6 and 7 (rg= 0.75) and the lowest between PCs 5 and 11 (rg = −0.39),
summarised in Supplementary Fig. 1.

Genomic loci associated with biventricular shape
We identified 43 genome-wide significant loci (p < 5 × 10−8) across 8
PCs with BOLT-LMM29,34: 9 for PC1, 4 for PC2, 6 for PC3, 8 for PC4, 9
for PC5, 2 for PC8, 4 for PC9 and 1 for PC10 (Table 3, Supplementary
Fig. 3). A locus was defined as a 1Mb region ( ± 500kb either side)
from the lead variant. There was no evidence of confounding from
population stratification or cryptic relatedness in our GWAS, as
demonstrated by small linkage disequilibrium (LD) score regression
intercepts (1.00 − 1.02), low genomic inflation factors (λ = 1.03 − 1.12)
and quantile-quantile plots (Supplementary Fig. 2). Conditional
analyses with genome-wide complex trait analysis (GCTA)35 (Meth-
ods) indicated two additional independent signals, one for PC1 at the
BAG3 locus and one for PC3 at PRDM6. In total, 45 independent
signals for cardiac shape were discovered at 43 loci, these are
summarised in Table 3.

Subsequent analyses focused on the 8 PCs with genome wide
significant results: PCs 1–5 and 8–10. For each of these 8 PCs, we per-
formed a lookup of the lead signals (lead SNVs and high LD proxies
r2 >0.8) in the GWAS summary statistics of the other PCs (Supple-
mentary Data 10). Notably, several signals for PC5 (lateral width) were
also genome-wide significant in theGWAS for PCs 2 (apex-base length),
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3 (anterior-posterior width) and 9 (LV size/length). Across the 45 sig-
nals, only 6 were not associated with any other PC (p ≥0.05), four
signals for PC1 and one for PC5 and PC9. We also reviewed sharing of
loci between PCs, and noted there was no overlap of loci (p < 0.05)

between six PC pairs. These were PC2 (apex-base length) and PC4
(relative RV orientation), PC4 and PC10 (LV apical displacement in the
lateral direction), PC8 (LV morphology) and PCs 2 and 9 (LV size and
length) and PC9 with PC1 (heart size).

Fig. 1 | Study design overview. A flowchart summarizing the study design. Blue
highlight indicates study data, green indicates a step in the study, orange indicates
an exclusion of data and white describes themethodology applied at this step. QC,
quality control; CMR, Cardiovascular magnetic resonance; GWAS, genome-wide
association study; LVEF, left-ventricular ejection fraction; MACE, major adverse

cardiac event; PC, principal component; ED, end-diastole; atlas creation metho-
dology first described inMauger et al.method (PMID 30440467). In theGeneticQC
section exclusions (orange) are not sequential, and a participant can be in multiple
exclusion groups.
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Fig. 2 | Heart shape component summary. Visualizations of the heart shape
components captured by principal component analysis. From left to right on each
row, the following are indicated: −2 and +2 standard deviations from the mean
shape of the PC (bottom row), the PC number and estimated biological feature
captured, heat-mapped visualizations of the regional shape changes observed in

the PC from anterior, posterior, and basal view angles. In this, a warm color indi-
cates topological variation in the positive direction of the PC, and a cool color
indicates variation in the negative direction. In this figure we display PCs 1-11. PC,
principal component; RV, right ventricular; LV, left ventricular. The figure was
created using Matlab R2022a.
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We also performed a SNV-wise gene analysis using multi-marker
analysis of genomic annotation, (MAGMA; Methods), which combines
SNV p-values at a gene into a gene test-statistic with LD adjustments36.
This analysis identified 85 genes (Supplementary Data 11) across the 8
PCs (p < 2.6 × 10−6, Bonferroni corrected).

Variant functional annotation
The majority of variants were non-coding, however there were four
non-synonymousmissense variants; one was predicted to be “possibly
damaging” (rs2279472, chr2:179672414:C > T, TTN) with Variant Effect
Predictor37–39 (Methods, Supplementary Data 12).

We identified 35 variants as expression quantitative trait loci
(eQTLs) in LV, aortic artery, coronary artery and atrial appendage tis-
sues using the Genotype-Tissue Expression project (GTEx,Methods)40.
Twenty-eight had support for colocalization (PP4 >0.75,Methods)41 at

nine of our lead SNVs (Supplementary Data 13). For both PCs 1 and 9
therewere two loci with colocalised eQTLs. For PC1, therewas an eQTL
associated with expression of VEGFB in LV and atrial appendage tis-
sues, and an eQTL for 4 genes (BHMG1 for atrial appendage tissue,
SYMPK for LV and atrial appendage tissues and SIX5 for aortic artery
tissue). For PC9, there was an eQTL for CEP85L in aortic artery tissue,
and one for FBN2 in LV tissue.

To assess the effects of changes in gene expression in LV, atrial
appendage, coronary artery and aortic artery tissues on the PCs, we
employed transcriptome-wide analysis of predicted gene expression
with S-PREDIXCAN42 (Methods). We identified 19 genes (p < 3.1 × 10−6,
Bonferroni corrected)mapping to the boundaries of 11 loci, of which 3
were significant in multiple cardiovascular tissues (Supplementary
Data 14).

Long-range tissue-specific interactions of shape PC variants
Potential target genes of regulatory SNVs were identified with long-
range chromatin interaction analyses (Hi-C) in LV, RV and aortic tissues
(Methods). We identified 50 significant promoter interactions (Reg-
ulomeDB score ≤ 2)43 (Supplementary Data 15 and 16). Twenty-six
unique loci had long range interactions in LV and RV tissues; for PC4,
we observed 15 interactions at 5 loci. At the WNT16 locus there were
long range interactions in LV tissue with ING3, ANKRD7 and TSPAN12,
and in both LV and RV tissues with CPED1. At the CCDC91 locus, there
were long-range interactions in LV tissue with TSPAN11, IPO8, PTHLH,
CAPRIN2 and CCDC91 itself.

We also tested for enrichment of variants in DNase I hypersensi-
tivity sites using the GWAS Analysis of Regulatory and Functional
Information Enrichment with LD correction tool (GARFIELD)44. We did
not observe any significant enrichment when examining genome-wide
significant SNVs, however significant enrichment was observed in fetal
heart tissue for PC2 and PC5, when including suggestive SNVs
(p < 1 × 10−6) (Supplementary Data 17, Supplementary Fig. 4).

Candidate gene identification and pathway analysis
Candidate genes at each locus were prioritised using an integrative
approach that utilised multiple lines of evidence (Methods): proximity
to leadvariant, presence ofmissensevariants, evidence fromeQTL and
Hi-C analyses, support frommouse knockout models from the mouse
genome informatics database45, literature review for cardiovascular
disease association and genes identified from MAGMA output. Sup-
port for selection of a candidate gene at a locus was based on a
minimum of 2 lines of evidence. Using these criteria, we identified a
total of 69 candidate genes for the 45 signals (Supplementary Data 18).

We identified enriched pathways using the FUMA Gene2Func
tool46. Using genes for each PC individually in pathway analysis resul-
ted in nominally significant results for some PCs (Supplementary
Data 19), therefore we performed a pathway analysis including all 69
candidate genes from across all PCs. A total of 312 gene ontology
biological processes were significant (False discovery rate (FDR)
p <0.05, Supplementary Data 20). The top results were cardiac related
terms such as heart processes (p = 2.14 × 10−12), circulatory system
development (p = 4.27 × 10−12) and striated muscle contraction
(p = 1.56 × 10−11). There were also significant results for cellular com-
ponents associated with muscular contraction.

