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Abstract
In this paper we focus on the interplay between the behaviour of the Frölicher spectral
sequence and the existence of special Hermitian metrics on the manifold, such as balanced,
SKTor generalizedGauduchon. The study of balancedmetrics on nilmanifolds endowedwith
strongly non-nilpotent complex structures allows us to provide infinite families of compact
balanced manifolds with Frölicher spectral sequence not degenerating at the second page.
Moreover, this result is extended to non-degeneration at any arbitrary page. Similar results are
obtained for the Frölicher spectral sequence of compact generalized Gauduchon manifolds.
We also find a compact SKTmanifold whose Frölicher spectral sequence does not degenerate
at the second page, thus providing a counterexample to a conjecture by Popovici.

Keywords Complex manifold · Frölicher spectral sequence · Balanced metric · Pluriclosed
metric

Mathematics Subject Classification 53C55 · 32J27 · 53C15

1 Introduction

Let X be a complex manifold. Frölicher introduced in [15] a spectral sequence {E∗,∗
r (X)}r≥1

associated to the double complex (�∗,∗(X), ∂, ∂̄), where ∂ + ∂̄ = d . We will refer to it as
the Frölicher spectral sequence (FSS for short) of X . This sequence is also known as the
Hodge-de Rham spectral sequence, as its first page is given by the Dolbeault cohomology
H∗,∗

∂̄
(X) of X and it converges to the de Rham cohomology H∗

d R(X , C). Hence, the spaces

E∗,∗
r (X) provide (possibly new) complex invariants of the manifold.
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An important question is to understand the interplay between the behaviour of the Frölicher
spectral sequence and the existence of special Hermitian metrics on the manifold. It is well-
known that the FSS of any compact Kähler manifold degenerates at the first page. In the
context of non-Kähler Hermitian geometry, well-known relevant classes of metrics arise, as
for instance balanced or generalized Gauduchon (in particular, pluriclosed) metrics. The
aim of this paper is to construct compact complex manifolds endowed with these types of
metrics and having Frölicher spectral sequence not degenerating at different pages.

Recall that a Hermitian metric F on a compact complex manifold X with dimC X = n is
called balanced if the form Fn−1 is closed [29]. The Iwasawa manifold is an example of a
compact balanced manifold with FSS degenerating at the second page, with E1 �= E2. More
generally, any compact quotient X of a nilpotent complex Lie group G by a lattice is balanced
(indeed, any left-invariant Hermitian metric on G is balanced) and satisfies E2(X) = E∞(X)

[39].
The Iwasawa manifold, as well as the compact quotients of nilpotent complex Lie groups,

are special concrete examples of nilmanifolds. There are some balanced nilmanifolds in the
literaturewith FSS satisfying E2 �= E∞. For instance, Cordero, Fernández andGray obtained
in [6] a 6-dimensional complex nilmanifold with FSS not degenerating at the third page (for
the existence of balanced metrics on it, see Sect. 3 below). Furthermore, for every k ≥ 2,
Bigalke and Rollenske constructed in [4] a (4k − 2)-dimensional complex nilmanifold with
Ek �= E∞, which turns out to be balanced by a recent result by Sferruzza and Tardini [42].

Each of the nilmanifolds above occurs as a concrete example in a certain complex dimen-
sion. In fact, as far as we know, there are no infinite families of manifolds in the literature,
in the sense of having infinitely many different complex homotopy types, all living in the
same complex dimension with Ek �= E∞ for some k. The main goal of this paper is to
construct such families. The starting point of our construction will be the so-called strongly
non-nilpotent complex structures on nilmanifolds, recently studied in [25] and classified in
[27] in four complex dimensions.

Apart from the important role played by nilmanifolds in non-Kähler Hermitian geometry,
there are some other reasons motivating the study of complex nilmanifolds in relation to
the FSS. For instance, Kasuya proves in [22] that, in the larger class of solvmanifolds, if
one considers those constructed from a semi-direct product of C

n by a nilpotent Lie group,
then the page at which their FSS degenerates cannot be greater than that of the nilmanifold.
So, in this sense, nilmanifolds constitute a preferred class to search for compact complex
manifolds with non-degenerate FSS. In addition, complex nilmanifolds, and in particular
strongly non-nilpotent complex structures in four dimensions, have a remarkable role in
relation to the problem of finding manifolds realizing certain generators of the universal ring
of cohomological invariants recently studied by Stelzig in [44].

We recall that the FSS of any complex nilmanifold X with dimC X = 3 is studied in
[5]; in particular, it is proved that the existence of a balanced metric on X implies that
E2(X) = E∞(X). Note that this is indeed a restriction, as there exist complex 3-dimensional
nilmanifolds X with E2(X) �= E3(X) (see [5, Theorem 4.1]). Therefore, complex dimension
four is the lowest possible dimension for a balanced nilmanifold to have FSS not degenerating
at the second page. In Theorem 3.4 we prove that there are infinitely many nilmanifolds
satisfying these properties and with different complex (hence, real or rational) homotopy
types. Moreover, this result is extended in Theorem 3.8 to non-degeneration at any arbitrary
page.

In this paper we also deal with compact generalized Gauduchon manifolds, which were
introduced and studied by Fu, Wang and Wu in [16]. We recall that a Hermitian metric F
on a compact complex manifold X with dimC X = n is called k-th Gauduchon, for some
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1 ≤ k ≤ n − 1, if it satisfies the condition ∂∂̄ Fk ∧ Fn−k−1 = 0. Observe that the value
k = n − 1 corresponds to the standard (also known as Gauduchon) metrics [18]. Note also
that any pluriclosed (or SKT) metric is in particular 1-st Gauduchon, as ∂∂̄ F = 0.

We prove in Theorem 4.4 that there are infinitely many generalized Gauduchon nil-
manifolds with different complex homotopy type whose Frölicher spectral sequence can
be arbitrarily non-degenerate. Regarding pluriclosed metrics, Popovici proved in [34, 35]
that the existence of a Hermitian metric on X with ‘small torsion’ implies E2(X) = E∞(X),
and furthermore, he conjectured that any compact complex manifold X admitting an SKT
metric has FSS degenerating at the second page [34, Conjecture 1.3].

In Proposition 4.5 we give a counterexample to this conjecture, based on the complex
geometry of compact Lie groups. More concretely, we consider the compact semisimple Lie
group SO(9) equipped with a left-invariant complex structure J found by Pittie in [32, 33],
which is compatible with a bi-invariant metric g. Recall that any such compact Lie group is
Bismut flat and its fundamental form F is ddc-harmonic, as stated by Alexandrov and Ivanov
in [1].

The paper is structured as follows. In Sect. 2 we study the Frölicher spectral sequence
of 8-dimensional nilmanifolds endowed with strongly non-nilpotent complex structures. A
general study of the existence of balanced metrics on such complex nilmanifolds is given in
Sect. 3, fromwhich we arrive at the results in Theorems 3.4 and 3.8mentioned above. Finally,
Sect. 4 is devoted to the FSS of compact pluriclosed and generalized Gauduchon manifolds.

2 Complex nilmanifolds with 1-dimensional center and
non-degenerate Frölicher spectral sequence

In this section we study the FSS on 8-dimensional nilmanifolds with one-dimensional center
endowed with invariant complex structures. Infinite families of complex nilmanifolds with
E2 �= E∞ are obtained in complex dimension 4.

Let X be a compact complexmanifoldwith dimC X = n.We recall that the Frölicher spec-
tral sequence of X is the spectral sequence associated to the double complex (�∗,∗(X), ∂, ∂̄),
where ∂ + ∂̄ = d is the usual decomposition of the exterior differential d on X . This spectral
sequence was first introduced in [15], in terms of a certain filtration, and it can be described
as a collection of complexes

· · · dr−→ E p−r , q+r−1
r (X)

dr−→ E p, q
r (X)

dr−→ E p+r , q−r+1
r (X)

dr−→ . . .

that are canonically associated with the complex structure of X , for every r ≥ 1. The 1-st
page consists of the Dolbeault cohomology groups of X , i.e. E p, q

1 (X) = H p, q
∂̄

(X), while the

differentials d1 are induced by ∂ as d1([α]) = [∂α], for everyDolbeault class [α] ∈ H p, q
∂̄

(X).
For an arbitrary r , the differentials dr on the r -th page are of type (r , −r +1) but they are still
induced by ∂ acting on a certain (p + r −1, q − r +1)-form associated to any representative
of every class in E p, q

r (X) (see the description below). It turns out that dr ◦ dr = 0, and the
(r + 1)-th page is induced from the previous r -th page as the kernel of dr over the image of
the incoming differential dr .

There exists a positive integer r fromwhich all the differentials vanish identically, namely,
ds = 0 for all s ≥ r . This is equivalent to having E p, q

r (X) = E p, q
r+k (X) for every k ≥ 1 and

any 0 ≤ p, q ≤ n. This space E p, q
r (X) is denoted by E p, q∞ (X) and the FSS is said to be

degenerated at the r-th page, then writing Er (X) = E∞(X).
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The Frölicher spectral sequence gives a link between the complex structure of X and its
differential structure. Indeed, it converges to the de Rham cohomology of X in the sense
that there are isomorphisms Hk

d R(X , C) � ⊕

p+q=k
E p, q∞ (X), for every k ∈ {0, . . . , 2n}.

It is worthy to recall that a Hodge theory is introduced in [36] through the construction
of elliptic pseudo-differential operators, associated with any given Hermitian metric on X ,
whose kernels are isomorphic to the spaces E p,q

r (X) in every bidegree (p, q). This extended
to any arbitrary positive integer r a previous construction in [34] for r = 2. We also remind
that Serre duality for E p,q

r is proved by Stelzig in [43] and byMilivojević in [30]. This duality
is also obtained as a consequence of Hodge theory (see [36] for more details).

The following general description of the terms in the Frölicher spectral sequence was
given in [7] and it will be useful for our purposes. For every r ≥ 1 and any 0 ≤ p, q ≤ n,
the space E p,q

r (X) is isomorphic to the quotient C-vector space

E p,q
r (X) = X p,q

r (X)

Y p,q
r (X)

, (1)

where

X p,q
1 (X) = {αp,q ∈ �p,q(X) | ∂̄αp,q = 0}, Y p,q

1 (X) = ∂̄
(
�p,q−1(X)

)
,

and for every r ≥ 2

X p,q
r (X) = {αp,q ∈ �p,q(X) | ∂̄αp,q = 0, and there exist r − 1 forms αp+1,q−1, . . .

. . . , αp+r−2,q−r+2, αp+r−1,q−r+1 satisfying
0 = ∂αp,q+ ∂̄αp+1,q−1 = · · · = ∂αp+r−2,q−r+2 + ∂̄αp+r−1,q−r+1},

(2)

and

Y p,q
r (X) = {∂̄βp,q−1 + ∂βp−1,q ∈ �p,q(X) | there exist r − 2 forms βp−2,q+1, . . .

