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Abstract. On a compact d0-manifold X, one has the Hodge decomposition: the de Rham cohomology
groups split into subspaces of pure-type classes as H C’l“R(X ) = @ptq=kH?1(X), where the HP4(X) are
canonically isomorphic to the Dolbeault cohomology groups ng(X ). For an arbitrary nonnegative integer
r, we introduce the class of page-r-00-manifolds by requiring the analogue of the Hodge decomposition to
hold on a compact complex manifold X when the usual Dolbeault cohomology groups H g’ %(X) are replaced
by the spaces EX\% (X) featuring on the (r + 1)-st page of the Frélicher spectral sequence of X. The class
of page-r-00-manifolds coincides with the usual class of d9-manifolds when » = 0 but may increase as r
increases. We give two kinds of applications. On the one hand, we give a purely numerical characterisation
of the page-r-00-property in terms of dimensions of various cohomology vector spaces. On the other hand,
we obtain several classes of examples, including all complex parallelisable nilmanifolds and certain families
of solvmanifolds and abelian nilmanifolds. Further, there are general results about the behaviour of this
new class under standard constructions like blow-ups and deformations.
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1 Introduction

Let X be an n-dimensional compact complex manifold. Recall the following notion that goes back to
Deligne-Griffiths-Morgan-Sullivan [15] in the form (equivalent to that in [15]) and with the name given in
[30, Definition 1.6].

Definition 1.1. A compact complex manifold X is said to be a 90-manifold if for any d-closed pure-type
form u on X, the following exactness properties are equivalent:

u is d-exact <= u is O-exact <= u is O-exact <= u is 0-exact.

The classical d0-lemma asserts that every compact Kéhler manifold is a d9-manifold. More generally,
thanks to [15], every class C manifold (i.e. every compact complex manifold bimeromorphically equivalent
to a compact Kihler manifold) is a dd-manifold. However, there exist many d0-manifolds that are not of
class C (see e.g. [11], [24], [42], [30, Obs. 4.10], [3], [5, Thm 3.8], [16]).

On the other hand, every 00-manifold admits canonically, namely in a way that depends only on the
complex structure and does not involve arbitrary choices of metrics or other objects, a Hodge decomposition
of the de Rham cohomology into a direct sum of subspaces of pure-type classes H gR(X ) = @p gk Pe(X),
with canonical isomorphisms H g’q(X ) = HP9(X), and the conjugation induces the Hodge symmetry, i.e. an
antilinear isomorphism H2(X) = HZP(X) (accounting for the fact that some authors call these manifolds
cohomologically Kihler). In particular, the Frolicher spectral sequence (FSS) of any 09-manifold degenerates
at the first page. However, the converse fails. (Indeed, as is well known, any non-Kéhler compact complex
surface provides a counter-example to the converse.) Meanwhile, 99-manifolds also have good deformation
and modification properties. For a review of these and some further properties of d0-manifolds, see e.g.
[30]. Let us now mention only a few of these for the reader’s convenience:



(1) The 00-property is deformation open in the following sense: if (X;)icp is a holomorphic family of
compact complex manifolds X; parametrised by an open disc B C C about the origin (or by any
complex manifold B), whenever X, (or any fibre Xy, with ty € B) is a 9d-manifold, every X; with
t € B sufficiently close to 0 (resp. to tg € B) is again a dd-manifold. (See [42] or [8].)

(2) The d0-property is stable under contractions in the following sense: if f : X -—Xisa holomorphic
bimeromorphic map (i.e. a modification) between compact complex manifolds and if X is a 99-
manifold, then X is again a dd-manifold. (See [15, Theorem 5.22].) In particular, f may be the
blow-up of X along a smooth centre Z. However, it is still unknown whether X being a d0-manifold
implies that X is a 9-manifold in full generality. It has recently been shown (see e.g. [6], [37], [38],
35], [43] or also §5) that, on the one hand, X is a d9-manifold whenever both X and Z are, and, on
the other hand, that the 0-property is stable under blow-ups with smooth centres if and only if it is
inherited by any submanifold of a 0-manifold. So, the remaining open problem in this direction is
this submanifold heredity issue.

(3) The 90-property of compact Calabi-Yau manifolds implies the unobstructedness of the small deforma-
tions of the complex structure in the following sense: if X is a compact d9-manifold whose canonical
bundle Kx is trivial, the Kuranishi family of X is unobstructed. (This statement in the case where
X is Kéhler is called the Bogomolov-Tian-Todorov Theorem — see [9], [39], [40].)

One of our main goals in this work is to relax the notion of d9-manifold to accommodate a Hodge
theory involving the higher pages of the Frolicher spectral sequence (FSS) of X when degeneration does
not occur at the first page. As a result, we enhance the class of 90-manifolds to classes of manifolds that
seem worthy of further attention. This is motivated by the existence of many well-known non-Kahler and
even non-00 compact complex manifolds, such as the Iwasawa manifold and higher-dimensional analogues
thereof, whose Frolicher spectral sequence degenerates only at the second page or later. Thus, we aim for
a unified Hodge theoretical treatment of as large a class of compact complex manifolds as possible.

This approach enables us to get exact analogues of the usual Hodge decomposition and symmetry
properties for what we call page-(r — 1)-00-manifolds using the spaces EF'?(X) featuring on the 7-th
page of the FSS, for some given r > 2, rather than the usual spaces E}"?(X) = Hg’q(X) of the Dolbeault
cohomology. The standard notion of dd-manifold coincides with that of page-0-00-manifold, while the
class of page-r-00-manifolds, our main find in this work, may grow as r € N increases.

1.1 Overview of the results

The following statement sums up several results and definitions of sections 2 and 3.

Theorem and Definition 1.2. Let X be a compact complex manifold with dimcX = n. Fiz an arbitrary
r € N*. The following statements are equivalent.

(1) X has the E,-Hodge Decomposition property, i.e. for every k, there is a d-closed representative of
any class in EP?(X) and sending such a representative to its de Rham class induces a well-defined
isomorphism

P EPIX) — Hip(X, C).
p+q=k

(2) The Frélicher spectral sequence of X degenerates at E, and the Hodge filtration induces a pure
Hodge structure on the de Rham cohomology in every degree.



(3) The double complex (€D, jez Cpry(X), 0, 0) of smooth, complez-valued differential forms is isomorphic
to a direct sum of indecomposable double complexes of the following types: squares, namely double
complezes of the shape

(@) ——— (Oa);

dots, namely double complexes of the shape (a); and zigzags of even length < 2(r —1).

(4) There is an equality
r—1

th<X) = ei(X)—(T'—Q)b(X),
1

i
where hpc(X) == >, ez dim HL(X) is the total Bott-Chern cohomology dimension, e;(X) :=

Zp’q dim EPY(X) is the total dimension of the i-th page of the Frolicher spectral sequence and b(X) :=
> icz = bi(X) is the total Betti-number.

Aicompact complex manifold X that satisfies any of these equivalent conditions is said to be a page-(r —1)-
d0-manifold.

For example, when they are of lengths 2 and 4, the zigzags mentioned under (3) in the above statement
are of the following types:

(Day)
(Da) (a1) —— (da1) T
(@) —— (da), T T (a1) —— (Dap)
(@) (2) —— (9a2), I

<a2).

In all these diagrams, a and a; are non-zero elements of pure bidegrees, all drawn arrows are supposed
to be isomorphisms and all omitted arrows are zero.

Note that the pure-Hodge condition of the de Rham cohomology imposes topological restrictions on the
underlying manifold: as in the Kihler case, the odd-degree Betti numbers by 1(X) of page-r-09-manifolds
have to be even.

Condition (4) is actually the equality case of the following general inequality, proved in section 3.

Theorem 1.3. Let X be a compact complex manifold with dimcX = n. Then, for any r € N*, the following
inequality holds

r—1

hpe(X) = 3 e(X) - (r - 2)b(X),

i=1

with equality if and only if X is a page-(r — 1)-00-manifold.



Note that one can rewrite this inequality to obtain a lower bound for the total Betti number (a topological
quantity) in terms of analytic invariants.

The statement for » = 1 (i.e. hpc(X) > b(X)) and for r = 2 (i.e. hpc(X) > hz(X)) were known
(see [8]) but the characterisation of the equality is new for » = 2. For r > 3, both the inequality and the
characterisation of the equality are new.