Pleiotropy with cardiovascular traits
We investigated associations between our 45 lead and conditionally
independent variants and those in high LD (r2 >0.8) with cardiac-
associated traits in the GWAS Catalog47, Phenoscanner48,49 and across
published cardiovascular GWAS not present in these databases to
ascertain pleiotropy and potential novelty of cardiac shape loci. We
identified several associations with established cardiac structural,
functional and disease traits (Supplementary Data 21 and 22). For
example, a variant at the BAG3 locus (rs72840788), which is a

Fig. 3 | Correlation of PCs with structural measures and cardiovascular dis-
easerisk factors. Plots summarising the Pearson’s correlation coefficient. Top is
the correlation matrix between shape PCs and cardiovascular disease risk factors,
below is the correlation matrix between shape PCs and CMR-derived measures of
cardiac structure and function. (n = 39,538) In each correlationmatrix the size of the
circle indicates the p-value significance (the smallest circle is p <0.05), and the colour
of the circle indicates the strength of the Pearson’s correlation coefficient. The cor-
relation test is two-sided in this analysis. PC, principal component; CMR, cardio-
vascular magnetic resonance; LV, left ventricular; RV, right ventricular; EDV, end-
diastolic volume; ESV, end-systolic volume; SV, stroke volume; EF, ejection fraction;
(LV/RV), ventricular mass; MVR, mass to volume ratio; BMI, body mass index; LDL,
low density lipoprotein levels; HDL, high density lipoprotein levels; Triglyceride,
blood triglyceride levels.
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secondary signal in PC1, has been previously identified for heart
function traits (LV ejection fraction, LV systolic and diastolic function)
and HCM. For PC1, shared genetic variants with diastolic blood pres-
sure (ATXN2, GOSR2, NOS3, BAG3) and hypertension (ATXN2, VEGFB,
NOS3, BAG3) were also observed.

To identify signals that were not previously reported for CV
(cardiovascular) traits, for each PC we performed a lookup of the lead
SNV at the signal and all variants within the locus ±500kb with r2 >0.1
for association with a GWAS SNV for a CV trait. Fourteen of the
45 signals had not been previously reported in a GWAS of a CV trait.
The 14 signals are attributed to the following candidate genes: FAAP24
for PC2, CHTOP, FERD3L and DDC for PC3, CCDC91, WNT16, C7orf25,
TBX18, GMDS and LINC02873 for PC4, EN1 and SIM2 for PC5 and EPHB2
and H1-0 for PC8 (Table 1 and Supplementary Data 23). Seven of these
variants had associations with non-cardiac phenotypes, the remaining
7 signals were not previously identified in any GWAS (Methods).

PheWAS and polygenic risk scoring
To examine relationships across the 8 PCs and clinical conditions
agnostically, we performed a phenome-wide association study (Phe-
WAS) in the UK Biobank using our lead and secondary variants50. From
325 phenotypes with at least 200 cases available we observed two
significant (p = 1.54 × 10−4, Bonferroni corrected) associations (Meth-
ods). The variant rs791274 for PC5 was associated with rheumatic dis-
ease of the heart valves, and rs7620927 for PC4 with respiratory
symptoms (Supplementary Data 24).

We next assessed relationships of genetically predicted PCs with
the cardiometabolic diseases previously tested with each phenotype.
This analysis was performed in unrelated UK Biobank individuals of
European ancestry that were not included in the GWAS (n = 371,264).
Polygenic risk scores (PRS) for shape PCs 1–5 and 9 were calculated
using the software PRSice2 (version 2.3.5)51. There were limited loci for
PCs 8 and 10, and none for PCs 6 and 7 so PRS analysis was not per-
formed for these PCs. First, we confirmed each PRS was positively
correlated with their corresponding PC (r = 0.043–0.076,
p = 1.29 × 10−6 – 2.50× 10−47). We then tested the standardised PC PRS
for associations with HF, MI, AF, HCM and DCM, 2nd or 3rd degree AV
block anddiabetes,with covariate adjustment (Methods).We identified
several significant associations (p-value threshold<0.0071, Bonferroni
corrected, Fig. 5, Supplementary Data 3-9 (B)). PC1 (larger heart size)
was associated with reduced odds of MI (OR 0.95) and diabetes (OR
0.94), PC2 (longer apex-base length)wasassociatedwith reducedodds
of HF (OR 0.97) and AF (OR 0.95), PC3 (greater anterior-posterior
width) was associated with increased risk of AF (OR 1.04), PC5 (smaller
lateral width) was associatedwith increased risk of HCM (OR 1.29), and
reduced risk of diabetes (OR 0.97) and HF (OR 0.98), and PC9 (longer

LV with respect to RV) was associated with reduced risk of AF (OR
0.96), MI (OR 0.98) and AV block (OR 0.95) (Supplementary
Data 3–9 (B)).

As there was discordance in the directions of effect between the
observational and genetic associations between PC5 and HCM, we
sought to replicate the PC5 PRS HCM association. We validated the
positive association between the PC5 PRS and HCM in an external
European HCM cohort comprising 2,284 cases and age and sex mat-
ched UK Biobank controls, with OR of 1.21 (95% confidence intervals
1.16–1.27, p = 1.63 × 10−19).

We subsequently tested the PC PRS in a multi-ancestry cohort
from UK Biobank (Total n = 388,152, European (not included in
GWAS) = 371,264, African = 6716, South Asian = 8501, East Asian =
1671). The same significant associations between the PRS and diseases
remained in the multi-ancestry dataset (Supplementary Data 3b–9b).
We next investigated the allele frequencies of the SNVs included in the
PC PRS across ancestries. For themajority of lead variants therewas no
significant deviation in allele frequencies across ancestries, however
several of the variants for PC1 had very low frequencies in individuals
of African and East Asian ancestry ( < 1%) (Supplementary Data 25).

We also examined the percentage of variance observed in the
PCs across different ancestries that could be explained by the Eur-
opean PRS (Supplementary Data 26). For PC1 and PC4 the PRS
explained more variance in Europeans than in the other ancestries,
this can be explained by up to 50% of the variants in the PRS being
rare in other ancestries. However, for PCs 2,3, 5 and 9, we observed
some PRS explained more variance in samples of non-European
ancestry compared to Europeans (e.g., PC9 explained only 0.38% of
trait variance in Europeans, but 6.35% in East Asians, Supplementary
Data 26). There were only 4 variants in the PRS for PC9, and the allele
frequencies (Supplementary Data 25) for Europeans and East Asians
varied largely for three of the four variants, which may explain these
differences.

Mendelian randomization
To further examine the relationships observed between the most sig-
nificant shape-disease associations identified through observational
analyses, i.e. between PC1 and T2D, and between PCs 3 and 5 and AF
(Supplementary Data 3a–9a), we performed bidirectional two-sample
Mendelian randomization (MR) analyses.When considering T2D as the
exposure variable and PC1 as the outcome, we found evidence for a
negative causal effect using the IVW method (OR of 0.595, 95% CI
0.228-0.962, P-value = 0.0074), as well as MR-PRESSO (OR 0.968, 95%
CI 0.947-0.990, P-value = 0.021) and others (Supplementary Data 27).
We did not find evidence for a significant causal effect of PC1, when
considered as the exposure, on T2D, when considered as the outcome.