. . . , βp−r+2,q+r−3, βp−r+1,q+r−2 satisfying
0= ∂̄βp−1,q +∂βp−2,q+1=· · ·= ∂̄βp−r+2,q+r−3+∂βp−r+1,q+r−2

= ∂̄βp−r+1,q+r−2}.
(3)

Furthermore, the differentials dr : E p, q
r (X) −→ E p+r , q−r+1

r (X) are explicitly given by

dr
([αp,q ]) = [∂αp+r−1,q−r+1], (4)

for any [αp,q ] ∈ E p, q
r (X).

Let G be a simply connected real Lie group endowed with a left-invariant complex struc-
ture J , and suppose that G admits a discrete subgroup � so that the quotient space �\G
is compact. Let us denote by X the latter manifold endowed with the (naturally induced)
complex structure J .

Consider g, the Lie algebra of G, endowed with the (linear integrable) complex structure
J . Then, we can define the corresponding sequence Er (g, J ) associated to the pair (g, J ).
The description (1) together with (2) and (3), and so the homomorphisms (4), apply to this
sequence.

Proposition 2.1 Let X = (�\G, J ) be a compact quotient of a simply connected Lie group
G by a lattice �, endowed with a complex structure naturally induced by a left-invariant
complex structure J on G. Let g be the Lie algebra of G. Fix an integer r ≥ 1, and suppose
that the homomorphism dr : E p,q

r (g, J ) −→ E p+r ,q−r+1
r (g, J ) is non-zero for some p, q.

Then, the Frölicher spectral sequence of X does not degenerate at the r-th page.
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Proof Let [αp,q ] be an element in E p,q
r (g, J ) such that dr

([αp,q ]) �= 0 in E p+r ,q−r+1
r (g, J ).

Since αp,q ∈ X p,q
r (g, J ) and there is a natural inclusion ι : X p,q

r (g, J ) ↪→ X p,q
r (X), the

form αp,q defines an element [αp,q ] in E p,q
r (X). Notice that we can choose the r − 1 forms

αp+1,q−1, . . . , αp+r−2,q−r+2, αp+r−1,q−r+1 in (2) to be left-invariant.
Suppose that the FSS of X degenerates at the r -th page. Then, dr

([αp,q ]) = 0 in

E p+r ,q−r+1
r (X). By (2) and (4), together with (1), this means that ∂αp+r−1,q−r+1 ∈

Y p+r ,q−r+1
r (X). From the description (3), there exist r forms

βp+r ,q−r , βp+r−1,q−r+1, βp+r−2,q−r+2, . . . , βp+2,q−2, βp+1,q−1

on the complex manifold X satisfying

∂αp+r−1,q−r+1 = ∂̄βp+r ,q−r + ∂βp+r−1,q−r+1,

and

∂̄βp+r−1,q−r+1 + ∂βp+r−2,q−r+2 = 0, . . . ,

∂̄βp+2,q−2 + ∂βp+1,q−1 = 0, ∂̄βp+1,q−1 = 0.

As the Lie group G has a lattice, G is unimodular. In particular, G admits a bi-invariant
volume form, so we can apply the well-known symmetrization process (see for instance [5]
and the references therein for details). Given any form β on X , we denote by β̃ the left-
invariant form on G given by the symmetrization of β. Recall that J being left-invariant, the

bidegree of the forms is preserved, and one has ∂̃β = ∂β̃ and ˜̄∂β = ∂̄ β̃.
Note that ∂αp+r−1,q−r+1 coincides with its symmetrization because it is left-invariant.

Therefore, from the equalities above, we get r left-invariant forms

β̃p+r ,q−r , β̃p+r−1,q−r+1, β̃p+r−2,q−r+2, . . . , β̃p+2,q−2, β̃p+1,q−1

satisfying

∂αp+r−1,q−r+1 = ∂̄ β̃p+r ,q−r + ∂β̃p+r−1,q−r+1,

and

∂̄ β̃p+r−1,q−r+1 + ∂β̃p+r−2,q−r+2 = 0, . . . ,

∂̄β̃p+2,q−2 + ∂β̃p+1,q−1 = 0, ∂̄β̃p+1,q−1 = 0.

But this implies ∂αp+r−1,q−r+1 ∈ Y p+r ,q−r+1
r (g, J ), which is a contradiction to the

hypothesis that dr
([αp,q ]) is non-zero in E p+r ,q−r+1

r (g, J ).

In conclusion, dr
([αp,q ]) �= 0 in E p+r ,q−r+1

r (X), and the FSS of X does not degenerate
at the r -th page. �

From now on in this section we will consider that G is a nilpotent Lie group, and thus
X = (�\G, J ) is a complex nilmanifold. It should be noticed that if the natural map
ι : 	∗,∗(g, J ) ↪→ �∗,∗(X) induces an isomorphism in Dolbeault cohomology, then one
has also an isomorphism E p,q

r (X) ∼= E p,q
r (g, J ) for every k ≥ 1 and any 0 ≤ p, q ≤ n

(see [43] for general results about Er -isomorphisms of bounded double complexes). This
is indeed the case in complex dimension three [14, 37], or in arbitrary dimension for any
nilpotent complex structure [38].

However, the complex structures J on the nilmanifolds X that we will study in this
section are (strongly) non-nilpotent, so Proposition 2.1 will be applied to derive the non-
degeneration of the FSS of X by means of the non-degeneration of the sequence Er (g, J ).
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Observe that the proof of Proposition 2.1 implies that the natural inclusion ι induces an
injection E p,q

r (g, J ) ↪→ E p,q
r (X) that commutes with the differentials dr .

Let g be a nilpotent Lie algebra (NLA for short) endowed with a complex structure J .
Since g is nilpotent, its center is always non-trivial. If we now assume that the center has
dimension 1, then the only J -invariant subspace in it is the trivial one. Complex structures
having the latter property are known as strongly non-nilpotent (SnN for short), and they are
studied in [25]. We recall that, up to real dimension 8, the conditions “J being SnN” and “g
having 1-dimensional center” are equivalent. Furthermore, it is proved in [27, Proposition
3.1] that when g has dimension 8 and J is of the previous type, the dimension of the space
E0,1
1 (g, J ) is either 2 or 3. This provides a partition of the space of SnN complex structures

J into two families.

Definition 2.2 Let g be an 8-dimensional NLA endowed with an SnN complex structure J .
We say that J belongs to Family I (resp. Family II) if E0,1

1 (g, J ) has maximal dimension
(resp. minimal dimension).

The following classification of SnN complex structures is available in [27]:

Proposition 2.3 [27, Theorem 3.3] Let J be a complex structure on an 8-dimensional NLA
g with one dimensional center. Then, there exists a basis of (1, 0)-forms {ωk}4k=1 in terms of
which the complex structure equations of (g, J ) are one (and only one) of the following:

(i) if J belongs to Family I, then
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dω1 = 0,

dω2 = ε ω11̄,

dω3 = ω14 + ω14̄ + a ω21̄ + i δ ε b ω12̄,

dω4 = i ν ω11̄ + b ω22̄ + i δ (ω13̄ − ω31̄),

(5)

where δ = ±1, (a, b) ∈ R
2 − {(0, 0)} with a ≥ 0, and (ε, ν, a, b) being one of

the following: (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0,±1), (0, 1, 1, b), (1, 0, 0, 1),
(1, 0, 1, |b|) or (1, 1, a, b).

(ii) if J belongs to Family II, then
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dω1 = 0,

dω2 = ω14 + ω14̄,

dω3 = a ω11̄ + ε (ω12 + ω12̄ − ω21̄) + i μ (ω24 + ω24̄),

dω4 = i ν ω11̄ − μω22̄ + i b (ω12̄ − ω21̄) + i (ω13̄ − ω31̄),

(6)

where a, b ∈ R, and the tuple (ε, μ, ν, a, b) takes the following values: (1, 1, 0, a, b),
(1, 0, 1, a, b), (1, 0, 0, 0, b), (1, 0, 0, 1, b), (0, 1, 0, 0, 0) or (0, 1, 0, 1, 0).

Our first goal is to provide (the first known) examples of nilmanifolds endowed with SnN
complex structures such that the differential d2 �= 0. We recall that up to real dimension 6
all such complex nilmanifolds have FSS degenerating at the second page (see [5, Theorem
4.1] for the NLAs h−

19 and h+
26).

Next we will study the spaces E0,2
r (g, J ) for every SnN J on any 8-dimensional NLA

g. One reason for focusing on the bidegree (p, q) = (0, 2) is motivated by the recent paper
by Stelzig [44], where this bidegree plays an important role in complex dimension 4 in
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relation to the problem of finding manifolds realizing certain generators of the universal ring
of cohomological invariants in degree 4 (see [44, Problem 11.2]).

Moreover, note that one can take advantage of the explicit description (1–4) when partic-
ularized to any bidegree (p, q) with p = 0, since then Y0,q

r = {∂̄β0,q−1} for every r ≥ 1. In
particular, for q = 2 the corresponding terms for the pair (g, J ) can be described as follows:

E0,2
r (g, J ) = X 0,2

r (g,J )

∂̄
(
	0,1(g,J )

) , (7)

where X 0,2
1 (g,J ) = {α0,2 ∈ 	0,2(g,J ) | ∂̄α0,2 = 0}, and
X 0,2
2 (g,J ) = {α0,2∈X 0,2

1 (g,J ) | ∂α0,2+∂̄α1,1 =0 for some α1,1},
X 0,2
3 (g,J ) = {α0,2∈X 0,2

1 (g,J ) | ∂α0,2+∂̄α1,1 =∂α1,1+∂̄α2,0=0
for some α1,1 and α2,0},

(8)

whereas X 0,2
r (g,J ) = X 0,2

4 (g,J ) for any r ≥ 4, with

X 0,2
4 (g,J ) = {α0,2 ∈ X 0,2

1 (g,J ) | ∂α0,2+∂̄α1,1=∂α1,1 + ∂̄α2,0=∂α2,0=0

for some α1,1 and α2,0}.
Moreover,dr ≡ 0 for r ≥ 4, and for 1 ≤ r ≤ 3wehave thatdr : E0,2

r (g, J ) −→ Er ,3−r
r (g, J )

is defined by

dr
([α0,2]

) = [∂αr−1,3−r ],
for any [α0,2] ∈ E0,2

r (g, J ). Note that E0,2
r+1(g, J ) = ker dr because the incoming dr is

identically zero by bidegree reasons.
In the following result we study in detail the terms E0,2

r in the FSS of an interesting
subclass of complex structures in the Family I.