In section 4, we provide examples of primary (i.e. not derived from others of their kind) page-r-90-
manifolds that are not page-0-00-manifolds (i.e. not d0-manifolds in the usual sense). We produce three
different classes of such examples with r = 1:

(1) all the complex parallelisable nilmanifolds (see Theorem 4.7). These are not d9-manifolds unless
they are complex tori. This class of manifolds includes the complex 3-dimensional Iwasawa manifold,
but is far wider;

(2) two families of nilmanifolds with abelian complex structures with members of arbitrarily high
dimensions. (See Theorem 4.8 and Proposition 4.10.) In some sense, these form the opposite of the
above class (1) among nilmanifolds (see Remarks 4.9 and 4.11);

(3) the Nakamura solvmanifolds (which are not nilmanifolds) considered in [29] and [4]. (See Corollary
4.12)

In the subsequent work [20] by H. Kasuya and the second-named author, examples (1) and (3) were
generalised; in particular, all complex parallelisable solvmanifolds were shown to be page-1-00-manifolds.

In section 5, we study the behaviour of page-r-00-manifolds under standard geometric operations. In
particular, we obtain construction methods for new examples from given ones. These include:

(4) products of page-r;-90-manifolds, with possibly different 7;’s;

(5) blow-ups of page-r1-0d-submanifolds of page-rs-0d-manifolds, with possibly different r;’s;

(6) the projectivised bundle P()) of any holomorphic vector bundle V on a page-r-dd-manifold;
(7)

7) small deformations of a page-1-00-manifold with fixed Hodge numbers.

2 Page-r-00-manifolds

In this section, we give the main definitions and some of the basic properties of the new class of manifolds
that we introduce herein. Unless otherwise stated, X will stand for an n-dimensional compact complex
manifold. We refer to [17] for the setup of the Frolicher spectral sequence and [13] for a hands-on description
of the groups appearing on the higher pages.

2.1 Preliminaries

We start by recalling some well-known facts in order to fix the setup and to spell out the relationship
between the Frolicher spectral sequence and the (filtered) de Rham cohomology when the latter is pure in
a sense that will be specified.

For all non-negative integers k& < 2n and p < min{k, n}, it is standard to put

FPCR(X, C) == P C5i(X) € C°(X, C) (1)

>p



and get a filtration of C;°(X, C) for every k:
{0} - Cc FPTICR(X, C) € FPCP(X, C) C --- C CF°(X, C). (2)
It is equally standard to put

FPCR(X, C) Nkerd
FPCX(X, C) Nimd

FPHEL(X, C) := C HEo(X, ©),

the subspace of de Rham cohomology classes of degree k that are representable by forms in FPC°(X, C),
to get a filtration of HC’;R(X, C) for every k:

{0}y c--- c FPPIHEL(X, C) € FPHER(X, C) € --- € HER(X, C). (3)

Let us now recall the following standard result (see e.g. [17, Lemma 2]).

Theorem 2.1. Let X be an n-dimensional compact complex manifold. For every p,q € {0,...,n}, the
vector space E5(X) of type (p, q) on the degenerating page of the Frolicher spectral sequence of X is
naturally isomorphic to the graded module associated with the filtration (3):

FPHYM(X, C)
Frilgt(x, C)’

ERY(X) ~ G,HY (X, C) =
where the isomorphism GpHY%(X, C) ~ ERY(X) is induced by the projection

FPHVY(X, C) {Zuw’ﬂ } = {uP ) g € ERI(X).
dR

i>p

The following statement is immediate to prove.

Lemma 2.2. The following relations hold:

CX(X,C) = FPCr(X,C)a FkrrlCe(X, C) for all 0 <p < min{k, n}; (4)
Coo(X) = FPOR(X, C)nFICr(X, C) for all p,q such that p+q = k. (5)

On the other hand, for all p,q € {0,...,n}, let us consider the following space of de Rham cohomology
classes of degree p + ¢ that are representable by pure-type (p, ¢)-forms:

HY (X)) = {c € HIF(X, C) | 3o € C°(X) s.t. [a] = c} C HYY(X, C).

This definition makes it obvious that the analogue of the Hodge symmetry for the spaces Hg}%q(X )
always holds. In other words, the conjugation induces an isomorphism

Hgkq(X) e {a}ar— {a}p € Hg}zp(X) forall 0<p,q<n. (6)

The following analogue in cohomology of identity (5), resp. of one of the inclusions defining the filtration
(1) of C°(X, C), can be immediately proved to hold.



Lemma 2.3. The following relations hold:

HY(X) = FPHY,(X, C)N FaHk (X, C) for all p,q such that p+q = k; (7)
H2AH(X) € FPHER(X, ©) for all i>p and all p<k. (8)

Proof. Everything is obvious, except perhaps the inclusion “D” in (7) which can be proved as follows.
Let {a}tar = {Btar € FPHEL(X, C) N F1HA, (X, C) with a = Zizpoz’"k_i € FPCX(X,C) and g =
ESSP ks ¢ FaCr (X, C). Since a and § are de Rham-cohomologous, there exists a form o € C72 (X, C)
such that « — 8 = do. This identity implies, after equating the terms with a holomorphic degree > p on
either side, the second identity below:

oa— ol = E :O/,kﬂ — d<§ :kaflfj) _ gazuqfl7

i>p jzp

which, in turn, implies that {a}qr = {9 — OoP 971} r. Since a? 9 — JoP 97 is a (p, ¢)-form, we get
{a}tqr € HYY(X) and we are done. O

Note that, with no assumption on X, the subspaces Héﬁ_i(X ) may have non-zero mutual intersections
inside H CIZCR(X , C), i.e. they may not sit in a direct sum. Similarly, they may not fill out the whole space
(i.e. their linear span could be a proper subspace). If they do, i.e. if

HY(X, C) EB HY(X
p+q=k

then H C]l"R(X , C) is said to carry a pure Hodge structure (induced from the Hodge filtration), [14]. We
also recall from [14] that purity in degree k is equivalent to the filtrations F' and F on H (I;R(X , C) being
k-opposed, which means that the natural map FPH¥,(X, C) & F1HX, (X, C) — H,(X, C) is an isomor-
phism whenever p + ¢ = k + 1, or equivalently that gr, gry, H, k2(X, C) = 0 whenever p + ¢ # k. We now
introduce the following shorthand terminology.

Definition 2.4. Let X be an n-dimensional compact complex manifold. The de Rham cohomology of X is
said to be pure if the Hodge filtration induces a pure Hodge structure in every degree, i.e. if

Hk(X, C) @ (X for all ke€{0,...,2n}.
p+q=k

Note on terminology 2.5. Some authors call the property of the Hodge filtration inducing a pure Hodge
structure in degree k complex-C>*-pure-and-full in degree k (cf. [25]). It was remarked in [7] that
the complex-C*>-full property in degree k (i.e. the sum of the Hg}%q(X )’s is not necessarily direct but
it fills out H%,(X, C)) implies the complex-C*°-pure property in degree (2n — k) (i.e. the sum of the
HY(X)s is direct but it may not fill out H2% *(X, C)). We will show further down that the converse
is also true, i.e. the complex-C>°-pure property in degree k implies the complex-C>-full property in
degree (2n — k). Therefore, compact complex manifolds satisfying either the complex-C>°-full property
or the complex-C*°-pure property in every degree k are of pure de Rham cohomology in the sense of our
Definition 2.4.

Proposition 2.6. Suppose X is an n-dimensional compact compler manifold. Then its de Rham cohomol-
ogy is pure if and only if



FPHfR(X, C) =P Hyp for all p<k. (9)
i>p

In particular, for pure X, the spaces ERY(X) in the Frélicher spectral sequence of X are given by

E29(X) ~ HY(X) for all p,q€{0,...,n}, (10)
where ~ stands for the natural isomorphism induced by the identity.

Proof. Equation (9) for all p = k is just the definition of purity, so it remains to prove the converse.
Assume X is pure. Inclusion “D” in (9) follows at once from (8) and from the de Rham purity as-

sumption. To prove inclusion “C” in (9), let {a}qr € FPH,(X, C) with a = Y a™*" € kerd. Since
T2p

FPHEL(X, C) C HY(X, C) = ®pygerHY(X) (the last identity being due to the purity assumption),
there exist pure-type d-closed forms 87*~" such that {a}ar = {> gc,<r 87" "}ar. Hence, there exists a
(k —1)-form o such that o — > . B k=" = —do, which amounts to

ar,k—r _ Br,k—r + ao_r—Lk—r + 50_7’,k—r—1 =0, re {07 el k},

with the understanding that o™ *~" = 0 whenever r < p.