Table 1 | Overview of shape PCs and associations with cardiometabolic outcomes

PC (%) Shape variance captured Estimated biological feature of the PC Cardiometabolic disease associations

1 34.4 Overall heart size Diabetes, HF, AV block, DCM, AF, MI

2 12.4 Apex to base length AF

3 9.7 Anterior-posterior width AF, HF, HCM, DCM, MI, Diabetes

4 8.7 Relative right ventricular orientation AF, HF, MI, Diabetes

5 6.3 Lateral height to width ratio AF, HF, DCM, MI, HCM, AV block, Diabetes

6 4.5 Right ventricular torsion of the tricuspid valve AF

7 2.4 Right ventricular inferior margin bulging AF, Diabetes

8 1.6 Left ventricular morphology MI, HF, AV block, DCM, Diabetes

9 1.3 Left ventricular size and length HCM, AV block, HF, MI, DCM

10 1.2 Left ventricular apical displacement in the lateral direction Diabetes, HF, AF

11 1.2 Left ventricular free wall thickness AF, Diabetes

PC,principal component;HF, heart failure; DCM,dilated cardiomyopathy;HCM,hypertrophiccardiomyopathy; AF, atrialfibrillation;MI,myocardial infarction; AVblock, atrio-ventricular block (2ndor
3rd degree). All associations were p < 0.0071 Bonferroni corrected.
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Fig. 4 | Odds-ratioplots for relationship betweenPCscore and cardiometabolic
diseases. Bar plots illustrating the odds ratios from the logistic regression of PC
scores against the incidence of cardiometabolic diseases, after adjusting for rele-
vant covariates (n = 39,538). A vertical blue dotted line is plotted at an odds-ratio of
1, with each individual disease having an odds-ratio plotted as a central vertical line
and orange point, and confidence interval lines flanking as an intersecting

horizontal line denoting 95% confidence intervals. PC, principal component; OR,
odds ratio; MI, myocardial infarction; HF, heart failure; HCM, hypertrophic cardi-
omyopathy; Diabetes, diabetes mellitus; DCM, dilated cardiomyopathy; AV block,
atrioventricular block; AF, atrialfibrillation; ICD codes used to define these diseases
in Supplementary Data 28.
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We also did not find support for a causal association between AF and
PCs 3 or 5 (Supplementary Data 27).

Discussion
This is the first study to examine the genetic architecture of multi-
dimensional biventricular heart shape using PCA. We found the
majority of the PCs, reflecting different characteristics of heart shape,
to be moderately heritable, consistent with previous traditional mea-
sures of cardiac structure. We identified 45 signals across 8 PCs, of
which 14 had not previously been reported for any cardiac trait, and 6
which were not associated with any other PC. The PCs demonstrated
significant associations with cardiometabolic diseases, including AF
and MI, and genetically predicted PCs were generally consistent with
these observations.

Our first finding is that the PCs capture additional and distinct
information on heart shape comparedwith previousmeasures of heart
structure and function. Although we observed statistical correlation
between previousmeasures of cardiac structure and our PCs (e.g., PC1,
reflecting ventricular volume, and heart size), the strength of this
correlation was often weak (Supplementary Data 2), suggesting that
the PCs are not simply proxies for existing measures, and supporting
the hypothesis that our statistical atlasing method captures distinct
heart shape variation. This is further supported by the limited pleio-
tropy in our GWAS results; of the 45 signals identified in our GWAS, 14
are not previously reported for CV traits, and of these 7 have not been
previously reported in anyGWAS. The advantages of using the PCs as a
shape measure is that they intrinsically capture significant amounts of
shape variation across the cohort. Other non-traditional shape mea-
sures include trabeculation52, which captures information indepen-
dent of the current analysis (since trabeculations are ignored by the
image analysis and shape modelling pipeline).

Our GWAS for heart shape has provided several interesting can-
didate genes at signals for PCs 1 and 5which are not reported for other
CV traits. For PC1, signals were found near VEGFA and VEGFB, two
members of the PDGF/VEGF growth factor family, which induce pro-
liferation and migration of vascular endothelial cells and are essential
in physiological and pathological angiogenesis53. The signals at these
two loci were unique to PC1. At another unique signal for PC1, candi-
date genes include NOS3 and BAG3, both well characterised proteins

associated with cardiovascular traits and disease, and the nitric oxide
produced from NOS3 is an important mediator of VEGF-induced
angiogenesis7,54,55. At a unique signal for PC5, two candidate genes are
indicated, neither gene at the locus (SIM2 and CLDN14) has any prior
association with cardiac phenotypes.

Other genes of interest include T-Box Transcription Factor 18
(TBX18). We found a novel signal at this locus for PC4 not previously
reported for cardiac traits (Supplementary Data 18, 23). TBX18 is a
member of an evolutionarily conserved family of transcription factors
that play an essential role in embryonic development. Other variants in
the TBX18 gene have previously been identified in GWAS for HCM and
various cardiac disorder related death causes56. The protein encoded
by this gene acts as a transcriptional repressor involved in the devel-
opmental processes of a variety of tissues and organs, including the
heart and coronary vessels, and is required for embryonic develop-
ment of the sinoatrial node head area57. Additionally, for PC4 at a locus
not previously reported for any cardiac trait is Wingless-Type MMTV
Integration Site Family, Member 16 (WNT16). TheWNT16 gene belongs
to the WNT family of structural-related genes encoding secreted sig-
nalling proteins, which have been implicated in developmental pro-
cesses including embryogenesis58. In mouse models, WNT16 has been
identified as a regulator of vascular smooth muscle contraction59, and
in rat models WNT16 shows reparative and regenerative effects in
infarcted hearts60.

Our results are also consistent with previous findings in smaller
cohorts, as we observed many of the PCs to be associated with other
well-established CV risk factors in UK Biobank30. In prior work, overall
larger heart size has been associated with increased adverse
outcomes2,61,62. Using logistic regression, we found that an increase in
PC1 (a larger heart) was associated with an increased risk of HF, AF,
DCM, MI and atrioventricular block. Moreover, we observed that an
increase in PC1 and the PC1 PRS were significantly associated with a
reduced risk of T2D, in line with previous studies reporting diabetes is
associated with smaller hearts63, and through MR it was established
that T2D has a significant negative causal relationship with overall
heart size (PC1).

We observed that more spherical hearts, and their genetic pre-
disposition, are associated with adverse disease events, with AF being
the outcome most significantly associated with sphericity-associated
PCs. Cardiac sphericity is a measure of the overall roundness of the
heart’s chambers, and an established shape-based risk marker for
CVDs such as MI16,17, ventricular arrhythmias18, cardiomyopathies17, HF
and AF19 with rounder, more spherical hearts conferring greater risk.
Previous studies have only evaluated sphericity as a one-dimensional
metric, rather than a high-dimensional shape feature, thus potentially
ignoring relevant information. For example, Vukadinovic et al. 10

identified four loci associated with LV sphericity index (PLN, ANGPT1,
PDZRN3, and HLA DR/DQ) in 38,897 UK Biobank participants. Two of
these variants were identified in our ED shape GWAS, alongside a fur-
ther 18 genetic signals associated with sphericity (in PCs 2, 3 and 5).
These variants not being identified in previous genetic analyses of
sphericity indicates that our multidimensional characterisation of
shape offersmorepower to examine the genetic basis of cardiac shape
features such as sphericity than one-dimensional metrics.