Proposition 2.4 Let J be an SnN complex structure in Family I defined by ε = 1 and ab �= 0.
Let �(δ, ν, a, b) = (

(a − b)2 − 2δνb
)(

(a + b)2 − 2δνb
)
. Then,

E0,2
2 (g, J ) �= E0,2

3 (g, J ) ⇐⇒ �(δ, ν, a, b) �= 0.

Moreover, in this case we have:

E0,2
1 (g, J ) = E0,2

2 (g, J ) = 〈[ω1̄2̄], [ω1̄3̄], [ω2̄4̄], [ω3̄4̄]〉,
E0,2

r (g, J ) = 〈[ω1̄2̄], [ω1̄3̄], [ω2̄4̄]〉, for r ≥ 3.

Proof We use the description given in (7) and (8) to compute the terms E0,2
r (g, J ). From the

complex structure equations (5) it follows that the space of ∂̄-closed (0, 2)-forms is given
by X 0,2

1 (g, J ) = 〈ω1̄2̄, ω1̄3̄, ω1̄4̄, ω2̄4̄, ω3̄4̄〉. Since ∂̄
(
	0,1(g,J )

) = 〈ω1̄4̄〉, we obtain the

space E0,2
1 (g, J ) given in the statement above.

Note that ω1̄2̄ is a d-closed form, so [ω1̄2̄] ∈ E0,2
r (g, J ) for every r ≥ 2. Moreover, the

classes [ω1̄3̄] and [ω2̄4̄] also belong to E0,2
r (g, J ) for every r ≥ 2, due to the following

relations:

∂ω1̄3̄ + ∂̄(a ω22̄) = 0, ∂ω2̄4̄ + ∂̄(2i ν ω22̄ + ω24̄ − ω42̄) = 0,
∂(a ω22̄) + ∂̄(−ω13) = 0, ∂(2i ν ω22̄ + ω24̄ − ω42̄) + ∂̄(ω24) = 0,

∂(−ω13) = 0; ∂(ω24) = 0.
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Let us now focus on the (0, 2)-formω3̄4̄. Since ab �= 0, one can verify that ∂ω3̄4̄+ ∂̄γ = 0
for the (1, 1)-form γ given by

γ = iδ(−a2 + b2 + 2δνb)

2b
ω23̄ − a2 − b2 + 2δνb

2ab

(
b ω32̄ + a ω41̄)

− iδ(a2 + b2 − 2δνb)

2ab
ω34̄ − ω43̄.

Therefore, [ω3̄4̄] ∈ E0,2
2 (g, J ), and E0,2

1 (g, J ) = E0,2
2 (g, J ).

Notice that any (1, 1)-form α1,1 satisfying the condition ∂ω3̄4̄ + ∂̄α1,1 = 0 can be written
as α1,1 = γ + σ , with σ ∈ X 1,1

1 (g,J ), i.e. σ is any ∂̄-closed (1,1)-form. Since we have to
study the solutions of the equation ∂α1,1 + ∂̄α2,0 = 0, for some form α2,0 of bidegree (2, 0),
it is enough to consider the (1,1)-forms σ in the quotient space

V(g,J ) = X 1,1
1 (g,J )/{d-closed (1, 1)-forms}.

Using (5) it is not difficult to see that V(g,J ) = 〈ω13̄ + ω24̄, ω14̄〉, so we can express σ as

σ = c1 (ω13̄ + ω24̄) + c2 ω14̄, where c1, c2 ∈ C.

Then, we get

∂(γ + σ)=i (ν − δb) c1 ω121̄ + i δ a(a2 − b2 − 2δνb) + 2 b2 c2
2b

ω122̄ − iδ c1 ω123̄

+a2 (b + δν) − b(b − 2δν)(b − δν) − 2 i δ a b c2
2ab

ω131̄ − a2 + b2 − 2δνb

2ab
ω133̄

+c1 ω141̄ + a2 + b2 − 2δνb

2a
ω142̄ − iδ(a2 + b2 − 2δνb)

2ab
ω144̄

−iδ c1 ω231̄ + iδ(a2 + b2 − 2δνb)

2a
ω232̄ − iδ(a2 + b2 − 2δνb)

2b
ω241̄.

Now, observe that any (2, 0)-form α2,0 can be written as α2,0 = ∑
1≤r<s≤4 λrs ωrs , with

λrs ∈ C. A direct calculation shows

∂̄α2,0 = (−aλ13 + i ν λ24)ω
121̄ − b (λ14 − i δ λ23)ω

122̄ + i δ λ24ω
123̄ + λ23ω

124̄

+ i (δ λ14 + i λ23 + ν λ34)ω
131̄ + i δ λ34ω

133̄ − λ24ω
141̄ − i δ b λ34ω

142̄

−λ34ω
144̄ + i δ λ24ω

231̄ + b λ34ω
232̄ − a λ34ω

241̄.

Wehave to study the equation 0 = ∂(γ +σ)−∂̄α2,0 = ∑
Arsk̄ ωrsk̄ , where the coefficients

Arsk̄ can be directly obtained from the previous expressions. In particular, we will obtain
some relations among c1, c2, λrs and the parameters defining the complex structure J that
ensure Arsk̄ = 0 for all r , s, k. First, observe that from A124̄ = A141̄ = A144̄ = 0 one gets

λ23 = 0, λ24 = −c1, λ34 = i δ (a2 + b2 − 2 δ ν b)

2ab
.

These values force most of the coefficients Arsk̄ to vanish, with the exception of A121̄, A122̄
and A131̄. From the vanishing of the first and second aforementioned coefficients, one obtains

λ13 = i c1 (δ b − 2ν)

a
, λ14 = − i δ a (a2 − b2 − 2 δ ν b) + 2 b2 c2

2 b2
.
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This immediately gives that A131̄ = 0 if and only if
(
(a − b)2 − 2δνb

)(
(a + b)2 − 2δνb

) = 0.

Consequently, if �(δ, ν, a, b) �= 0 then [ω3̄4̄] ∈ E0,2
2 (g, J ), but [ω3̄4̄] /∈ E0,2

3 (g, J ).

However, if �(δ, ν, a, b) = 0 then [ω3̄4̄] ∈ E0,2
r (g, J ) for every r ≥ 3, because λ23 = 0

implies that ∂α2,0 = 0. This completes the proof of the proposition. �
In the following result an interesting subclass of structures in the Family II is studied.

Proposition 2.5 Let J be an SnN complex structure in Family II defined by ε = μ = 1 (hence
ν = 0). Then, E0,2

2 (g, J ) �= E0,2
3 (g, J ). Moreover,

E0,2
1 (g, J ) = E0,2

2 (g, J ) = 〈[i ω1̄2̄− ω2̄4̄], [ω1̄3̄− i ω3̄4̄]〉,
E0,2

r (g, J ) = 〈[i ω1̄2̄− ω2̄4̄]〉, for r ≥ 3.

Proof We use again the description given in (7) and (8) to compute the desired terms of
the FSS. From the complex structure equations (6) it follows that the space of ∂̄-closed
(0, 2)-forms is given by X 0,2

1 (g, J ) = 〈ω1̄2̄, ω1̄4̄, ω2̄4̄, ω1̄3̄ − i ω3̄4̄〉. Since ∂̄
(
	0,1(g,J )

) =
〈ω1̄4̄, ω1̄2̄ − i ω2̄4̄〉, we obtain the space E0,2

1 (g, J ) in the statement.
Now, since

∂(i ω1̄2̄ − ω2̄4̄)+ ∂̄ ω42̄=0,
∂ ω42̄=0,

we conclude that the (0, 2)-form i ω1̄2̄ −ω2̄4̄ defines a non-zero class in E0,2
r (g, J ) for every

r .
Let us now consider the form ω1̄3̄ − i ω3̄4̄. One can check that ∂(ω1̄3̄ − i ω3̄4̄) + ∂̄γ = 0,

where

γ = 3ia

2
ω12̄ + 1

2
ω13̄ + 1

2
ω31̄ + i

2
ω34̄ + i ω43̄,

therefore E0,2
2 (g, J ) = E0,2

1 (g, J ). To finish the proof we will show that the formω1̄3̄− i ω3̄4̄

does not belong to the space X 0,2
3 (g, J ). As in the proof of Proposition 2.4, this is equivalent

to proving that ∂(γ + σ) /∈ ∂̄
(
	2,0(g,J )

)
for every (1, 1)-form σ representing a class in the

quotient space

V(g,J ) = X 1,1
1 (g,J )/{d-closed (1, 1)-forms}.

In other words, next we will prove that ∂(γ + σ) + ∂̄α2,0 �= 0 for every such σ and every
form α2,0 of bidegree (2, 0).

Using (6) one can see that V(g,J ) = 〈ω14̄, ω24̄〉, so we can express σ as σ = c1 ω14̄ +
c2 ω24̄, where c1, c2 ∈ C. A direct computation shows that

∂(γ + σ)=(1− ibc1)ω
121̄− (c1 + ibc2)ω

122̄− ic2 ω123̄ + i

2
ω124̄

−ic1 ω131̄ + b

2
ω132̄ + 1

2
ω133̄ + ia

2
ω141̄ + i

2
ω142̄

+c2 ω144̄ − b + 2ic2
2

ω231̄ + i

2
ω232̄ − i

2
ω241̄ − 1

2
ω244̄.

Now, writing any (2,0)-form α2,0 as α2,0 = ∑
1≤r<s≤4 λrs ωrs , with λrs ∈ C, from (6)

we get
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∂̄α2,0 = (λ13 + ibλ14 + aλ23)ω
121̄ + (λ14 + λ23 + ibλ24)ω

122̄ + i λ24ω
123̄ − i λ13ω

124̄

+ iλ14ω
131̄ + ibλ34ω

132̄ + iλ34ω
133̄ − λ23ω

134̄ − aλ34ω
141̄ − λ34ω

142̄

−λ34ω
144̄ + i(λ24 − bλ34)ω

231̄ − λ34ω
232̄ + λ34ω

241̄ − iλ34ω
244̄.