Therefore, kT = 9" "L ETT 4 9o k=1 whenever 7 < p. Since every BT k=" is d-closed (hence also
0- and O-closed), we infer that ¢"~1*~" and ¢™*~"~! are 99-closed for every r < p. Hence

k _ k
Z ﬁr, k—r _ d(z Jr,kfrfl) — Z (ﬁT,kJ*T _ aarfl,kfr — Ho™ kfrfl) _ 80p71,k7p 4 Z 5r, k—r

r=0 r<p r<p r>p (11)

— Z /Br,k—r — gp—Lk—p,

r>p

Note that from the identity gP—1F =P+l = ggP=2.k=r+1 4 §oP=LE=P and the d-closedness of AP~ LF=PF1 we
infer that doP~1*~P ¢ kerd.

Thus, (11) shows that the k-form }°, - A" k=r — goP~Lk=p ¢ FPCX (X, C), whose all pure-type com-
ponents are d-closed, is de Rham-cohomologous to > ., < Bk~ hence to . Consequently, we have

{atar = {Zﬁr, k—r aapl,kp} c @HZUS i
r>p i>p

The proof of (9) is complete.
Identity (10) follows at once from (9) and from Theorem 2.1. O

2.2 Definition of page-r-00-manifolds

Recall that X is a fixed n-dimensional compact complex manifold and EF9(X) stands for the space of
bidegree (p, ¢) on the r-th page of the Frolicher spectral sequence of X.

Definition 2.7. Fiz r € N* and k € {0,...,2n}. We say that the identity induces an isomorphism
between ®piq—kEF /(X)) and HY,(X, C) if the following two conditions are satisfied:

(1) for every bidegree (p, q) with p+ q =k, every class {a? 9} g, € EX'%(X) contains a d-closed repre-
sentative of pure type o”? € C;° (X) ;



(2) the linear map

P Erux)s D {o"9g, »—>{ > anQ}dR e HE (X, ©),

p+a=Fk p+a=Fk pt+q=Fk

defined using only d-closed pure-type representatives o1 of the classes {a 1} g, , whose existence is
guaranteed by condition (1), is well-defined and bijective. Here, well-defined means that it does
not depend on the choice of the d-closed representatives.

Moreover, if, for a fized r € N*, the identity induces an isomorphism @y EX1(X) ~ HC’l“R(X, C) for
every k € {0,...,2n}, we say that the manifold X has the E.-Hodge Decomposition property.

Note that whenever the identity induces a well-defined (not necessarily injective) linear map Er9(X) —
H%,(X, C), the image of this map is H};/(X). Indeed, one inclusion is obvious. The reverse inclusion follows
from the observation that any d-closed (p, ¢)-form defines an E,-cohomology class (i.e. it is E,-closed in
the terminology of [32]). Further note that whenever X has the E,-Hodge Decomposition property, the
Frolicher spectral sequence of X degenerates at E,. (at the latest).

Definition 2.8. Fizr € N* andp,q € {0,...,n}. We say that the conjugation induces an isomorphism
between EX7(X) and the conjugate of EFY(X) if the following two conditions are satisfied:

(1) every class {aP 9} g, € EP9(X) contains a d-closed representative of pure type o9 € C;°,(X);

(2) the linear map

EPU(X) 3 {a” g, — {aP}p, € BPT(X)

is well-defined (in the sense that it does not depend on the choice of d-closed representative o9 of
the class {1} g, ) and bijective.

Moreover, if, for a fivzed r € N*, the conjugation induces an isomorphism EX'%(X) ~ EXP(X) for every
p,q €10,...,n}, we say that the manifold X has the E,-Hodge Symmetry property.

We shall now see that the E,-Hodge Decomposition property implies the E,.-Hodge Symmetry property.
This follows from the following characterisation of the former property.

Theorem 2.9. Let X be a compact complex manifold with dimcX = n. Fiz an arbitrary r € N*. Then,
the following two conditions are equivalent:

(1) X has the E,-Hodge Decomposition property;

(2) the Frélicher spectral sequence of X degenerates at E, (we will denote this by E.(X) = Ex(X))
and the de Rham cohomology of X is pure.

Proof. (1) = (2) We have already noticed that the E,-Hodge Decomposition property implies E,(X) =
Eso(X) and that the image of each EF'(X) in HY:Y(X, C) under the map induced by the identity is
HIH(X). We get (2).

(2) = (1) Since the de Rham cohomology of X is supposed pure, we know from Proposition 2.6 that
E2%9(X) ~ HJ(X) (isomorphism induced by the identity) for all bidegrees (p, ¢). On the other hand,
E%Y(X) = EPY(X) for all bidegrees (p, q) since we are assuming that F,(X) = E.(X). Combined with
the de Rham purity assumption, these facts imply that X has the F,.-Hodge Decomposition property. [



Definition 2.10. A compact complex manifold X that satisfies the equivalent conditions (1) and (2) of
Theorem 2.9 is said to be a page-(r — 1)-00-manifold.

Corollary 2.11. Any page-(r — 1)-00-manifold has the E.-Hodge Symmetry propertsy.

Proof. We have already noticed in (6) that the conjugation (trivially) induces an isomorphism between any
space H} (X)) and the conjugate of Hjy (X). Meanwhile, we have seen that the page-(r— 1)-00-assumption
implies that the identity induces an isomorphism between any space Ep"¢(X) and HD:/(X). Hence, the
conjugation induces an isomorphism between any space EX’?(X) and the conjugate of E}P(X). O

Another obvious consequence of (2) of Theorem 2.9 and Definition 2.10 is that the page-r-d9-property
becomes weaker and weaker as r increases.

Corollary 2.12. Let X be a compact complex manifold. Then, for every r € N*, the following implication
holds:

X is a page-r-00-manifold => X is a page-(r + 1)-00-manifold.

Indeed, the purity of the de Rham cohomology is independent of 7, while the property E,.(X) = Ex(X)
obviously implies F,11(X) = Ex(X) for every r € N.

2.3 Characterisation in terms of squares and zigzags

The goal of this section is to relate the page-r-00-property to structural results about double complexes.
This degree of generality has the advantage of emphasising which aspects of the theory are purely algebraic.
Even if one is only interested in the complex Ax := (C;<,(X), 9, 0) of C-valued forms on a complex manifold
X, in the more general setting one can consider certain finite-dimensional subcomplexes on an equal footing.

Specifically, by double complexes we mean bigraded vector spaces A = @ZL q€Z AP? with endomorphisms
01, 02 of bidegrees (1,0), resp. (0,1), satisfying d?> = 0 for d := 91 + 2. We do not require A to be finite-
dimensional. We will always assume our double complexes to be bounded, i.e. AP*? = ( for all but finitely
many (p,q) € Z>.

There are now two Frolicher-style spectral sequences, starting from column, i.e. (do-), resp. row, i.e.
(01-), cohomology and converging to the total (de Rham) cohomology of (A, d). We denote them by

{EP9(A) = (HI(A),F) i=1,2.
In the case A = Ay, the case i = 1 is the Frolicher spectral sequence and ¢ = 2 its conjugate.
The following is a minor extension to general double complexes of the definition (based on its second

characterisation) of the page-(r — 1)-09-property of manifolds. The equivalence of the two conditions is
seen just as before.

Definition 2.13. A double complex A is said to satisfy the page-(r — 1)-0102-property if one (hence
both) of the following equivalent conditions hold:

(1) Both Frélicher spectral sequences degenerate at page r and the de Rham cohomology is pure.
(2) Fori=1,2, every ;EY?(A)-class contains a d-closed representative and the corresponding map
P iEpia) — Hig(A)
pt+q=k

induced by the identity is well-defined and bijective.



The following observation will motivate the subsequent considerations.

Observation 2.14. The Frolicher spectral sequences, as well as Hyr, Ha and Hpc, are compatible with
direct sums. In particular, a sum A = B & C satisfies the page-r-010s-property if and only if B and C do.

Recall that a (nonzero) double complex A is called indecomposable if there exists no nontrivial
decomposition A = B @ C into subcomplexes B, C'.