Our results were mostly concordant for association between the
PCs and their PRSs with cardiometabolic diseases. However, PC5 (the
measure of lateral width of the heart) showed an opposite direction of
effect with HCM than its PRS, this latter association validated in an
external dataset. A possible explanation of this discordancemay be the
low number of HCM cases (n = 36, 0.08% of cohort) in the UK Biobank
European imaging cohort (n = 41,235), and further work in larger
datasets will be required to confirm this. Finally, we demonstrate
potential applicability of our multidimensional heart shape PRS with
results being consistent across European and multi-ancestry indivi-
duals (Supplementary Data 25, 26). Overall, the PRSwe have developed

Table 2 | Heritability estimates for shape PCs

Genome-wide significant
SNVs (p < 5 × 10−8)

Genome-wide significant &
suggestive
SNVs (p < 1 × 10−6)

PC Heritability
(%)

Variance
explained
(%)

Heritability
explained
(%)

Variance
explained
(%)

Heritability
explained
(%)

1 36.3 1.1 3.0 2.6 7.1

2 24.2 0.5 2.2 1.5 6.4

3 26.3 0.6 2.3 2.6 10.0

4 32.9 1.0 2.9 3.1 10.0

5 27.3 1.1 3.9 2.5 9.3

6 8.5 - - 0.5 5.7

7 10.2 - - 0.5 4.7

8 14.0 0.2 1.4 0.7 4.8

9 25.2 0.5 1.8 1.5 6.1

10 12.1 0.1 0.8 0.6 5.1

11 13.4 - - 0.8 6.0

Genome-wide significant SNVs indicates all SNVs identified through genome-wide association
study with a p-value < 5 × 10−8, and suggestive SNVs are all SNVs with p-value < 1 × 10−6. PC,
principal component; SNV, single nucleotide variant; - indicates no result.
* For PC11 with no genome wide significant SNVs and small % variance explained by the phe-
notype in the atlas no work was done looking at the suggestive SNVs.

Article https://doi.org/10.1038/s41467-024-53594-7

Nature Communications |         (2024) 15:9437 8

www.nature.com/naturecommunications


may have potential utility for CV risk prediction, especially those
including novel loci (PCs 2, 3, 4 and 5).

While this manuscript was under review a paper was published by
Bonazzola et al.64, in which genetic analyses were performed onmesh-

derived PCs of only the left ventricular shape at end-diastole using
CMR data from the UK Biobank, alongside GWAS on autoencoder
latent variable ensembles and autoencoder reconstructions of CMR
measures. These models did not utilize valve locations from long-axis