Let us study the condition 0 = ∂(γ + σ) − ∂̄α2,0 = ∑
Arsk̄ ωrsk̄ , where the coefficients

Arsk̄ are obtained directly from the previous expressions. From A131̄ = A134̄ = 0 one gets
λ14 = −c1 and λ23 = 0. Hence, A121̄ = 0 is equivalent to λ13 = 1. However, A124̄ = 0
gives λ13 = − 1

2 , which is a contradiction. �
We recall that, by the classification obtained in [27, Theorem 1.1], an 8-dimensional NLA

g with one dimensional center admits a complex structure if and only if it is isomorphic to
one (and only one) in the following list:

g
γ
1 = (05, 13 + 15 + 24, 14 − 23 + 25, 16 + 27 + γ ·34), where γ ∈ {0, 1},

gα
2 = (04, 12, 13 + 15 + 24, 14 − 23 + 25, 16 + 27 + α ·34), where α ∈ R,

g
γ
3 = (04, 12, 13 + γ ·15 + 25, 15 + 24 + γ ·25, 16 + 27), where γ ∈ {0, 1},

g
α, β
4 = (04, 12, 15 + (α+1)·24, (α−1)·14 − 23 + (β−1)·25, 16 + 27 + 34 − 2·45),

where (α, β) ∈ R
∗ × R

+ or R
+ × {0},

g5 = (04, 2·12, 14 − 23, 13 + 24, 16 + 27 + 35),

g6 = (04, 2·12, 14 + 15 − 23, 13 + 24 + 25, 16 + 27 + 35),

g7 = (05, 15, 25, 16 + 27 + 34),

g8 = (04, 12, 15, 25, 16 + 27 + 34),

g
γ
9 = (03, 13, 23, 35, γ ·12 − 34, 16 + 27 + 45), where γ ∈ {0, 1},

g
γ
10 = (03, 13, 23, 14 + 25, 15 + 24, 16 + γ ·25 + 27), where γ ∈ {0, 1},

g
α,β
11 = (

03, 13, 23, 14 + 25 − 35, α ·12 + 15 + 24 + 34, 16 + 27 − 45 − β(2·25 + 35)
)
,

where (α, β) = (0, 0), (1, 0) or (α, 1) with α ∈ [0,+∞),

g
γ
12 = (02, 12, 13, 23, 14 + 25, 15 + 24, 16 + 27 + γ ·25), where γ ∈ {0, 1}.
In the description of the nilpotent Lie algebras abovewe are using the standard abbreviated

notation, where the i-th component of the tuple contains the differential of the i-th element
of the basis. We recall that complex structures on the NLAs gγ

1 , . . . , g8 belong to Family I,

whereas those on g
γ
9 , g

γ
10, g

α,β
11 and g

γ
12 belong to Family II. Moreover, the previous list is

ordered according to the dimensions of the ascending central series of the algebras.
We recall that the precise relation between these 8-dimensionalNLAs and the classification

of complex structures showed in Proposition 2.3 can be found in [27]. Nevertheless, the
essential information is gathered in the Tables 1 and 2 (columns 1, 2 and 5), where we also
sum up the behaviour of the sequence E0,2

r (g,J ) for any complex structure J in the Families
I and II, respectively (columns 3 and 4). Note that this completes the results obtained in
Propositions 2.4 and 2.5. We omit the details here.

In both tables we denote by e0, 2r the dimension of the term E0, 2
r (g, J ) in the spectral

sequence. In Table 1, the parameter s stands for the sign of b−2δν.

Remark 2.6 In [44, Problem 11.2] Stelzig asks for the construction, for every n ≥ 3, of a
compact complex manifold X with dimC X = n and with non-vanishing differential on page
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En−1(X) starting in bidegree (0, n−1) or (0, n−2). For n = 3, any complex nilmanifold X =
(�\G, J ) has differential d2 : E0,1

2 (X) −→ E2,0
2 (X) identically zero (see [44, Proposition

8.11] or [5, Theorem4.1]). From theTables 1 and2weget thatd3 : E0,2
3 (g, J ) −→ E3,0

3 (g, J )

vanishes for any SnN complex structure J on an 8-dimensional NLA g. One may then ask
whether the differentialdn−1 : E0,n−2

n−1 −→ En−1,0
n−1 always vanishes on complexnilmanifolds.

We can finally apply the previous results (namely, Propositions 2.1, 2.4 and 2.5) to obtain
new compact complex manifolds with d2 �= 0. To our knowledge, no compact complex
manifold of complex dimension 4 with d3 �= 0 is known. Let G be the simply-connected
nilpotent Lie group associated to g, where g is isomorphic to any one of the NLAs in the
list above. Since γ ∈ {0, 1}, all the Lie algebras are rational except for possibly gα

2 , g
α,β
4 and

g
α,β
11 . For these algebras, it follows from their structure equations that they are also rational

algebras whenever α, β ∈ Q. Hence, the existence of a lattice � for the associated nilpotent
Lie groups is guaranteed by the well-knownMal’cev theorem [28]. Therefore, many compact
complex nilmanifolds X = (�\G, J ) with dimC X = 4 can be defined in this way.

Theorem 2.7 Let �\G be a nilmanifold endowed with a complex structure J in any of the
following cases:

• J in Family I defined by (ε, ν, a, b) = (1, 0, 1, b) with b ∈ Q
+ −{1}, or (1, 1, a, b) with

(a, b) ∈ Q
+ × Q

∗ satisfying �(δ, 1, a, b) �= 0;
• J in Family II defined by (ε, μ, ν, a, b) = (1, 1, 0, 0, 0), (1, 1, 0, a, 0) with a ∈ R

∗, or

(1, 1, 0, a, b) with (a, b) ∈ R × R
∗ satisfying 2

√
3|a|

|b| ∈ Q.

Then, the compact complex manifold X = (�\G, J ) has Frölicher spectral sequence not
degenerating at the second page.

Proof Let J be a complex structure in Family I defined by (ε, ν, a, b) = (1, 0, 1, b), with
b ∈ Q

+ − {1}, or (1, 1, a, b), with (a, b) ∈ Q
+ × Q

∗ satisfying �(δ, 1, a, b) �= 0. In view

of Table 1, in the first case the underlying Lie algebra is g
1
b ,b
4 , and in the second one we have

g
sa
b ,

|b−2δ|
a

4 , where s denotes the sign of b − 2δ. Since δ = ±1, we always get rational Lie
algebras. Note also that

�(δ, 1, a, b) = (a2 − b2)2 − 4δb(a2 + b2) + 4b2,

hence, given any b ∈ Q
∗ we can choose δ so that δb < 0 and thus �(δ, 1, a, b) �= 0.

Now, let J be a complex structure in Family II defined by (ε, μ, ν, a, b) = (1, 1, 0, 0, 0),

(1, 1, 0, a, 0) with a ∈ R
∗, or (1, 1, 0, a, b) with (a, b) ∈ R × R

∗ satisfying 2
√
3|a|

|b| ∈ Q. In

view of Table 2, the underlying NLAs are g0,011 , g
1,0
11 or gq,1

11 , with q = 2
√
3|a|

|b| ∈ Q and q ≥ 0,
depending on the case, which are always rational. Note that for the last two NLAs there are
one-parameter families of (non-isomorphic) complex structures.

To get the desired result it suffices to observe that for any lattice � in the Lie group G
associated to any of these rational Lie algebras, the FSS satisfies E2(�\G, J ) �= E3(�\G, J )

by Propositions 2.1, 2.4 and 2.5. �

3 The Frölicher spectral sequence of balancedmanifolds

In this section we study the existence of balanced metrics on 8-dimensional nilmanifolds
M endowed with an SnN complex structure J . As an application, we get infinitely many
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compact balanced manifolds with complex dimension 4 and different homotopy types whose
FSS does not degenerate at the second page. This is also extended to non-degeneration at any
arbitrary page.

A compact complex manifold X of complex dimension n is said to be balanced if there
is a Hermitian metric F on X satisfying d Fn−1 = 0. These metrics were first studied in [29]
and play an important role in geometry and many aspects of theoretical and mathematical
physics. Notice that for any n ≥ 3 one has

d Fn−1 = (n − 1) d F ∧ Fn−2 = (n − 1)
(
∂ F ∧ Fn−2 + ∂̄ F ∧ Fn−2).

Since F is a real form, the two summands in the last expression above are conjugate to each
other, and the balanced condition is equivalent to

∂ F ∧ Fn−2 = 0. (9)

We recall that when X = (M, J ) is a nilmanifold M endowed with an invariant complex
structure J , by the symmetrization process the existence of balanced metric on X implies
the existence of an invariant one, i.e. a balanced metric on the underlying Lie algebra (g, J ).

Let us consider a basis of invariant (1, 0)-forms {ωk}4k=1 on a complex nilmanifold X =
(M, J ), where M is 8-dimensional. Then, in terms of this basis, any invariant Hermitian
metric F on X is given by

F =
4∑

k=1

i xkk̄ ωkk̄ +
∑

1≤k<l≤4

(
xkl̄ ωkl̄ − x̄kl̄ ωlk̄), (10)

for some coefficients xkk̄ ∈ R and xkl̄ ∈ C. Associated to F , we consider the 4 × 4 matrix

H =

⎛

⎜
⎜
⎝

x11̄ −i x12̄ −i x13̄ −i x14̄
i x̄12̄ x22̄ −i x23̄ −i x24̄
i x̄13̄ i x̄23̄ x33̄ −i x34̄
i x̄14̄ i x̄24̄ i x̄34̄ x44̄

⎞

⎟
⎟
⎠ . (11)

Let us denote by Hrs the determinant of the 3 × 3 submatrix obtained by removing the r -th
row and the s-th column from H . Note that Hsr = H̄rs . The metric F being positive implies,
in particular, Hrr > 0 for every 1 ≤ r ≤ 4.

Lemma 3.1 Let M be an 8-dimensional nilmanifold endowed with an SnN complex struc-
ture J . Let F be any Hermitian metric on (M, J ) defined by (10) in a (1, 0)-frame {ωk}4k=1
satisfying the Eqs. (5) or (6). We have:

(i) If J belongs to Family I, then F is balanced if and only if

ε = ν = 0, a H12 + H̄14 = 0, b H22 − 2δ Im(H13) = 0.

(ii) If J belongs to Family II, then F is balanced if and only if

ν = 0, H14 = 0, 2ε Im(H12) − μ H̄24 − ia H11 = 0,

μ H22 − 2b Im(H12) + 2 Im(H13) = 0.

Proof To prove (i) we calculate (9) for n = 4 taking into account the complex equations (5).
We get

0 = 1

2
∂ F ∧ F2 = AI ω12341̄2̄3̄ + BI ω12341̄2̄4̄ + CI ω12341̄3̄4̄,
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where

AI = −ν H11 − i b H22 + 2 i δ Im(H13),

BI = −δ ε b H̄12 − i a H12 − i H̄14,

CI = −i ε H11.

Since H11 > 0, the conditionCI = 0 implies ε = 0. Similarly, sinceRe (AI ) = −ν H11 = 0
we get ν = 0.Now, taking ε = ν = 0, the remaining conditions areIm (AI ) = 0 and BI = 0,
and the statement in the part (i) of the lemma follows.

For the proof of (ii) we use the complex equations (6) to compute (9) for n = 4. One has

0 = 1

2
∂ F ∧ F2 = AII ω12341̄2̄3̄ + BII ω12341̄2̄4̄ + CII ω12341̄3̄4̄,

where

AII = −ν H11 + i
(
μ H22 − 2 b Im(H12) + 2 Im(H13)

)
,

BII = −2 ε Im(H12) + μ H̄24 + i a H11,

CII = i H̄14.