Theorem 2.15. ([21, 38]) For every bounded double complex over a field K, there exists an isomorphism
A @ c® multc(A)7
C

where C runs over a set of representatives for the isomorphism classes of bounded indecomposable double
complexes and multc(A) are (not necessarily finite) cardinal numbers uniquely determined by A.

Moreover, each bounded indecomposable double complex is finite dimensional and isomorphic to a
complex of one of the following types:

(1) square: a double complex generated by a single pure-(p, q)-type element a in a given bidegree with no

further relations (i.e. 01a # 0 # 02a,0102a #0):

<02 CL> —_— (82 61 a>

I I

(a) ——— (Ora).

(2) even-length zigzag of type 1 and length 2I. This is a complex generated by elements a1, ...q;
and their differentials such that Jsa1 = 0 and 01a; = —dsag, O1as = —hbas, ..., a1 = —0sa; and
no further relations (i.e. 01a; # 0 for alli =1,...,1). Drawing only nonzero arrows, it has the shape:

(a1) — (O1a1)

I

(ag) ——

I

<al> EE— <81al>.
Here, as in all the following examples, the length of a zigzag is the number of its vertices.

(3) even-length zigzag of type 2 and length 2I. This is a complex generated by elements ay, ..., q
and their differentials, such that 01a1 = —dsas, O1as = —has, ..., O1aj_1 = —0sa;, O1a; = 0 and no
further relations. It is of the shape:

10



(ar).

(4) odd-length zigzag of type M and length 2] + 1. This is a complex generated by elements
ay, ...,ap+1 with the only relations Oya; = —0rait+1, O2a1 =0 and O1a;11 = 0. It has the shape:

(a1) —— (O1a1)

The special case where I =0 is also called a dot.

(5) odd-length zigzag of type L and length 2/ + 1 (I > 0). This is a complex generated by elements
ai,...,a; with the only relations d1a; = —02ai41 (i.e. Oaa; # 0 # O1a; for alli). It has the shape:

(O2a1)

I

(a1) —— (O1a1)
(Oaay)
(a;) — (O1ay).
Illustrating this result, we point out the following

Example 2.16. Any bounded complex of K-vector spaces (V*, ) is a direct sum of complexes of the
following two forms:

11



50— KO 30— ... and .. —0— KO Z,ROM 0

This can easily be seen directly by picking succesive complements of imd C ker 6 C V¥ in every degree.
A special case of Theorem 2.15 is obtained when one considers (V' *, 0) as a double complex concentrated
on a single horizontal line, i.e. setting VP := VP and VP4 :=0 for ¢ # 0, 01 := 6 and 0 := 0.

As an application of Theorem 2.15, we get the following result expressed in the language of this work.
Theorem 2.17. Let A be a bounded double complex over a field K. The following statements are equivalent.
(1) A satisfies the page-r-0;02-property.

(2) There exists an isomorphism between A and a direct sum of squares, even-length zigzags of
length < 2r and odd-length zigzags of length one (i.e. dots).

Proof. This is a special case of [38, Thm C], which states in particular that the Frolicher spectral sequences
degenerate at page r if and only if all even length zigzags of length > 2r have multiplicity zero and that
H é“R(A) is pure of weight k if and only if all odd-length zigzags of length > 3 have multiplicity zero.

For the reader’s convenience and because we will need this type of reasoning again in the next section,
we recall the proof in our case. By Observation 2.14 and Theorem 2.15, it suffices to show that an inde-
composable double complex satisfies the page-r-0;0s-property if and only if it is one of those listed under
(2) in the statement. We now run through the list given in Theorem 2.15.

(1): For a square, both row and column cohomologies are zero. Therefore, the spectral sequences
trivially degenerate and the total cohomology vanishes. In particular, the page-r-0;0s-property is trivially
satisfied.

(2) & (3): An even-length zigzag Z of type 1 and length 2/ has vanishing row cohomology. Therefore, all
terms in the second spectral sequence are identically zero and this spectral sequence degenerates for trivial
reasons. On the other hand, the column cohomology is 2-dimensional, with the two classes at the endpoints
generating a one-dimensional space each. Since the total cohomology has to vanish (it is the limit of both
spectral sequences), there must be a non-trivial differential at some page of 1 F(Z) and for space reasons
it can only be at page [. Hence, Z has the page-r-010s-property if and only if [ < r. The case of an even
length zigzag Z of type 2 is analogous, reversing the roles of row and column cohomology.

(4) & (5): For an odd-length zigzag Z, both row and column cohomologies are one-dimensional, so
there is no space for non-trivial differentials and both spectral sequences degenerate at the first page.
Moreover, the de Rham cohomology is one-dimensional. If Z is of type M, Hyr(Z) is identified with the

one-dimensional space generated by a := Zii} a;, which is of pure-type only if [ = 0, namely if Z is a
dot. If Z is of type L, it is generated by [Dha1]ar = [—01a1]ar, where the representatives live in different
bidegrees. Therefore, Hyr(Z) is not pure, so Z does not have the page-r-d;d2-property. ]

Remark 2.18. This theorem also gives a quick alternative proof to Prop. 4.1 (equivalence of page-0-0102
with the usual 0102-property).

Proof. Indeed, the page-0-0;Js-property means that there is a decomposition of A into squares and dots.
Obviously, both satisfy the usual 910>-property. Conversely, in any zigzag of length > 2 there is a closed
element (‘form’) of pure type, which is ;- or ds-exact, but no non-zero element in a zigzag is 0;02-exact.
Hence, if A satisfies the usual 910s-property, in any decomposition of A into elementary complexes only
squares and length-one zigzags can occur. O
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Definition 2.19. A map A — B of double complexes is an E,-isomorphism if ;E,(f) is an isomorphism
forie {1,2}.

One writes A ~, B if there exist such an E,-isomorphism. The usefulness of this notion stems from the
following statements.

Lemma 2.20. ([38, Prop. 12]) If H is a linear functor from the category of double complezes to the
category of vector spaces which maps squares and even-length zigzags of length < 2r to 0, then H(f) is an
isomorphism for any E,-isomorphism f.

Lemma 2.21. ([38, Prop. 11]) For two double complexes A, B one has A ~1 B if and only if ‘the same
zigzags occur in A and B’, i.e. multz(A) = multz(B) for all zigzags Z.

Example 2.22. Ezamples of functors H satisfying the hypotheses of Lemma 2.20 are provided by Hyg,
Hpvq Ep,q or prq
BC» i A -

Thanks to its explicit description given above, one sees that an indecomposable double complex C' is

determined up to isomorphism by its shape S(C) = {(p,q) € Z? | CP? # 0}. By a slight abuse of notation,
we will sometimes conveniently write multg(A) instead of multc(A) when S = S(C).

We will need the following duality results in the special case A = Ax. They follow from the real
structure and the Serre duality.

Lemma 2.23. ([38, Ch. 4]) Let A = Ax for a compact complex manifold X and define the conjugate
complex by AP = AP4 and the dual complex DA by DAP? = Hom (A" P"~1 C), for all p,q.
Then, conjugation w — w and integration w — fX wA_ define an isomorphism, resp. an E1-isomorphism.:

A=A, respectively A — DA.

In particular, the set of zigzags occuring in Ax is symmetric under reflection along the diagonal and
the anti-diagonal. More precisely, for any zigzag shape S, multg(A) = mult,s(A) = multys(A), where
rS={(p,q) € Z* | (¢,p) € S} and dS == {(p,q) € Z* | (n —p,n — q) € S}.