Table 3 | Genomic loci identified for shape PCs

PC Nearest Gene Lead variant CHR Position (Hg19) EA NEA EAF BETA SE p

1 ATXN2 c rs653178 12 112007756 C T 0.48 −0.032 0.004 4.90E − 17

1 TTN c rs2279472 2 179672414 C T 0.05 0.072 0.009 2.00E − 15

1 RSPH6A rs12460541 19 46312077 G A 0.35 −0.027 0.004 3.80E − 11

1 GOSR2 c rs533030436 17 45091770 A G 0.12 −0.038 0.006 9.70E − 10

1 VEGFB rs56271783 11 64004723 G C 0.05 0.053 0.009 6.50E −09

1 HLA-DRB5 rs7773935 6 31228278 G A 0.49 0.022 0.004 1.00E −08

1 VEGFA rs2146324 6 43756863 A C 0.26 0.025 0.004 1.30E −08

1 NOS3 rs3918226 7 150690176 C T 0.08 0.04 0.007 1.70E −08

1 TIAL1 10:121347839_TTTTC_T 10 121347839 TTTTC T 0.23 0.025 0.005 2.80E −08

2 CDC27 c rs117953218 17 45244074 T C 0.14 0.069 0.007 4.30E − 21

2 FAAP24 a,b rs34723366 19 33463247 G T 0.18 0.038 0.006 6.80E −09

2 CAV1 rs9886216 7 116191697 A G 0.25 −0.033 0.006 1.10E −08

2 PALLD rs10155248 4 169666162 T A 0.47 −0.028 0.005 2.40E −08

3 MYH6 c rs452036 14 23865885 G A 0.35 −0.043 0.007 4.80E − 11

3 CHTOP a rs749508246 1 153623678 TATAGATAG T 0.49 0.039 0.006 1.30E −09

3 CDKN1A c rs3176326 6 36647289 G A 0.2 0.045 0.008 1.1E −8

3 FERD3L a rs10950714 7 19370645 A G 0.41 0.036 0.006 1.60E −08

3 DDC a rs11238134 7 50542927 A C 0.33 0.037 0.007 2.30E −08

3 PRDM6 5:122551296_TC_T 5 122551296 TC T 0.03 −0.104 0.019 3.60E −08

4 CCDC91 a,b,c 12:28407705_CT_C 12 28407705 CT C 0.27 −0.058 0.007 6.20E − 16

4 WNT16 a,c rs3801387 7 120974765 A G 0.28 0.051 0.007 4.90E − 13

4 RSRC1 c rs7620927 3 158245883 A G 0.48 0.044 0.006 2.50E − 12

4 C7orf25 a 7:42696499_AG_A 7 42696499 AG A 0.28 −0.043 0.007 5.80E − 10

4 TBX18 a,b rs4466228 6 85174191 G A 0.16 0.05 0.009 7.30E −09

4 GMDS a,c rs767102318 6 1904011 GC G 0.33 −0.04 0.007 7.60E −09

4 LINC02873 a,b rs4937553 11 130500876 G A 0.33 0.038 0.007 1.50E −08

4 MIR9-1HG rs4414033 1 156406853 G A 0.38 0.036 0.007 3.60E −08

5 SLC35F1 c rs3951016 6 118559658 T A 0.47 −0.047 0.006 1.90E − 15

5 STRN c rs10193295 2 37169049 G A 0.47 −0.044 0.006 4.80E − 14

5 EN1 a,b,c rs332101 2 119481738 A G 0.32 0.043 0.006 4.90E − 12

5 RAB44 c rs791274 1 147234095 C T 0.44 0.036 0.006 9.80E − 10

5 PALLD rs10155223 4 169666161 A T 0.47 −0.036 0.006 1.20E −09

5 CDKN1A c rs146170154 6 36646768 C CTA 0.2 −0.042 0.007 9.0E −9

5 ACTN2 c rs4659701 1 236853167 G A 0.37 0.035 0.006 9.70E −09

5 SETBP1 rs669738 18 42465957 A C 0.45 −0.033 0.006 2.30E −08

5 SIM2 a,b rs57655466 21 38021157 A C 0.31 −0.035 0.006 4.40E −08

8 EPHB2 a,b,c rs35001652 1 23082667 G A 0.37 0.042 0.007 1.90E −09

8 H1-0 a rs11703407 22 38200124 C T 0.3 0.042 0.007 6.60E −09

9 NKX2-5 rs55676951 5 172640280 A G 0.25 −0.057 0.008 4.90E − 12

9 SLC35F1 c rs56403768 6 118703534 T C 0.42 −0.049 0.007 6.70E − 12

9 FBN2 rs4836390 5 128011688 T C 0.17 0.052 0.01 4.10E −08

9 ANGPT1 c rs1461990 8 108087628 C G 0.5 −0.039 0.007 4.30E −08

10 NOS1AP rs10918594 1 162030688 C G 0.33 0.043 0.008 1.50E −08

Conditionally independent secondary signals

1 BAG3 rs72840788 10 121415685 G A 0.22 0.023 0.005 7.6E − 7

3 PRDM6 rs10075071 5 122419344 C A 0.42 −0.034 0.006 1.2E − 7

PC,Principal component; CHR, chromosome;Hg19,GenomeReferenceConsortiumHumanBuild 37 (GRCh37); EA, effect allele; NEA, non-effect allele; Beta, effect size; SE, standarderror; p,probability
value;
adenotes signal not previously reported for cardiac traits at time of submission,
b denotes novel GWAS signal at time of submission.
cdenotes signals which were reported by Bonazzola et al. (2024) and presented in Table 1 in their paper (UPE and summary statistics for the shape and reconstructed left ventricular GWAS).
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CMR images, and did not include long axis ventricular contours to
guide mesh fitting, contrary to the current work in which
long axis ventricular contours and valve landmarks (in particular
including the aortic valve) were included from the automated image
analysis of two- three- and four-chamber long axis cine images. Of the
45 genetic signals we report 19 were genome-wide significant
(P < 5 × 10−8) in the results reported by Bonazzola et al. 64. Additionally
one variant (PC9:NKX2-5) demonstrated suggestive significance
(5 × 10−8 < P < 1 × 10−6), it was a variant in low LD (r2 =0.19) with the lead
variant reported by Bonazzola et al. For the remaining 25 signals, none
were in LD (r2 > 0.1) with variants reported by Bonazolla et al. of these
22 had support (P <0.05) and 3 signals had no support (PC1-BAG3, PC3
- PRDM6, and PC5 - SIM2) in the Bonazzola et al., dataset. The metho-
dological differences likely explain the differences in the loci dis-
covered. In Table 3 we indicate loci discovered by Bonazzola et al.,
which were genome-wide significant (either the lead variant or a high
LD proxy R2 >0.7).

Our study has some limitations. Firstly, the shape PCs are derived
from an unsupervised machine learning method; although we manu-
ally attributed biological features to the multi-dimensional variation
observed in the PCs, these are high dimensional traits and they cannot
be reduced to a simple anatomical interpretation. However, the PCs
are readily obtained through well-understood image analysis and
shape atlasing methods. They are also readily quantifiable by auto-
matically analysing the images, customizing the shape model, and
projecting this shapemodel onto the 11 PCmodes to obtain the scores.
This can be performed automatically at imaging, so the PC scores
would be available as part of the imaging report. We also show that the
PC’s robustly characterize a significant amount of shape variation in

non-European and disease cohorts, indicating that projection onto
these PC modes can be robustly generalized to other cohorts. We also
show that the PCs are interpretable with respect to clinical outcomes
since they are both directly associated with cardiometabolic diseases,
and the PRS associated with PCs are also associated with cardiometa-
bolic diseases. This implies that the genetic factors underlying shape
variation in the population are also involved in disease processes.
A second limitation is that we restricted genome-wide association
analyses to European ancestry individuals due to low sample size in
other ancestries. Although we demonstrate the applicability of the
European PRS to other ancestries with comparable performance and
compare the results with a multi-ancestry PRS, a cross-ancestry GWAS
would lack power due to the limited non-European UK Biobank ima-
ging cohort.

The results from all our analyses will need to be validated and
expanded, and the recruitment target of 100,000 individuals to be
enrolled into the UK Biobank imaging study will permit this and
extension of our findings across multi-ancestry individuals.

In the future, anatomical cardiac shape features informed by the
PCs identified here can be further examined. The direction of effect
between multidimensional heart shape and cardiometabolic disease
should be evaluated with mechanistic studies, including further
exploring the functionality of the identified candidate genes.

In summary, we report a genetic basis for heart shape PCs, as well
as new information on cardiac shape biology. We demonstrate the
potential for using genetically predicted shape PCs for prediction of
adverse cardiometabolic diseases and suggest these could be used in
tandemwith existing PRS and clinical information to support CVD risk
prediction and stratification.

Fig. 5 | Odds-ratio plots for relationship between PC PRS and cardiometabolic
diseases. Bar plots illustrating the odds ratios from the logistic regression of PC-
derived PRS against the incidence of cardiometabolic diseases, after adjusting for
relevant covariates (n = 371,264). A vertical blue dotted line is plotted at an odds-
ratio of 1, with each individual disease having an odds-ratio plotted as a central
vertical line and orange point, and confidence interval lines flanking as an

intersecting horizontal line denoting 95% confidence intervals. PC, principal com-
ponent; OR, odds ratio; PRS, polygenic risk score; MI, myocardial infarction; HF,
heart failure; HCM, hypertrophic cardiomyopathy; Diabetes, diabetes mellitus;
DCM, dilated cardiomyopathy; AV block, atrioventricular block; AF, atrial fibrilla-
tion; ICD codes used to define these diseases in Supplementary Data 28.
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Methods
UK Biobank
This project utilises data from the UK Biobank (application 2964); a
large-scale prospective cohort study with 500,000 participants aged
40–69 with detailed health, lifestyle, physical measures and biological
samples including genetic data (488,377 have genotype data collected
across two genotyping arrays (UK BiLEVE, UK Biobank Axiom with
807,411/825,927 markers respectively, 95% overlap)). The study
design, data collection methods and quality control steps have been
described previously65,66.

Ethical approval
This study complies with the Declaration of Helsinki; the work was
covered by the ethical approval for UK Biobank studies from the NHS
National Research Ethics Service on 17th June 2011 (Ref 11/NW/0382)
and extended on 18 June 2021 (Ref 21/NW/0157) with written informed
consent obtained from all participants.

Atlas-derived phenotypes
In UK Biobank CMR images were acquired on a clinical wide-bore 1.5
Tesla scanner (MAGNETOM Aera, Syngo Platform VD13A, Siemens
Healthcare, Erlangen, Germany) utilising ECG-gating67. A full descrip-
tion of the UK Biobank CMR imaging protocol can be found here:
https://doi.org/10.1186/s12968-016-0227-4.

Short and long axis cine imageswere analysed automatically using
Circle cvi42 version 5.11 release 1505. The software used a deep
learning convolutional neural network and returned LV endocardial,
LV epicardial, and RV endocardial contours for short axis as well as
three-chamber, two-chamber and four-chamber long axis views.
Landmarks denoting the location of the mitral (all long axis views),
tricuspid (four-chamber) and aortic (three-chamber) valves were
extracted from the contour output.

A biventricular subdivision surface mesh model was customized
to each case using a non-rigid diffeomorphic registration method
described previously32. Briefly, slices were aligned to correct breath-
hold misregistration and the template mesh was deformed iteratively
to minimize the distance between contour points and their corre-
sponding closest point projections in 3D.

The statistical shape atlas was constructed by aligning all the
shapemodels using the Procrustes alignmentmethod (translation and
rotation only, scale was not removed). PCA was performed to derive
principal components of shape variation across the cohort. Each
principal component captures a unique and uncorrelated shape fea-
ture, and Z-scores per participant were used as phenotypes in GWAS
for each principal component.