FromRe (AII ) = −ν H11 = 0 and H11 > 0, it follows that ν = 0. The remaining conditions
in the statement come directly from Im (AII ) = 0, BII = 0 and CII = 0. �

The following result provides a classification of the SnN complex structures J in eight
dimensions admitting balanced metrics.

Proposition 3.2 Let M be an 8-dimensional nilmanifold endowed with an SnN complex struc-
ture J . Then, (M, J ) admits a balanced metric if and only if J is equivalent to a complex
structure defined by, either (5) with the tuple (ε, ν, a, b) being one of the following

(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1),

or (6) with tuple (ε, μ, ν, a, b) one of the following

(1, 1, 0, a, b), (1, 0, 0, 0, b), (0, 1, 0, 0, 0), (0, 1, 0, 1, 0).

Proof When J belongs to Family I, it follows from Lemma 3.1 (i) that the possible values
for the tuple (ε, ν, a, b) are (0, 0, 0, 1), (0, 0, 1, 0) or (0, 0, 1, 1). We will find a balanced
metric F for each case. Observe that a, b ∈ {0, 1}. We distinguish two cases according to
the value of b:

• If b = 0, then a = 1 and the equations in Lemma 3.1 (i) reduce to H12 + H̄14 = 0 and
Im(H13) = 0. To obtain a solution it suffices to consider the metric F defined by taking
H in (11) as the identity matrix.

• If b = 1, we consider the metric F defined by

x11̄ = x33̄ = x44̄ = 1, x22̄ = 4, x12̄ = i, x13̄ = x14̄ = x34̄ = 0,

x23̄ = δ

2
, x24̄ = i a.

It can be checked that this choice indeed defines a positive-definite metric for which one
has H12 = 1, H13 = δ i

2 , H14 = −a, and H22 = 1. Since δ = ±1, all the conditions in
Lemma 3.1 (i) are satisfied and the metric F is balanced.
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Suppose now that J belongs to Family II. Lemma 3.1 (ii) implies that the possible values
for the tuple (ε, μ, ν, a, b) are (1, 1, 0, a, b), (1, 0, 0, 0, b), (1, 0, 0, 1, b), (0, 1, 0, 0, 0) or
(0, 1, 0, 1, 0).
Let us distinguish two cases depending on the value of the parameter μ:

• If μ = 0, then we have (ε, μ, ν, a, b) = (1, 0, 0, 0, b) or (1, 0, 0, 1, b). Observe that
one of the equations in Lemma 3.1 (ii) becomes 2 Im(H12) − i a H11 = 0, which is
equivalent to Im(H12) = 0 and a H11 = 0. Since H11 > 0, we conclude that a = 0 in
order that J admits a balanced metric. Therefore, there are no balanced metrics for the
tuple (1, 0, 0, 1, b). However, for the case (1, 0, 0, 0, b) one can check that the metric F
defined by taking H in (11) as the identity matrix is balanced.

• If μ = 1, we take F defined by

x11̄ = x33̄ = x44̄ = 1, x22̄ = a2 + 3

4
, x12̄ = x14̄ = x23̄ = x34̄ = 0,

x13̄ = 1

2
, x24̄ = −a.

It can be checked that it defines a positive-definite metric. Moreover, H11 = 3
4 , H12 =

0, H13 = − 3 i
8 , H14 = 0, H22 = 3

4 , and H24 = 3 a i
4 . Since all the conditions in

Lemma 3.1 (ii) are satisfied, the metric F is balanced.

�
The following result is a consequence of Proposition 3.2 and the values given in the second

and fifth columns of Tables 1 and 2. Here we are also using that the existence of a balanced
metric implies the existence of an invariant one.

Theorem 3.3 If an 8-dimensional nilmanifold endowed with an SnN complex structure admits
a balanced metric, then its underlying Lie algebra is isomorphic to g

γ
1 , g7, gγ

9 , gγ
10 or gα,β

11 .

This result has a certain converse which is useful in the construction of balanced nilman-
ifolds satisfying additional properties. Indeed, by a similar argument as in Sect. 2, starting
with the rational Lie algebras gγ

1 , g7 or gγ
9 we get compact balanced nilmanifolds. Simi-

larly, when we start with g
γ
10 endowed with any complex structure corresponding to a tuple

(ε, μ, ν, a, b) = (1, 0, 0, 0, b). Finally, compact balanced nilmanifolds can also be con-
structed starting with g

α,β
11 for (α, β) = (0, 0), (1, 0) or (q, 1) with rational q ≥ 0, since

from Table 2 in the latter case we can always choose complex structures defined by tuples

(ε, μ, ν, a, b) = (1, 1, 0, a, b), with b �= 0, such that 2
√
3|a|

|b| = q .
We observe that all the compact balanced nilmanifolds X with underlying Lie algebra iso-

morphic to gα,β
11 satisfy E2(X) �= E∞(X), due to Proposition 2.5. Moreover, non-isomorphic

Lie algebras gα,β
11 and gα′,β ′

11 give rise to nilmanifolds X and X ′ with different minimal model
by Hasegawa theorem [20], hence with different real homotopy type (see [3, 8, 10, 19, 45] for
results in homotopy theory). Furthermore, their complex homotopy types are also different:

Theorem 3.4 There are infinitely many complex (hence, real or rational) homotopy types of
compact balanced manifolds of complex dimension 4 with Frölicher spectral sequence not
degenerating at the second page.

Proof By the discussion above, it is enough to consider a family of compact balanced nil-
manifolds Y 4

α with underlying Lie algebra isomorphic to g
α,β
11 with α = q ≥ 0, q ∈ Q, and

β = 1. To complete the proof it only remains to prove that the Lie algebras gα,1
11 and gα′,1

11 are
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not isomorphic over C whenever α �= α′. Indeed, this means that the C-minimal models of
Y 4

α and Y 4
α′ are not isomorphic for α �= α′. The proof of this fact is quite long and technical,

and we give the details in the Appendix A. �
Our next goal is to extend this result to get non-degeneration in arbitrary high pages. For

this we first consider the nilmanifolds constructed by Bigalke and Rollenske in [4, Theorem
1]. For every n ≥ 2, they provide a complex nilmanifold X4n−2 of complex dimension
4n − 2 with Frölicher spectral sequence not degenerating at the En term, i.e., dn �= 0. More
concretely, the nilmanifold X4n−2 has a basis of invariant (1,0)-forms given by

dx1, . . . , dxn−1, dy1, . . . , dyn, dz1, . . . , dzn−1, ω
1, . . . , ωn

and satisfying the complex structure equations
⎧
⎪⎪⎨

⎪⎪⎩

d(dxi ) = d(dzi ) = 0, i = 1, . . . , n − 1,
d(dy j ) = 0, j = 1, . . . , n,

dω1 = −d ȳ1 ∧ dz1,
dωk = dxk−1 ∧ dyk + dyk−1 ∧ dz̄k−1, k = 2, . . . , n.

(12)

Let us consider the (1,0)-frame {τ i } defined as τ i = dxi (1 ≤ i ≤ n−1), τ i = dyi−n+1 (n ≤
i ≤ 2n − 1), τ i = dzi−2n+1 (2n ≤ i ≤ 3n − 2), τ i = ωi−3n+3 (3n − 1 ≤ i ≤ 4n − 3), and
τ 4n−2 = ω1.
The complex structure equations (12) are expressed in this frame as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dτ 1 = dτ 2 = · · · = dτ n−1 = 0,
dτ n = dτ n+1 = · · · = dτ 2n−2 = dτ 2n−1 = 0,
dτ 2n = dτ 2n+1 = · · · = dτ 3n−2 = 0,
dτ 3n−1 = τ 1 ∧ τ n+1 + τ n ∧ τ 2n,

...
...

...

dτ 4n−3 = τ n−1 ∧ τ 2n−1 + τ 2n−2 ∧ τ 3n−2,

dτ 4n−2 = τ 2n ∧ τ n .

(13)

Note that the complex structure J on the (2-step) nilmanifold X4n−2 is of nilpotent type.
Bigalke and Rollenske prove the following result:

Proposition 3.5 [4, Lemma 2] The differential form β = τ 2n+1∧ . . .∧τ 3n−2∧τ 4n−2 defines
a class [β] ∈ E0,n−1

n (X) such that dn([β]) = [τ 1 ∧ . . . ∧ τ n−1 ∧ τ 2n−1] �= 0 in En,0
n (X).

As shown by Sferruzza and Tardini in [42], the nilmanifold X4n−2 is balanced. Indeed,
many balanced metrics exist on X4n−2. For any ρ = (ρ1, . . . , ρ4n−2) ∈ (R+)4n−2, let Fρ be
the “diagonal” (with respect to the above basis) invariant Hermitian metric defined as

Fρ = i

2

(
ρ1 τ 1 ∧ τ 1 + · · · + ρ4n−2 τ 4n−2 ∧ τ 4n−2

)
.

Hence,

∂ F4n−3
ρ =

4n−2∑

k=1

hρ
k ∂

(

(τ 1 ∧ τ 1) ∧ · · · ∧ (τ̂ k ∧ τ̂ k) ∧ · · · ∧ (τ 4n−2 ∧ τ 4n−2)

)

, (14)

where hρ
k = i (4n−3)!

24n−3 ρ1 · · · ρ̂k · · · ρ4n−2. Here, ρ̂k means that we are removing ρk from the

expression, and a similar meaning is given to the notation τ̂ k and τ̂ k . Using (13) one has
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∂(τ j ∧ τ j ) = 0 for 1 ≤ j ≤ 3n − 2, and

∂(τ 3n−1 ∧ τ 3n−1) = τ 1 ∧ τ n+1 ∧ τ 3n−1 + τ 2n ∧ τ n ∧ τ 3n−1,
...

...
...

∂(τ 4n−3 ∧ τ 4n−3) = τ n−1 ∧ τ 2n−1 ∧ τ 4n−3 + τ 3n−2 ∧ τ 2n−2 ∧ τ 4n−3,

∂(τ 4n−2 ∧ τ 4n−2) = τ n ∧ τ 2n ∧ τ 4n−2.

These equalities clearly imply that ξ ∧ ∂(τ j ∧ τ j ) = 0 for every ξ ∈ ∧3n−3〈τ 1 ∧
τ 1, . . . , τ 3n−2 ∧ τ 3n−2〉 and for any 1 ≤ j ≤ 4n − 2, so (14) vanishes. Thus, any diagonal
metric Fρ is balanced.

Proposition 3.6 [42, Theorem 3.3] For every n ≥ 2, the nilmanifold X4n−2 is balanced.