Recall that the complex-C*°-pure and -full properties from Remark 2.5. As a consequence of the above,
we obtain

Proposition 2.24. Fiz arbitrary integers 0 < k < 2n.
A compact complex manifold X of dimension n satisfies the complex-C*-pure property in degree k if
and only if it satisfies the complex-C*-full property in degree 2n — k

Proof. Let Z be a zigzag with H5,(Z) # 0. The sum of the subspaces H}(Z) with p+ g = k is not direct
if and only if Z is of odd length and of type L. Meanwhile, the sum of the subspaces HY4(Z) with p+q¢ =k
is strictly contained in HZ;R(Z) if and only if Z is of odd length > 1 (i.e. not a dot) and of type M. We have
seen both statements in the course of the proof of Theorem 2.17, see also [38, Prop. 6, Cor. 7|. Hence, X is
complex-C>-pure in degree k if and only if multz(Ay) = 0 for all odd zigzags Z of type L with H(Z) # 0
and X is complex C*°-full in degree k if and only if multz(Ax) = 0 for all odd zigzags Z of type M and
length > 1 with HZ;R(Z) # 0. The result now follows from Lemma 2.23 and Lemma 2.21 since zigzags of
type L and those of type M and length greater than 1 are exchanged when forming the dual complex. [

Corollary 2.25. For a compact complex manifold X, the following statements are equivalent.
(1) X satisfies the complex-C*>-pure property in all degrees;
(2) X satisfies the complex-C>°-full property in all degrees;
(3) The de Rham cohomology of X is pure (in the sense of Definition 2.4).
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3 Numerical characterisation of page-r-00-manifolds and ap-
plications

Let X be a compact connected complex manifold. Let b(X) = 32,7 bk(X), hpco(X) = 32, ez MpE(X)
and define ha(X), hp(X) and hz(X) analogously. Angella and Tomassini showed in [8] that there are
inequalities:
() (%)
hpc(X) +ha(X) > hg(X) + ha(X) > 2b(X) (12)
and that both of these inequalities are equalities if and only if X is a d0-manifold.

It is a standard fact about spectral sequences that equality in (%) is equivalent to the degeneration at £
of the Frolicher spectral sequence (and its conjugate). One application of our methods is a generalisation of
inequality (x) and a characterisation of the equality case in terms of our new classes of manifolds introduced
in this paper.

Remark 3.1. Since R34 (X) = by " 4(X) by duality, one gets hpco(X) = ha(X) and conjugation yields
ho(X) = hz(X). Therefore, one can replace (12) with the equivalent inequalities hpc(X) > hg(X) > b(X)
and have the same characterisations for the equality cases.

The following general statement is new. Note that it was stated in the introduction as Theorem 1.3
for any r — 1 € N. We now shift r — 1 € N to r € N in the notation. In both cases, we implicitly put
S ei(X) = 0 for the sake of notation consistency.

Theorem 3.2. For every compact complex manifold X and for every r € N, there is an inequality:

hBC > Zez T’—l)b(X)
where e; 1=y o dim E7(X).
Moreover, equality holds for some fized r € N if and only if X is a page-r-00-manifold.

In particular, for r = 1, we obtain the characterisation of the equality case in (x).

Using the upper-semicontinuity of hgc and h, in families of manifolds, we infer from Theorem 3.2
applied with » = 1 the stability of page-1-09-manifolds with fixed Hodge numbers under small deformations
of the complex structure. The analogous statement for r > 2 and constant e;’s with ¢ < r also holds.

Corollary 3.3. If Xy is a page-l-@g-maniff)ld, then every sufficiently small deformation X of Xo which
satisfies hg(Xt) = h3(Xo) is again page-1-00.

If one drops the condition on constant Hodge numbers, one cannot say much in general. In fact, as we
will see, the Iwasawa manifold is page-1-00, but any small deformation with different Hodge numbers is not.

In order to prove Theorem 3.2 we will work with abstract (bounded) double complexes rather than
double complexes of forms and prove the following (more general) statement.

For a bounded double complex A with finite-dimensional cohomology, let 1e;(A), resp. 2e;(A), be the total
dimension of the i-th page of the row, resp. column, spectral sequence. There is always an inequality:

hpc(A) 4+ ha(A) > Z 16i(A) +2e;(A)) — 2(r — 1)b(A)
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and the equality is equivalent to the page-r-0102 property for A.

Proof of Theorem 3.2. Let us write as a shorthand

-
LHS = hAJthC and RHST = Z(leiJrQei)) *2(7“* 1)b.
i=1
Before spelling out the details, we state the general idea, which is very simple: In any decomposition
of A into indecomposables, LH.S counts all the zigzags occuring in A, weighted by their length, except for
the dots, which are counted twice. When r = 1, RHS; counts all the zigzags twice. For an arbitrary r, the
count on the right becomes slightly more involved.

For the actual proof, we first notice that both LH S and RH S, are additive under direct sums. Therefore,
as in the proof of Theorem 2.17, using Theorem 2.15, we may reduce the problem to checking the statement
on every possible indecomposable double complex individually. Let us run through the list of Theorem 2.15
using the notation introduced there.

(1): For a square S, we have already noticed in the proof of Theorem 2.17 that one has 1€:(9) =

1€;(S) =b(S) =0, s0 RHS, = 0 for any r. On the other hand, on S we have: ker 910 = (01a, 02a,0102a) =
im 01 +im 02 and ker 0y Nker y = (0102a) = im 0102, s0 hpc(S) = ha(S) = 0and LHS(S) = 0= RHS,(S5).

(2) & (3): For any even length zigzag Z of length [ = 2k, we saw in the proof of Theorem 2.17 that
b(Z) =0 and

2 fori<k
e (Z) +9oe;(2) = -
1ei(2) +2ei(2) {0 otherwise.
Therefore,
RHS,(Z) = min{2r,1}.
(4) & (5): For an odd length zigzag, we also saw that 1e;(Z) = 26;(Z) = b(Z) = 1 for all i, so
RHS,.(Z) = 2, for any 7.

It remains to calculate LHS for zigzags. We distinguish two cases:

For a dot D, one has ha(D) = hpc(D) =1, so LHS(D) =2 = RHS, (D) for any r.

For a zigzag Z of length [ > 2, the Aeppli cohomology is the space of generators Ha(Z) = ({a;}), i.e.
all those spaces lying on the first nonzero anti-diagonal of Z, and the Bott-Chern cohomology is the space
of their images Hpc(Z) = (0144, 02a;), i.e. all those spaces lying on the second anti-diagonal. For example,

(a1) —— (Oar) (a1) 0 (a1) —— (Orar) 0 (81a1)
Hy T = and Hpc T =
(a2) 0 (a2) (az) 0 0.

Thus, one has LHS(Z) = 1.

Summing up, we see that for any indecomposable complex I, one always has LHS(I) > RHS,(I), but
equality only holds for squares, dots and even length zigzags of length < 2r. Using the characterisation of
the page-r-00-property given in Theorem 2.17, this completes the proof. d
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4 Examples of page-r-00-manifolds and counterexamples

We shall organise our examples in several classes, each flagged by a specific heading.

4.1 The case r =0 and low dimensions

The first observation is the following rewording of (5.21) in [15].

Proposition 4.1. For any compact complex manifold X, the following equivalence holds:

X is a O0-manifold <= X is a page-0-00-manifold.

In dimensions one and two, it follows from well-known results that the only possible examples of page-
r-00-manifolds are Kéhler:

Observation 4.2. Any compact complex curve is Kdahler, hence a 00-manifold. A compact complex surface
is a page-r-00-manifold (for some r) if any only if it is Kdhler.

Proof. 1t is standard that the Frolicher spectral sequence of any compact complex surface degenerates at
E;. Tt is equally standard that H C’l“R is always pure for k = 0, 2,4, while it follows from the Buchdahl-Lamari
results (see [10] and [22]) that H, (and hence H3p) is pure iff the surface is Kéhler. O

4.2 Case of the Iwasawa manifold and its small deformations

Recall that the Iwasawa manifold 7®) is the nilmanifold of complex dimension 3 obtained as the quotient of
the Heisenberg group of 3 x 3 upper triangular matrices with entries in C by the subgroup of those matrices
with entries in Z[i].

It is well known that the Iwasawa manifold is not a d9-manifold. In fact, its Frolicher spectral sequence
is known to satisfy Fy # Fo = Fs. On the other hand, it is known that the de Rham cohomology of the
Iwasawa manifold can be generated in every degree by de Rham classes of (d-closed) pure-type forms. (See
e.g. [2].) Together with Cor. 2.25 this yields

Proposition 4.3. The Iwasawa manifold is a page-1-00-manifold.

However, the situation is more complex for the small deformations of the Iwasawa manifold, all of
which are already known to not be dd-manifolds. The following result shows, in particular, that unlike the
J0-property, the page-1-00-property is not deformation open.

Proposition 4.4. Let (X;)iep be the Kuranishi family of the Iwasawa manifold Xo (see [29], [2]). For
every t € B, we have:

(1) X; is a page-1-00-manifold if and only if X; is complex parallelisable (i.e. lies in Nakamura’s
class (i));

(2) if Xt lies in one of Nakamura’s classes (ii) or (iii), the de Rham cohomology of X; is not pure, so
X; is not a page-r-dd-manifold for any r € N.