Atlas quality control
A series of quality control steps was performed to detect and remove
outliers and caseswith incomplete or poor-quality data, summarised in
Fig. 1. Firstly, cases that had an incomplete set of valve landmarks, or
incomplete machine learning contours for 3D modelling, were exclu-
ded. Four types of shape-based quality scores were computed: 1)
model-contour error in mm, being the average distance between the
contour points and the closest model surface points; 2) individual
principal component z-scores for the first 10 components; 3) Mahala-
nobis distance over the first 10 principal components, being the root
sumof squares of the first 10 z-scores; 4) residual error inmmbetween
the model and its projection onto the first 10 modes. In each case,
scores 5 interquartile ranges above the lower quartile or below the
upper quartile were excluded (full explanation in Supplementary
Methods).

Atlas and generalisability
To examine the robustness of the largely healthy European shape atlas
in other groups,we calculated the amount of variance explainedby the

first 11 PCs in subsets of the study group. We calculated the percent
variance explained by the first 11 PCs in Europeans (n = 41,235), non-
Europeans (n = 2441); defined by the agreement of a participants self-
reported ancestry at interview and genetically inferred ancestry68, and
in participants with previous myocardial infarction (n = 671), defined
by ICD9/10 codes (Supplementary Data 28) and self-reported previous
myocardial infarction. The calculation was for each group 100 x (the
variation captured by the first 11 PCs / total variance explained).

Genetics cohort quality control
From the 43,676 cases with models at end-diastole 39,449 passed
the quality control (n = 4227 excluded) and were restricted to par-
ticipants with an agreed self-reported and genetically inferred white
European ancestry (n = 2443 excluded) due to the low non-European
ancestry representation in the UK Biobank imaging study (defined
using k-means clustering agreement with self-reported ancestry)68.
To avoid the confounding effects of cardiovascular disease pheno-
types the cohort was restricted LV ejection fraction ≥ 40% (calcu-
lated in the 3D models, 1695 excluded) and no previously reported
major adverse cardiovascular events (defined in Supplementary
Methods) (917 excluded) utilising hospital episode statistics (HES)
(Copyright© (2023), NHSDigital. Re-usedwith the permission of the
NHS Digital [and/or UK Biobank]. All rights reserved). After remov-
ing cases with missing covariate data (91 excluded) and participants
with discordant self-reported and genetically inferred sex, 35,055
remained in the analysis cohort (summarised in Supplemen-
tary Data 1).

Correlation and association analysis
We used a two-sided Pearson correlation analysis in R (version 4.2.2)69

to examine the relationships between our PCs and common CV
structural and functional measures and risk factors in the atlas cohort.
The CV risk factors examined included covariates used in the GWAS
which are known to affect cardiac morphology, and smoking status.
These measures are taken from the imaging visit of the UK Biobank’s
assessment. The structural and functional CV measures included well
explored phenotypes studied inCMRGWAS; left and right end systolic
and end diastolic volumes, ejection fractions and stroke volumes,
myocardial masses and mass to volume ratios. The diseases were
selected based on prior work indicating links between CV measures
and diseases (heart failure, dilated and hypertrophic cardiomyopathy,
atrial fibrillation, 2nd or 3rd degree atrioventricular (AV) block or pace-
maker implantation, diabetes and myocardial infarction) (Supple-
mentary Data 28). We used logistic regression to derive odds-ratios
and confidence intervals for disease incidence. This regression was
adjusted for covariates selected using stepwise regression to identify
covariates significant for each outcome, selecting from: age, sex,
height, BMI, alcohol consumption, adjusted systolic and diastolic
blood pressures, smoking status, low density lipoprotein and mean
triglyceride levels (Supplementary Data 3–9 (A)). We also assessed
body surface area as an alternative covariate for body size: as a cov-
ariate BMI was found to perform comparablywith body surface area in
our phenotypes (r2between PC1 andheight + BMI =0.595, betweenPC1
and height + body surface area = 0.603. For testing associations
between PCs and outcomes, the imaging visit data from the UK Bio-
bankwas used.Missing values were imputed for these covariates using
MICE70 in R, each imputed covariate had < 5% missing data. High
density lipoprotein level was considered as a covariate and dropped as
it had > 5% missing data.

Genetic analyses
To maximise the power of the cohort all suitable participants
(n = 35,055) were used as the discovery cohort. Variant quality control
was performed using PLINK v1.971,72, applying filters of minor allele
frequency > 1%, a Hardy-Weinberg exact test of < 1 × 10−6 and amissing
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rate of < 1.5% to the SNVs, with a resulting 559,556 SNVs selected as
model SNVs for the subsequent analyses.

The proportion of genetic variation explained by additive genetic
variation (heritability) for each PC was estimated using a variance
components method (BOLT-REML, version 2.4.1)33 with a MAF
threshold of≥ 1% and INFO>0.3,withmodel SNVs (defined above) and
~1.2million imputed variants (using the UK10K reference panel73).
BOLT-LMM34 also computes the genetic correlations between included
phenotypes, which we report in Supplementary Fig. 1.

Each PC was then analysed using a linear mixed model method
(BOLT-LMM, version 2.4.134) using the model SNVs and ~1.2million
imputed SNVs, as well as the heritability estimates obtained from
BOLT-REML. Each model was regressed on genotype dosage using
multiple linear regression with an additive genetic effect adjusted for
height, age, sex, array type (UK Biobank/UK BiLEVE), systolic blood
pressure (averaged between manual and automated readings and
adjusted 15mmHg in the presence of blood pressure altering medica-
tion), resting heart rate and body mass index, all variables which were
significant in our correlation analysis (Fig. 3). These covariates were
selected to adjust the mixed model for known traits that affect cardi-
ovascular morphology, as is standard for cardiovascular genetic ana-
lyses in UK Biobank; height, sex and BMI are directly related to cardiac
morphology. A p < 5 × 10−8 was used to declare genome-wide sig-
nificance. LocusZoom74 region plots for all significant loci identified
are available in Supplementary Fig. 5.

To assess for confounding in our GWAS studies, the LD score
regression intercept was estimated using LD score software (LDSC,
v1.0.1)75. Genomic inflation factor was reported from themean lambda
value output by BOLT-LMM34, and quantile-quantile plots were gen-
erated from the GWAS summary statistics with the FUMA (functional
mapping and annotation of genome-wide association studies) func-
tional annotation tool (version 1.4.0)46.

In this study we define a genomic signal as the combination of a
lead genomewide significant SNV and all SNVs within a 1mbwindow in
LD r2 >0.1 with that lead. In contrast we define a locus as the 1mb
window around that lead variant, disregarding LD.

Conditional analysis
Conditional analysis was performed using GCTA (version 1.94.1)35. This
analysiswas applied to all genome-wide significant loci identified in the
GWAS. Mirroring conservative methods described previously76, a sec-
ondary signal would be declared if the newly identified SNV original p-
value was lower than 1 × 10−6, if there was less than a 1.5-fold difference
between the lead SNV and secondary association p-values on a
–log10 scale, i.e., if –log10(Plead)/-log10(Psec) < 1.5, or if there was less
than a 1.5-fold difference between the main association and condi-
tional association p-values on a –log10 scale, i.e., if -log10(Psec)/-
log10(Pcond) < 1.5.

Percent variance
The percent variance explained for each PC by all genome-wide sig-
nificant variants and independent secondary signals was calculated
using standard regression models, including the covariates from the
GWAS (described above). Each phenotype was regressed on the ana-
lysis covariates, and the r2 value was used as the estimation for percent
variance explained77.