In a recent paper Stelzig proves that the Künneth formula is compatible with the Hodge
filtration and its conjugate, so thewell-knownKünneth formula for theDolbeault cohomology
implies a Künneth formula for all higher pages of the Frölicher spectral sequence (see [44,
Section 6] and the proof of [44, Proposition 4.8] for more details).

Proposition 3.7 [44] Let X and Y be compact complex manifolds, and let Z = X × Y . For
every r ≥ 1 and every (p, q) with 0 ≤ p, q ≤ dimC Z, the following equality holds

ep,q
r (Z) =

∑

p1+p2=p

q1+q2=q

ep1,q1
r (X) · ep2,q2

r (Y ),

where ep,q
r (·) denotes the dimension of E p,q

r (·), i.e. ep,q
r (·) = dim E p,q

r (·).
We will apply this formula together with the results above to prove the following

Theorem 3.8 For every integer n ≥ 3, there exist infinitely many compact balanced man-
ifolds Z with dimC Z = 4n + 2 and different complex (hence, real or rational) homotopy
types such that dn �= 0 (hence, the Frölicher spectral sequence Er (Z) does not degenerate
at the n-th page).

Similar results hold for d1 �= 0 and d2 �= 0 when complex dimensions 7 and 4 are
respectively considered.

Proof First, we prove the theorem for each n ≥ 3. Let X4n−2 be the nilmanifold in the
Bigalke-Rollenske family, which is balanced by Proposition 3.5. Let us also consider any of
the complex balanced manifolds Y 4

α in the infinite family given in Theorem 3.4. Then, by
[29, Proposition 1.9] the compact complex manifold Z4n+2

α = X4n−2 × Y 4
α is balanced too.

Now observe that both X4n−2 and Y 4
α are nilmanifolds, and recall that Y 4

α is constructed
from a nilpotent Lie algebra gα,1

11 , with α ≥ 0 and α ∈ Q. By [20] the (Q-)minimal model
of Z4n+2

α is isomorphic to the commutative differential graded algebra (CDGA) defined
by the exterior algebra of the rational Lie algebra h ⊕ gα,1

11 , where h denotes the nilpotent
Lie algebra underlying the Bigalke-Rollenske nilmanifold X4n−2. Hence, for every non-
negative α, α′ ∈ Q with α �= α′, the minimal models of Z4n+2

α and Z4n+2
α′ are isomorphic to

gα = h⊕ gα,1
11 and gα′ = h⊕ gα′,1

11 , respectively. Let us denote their complexifications by gα
C

and gα′
C
. By [41, Lemma 1], if a finite-dimensional Lie algebra over C is decomposed as a

direct sum of indecomposable ideals, then the isomorphism classes of these ideals are unique.
Hence, if we assume that h

C
⊕ (gα,1

11 )
C

= gα
C

∼= gα′
C

= h
C

⊕ (gα′,1
11 )

C
, then (gα,1

11 )
C

∼= (gα′,1
11 )

C
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and the nilpotent Lie algebras gα,1
11 and gα′,1

11 would be isomorphic over C. However, this is
a contradiction (see the proof of Theorem 3.4). Consequently, the (nil)manifolds Z4n+2

α and
Z4n+2

α′ have different complex homotopy type for α �= α′, thus also different real or rational
homotopy type.

Let us now apply the Künneth formula in Proposition 3.7 to Z4n+2
α = X4n−2 × Y 4

α with
p = 0, q = n − 1 and r ∈ {n, n + 1}. Then, we get:

e0,n−1
n (Z4n+2

α ) = e0,n−1
n (X4n−2) · e0,0n (Y 4

α ) + ∑4
l=1 e0,n−1−l

n (X4n−2) · e0,ln (Y 4
α )

> e0,n−1
n+1 (X4n−2) · e0,0n+1(Y

4
α ) + ∑4

l=1 e0,n−1−l
n+1 (X4n−2) · e0,ln+1(Y

4
α )

= e0,n−1
n+1 (Z4n+2

α ).

Here we have used that e0,n−1
n (X4n−2) > e0,n−1

n+1 (X4n−2) by Proposition 3.5, together with
the well-known Frölicher inequalities ep,q

r (·) ≥ ep,q
r+1(·), valid for every compact complex

manifold and any r , p, q . In conclusion, for every integer n ≥ 2, the infinite family of
compact balanced manifolds Z4n+2

α have differential dn �= 0.
The result for the second page comes directly from Theorem 3.4. Therefore, we next

focus on the non-degeneration at the first page. Note that we can no longer make use of the
Bigalke-Rollenske nilmanifolds since they satisfy dn �= 0 with n ≥ 2. Moreover, we do not
know if the nilmanifolds Y 4

α have non-zero differential d1. So, we will proceed as follows.
Let X3 be any compact balanced nilmanifold with Frölicher spectral sequence not degen-

erating at the first page. We can consider, for instance, the Iwasawa manifold or any of those
studied in [5]. Let Z7

α = X3×Y 4
α , with α ≥ 0 and α ∈ Q. A similar argument as above allows

us to conclude that Z7
α and Z7

α′ have different complex homotopy type whenever α �= α′,
they are balanced and their Frölicher spectral sequence {Er (Z7

α)}r≥1 is not degenerating at
the 1-st page (neither at the 2-nd page). �

It is worthy to remark that, in the result concerning the second page, the dimension of Z
is optimal in the class of complex nilmanifolds; indeed, Bazzoni and Muñoz prove in [3] that
the number of real homotopy types of 6-dimensional nilmanifolds is finite.

However, for other pages the dimension of the balancedmanifolds Z in the infinite families
seems to be far from being optimal, even in the class of complex nilmanifolds. For instance,
for the third pagewe can consider the (3-step) nilmanifold of real dimension 12 endowedwith
a nilpotent complex structure given in [6]. Let us denote by X6 this complex nilmanifold,
whose complex structure equations are

dω1 = dω2 = dω3 = 0, dω4 = ω12 + ω12̄, dω5 = −ω21̄, dω6 = ω14 + ω13̄.

It is proved in [6] that E3(X6) � E4(X6). For any ρ = (ρ1, . . . , ρ6) ∈ (R+)6, one can check

that the “diagonal” invariant Hermitian metrics on X6 defined by Fρ = i
2

∑6
k=1 ρk ωkk̄ are

balanced. Now, a similar argument as the one given in the proof of Theorem 3.8 shows that
the infinite family of balanced manifolds Z10

α = X6 × Y 4
α satisfies the required properties

for n = 3 in complex dimension 10.
Finally, it is still unclear whether there are obstructions in the Frölicher spectral sequence

under the existence of a balanced metric on a compact complex manifold. We recall that in
the class of balanced nilmanifolds of complex dimension 3 the Frölicher spectral sequence
always degenerates at the second page [5]. We believe that the following general question
could have a positive answer:
Question. Let X be a compact balanced manifold with dimC X = n. Does the Frölicher
spectral sequence of X degenerate at a k-th page for some k ≤ n − 1?
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4 Frölicher spectral sequence of SKT and generalized Gauduchon
manifolds

In this section we construct compact complex manifolds endowed with SKT and, more gen-
erally, generalized Gauduchon metrics having non-degenerate Frölicher spectral sequence.

Let us first recall the definition of generalized Gauduchon metrics, introduced and studied
by Fu, Wang and Wu in [16].

Definition 4.1 [16] Let X be a compact complex manifold with dimC X = n, and let 1 ≤
k ≤ n − 1 be an integer. A Hermitian metric F on X is called k-th Gauduchon if it satisfies
the condition

∂∂̄ Fk ∧ Fn−k−1 = 0.

From the definition, it is clear that the value k = n−1 corresponds to the classical standard
(also known as Gauduchon) metrics [18]. Moreover, observe that any SKTmetric (∂∂̄ F = 0)
is in particular 1-st Gauduchon.

We recall that by [11, Theorem 2.5], any conformally balanced 1-st Gauduchon metric
F on a compact complex manifold X with dimC X = n ≥ 3 whose Bismut connection
has (restricted) holonomy contained in SU(n) is necessarily Kähler. In [21] Ivanov and
Papadopoulos extend this result to any generalized k-th Gauduchonmetric, for any k �= n−1.

Very little is known about the relation between the existence of k-th Gauduchon metrics,
for some 1 ≤ k ≤ n − 2, on a compact complex manifold X and the degeneration of its FSS.
A first consequence of the results in the preceding sections is the following one:

Proposition 4.2 There are infinitely many complex homotopy types of compact 1-st Gaudu-
chon manifolds Z with dimC Z = 4 and Frölicher spectral sequence not degenerating at the
second page.

Proof It is enough to consider the nilmanifolds Y 4
α with underlying Lie algebra isomorphic

to gq,1
11 with q ≥ 0 and q ∈ Q, given in the proof of Theorem 3.4. In fact, these nilmanifolds

admit generalized Gauduchon metrics by [26, Theorem 5.2]. �
Next, we extend this result to obtain non-degeneration at an arbitrarily large page. Let X

be a complex nilmanifold with dimC X = n ≥ 2. For any invariant Hermitian metric F on
X , the real (n, n)-form i

2 ∂∂̄ F ∧ Fn−2 is proportional to the volume form Fn . Therefore,

i

2
∂∂̄ F ∧ Fn−2 = c1(F) Fn, (15)

for some constant c1(F) ∈ R. By [16, Proposition 11] the sign of the constant c1(F) is
an invariant of the conformal class of F . Observe that F is 1-st Gauduchon if and only
if c1(F) = 0. Note that when n = 2 the constant c1(F) = 0 because any invariant metric is
standard.

Proposition 4.3 [24, Proposition 2.3 andCorollary 2.4]Let X and X ′ be complex nilmanifolds
endowed with invariant Hermitian metrics F and F ′, respectively.

(i) For any real positive number λ > 0, we have c1(λ F) = λ−1c1(F).
(ii) The product Hermitian metric F + F ′ on the nilmanifold X × X ′ satisfies

c1(F + F ′) = n (n − 1)

(n + n′)(n + n′ − 1)
c1(F) + n′(n′ − 1)

(n + n′)(n + n′ − 1)
c1(F ′),

where n = dimC X and n′ = dimC X ′. In particular, if c1(F) > 0 and c1(F ′) < 0, then
X × X ′ has a 1-st Gauduchon metric.
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It is worth to recall that for complex nilmanifolds of complex dimension 3, the existence
of an invariant Hermitian metric F with c1(F) < 0 implies the existence of a 1-st Gauduchon
metric (possibly non-invariant and non-SKT) on the nilmanifold (see [11, Theorem 3.6] for
details). In [24, Proposition 2.9] a classification of complex structures admitting Hermitian
metrics with c1 < 0 is given. Using such classification together with [5, Theorem 4.1], one
has that the FSS of a complex nilmanifold X of complex dimension 3 degenerates at the
second page whenever an invariant Hermitian metric with c1 ≤ 0 exists on X .