Proof. That deformations in Nakamura’s class (i) are page-1-99-manifolds can be proved in the same way
as the Iwasawa manifold was proved to have this property in Proposition 4.3. This fact also follows from
the far more general Proposition 4.7 since all the small deformations X; of Xy are nilmanifolds.

To show (2), we will actually prove a slightly more general result. Calculations of Angella [2] show that
the hypotheses of the next Lemma are satisfied in this case. O
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Lemma 4.5. Let X be a compact complex manifold with by = 4, hg’o = h%’l =2 and h114’0 = 3. Then, either
H}o(X,C) or H3,(X,C) is not pure.

Proof. The proof is combinatorial. We will exploit the fact that the de Rham, Dolbeault and Aeppli
cohomologies of indecomposable complexes are computable. This is spelt out in detail in [38]. Summarised
briefly, an even-length zigzag has a nonzero differential in the Frolicher spectral sequence or its conjugate,
but has no de Rham cohomology. Meanwhile, odd-length zigzags have no differentials in the Frolicher
spectral sequence, but have a nonzero de Rham cohomology and h%;? counts the zigzags that have a nonzero
component in degree (p,q) with possibly outgoing but no incoming arrows.

Specifically, denote by A = (C}°,(X), 0, ) the double complex of C-valued forms on X. We investigate
for which zigzag shapes S with (1,0) € S or (0,1) € S, one can have multg(A4) # 0. Assume Hj,(X,C)
is pure. That means that any odd zigzag contributing to the de Rham cohomology H éR(X ,C) is of length
one, i.e. drawing only the odd zigzags and not squares or even ones, the lower part of the double complex
looks like this:

0 ° e o

> D

0 1 2

Here, a e denotes a zigzag of length one and multiplicity one. The symmetry along the diagonal comes
from the real structure of A given by complex conjugation. A priori, there may be other zigzags passing
through (1,0) and (0,1). Schematically, these would all arise by choosing some connected subgraph with
at least one arrow of the diagram

They could either be of even length or of odd length but not contributing to H}, (X, C) but to H?(X, C).
Note that the subdiagram

ol:0 L °
g
o0:1

is not allowed since this would be give rise to a nonzero class in H (X, C), which we have ruled out already
by purity.

However, since RLO 4 B0 = b1, there can be no differentials in the Frolicher spectral sequence starting
or ending in degree (1,0) or (0,1). In terms of zigzags, this means no even-length zigzag passes through
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these bidegrees. This rules out the zigzags

o0:1 o)

—_— e
3 o 0,0 G0 9.,
ol:0 L °

and their reflections along the diagonal (which have to occur with the same multiplicity since A is equipped
with a real structure). So, the only options for zigzags passing through (1,0) that are left are

.071 L ° or (‘ﬂ\
61\ .170 L} Y
o0 9 o

and one of these has to occur since otherwise H}(O would be of dimension 2, contradicting the assumptions.
But the occurence of either one implies that HgR(X ,C) is not pure. il

4.3 Case of complex parallelisable nilmanifolds

We will now prove that all complex parallelisable nilmanifolds are page-1-00-manifolds. On the one hand,
this generalises one implication in (1) of Proposition 4.4. On the other hand, it provides a large class of
page-1-09-manifolds that are not dd-manifolds. Indeed, it is known that a nilmanifold I'\G is never 99 (or
even formal in the sense of [15]) unless it is Kédhler (i.e. a complex torus, or equivalently, the Lie group G
is abelian) [19].

Recall that a compact complex parallelisable manifold X is a manifold whose holomorphic tangent
bundle is trivial. By Wang’s theorem [41], X is a quotient I'\G of a complez Lie group G by a co-compact,
discrete subgroup I'. When G is nilpotent, the manifold X is a complex parallelisable nilmanifold. The
Iwasawa manifold is an example of this type. We first need an algebraic result.

Lemma 4.6. Let (A*,da) and (B*,dp) be two complexes of vector spaces and C = A ® B their tensor
product, considered as a double complezx, i.e.:

CP9 .= AP @ BY
O1(a®b) :=dga®b
dr(a®b) := (-1)"a @ dpb
Then C satisfies the page-1-0102-property.

Proof. First, we compute the first and second pages of the column Frolicher spectral sequence. (We only
treat the column case, the row case being analogous.) The first page is the column cohomology:

(1E1.7. ) dl) = (Hq(Cp7. 5 82)781)

Since 0, is, up to sign, Id4 ®dp, one has HY(CP*,0;) = AP @ HY(B,dp) and di = ds ® Ildg(p).
Therefore, o EYY = HP(A,da) ® H1(B,dg). Now, for every da-closed element a € AP and every dp-closed
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element b € BY, the element a®b € CP™4 is d = 01 + 0o closed. Similarly, if one of the two is d4 or dp exact,
the form a ® b will be d-exact. Hence we get a natural map @, H?(A,ds) ® HY(B,dp) — HEL(O).
Since we are working over a field, the Kiinneth formula tells us that this is an isomorphism. ]

Given a complex parallelisable nilmanifold I'\G, let g be the (real) Lie algebra of G, and denote by
J: g — g the endomorphism induced by the complex structure of the Lie group G. Then J? = —Id and

[Ja,y] = J[z,y], (13)

for all x,y € g. Let g be the dual of the complexification gc of g and denote by g0 (respectively g%!)
the eigenspace of the eigenvalue ¢ (resp. —i) of J considered as an endomorphism of gg. Condition (13) is
equivalent to [go’l,igl’o] = 0 which is equivalent to d(g'") C A? (g!?), i.e. there is no component of bidegree
(1,1). Therefore, d is identically zero on AP (g%°) and 9 is identically zero on A? (g%!), that is,

=0,

=0, and 6,Aq<g (14)

0 =d 0 0 =d .
I s10) = “lpp(at0y? | (a1.0) In2(g0:1) 0.1y = “lpg(e01)

Theorem 4.7. Complex parallelisable nilmanifolds are page-1-00-manifolds.

Proof. Sakane [36] showed that the inclusion of the double complex (A" g&, 9, 9) as left invariant forms into
the complex of all forms on I"'\G induces an isomorphism of the respective first pages of the corresponding
Frolicher spectral sequences (hence of all later pages). But the equations (14) mean that the double complex
(A" g&,0,0) is the tensor product of the simple complexes (A g%, d) and (A", %!, d), so we can apply

Lemma 4.6.
O

4.4 Nilmanifolds with abelian complex structures

In this subsection, we construct two classes of page-1-90-manifolds which are not biholomorphic to complex
parallelisable nilmanifolds (see Remarks 4.9 and 4.11). Indeed, they are nilmanifolds endowed with an
invariant complex structure that is abelian, which means that, in contrast to (14), 0 vanishes on left-
invariant (p,0)-forms, i.e. 8|/\p(91,0) =0.

Theorem 4.8. Let n > 3 and G be the nilpotent Lie group with abelian complex structure defined by the
structure equations

(Abl,) dw! =0, dw? =0, dw? = w? Awl, ., do™ =w" P AW,
or

(Ab2,) dw' =0,..., dw" ' =0, dw" =w' A2 +wP Awd+ -+ w2 AwL (only for odd n > 3).
Then, any nilmanifold T\G is a page-1-00-manifold.
Proof. For every 1 < k < n, we write w* = e* + i f*, where ¥ and f* are the real part and the imaginary

part of the complex (1,0)-form w*, respectively. We start by working out the real structure equations of
the Lie group G in the basis of left-invariant 1-forms {e!, f*,...,e", f"}.

In the case (Abl,,), we first notice that, for 3 < k <mn,

wk—l /\J: (ek_l—l—ifk_l)/\ (61 —ifl) — —(61/\6k_1—|—f1 /\fk—l) —i(el /\fk—l —fl/\ek_l).
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Hence, the real structure equations are, for 3 < k < mn,

de' = df' = de? = df? = 0,
dek’ — _e]. /\ ek’—l _ f]. /\ fk—].’
dfk — —61 A fkfl 4 fl /\ekfl'

Since the structure constants in this basis are 0,41, in particular rational numbers, a result by Mal’cev
[26] implies the existence of a lattice I' for G. Thus, we get a nilmanifold I'\G' endowed with an abelian
complex structure.