Signal cross-lookup
Wewanted to examine the significance of our genomewide significant
SNVs across other PCs, to assess the effects of our shape signals
amongst independent derivations of shape. For our lead SNVs and
conditionally independent secondary signals we perform a lookup of
that SNV and its high LD proxies (r2 > 0.8) in our GWAS summary sta-
tistics, and for each PC report the most significant p-value from the

lead and proxies in those summary statistics, summarised in Supple-
mentary Data 10.

Gene-based annotation study
Genome-wide gene-based associations were assessed using the Multi-
marker Analysis of Genomic annotation tool36 (MAGMA v1.06) from
the FUMA GWAS online tool46. Variants in the raw genotype summary
statistics were assigned to genes basedon the overlapof their genomic
location with genes within a window of 35kb upstream and 10kb
downstream to include regulatory elements. The MAGMA tool com-
putes a gene-based p-value for the protein coding genes mapped to
their assigned SNVs. We report genes with a computed p-value of
2.6 ≤ 1 × 10−6 (Bonferroni corrected 0.05/19,414 genes tested).

Bioinformatics analyses
Variant level annotation. Analyses were performed to annotate the
identified lead SNVs and their proxies (r2 ≥0.8), and the secondary
signals. Positional information and GWAS summary statistics were
extracted, and each lead or conditionally independent SNV was
assessed with Ensembl Variant Effect Predictor (release 105.0)37, a
collation of tools used for assessing and predicting the effects of SNVs
and their impacts on human biology (through SIFT version 5.2.233 and
PolyPhen-2 version 2.2.2, release 405c39).

To assess for potential effects of lead and conditionally inde-
pendent variants (and their proxies [r2 ≥0.8]) on tissue specific gene
expression in LV, aortic artery, coronary artery and atrial appendage
tissues, they were first checked for overlap with lead eQTL variants at
each tissue using the GTEx (version 8) database40,78. Subsequently,
colocalization analyses were performed using the COLOC package
(version 5.1.0.1)41 in R to analyse each eQTL-GWAS dataset pair. This
tool uses Bayesian statistical methodology to test the pairwise colo-
calization of SNVs in a GWAS with eQTLs, and generates posterior
probabilities for each locus, weighting the evidence for competing
hypotheses of no evidence of colocalization or the sharing of a distinct
SNV at each locus. We used a posterior probability (PP) of PP4 >0.7541

to indicate strong evidence of a tissue-specific eQTL-GWAS pair influ-
encing both the expression and GWAS trait at a particular region for
the specified GTEx tissues of interest.

Variants high LD proxies (r2 >0.8) were also assessed for their
regulatory potential using RegulomeDB43, to find genes whose pro-
moter regions form significant chromatin interaction with these SNVs
in left and right ventricular and aortic tissues. This utilises long-range
chromatin interaction (Hi-C) data from FUMA79 and Jung80 datasets,
which use different methods and resolutions of Hi-C data and provide
additional discovery power when used together. Target genes were
only considered with evidence of significant enhancer-promoter
interactions at FDR < 1 × 10−6, and filtered to regulatory GWAS var-
iants with a RegulomeDB35 score of < 5 (where a lower score indicates
greater evidence of functional significance) that were in LD (r2 ≥0.8)
with our lead SNVs, and chose the interactors of highest regulatory
potential to annotate the loci.

Gene-level annotation
Transcriptome-wide association study. We also employed the PRE-
DIXCAN tool (version 0.6.5)42, a gene-based association method that
tests the molecular mechanisms through which genetic variation
affects a phenotype, to perform a TWAS to predict the effects of gene
expression levels on each of our PCs. We used S-PREDIXCAN; an
extension of the original PREDIXCAN tool that infers results from
GWAS summary statistics and alleviates the need for individual-level
genotype or phenotype data. S-PrediXcan provides a precalculated
transcriptome model database from GTEX-based tissues and covar-
iance matrices of SNVs within each gene model (https://github.com/
hakyimlab/MetaXcan). A Bonferroni corrected threshold (0.05/
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number of tissue-gene pairs tested 0.05/16,097 = 3.1 × 10−6) was used
to declare significant results.

Evidence for candidate genes.We generate a list of genes at the locus
(genes within 50kb of the lead SNV and at r2 of > 0.5) of each lead and
secondary SNV. Candidate genes were prioritised at each locus if they
had two or more supporting lines of evidence from the following cri-
teria; presence of missense variant at the locus, gene prioritised by
S-PREDIXCAN or eQTL analysis, availability of knockout model from
International Mouse Phenotyping Consortium (http://www.
mousephenotype.org) and the Mouse Genome Informatics
database45 (http://www.informatics.jax.org/) with a CV phenotype,
support from literature review on function of the genewith CV disease
or Mendelian CV disorder, target gene from Hi-C data from FUMA79

and Jung80 datasets, the gene being located within the 100kb window
of the lead variant (nearest gene) or the gene being prioritised
by MAGMA.

Functional enrichment. GARFIELD44 (version 2) was used to identify
tissue-specific enrichment of variants at DNase I hypersensitivity sites
in each of our PCs. GARFIELD annotates variants with data from the
ENCODE, GENCODE and Roadmap Epigenomics projects and calcu-
lates odd ratios using a generalised linearmodel framework.GARFIELD
reads variants from our GWAS summary statistics using two p-value
thresholds: genome-wide significance (p = 5 × 10−8) and borderline
significant (p = 1 × 10−6) in its analysis.

Pathway analysis. Our candidate genes were queried in the Gene2-
Func pathway analysis tool from FUMA46 to perform functional
enrichment analysis and identify significantly associated gene ontol-
ogy (GO) terms and biological pathways from Kyoto Encyclopaedia of
Genes and Genomes (KEGG), Reactome and WikiPathways and results
from GWAS catalog among others (Supplementary Data 19).

Literature lookup. We also checked which of our SNVs are not pre-
viously reported in CMR-derived phenotype GWAS through literature
review and lookup tools GWAS Catalog47 and Phenoscanner48,49 (Sup-
plementary Data 21, 22). For each genome wide significant SNV in our
study we consider both the lead SNV and its high linkage proxies
(r2 >0.8), searching these in GWAS Catalog and Phenoscanner. We
report all significant (p = 5 × 10−8) GWAS associations, focusing on
those that are associated with the cardiovascular system (cardiac
structural and functional measures, ECG measures, cardiac disease
traits) for novelty assessment.We have also collated through literature
review information on previously reported cardiovascular trait loci,
from results tables and summary statistics where available. Using this,
we again performed a lookup of our lead variants and proxies for their
associationwith CV traits, and if any of these variants fall within 500 kb
of a previously reported CV SNV, reporting if the previously reported
cardiac trait SNV is in linkage disequilibrium r2 ≥0.1 with our SNV.

PheWAS. To identify evidence of pleiotropy with clinical conditions
we implemented a phenome-wide association study (PheWAS) using
the R package PheWAS50 (version 0.99.5-5). ICD9 and ICD10 codes
from the UK Biobank HES data and mapped to phecodes. Lead and
conditionally independent secondary variants from unrelated (kinship
coefficient > 0.0884) white-European UK Biobank individuals not
included in the GWAS (n = 389,449) were tested for association with
these phecodes, adjusted for age, sex and the first 10 genetic principal
components. In the output a Bonferroni corrected threshold (for the
number of phecodes tested with ≥ 200; 0.05/325 = 1.54 × 10−4) was
used to declare significance.