We use the results obtained in Sect. 3 together with the proposition above to extend
Proposition 4.2 to arbitrarily high pages.

Theorem 4.4 For every integer n ≥ 3, there exist infinitely many compact 1-st Gauduchon
manifolds W with dimC W = 4n+5 and different complex (hence, real or rational) homotopy
types such that dn �= 0 (hence, the Frölicher spectral sequence Er (W ) is not degenerating
at the n-th page).

Similar results hold for d1 �= 0 and d2 �= 0 when complex dimensions 7 and 4 are
respectively considered.

Furthermore, all the previous compact complex manifolds are k-th Gauduchon for every k.

Proof First, we prove the theorem for every n ≥ 3. For each α ≥ 0 and α ∈ Q, let Z4n+2
α be a

compact balanced manifold in the family given in Theorem 3.8. Recall that Zα is a complex
nilmanifold and it has a (invariant) balanced metric F . By [21, Lemma 3.7], one has that the
constant c1(F) > 0.

Let us now consider any complex nilmanifold X ′ of complex dimension 3 endowed with
an invariant Hermitian metric F ′ with c1(F ′) < 0. Note that these nilmanifolds are classified
in [24, Proposition 2.9], and three is the lowest possible dimension where this can occur.

Let Wα = Zα × X ′. It follows from Proposition 4.3 that Wα has a 1-st Gauduchon metric.
Furthermore, a similar argument as in the proof of Theorem 3.8 implies that for any non-
negative α, α′ ∈ Q with α �= α′, the (nil)manifolds Wα = Zα × X ′ and Wα′ = Zα′ × X ′
have different complex homotopy types because their minimal models are not isomorphic
(over C). Applying the Künneth formula to Wα = Zα × X ′ we conclude that dn �= 0 for all
the manifolds Wα . This gives the first part of the statement.

The result for the second page comes directly fromProposition 4.2, sowe focus on the non-
degeneration at the first page. Let X ′ be a 3-dimensional complex nilmanifold with Frölicher
spectral sequence not degenerating at the first page and having an invariant Hermitian metric
F with c1(F) < 0. For example, one can consider X ′ defined by the following complex
structure equations

dω1 = dω2 = 0, dω3 = ω11̄ + (1 + i)ω22̄,

and then the Hermitian metric F = i
2 (ω

11̄ + ω22̄ + ω33̄) satisfies i
2 ∂∂̄ F ∧ F = −1

12 F3,
for instance. Let Z7

α = X ′ × Y 4
α , with α ≥ 0 and α ∈ Q, where Y 4

α is any of the complex
balanced manifolds in the infinite family given in Theorem 3.4. A similar argument as above
allows us to conclude the result for the first page in seven complex dimensions.

For the final statement, we just apply [23, Proposition 2.2], where it is proved that if an
invariant Hermitian metric F on a complex nilmanifold W of complex dimension n ≥ 4 is
k0-th Gauduchon for some k0 with 1 ≤ k0 ≤ n − 2, then F is k-th Gauduchon for every k
with 1 ≤ k ≤ n − 1. Alternatively, one can also apply [31, Proposition 3.1]. �

Observe that the generalized Gauduchon metrics on the manifolds given in the previous
result are not SKT. Indeed, Arroyo and Nicolini prove in [2, Theorem 1.2] that any complex
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nilmanifold admitting an invariant SKT metric is either a torus or 2-step nilpotent. Since any
nilmanifold with SnN complex structure has nilpotency step s ≥ 3 (see [25, Corollary 3.6]),
in particular themanifolds constructed in Theorems 3.8 and 4.4 do not admit any SKTmetric.
Note also that the Bigalke-Rollenske nilmanifolds X are 2-step but they do not admit any
SKT metric by [42, Proposition 3.5]. The latter also follows from the fact that the equations
(13) for X imply that the underlying Lie algebra g satisfies that [g, g]+ J [g, g] is abelian and,
under this condition, Fino and Vezzoni proved (see [12, Theorem 1.1] and [13, Theorem A])
that if X carries an SKT metric and a balanced metric, then X is necessarily a complex torus.

In [34, Conjecture 1.3], it is conjectured that any compact complex manifold X admitting
an SKT metric has Frölicher spectral sequence degenerating at the second page. Some
evidence for this conjecture is provided in [34, 35], where Popovici obtains sufficient metric
conditions for the E2 degeneration of the Frölicher spectral sequence. The main idea is that
the existence of a Hermitianmetric on X with small torsion (in the sense that we recall below)
implies that E2(X) = E∞(X).

Let F be any Hermitian metric on a compact complex manifold X . Recall that the torsion
operator of order zero and bidegree (1, 0) associated with F (see [9, VII §1]) is given by
τ := [	, ∂ F ∧ · ], where 	 is the formal adjoint of the Lefschetz operator L := F ∧ · with
respect to the L2-inner product 〈〈·, ·〉〉 induced by F on differential forms. Define C p,q

F :=
supu∈�p,q (X), ‖u‖=1〈〈([τ, τ �] + [∂ F ∧ ·, (∂ F ∧ ·)�]) u, u〉〉. Now, let �′,�′′ : �p,q(X) −→
�p,q(X) be the usual Laplace-Beltrami operators, i.e.�′ = ∂∂� +∂�∂ and�′′ = ∂̄ ∂̄� + ∂̄�∂̄ .
The non-negative self-adjoint differential operator�′+�′′ is elliptic and, since X is compact,
it has a discrete spectrum contained in [0,+∞) with +∞ as its only accumulation point.
Denote by ρ

p,q
F := min(Spec(�′+�′′)p,q ∩(0,+∞)) its smallest positive eigenvalue. Thus,

ρ
p,q
F is the size of the spectral gap of �′ + �′′ acting on (p, q)-forms.
Popovici proves in [34, Theorem 5.4] that if a compact complex n-dimensional manifold

X carries an SKTmetric F whose torsion satisfies the condition C p,q
F ≤ 1

3ρ
p,q
F for all p, q ∈

{0, . . . , n}, then the Frölicher spectral sequence of X degenerates at E2(X). Furthermore,
in [35, Theorem 1.2] it is proved that the degeneration at E2 occurs whenever the manifold
admits a Hermitian metric F satisfying ker�′′ ⊂ ker [τ, τ �], that is, the torsion operator and
its adjoint vanish on �′′-harmonic forms.

We next provide a counterexample to the previous conjecture, so the torsion of SKT
metrics may not be small in general. The construction is based on the complex geometry of
compact Lie groups.1

Let G be a connected Lie group with Lie algebra g, and denote by g
C
the complexification

of g. Giving a left-invariant almost complex structure J on G is equivalent to the choice of
a subspace s ⊂ g

C
such that

s ∩ g = {0}, g
C

= s ⊕ s.

Hence s is the subspace of (1, 0)-elements. Now, J is integrable if and only if s is a subalgebra
of g

C
, i.e. [s, s] ⊂ s.

For an even-dimensional compact Lie group G, Samelson provided in [40] a construction
of left-invariant complex structures on G that we briefly recall here. Let T be a maximal
torus in G with Lie algebra t, and suppose that α1, . . . , αr ∈ t∗ is a set of positive roots. Here
2r is the rank of G. Then we have the ad(T )-invariant decomposition

1 We were informed by Jonas Stelzig of the existence of SKT nilmanifolds with arbitrarily non-degenerate
FSS.
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g
C

= t
C

⊕
r∑

j=1

sα j ⊕
r∑

j=1

s−α j ,

where t
C
is the complexification of t, and sα is given by

sα := {Z ∈ g
C

| [x, Z ] = 2π iα(x)Z ∀x ∈ t}.
So, if we choose a subspace a ⊂ t

C
such that a ∩ t = {0} and a ⊕ a = t

C
, then we get a

left-invariant complex structure J on G defined by

s = a ⊕
r∑

j=1

sα j .

Now, let g be a bi-invariant metric on G, and denote by 〈 〉 its C-linear extension. The
compatibility of the complex structure J with g is equivalent to s being isotropic, i.e. 〈s, s〉 =
0. Alexandrov and Ivanov state in [1] that any compact Lie group equipped with a bi-
invariant metric g and a left-invariant complex structure J compatible with g is Bismut
flat and its fundamental form F is ddc-harmonic. The latter condition means that F is SKT
(since ddc F = 0) and standard (since (ddc)∗F = 0 is equivalent to ∂∂̄ Fn−1 = 0, where
2n = dimR G). This result is used in [1] to compute the Hodge numbers h0,q of compact Lie
groups with such a Hermitian structure.

Bismut flatmanifolds play a relevant role in relation to the pluriclosed flow. In [17],Garcia-
Fernandez, Jordan and Streets prove global existence and convergence of the pluriclosed flow
and the generalized Kähler Ricci flow on compact Bismut flat manifolds. Note that by [47]
it turns out that, up to taking universal covers, all such manifolds are given by the above
Samelson spaces.

In what follows, we consider the compact semisimple Lie group SO(9) equipped with
the bi-invariant metric g given by minus the Killing form and with a left-invariant complex
structure J compatible with g found by Pittie in [32, 33], as we next recall. The Lie group
G = SO(9) has rank four, so we choose a maximal 4-torus T and a basis for its Lie algebra
t given by

t = 〈e1, e2, e3, e4〉
so that {ek}4k=1 is orthonormal for the metric g. Consider the subspace a ⊂ t

C
defined by

a = 〈e1 + e2 + i
√
2 e3 , e1 − e2 + i

√
2 e4〉.

It is clear that a ∩ t = {0} and a ⊕ a = t
C
, then one has a left-invariant complex structure J

on G. Moreover, a is isotropic, so also is s, and thus J is compatible with the metric g.

Proposition 4.5 The 18-dimensional compact complex manifold X = (SO(9), J ) satisfies
E2(X) �= E∞(X) and it has an SKT metric, which is in addition k-th Gauduchon for every
1 ≤ k ≤ 17.

Proof Let us consider the space

	V = 	(w2,1, w4,3, w6,5, w8,7) ⊗ 	(v1, v2) ⊗ 	(u1, u2),

where the generators w’s have the bidegree indicated by the subindices, v1, v2 have bidegree
(1, 1) and u1, u2 have bidegree (0, 1). Recall that, since the total degree of v j is even, the
space 	(v1, v2) is a polynomial algebra.
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Let us consider ∂̄ defined on generators by

∂̄u1 = ∂̄u2 = ∂̄v1 = ∂̄v2 = ∂̄w2,1 = 0, ∂̄w4,3 = f 2, ∂̄w6,5 = f g, ∂̄w8,7 = g2,

where f = v21 + v22 and g = v21v
2
2 , and let ∂ be given by

∂u1 = v1, ∂u2 = v2, ∂v1 = ∂v2 = ∂w2,1 = ∂w4,3 = ∂w6,5 = ∂w8,7 = 0.