We now consider the case (4b2,). Writing n = 2m+1, the last complex equation in (Ab2,,) is dw?™ ! =

pya w1 Aw2k A direct calculation shows that the real structure equations of the Lie group in the basis
of left-invariant 1-forms {e!, f1,... e", f"} are

de!  =df' = .- = de?™ = df*™ =0,
d62m+1 — ZZ@:l(GQk—l A e?k + f2k—1 A f2k)’
df2m+l — 221:1(_621671 A f2k + f?kfl /\62]6)'

Again, the structure constants in this basis are 0, £1 € Q, so Mal’cev’s theorem [26] implies the existence
of a lattice ' for G. This induces a nilmanifold I'\G endowed with an abelian complex structure.

Recall that for abelian complex structures, just as for complex parallelisable ones, Dolbeault, Aeppli
and Bott-Chern cohomology groups can be computed using only left-invariant forms (see [12, Remark 4]
and [2, Theorem 3.8]).

(Abl,,): First, we consider a complex structure defined by (Abl,). Let A be the exterior algebra over
the vector space (w',..., W Wl w™). Tt identifies naturally with the space of left-invariant C-valued
forms on G. We write A; for (A,0,0), where the exterior algebra A is equipped with the differentials
defined under (Abl,) in the statement. We can also equip A with a different differential dp,, acting as
follows in degree 1:

dp, (Wwh) =0, dp, (W) =0, dp,(W®) =W AW, ..., dp (W) =w" 1 AW

One has d%;l =0, dp, = Op, + Op,, where Op, and dp, denote the components of bidegrees (1,0) and
(0,1), as well as dp, (A10) C A%, So, (A,dp,) can be considered as the space of left-invariant forms on a
nilmanifold endowed with a complex parallelisable structure P;. By Theorem 4.7, Ap, := (A, 0p,,0p,) has
the page-1-9p, dp, -property. So, by Theorem 3.2, hpo(Ap,) + ha(Ap,) = hop (Ap,) + hap, (Apy)-

Define a C-linear involution C' : A — A in degree 1 by C(w') = w! and C(w') = W', C(w) = wi for
i > 1 and in degree k by C(a' A...Aa¥) := C(a!) A...AC(aF). This is compatible with the total degree,
but not with the bigrading. One checks that

Cod=0p oC and Cod=0p oC.

Indeed, this holds in degree 1 and then, thanks to the Leibniz rule, in higher degrees as well. Consequently,
C induces isomorphisms:

Hpo(A1) = Hpe(Ap),  Ha(A) = Ha(Ap),  Ho(A) = Hp, (Ap),  Hp(Ai) = Hop (Apy).
at the level of the total cohomologies. For example, the notation means that

ker & N ker O

Hpc(Ar) = —y (A1) = @p HEEH(AL).
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We stress that the induced maps are not assumed to be compatible with the bigrading. The existence of
such isomorphisms implies that we also have an equality hpc (A1) + ha(A1) = ha(A1) + hz(A1), ie. the
page-1-00-property holds for the space of left-invariant forms on G. Since G carries an abelian complex
structure, this implies that I'\G is a page-1-09-manifold.

(Ab2,,): Second, we consider a complex nilmanifold, of odd complex dimension n > 3, defined by (Ab2,,).
We write As for (A, ,d), where the exterior algebra A is now equipped with the differentials defined under
(Ab2,) in the statement.

As before, we may also equip A with a different differential dp,, acting as follows in degree 1:

dp, (W) =0,..., dp, (W) =0, dp,(W") =W AW+ WP AW+ F WAL

One has dp,(AY) C A%9 so (A,dp,) can be considered as the space of left-invariant forms on a
nilmanifold endowed with a complex parallelisable structure P». Hence, Ap, := (A,8p2,5p2) has the
page-1-0p,0p,-property, by Theorem 4.7, so we have hpc(Ap,) + ha(Ap,) = hop, (Ap,) + hop, (Ap,), by
Theorem 3.2.

Let us define a C-linear involution C' : A — A in degree 1 by

Cw?™) = W2l C(w2H) = W2+ C(w?) =w?, for0<i< n ; 1,

together with C(w?") = w?® and C(w?") = @ We extend C' to degree k by Cla' A...Adb) =
C(a') A ... A C(a¥). One checks that C 03 = dp, o C and C 0 d = Op, o C, so we can conclude as before.
O

Remark 4.9. Note that Cod = dp, oC (similarly for Py), and C is compatible with the real structure. So it
induces an isomorphism of the underlying real Lie groups. However, the corresponding complex nilmanifolds
are not biholomorhic. Indeed, the Hodge number of bidegree (1,0) is given by

1,0 _ Lo _
hg” =2 for (Abl,), and hg =n-—1 for (Ab2,),
whereas hg’g =n for any complex parallelisable nilmanifold of complex dimension n.

Note that the abelian complex structures defined by (Abl,) and (Ab2,) coincide precisely when n = 3.
We denote this common complex structure on G by .J and we write X = (I'\G,.J) for any nilmanifold
endowed with the induced complex structure, still denoted by J, where I C G is a lattice.

In the following proposition we prove that, in complex dimension 3, the only complex nilmanifolds which
are page-(r —1)-00 for some r € N* are, apart from a torus, the Iwasawa manifold I (3) and the nilmanifolds
X.

Notice that these results generalise those in §.4.2.

Proposition 4.10. Let X = (I'\G, J) be a complex nilmanifold of complex dimension 3, different from a
torus, endowed with an invariant complex structure J.

If there exists r € N* such that X is a page-(r — 1)-00-manifold, then J is equivalent to the complex
parallelisable structure of I®) or to the abelian complex structure J defined by (Ably,) in Theorem 4.8 for
n = 3. In both cases r = 2, i.e. both of these manifolds are page-1-00-manifolds.

Proof. We already know by Theorems 4.7 and 4.8 that I®) and X are page-1-89-manifolds.
On the other hand, it is proved in [23] that for any other invariant complex structure J (i.e. not
equivalent to J or to the complex parallelisable structure of I (3)), the nilmanifold X = (I'\G, J) fails to be
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pure in degree 4 or 5, that is, the direct sum decomposition of Definition 2.4 is not satisfied for k = 4 or
=5 (or both). So, such complex nilmanifolds X = (I'\G, J) are not page-(r — 1)-00-manifolds for any
r e N~ O

Remark 4.11. According to [31] and [34], a compact complex manifold X is called an sGG manifold if
every Gauduchon metric w on X is sG, i.e. Ow™ ! is 0-exact.

By the numerical characterisation proved in [34, Theorem 1.6], a compact complex manifold is sGG
if and only if by = 2h%’1. For instance, the Iwasawa manifold is sGG (see [34]), and more generally any
complex parallelisable nilmanifold is sGG, due to (14).

For the nilmanifolds endowed with the abelian complex structures defined in Theorem 4.8, we have the
following Betti and Hodge numbers:

by =4+#2n= 2]1%’1 for (Abl,), and by =2(n—1)#2n=2 h%’l for (Ab2,).

Hence, such complex nilmanifolds are not sGG-manifolds.

On the other hand, all the sGG nilmanifolds of complex dimension n = 3 are identified in [34, Theorem
6.1]. In particular, there exist complex nilmanifolds different from the Iwasawa manifold and X which are
sGG, so by Proposition 4.10, they are not page-(r — 1)-00-manifolds for any r € N*.

Therefore, the page-1-00 and the sGG properties of compact complex manifolds are unrelated.

4.5 Nakamura solvmanifolds
Consider G := C x C?, where ¢ is either

z Re(z)
s0=(5 L) o se= (T )

(complex parallelizable, resp. completely solvable case). Define X to be the quotient of G by a lattice of the
form I' x4 IV with I' € C, I" C C? lattices. These manifolds were studied in [29] and are called Nakamura
manifolds. They are among the best known solumanifolds, but are not nilmanifolds. In [4], Angella and
Kasuya computed the Hodge, Bott-Chern and Aeppli numbers depending on the lattice I'. (These numbers
turn out to be independent of I"). In particular, their calculations yield the equality hpo(X) = hg(X).
Hence, by Theorem 1.3, we obtain:

Corollary 4.12. The complex parallelisable and completely solvable Nakamura manifolds considered in
[4] are page-1-00-manifolds.

5 Construction methods for page-r-0d-manifolds

Among the issues that we take up in this section, there is the behaviour of page-r-99-manifolds under
modifications and its link with the open problem of submanifold heredity of this class of manifolds.