Polygenic risk scores. To determine relationships between PC asso-
ciated genetic loci and cardiometabolic diseases, PRS were

constructed using the lead variants from PCs 1-5 and PC9 from a UK
Biobank unrelated European cohort (kinship pairs < 0.0884) not
included in the GWAS dataset with concordant self-reported and
genetically inferred sex (n = 371,264). We tested for associations with
heart failure,myocardial infarction, atrial fibrillation, hypertrophic and
dilated cardiomyopathies, 2nd or 3rd degree atrioventricular block or
pacemaker implantation, and diabetes (Supplementary Data 28), the
same diseases that we include in our correlation analyses. Utilising
genotype probability data in the BGEN format we use PRSice-251 (ver-
sion 2.3.5) to calculate PRS, summing the dosage of each shape allele
weighted by effect size (from GWAS). Associations are calculated
through logistic regression of standard deviation increase in PRS
against cardiometabolic disease incidence, including covariates
selected to be significant for each disease through stepwise regression
(see “method” in Correlation and association analysis, Supplementary
Data 3–9 (B)), alongside genetic array used and the first 15 genetic
principal components. For these regressions the first visit UK Biobank
covariate data was used. A p-value threshold of < 0.0071, Bonferroni
corrected was chosen (0.05/number of diseases)

We subsequently examined the same PRS in a multi-ancestry UK
Biobank cohort with the same kinship restrictions (n = 388,152) and
covariates. The same p-value threshold was used as in the European
PRS analysis. Ancestries were defined as agreement between self-
reported ethnic background and genetically inferred ancestry
(k-means clustering)68.

To validate the application of the European PRS in non-European
populations we first investigated the effect allele frequency of the
EuropeanGWAS lead variants inAfrican (n = 6716), EastAsian (n = 1671)
and South-East Asian (n = 8501) populations (defined above in Atlas
and generalisability, as well as the allele frequency combined across
ancestries (Supplementary Data 25). This comparison was performed
using both the UK10K reference panel73 which was used for the
imputation of variants for our GWAS and the 1000 Genomes phase 3
reference panel to ensure there were no major discrepancies between
reference panels.

We also examined the percentage variance explained by our PRS
in the non-European ancestries by regressing respective PC scores
against PRS and the covariates used in GWAS (SupplementaryData 26)
in each individual ancestry. To do so we utilised the non-European
individuals of the UK Biobank’s CMR imaging cohort who were inclu-
ded in the construction of the atlas (African = 225, East Asian = 140,
South-East Asian = 424).

To validate the association between the PC5 PRS and HCM, we
used an external HCM cohort, comprising individuals with HCM
referred to the Inherited Cardiovascular Disease unit at St. Bartholo-
mew’s Hospital, London, UK, the InheritedCardiovascular DiseaseUnit
at The Heart Hospital, University College London Hospitals (UCLH),
London, UK and the Unidad de Cardiopatías Familiares of Complexo
Hospitalario Universitario A Coruña, Spain. All patients gave written
informed consent for genetic testing, and the study was approved by
the regional ethics committees (London: 15/LO/0549; Coruna: 2021/
182). Clinical parameters were recorded using previously described
methods and were stored in a dedicated database81. HCM was defined
by the presence of a maximal left ventricular wall thickness ≥ 15mm in
probands or ≥ 13mm in relatives. Patients with previously confirmed
HCM phenocopies (e.g., Fabry disease, amyloidosis, glycogen storage
diseases, and RASopathies) were excluded from the study. The sam-
ples used in this study were collected from 2011 to 2019 in London and
1991 to 2021 in Coruna. The HCM samples from the two centres
(n = 3024) were genotyped at University College London Genomics
unit using the Infinium Global Screening Array-24SA v3.0 with a stan-
dard methodology.

Quality-control checks on the genotype data were performed
using PLINK v1.971,72. Individuals were excluded with a genotype miss-
ing rate of > 5%, heterozygosity exceeding three standard deviations
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from the mean or inferred sex discordance. At a variant level, variants
were excluded if exceeding aHardy-Weinbergequilibriumof 1 × 10−6 or
missingness > 2% (for variants with a minor allele frequency of ≤ 3%, a
more stringent missing rate cut-off of ≥ 1% was applied). Patients were
checked for relatedness using ~600,000 variants using the KING
relationship inference tool v2.2.682 excluding up to and including
second-degree relatives.

We constructed the PC5 PRS in 2,284 HCM patients from this
dataset, and 40,825 European case controls from the UK Biobank,
matched by age (decade) and sex, these individuals were not included
in the UK Biobank’s imaging cohort, excluding individuals carrying
rare variants (MAF <0.001) in the eight most established sarcomeric
genes for HCM (MYH7, MYBPC3, TNNT2, TNNI2, ACTC1, MYL2, MYL3,
TPM1) from the whole-exome sequencing data available in ~250,000
individuals at analysis. Our PRS included the lead SNVs from the PC5
GWAS, however of the 9 SNVs used in the PRS two were not present in
the genetic data from the HCM cohort, therefore proxies in high LD
were used instead. These were rs10155223 and rs146170154, sub-
stituted respectively with rs1500800 (r2 = 0.98) and rs3176326
(r2 =0.99). We regressed the standardised PRS against case-control
status.

Mendelian Randomization
The TwoSampleMR83 R package (version 0.6.6) was used to test for
association of PC1 and T2D, as well as of PCs 3 and 5 and AF, the
strongest associations found from observational associations.
Summary statistics for T2D from Loh et al.84 (19,291 T2D cases,
440,033 controls) and for AF data from Nielsen et al.85 (60,620 AF
cases, 970,216 controls) were downloaded from the GWAS catalog.
For all MR analyses, lead SNVs (P < 5 × 10−8) were taken as genetic
instruments. Effect alleles were harmonised between IVs and
summary statistics. Three variants associated with PC1 were
not present in the T2D summary statistics, and for each of these
the highest LD proxy variant present in the summary statistics was
selected: rs7773935 (chosen proxy: rs1634754, r2 = 0.88),
10:121347839:TTTTC:T (chosen proxy: rs3816145, r2 = 0.96),
rs533030436 (chosen proxy: rs76774446, r2 = 0.91). To account for
weak-instrument bias, the F-statistic was calculated for each lead
SNV, and only those with an F > 10 were kept as instrumental vari-
ables. SNV’s were subsequently pruned using the ieugwasr package86

in R (version 1.0.0) to remove correlated variants (r2 0.001) within
10Mb, preserving the lowest P-value variant for association analyses.
Four Mendelian randomization methods were used for this analysis:
IVW, weighted median, MR-Egger and MR-PRESSO. Results are
reported as OR (95% CI) when testing for a causal association with
T2D or AF, and as effect size (95% CI) when testing for a causal
association with PC1, PC3 or PC5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All UK Biobank data are available upon application (www.ukbiobank.
ac.uk). Data in this study was accessed on application 2964. Summary
GWAS statistics are publicly available on the GWAS catalog portal
(https://www.ebi.ac.uk/gwas/) through study accessions:
GCST90448480, GCST90448481, GCST90448482, GCST90448483,
GCST90448484, GCST90448485, GCST90448486, GCST90448487,
GCST90448488, GCST90448489 and GCST90448490.

Code availability
All code used to generate models, the shape atlas and subsequent
analyses is available upon request.
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