Pittie proved (see also [46]) that (	V , ∂̄) is the Dolbeault minimal model of X , and used it
to show that the FSS of X does not degenerate at E2. For the sake of completeness, we show
here that the map

d2 : E6,8
2 −→ E8,7

2

is not identically zero. Let ξ := u1v1 + u2v2 and η := u1v1v
2
2 . We have ∂ξ = f , ∂η = g.

The element f ξη has bidegree (6, 8), it is clearly ∂̄-closed and ∂( f ξη) = f 2η− f gξ . Since

∂( f ξη) + ∂̄(w6,5 ξ − w4,3 η) = 0,

by the description (1–4) we have that f ξη ∈ E6,8
2 and

d2( f ξη) = ∂(w6,5 ξ − w4,3 η) = w4,3 g − w6,5 f ∈ E8,7
2 .

Using (3), it is a direct calculation to check that w4,3 g − w6,5 f /∈ Y8,7
2 , so d2 is non-zero

and E6,8
2 �= E6,8

3 .
Alternatively, Tanré showed thatw4,3 g −w6,5 f is a non-zero Dolbeault-Massey product

and, by [46, Théorème 9], the degeneration of the FSS at E2 is equivalent to the Dolbeault
formality, for every even-dimensional compact connected Lie group G such that T → G →
G/T is a principal holomorphic fiber bundle, where T is a maximal torus in G.

Finally, by [1] the fundamental form F is ddc-harmonic, so it is SKT and Gauduchon. The
last assertion in the proposition follows from [23, Corollary 2.3] because F is left-invariant.

�

Note that Er (X) = E∞(X) for every r ≥ 3, so the FSS of X degenerates at the third page
(see [32, 33] for details).

Appendix A. The nilmanifolds Y4
˛ have pairwise non-isomorphic C-

minimal models

In this section we complete the proof of Theorem 3.4 by showing that the Lie algebras gα,1
11 ,

α ∈ [0,+∞), underlying Y 4
α are pairwise non-isomorphic over C. Recall that the structure

equations of gα,1
11 are

dv1 = dv2 = dv3 = 0, dv4 = v13, dv5 = v23, dv6 = v14 + v25 − v35,

dv7 = α v12 + v15 + v24 + v34, dv8 = v16 − 2 v25 + v27 − v35 − v45.
(16)

We will prove that if f : gα,1
11 −→ gα′,1

11 is an isomorphism of Lie algebras, then α = α′.
Note that the dual map f ∗ : (gα′,1

11 )∗ −→ (gα,1
11 )∗ extends to a map F : ∧∗

(gα′,1
11 )∗ −→

∧∗
(gα,1

11 )∗ that commutes with the differentials, i.e. F ◦ d = d ◦ F .
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Let {vk}8k=1 (resp. {v′ k}8k=1) be a basis for (gα,1
11 )∗ (resp. (gα′,1

11 )∗) satisfying the
equations (16) for α (resp. α′). In terms of these bases, F is determined by

F(v′ k) =
8∑

j=1

λk
j v j , k = 1, . . . , 8,

where the matrix 	 = (λk
j )k, j=1,...,8 belongs to GL(8, C), and the condition F ◦ d = d ◦ F

reads as

F(dvk) − d(F(v′ k)) = 0, for each 1 ≤ k ≤ 8. (17)

In [26] the isomorphism problem for this family of algebras was studied in the case of the
field of real numbers. We notice that [26, Lemma 3.4] is still valid over C, as it is the first
part of the proof of [26, Lemma 3.5]. Thus, one arrives at a complex matrix 	 = (λk

j )k, j of
the form

	 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ11 λ12 0 0 0 0 0 0
λ21 λ22 0 0 0 0 0 0
0 0 λ33 0 0 0 0 0
λ41 λ42 λ43 λ44 λ45 0 0 0
λ51 λ52 λ53 λ54 λ55 0 0 0
λ61 λ62 λ63 λ64 λ65 λ66 λ67 0
λ71 λ72 λ73 λ74 λ75 λ76 λ77 0
λ81 λ82 λ83 λ84 λ85 λ86 λ87 λ88

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (18)

where λ11λ
2
2 − λ12λ

2
1 �= 0, λ33, λ

8
8 �= 0, together with

λ44 = λ11 λ33, λ45 = λ12 λ33, λ54 = λ21 λ33, λ55 = λ22 λ33,

λ66 = λ22 (λ33)
2, λ67 = −λ21 (λ33)

2, λ76 = −λ12 (λ33)
2, λ77 = λ11 (λ33)

2,

and

(λ12)
2 + (λ22)

2 − λ22 λ33 = 0, λ12 (λ33 + 2 λ22) = 0. (19)

We distinguish two cases depending on the vanishing of the complex coefficient λ12.
Let us first suppose that λ12 = 0. Note that in this case the second part of the proof of [26,

Lemma 3.5] and [26, Lemma 3.6] are still valid for C. Hence, for α �= α′, any F with λ12 = 0
is not an isomorphism over C.

Consequently, we will now assume that λ12 �= 0. Then, the second expression in (19) gives
λ33 = −2 λ22, and replacing it in the first one, we get

(λ12)
2 + 3 (λ22)

2 = 0. (20)

On the other hand, the coefficients of v14 and v15 in the condition (17) for k = 7 are,
respectively, 2 λ11 λ21 + λ12 λ33 and λ12 λ21 + λ11(λ

2
2 − λ33), so using again λ33 = −2 λ22 we get

λ11 λ21 − λ12 λ22 = 0, λ12 λ21 + 3 λ11 λ22 = 0. (21)

The Eqs. (20 and 21) can be solved explicitly in terms of λ12. Notice that (λ11)
2 = (λ22)

2.
There are four solutions:

λ11 = ϑξ
i√
3
λ12, λ21 = ξ λ12, λ22 = ϑ

i√
3
λ12, λ33 = −2ϑ

i√
3
λ12, ϑ, ξ ∈ {±1}.

(22)
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We will use these solutions below, after taking into account first other equations coming
from the conditions (17) for k = 6, 7, 8 (note that (17) is already fullfilled for 1 ≤ k ≤ 5).

The coefficients of v13 and v23 in the condition (17) for k = 6, 7 give the following
equations:

λ64 = λ11λ
4
3 + λ33λ

5
1 + λ21λ

5
3, λ65 = λ12λ

4
3 + λ33λ

5
2 + λ22λ

5
3,

λ74 = −λ33λ
4
1 + λ21λ

4
3 + λ11λ

5
3, λ75 = −λ33λ

4
2 + λ22λ

4
3 + λ12λ

5
3.

Using this, from the coefficients of v13, v14, v16, v23 and v34 in the condition (17) for k = 8
we have the following equalities:

λ84 = (λ33 + λ43)λ
5
1 − (2 λ21 + λ41)λ

5
3 + λ11λ

6
3 + λ21λ

7
3,

λ85 = (λ33 + λ43)λ
5
2 − (2 λ22 + λ42)λ

5
3 + λ12λ

6
3 + λ22λ

7
3,

λ86 = −2(λ21)
2λ33 − 2 λ21λ

3
3λ

4
1 + (

(λ11)
2 + (λ21)

2) λ43 + 2 λ11λ
3
3λ

5
1 + 2 λ11λ

2
1λ

5
3,

λ87 = −λ21(λ
3
3)

2 − λ21λ
3
3λ

4
3 + λ11λ

3
3λ

5
3,

λ88 = (λ11λ
2
2 − λ12λ

2
1)(λ

3
3)

2.

Now, considering these equalities together with the solutions (22), the conditions (17) for all
1 ≤ k ≤ 8 are equivalent to the following system:

λ41 − √
3 i ϑ ξ λ42 + √

3 i ϑ λ51 − ξ λ52 = −4ξ λ12,

3λ41 − √
3 i ϑ ξ λ42 + √

3 i ϑ λ51 − 3ξ λ52 = −4ξ α (λ12)
2,

3
√
3 i ϑ ξ λ41 + 3λ42 + 3ξ λ51 + 3

√
3 i ϑ λ52 = −4λ12 (

√
3 i ϑ − 2ξ λ12),

√
3 i ϑ λ41 − 3ξ λ42 + 3λ51 − √

3 i ϑ ξ λ52 = −4 ξ λ12 (α′ − i√
3

ϑ α λ12),

3
√
3 i ϑ ξ λ41 + 3ξ λ51 = −4λ12 (

√
3 i ϑ + ξ λ12),

4ξ α (λ12)
3 + 2i

√
3ϑ ξ α (λ12)

2λ43 − 2i
√
3ϑ λ12λ

5
1 − 3λ42λ

5
1 + 6ξ λ12λ

5
2

+ 3λ41λ
5
2 + 2ξ α (λ12)

2λ53 + 3λ12λ
6
1 − i

√
3ϑ ξ λ12λ

6
2 + i

√
3ϑ λ12λ

7
1 − 3ξ λ12λ

7
2 = 0.

(23)

We focus our attention on the first five equations in (23) and consider them as a system
of five linear equations in λ41, λ

4
2, λ

5
1 and λ52. Applying Gaussian elimination, one reaches the

matrix
⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −√
3 i ϑ ξ

√
3 i ϑ −ξ −4ξ λ12

0 1 −ξ 0 − 2 i√
3

ϑ λ12 (3 − α λ12)

0 0 1
√
3 i ϑ ξ 2

3 ϑ ξ λ12

(
2ϑ ξ λ12 − √

3 i (1 − α λ12)
)

0 0 0 0 − 4√
3

ϑ ξ λ12

(√
3ϑ α′ + 2 i (3 − 2α λ12)

)

0 0 0 0 −4ϑ λ12

(
2ϑ ξ λ12 + √

3 i (2 − α λ12)
)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

By hypothesis λ12 �= 0, so the system can be solved if and only if
{√

3ϑ α′ + 2 i (3 − 2α λ12) = 0,

2ϑ ξ λ12 + √
3 i (2 − α λ12) = 0.

If α = 0, then α′ would be an imaginary number, which is not possible. Otherwise, λ12 can
be solved from the first equation and substituting its value in the second one, we get

2
√
3 i

(
α − ξ α′) − 3ϑ

(
α α′ − 4 ξ

) = 0.
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Since α, α′ ∈ (0,∞), the imaginary part of this equation gives α′ = α.
Hence, we have proved that given α, α′ ∈ [0,+∞), the algebras gα,1

11 and gα′,1
11 are

isomorphic over C if and only if α = α′.
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