Theorem 5.1. Let X and Y be compact complex manifolds.

(1) If X is a page-r-00-manifold and Y is a page-r'-00-manifold, the product X x Y is a page-7-00-
manifold, where 7 = max{r,r’}.

Conwersely, if the product is a page-r-00-manifold, so are both factors.

(2) For any vector bundle V over X, the projectivised bundle P(V) is a page-r-00-manifold if and only if
X is.
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(3) Suppose X is a page-r-00-manifold. Let f : X — Y be a surjective holomorphic map and assume
there exists a d-closed (I,1)-current Q on X (with | = dim X — dimY") such that f,Q # 0. ThenY
is also a page-r-00-manifold. In particular, this implication always holds when dim X = dimY’, e.g.
for contractions (take Q to be a constant).

(4) Given a submanifold Z C X, denote by X the blow-up of X along Z. If X is p@e—r—@é and Z s
page-r'-00, then X is a page-r-00-manifold, where ¥ = max{r,r'}. Conversely, if X is page r-00, so
are X and Z.

(5) The page-r-00-property of compact complex manifolds is a bimeromorphic invariant if and only if it
s stable under passage to submanifolds.

Proof. The proofs are very similar to those in [38, Cor. 28]. We will be using the characterisation of
the page-r-00-property in terms of occuring zigzags (Theorem 2.17) and Ej-isomorphisms (Def. 2.19), in
particular Lemma 2.21.

Write Ax as shorthand for the double complex (C?°, (X,C),0, 0) and Axl[i] for the shifted double
complex with bigrading (Ax/[i])P? := Ag(_i’q_i. By [38, Sect. 4], [37] and [27], we have the following F-
isomorphisms:!

Axxy ~1 Ax ® Ay, (15)
rkV—1
A]P(V) ~1 @ AX [Z], (16)
=0
Ax ~1 Ay © Ax/f* Ay, (17)
codim Z—1
=1

Since the occuring zigzags get only shifted, Ax[i] satisfies the page-r-dd-property if and only if Ay
does. Furthermore, a direct sum of complexes satisfies the page-r-00-property if and only if each summand
does. So, the second, third and fourth Ej-isomorphisms imply (2), (3) and (4)

For the first part of (1), we use the first isomorphism and the fact that one knows how irreducible
subcomplexes behave under tensor product (see [38, Prop. 16]). In particular, even-length zigzags do not
get longer and the product of two length-one zigzags is again of length one. For the converse, note that Ax
and Ay are direct summands in their tensor product, so we can argue as before.

The ‘if” statement in the last part of (5) is a direct consequence of (4) and the weak factorisation theorem
[1], which says that every bimeromorphic map can be factored as a sequence of blow-ups and blow-downs
with smooth centres. The ‘only if’ part also follows from (4) (cf. also [27]). Indeed, let X be page-r-99 and
let Z C X be a submanifold. If Z has codimension one, we replace X by X X IF’}C (which is still page-r-00
by (1)) and Z by Z x {0}. By assumption, the blow-up is still page-r-99 and one can apply (4) to infer
that the same holds for Z. 0

Since for surfaces and threefolds, the centre of a nontrivial blow-up is a point or a curve, we get

Corollary 5.2. Fiz any r € N. The page-r-00-property of compact complex surfaces and threefolds is a
bimeromorphic invariant.

1Cf. also [35], [43], [28] and [6] for different approaches to the blow-up question in the setting of particular
cohomologies.
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In the remainder of the paper, because we can handle it with very similar methods, we point out a result
about a class of manifolds that contains the class of page-(r — 1)-0d-manifolds. Given a compact complex
n-dimensional manifold X, recall the following facts and definitions:

(1) For a fixed integer > 2 and a bidegree (p, ¢), a C* form « of bidegree (p, q) on X is E,-closed (in
the sense that it represents a cohomology class {a}g,. € EF%(X) on the r-th page of the Frolicher
spectral sequence of X) if and only if there exist forms w € C39; (X, C) with [ € {1,...,r — 1}
such that

60& = 0, Ja = éul, 811,1 = qu, vey 8%»_2 = 5ur_1. (19)

(See [13], taken up again in [32, Proposition 2.7].)

(2) For a fixed integer r > 1, an E,-sG metric on X is a Hermitian metric (i.e. a C° positive definite
(1, 1)-form) w such that dw™~! is E,-exact. (See [32, Definition 3.1, (i)].)

(3) For a fixed integer r > 1, X is said to be an E,-sG manifold if an E,-sG metric exists on X. (See
[32, Definition 3.1, (ii)].)

(4) For a fixed integer » > 1, X is said to be an E,-sGG manifold if every Gauduchon metric on X is
an E,-sG metric. (See [32, Definition 3.1, (iii)].)

(5) For a fixed integer r > 1, every page-(r — 1)-00-manifold is an E,-sGG manifold. (See [33,
Proposition 5.2].)

Let us now fix an integer r > 1 and consider the canonical linear map on a compact complex n-
dimensional manifold X:

T Hy ""H(X, C) = Ep (X)), [a]a = {0a}E,.

Note that this map is well defined since:

Whenever « represents an Aeppli class, we have a € ker(99), so d(0a) = 0 and d(da) = 0. Hence, da
satisfies the E,-closedness conditions (19) with u; = -+ = u,_1 = 0. Thus, the class {da}g, is well defined.

If two (n — 1, n — 1)-forms o, 3 € ker(90) represent the same Aeppli class, there exist forms u €
5 1(X, C)and v € C° |, (X, C) such that @ — 3 = du+ Jv. Hence, doo— 8 = dv. In particular,
da— 0 € im 0. In the language of [32, Definition 3.1], this means that da — 93 is Ej-exact, which implies
that it is F,-exact (i.e. it represents the zero class on the r-th page of the Frolicher spectral sequence of
X) for every r > 1. Thus, {da}g, = {08}E,. This proves that the map 7, is independent of the choice of

representative of the class [a]4 € H* b1 X, C).
Lemma 5.3. An n-dimensional compact complex manifold X is F.-sGG if and only if T, = 0.

Proof. The argument is the analogue in this context of the proof of Observation 5.3. in [31].

Let w be a Gauduchon metric on X. This means that w is a Hermitian metric such that 90w = 0
(cf. [18]). We see that w is E,-sG if and only if [w" !4 € kerT,. Thus, the set of all classes [w" 1|4 €
Hzfl’nfl(X, C) that are representable by the (n — 1)-st power w™ ! of an E,-sG metric w is precisely the
intersection

Gx NkerT;,

where Gx C Hzfl’nfl(X, R) is the Gauduchon cone of X (defined in [31, Definition 5.1] as the set of all
classes [w" 14 € HY """ 1(X, R) that are representable by the (n — 1)-st power w"~! of a Gauduchon
metric w).
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n—1,n—1

Since the Gauduchon cone is open in H , (X, R) and non-empty, the equality

Gx NkerT, =Gx

(which holds if and only if X is an E,-sGG manifold) is equivalent to ker 7, = Hzfl’nfl(X, C), so to the
map 7, vanishing identically. U

As a consequence of this, we get the bimeromorphic invariance of the F,.-sGG property.

Corollary 5.4. Let X and X be bimeromorphically equivalent compact complex manifolds. Then,
every Gauduchon metric on X is F.-sG if and only if this is true on X.

Proof. By the weak factorisation theorem [1], it suffices again to check this for blow-ups X — X with
d-dimensional smooth centers Z C X of codimension > 2. After picking any isomorphism realising formula
(18), any class ¢ € HX_I’n_l(X) can be written as ¢ = cx +cz, with cx € Hz_l’"_l(X) and cy € Hj’d(Z).
Hence, T,c = T,cx + T,cz = Trcx since On = 0 for all (d, d)-forms on Z for dimension reasons. O

Note that the above map T, is given in all cases by applying d. Generally speaking, if A = B @ C, then
HA(A) = Ho(B) ® Hs(C) and E,.(A) = E.(B) ® E.(C) and T4 = TP + T. We omitted the superscripts
on T in the above proof for the sake of simplicity.

We end the paper with an obvious open problem suggested by the examples constructed so far.
Problem 5.5. For every r > 2, construct page-r-00-manifolds that are not page-(r—1)-00.

We believe such examples exist and the difficulty of constructing them for » > 2 is related to the general
difficulty of constructing manifolds with very non-degenerate Frolicher spectral sequence.
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