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Abstract: In the current landscape dominated by Artificial Intelligence, the integration of Machine 

Learning and Deep Learning within the realm of Cultural Heritage, particularly within architectural 

contexts, is paramount for the efficient processing and interpretation of point clouds. These 

advanced methods facilitate automated segmentation and classification, significantly improving 

both the clarity and practical use of data acquired from laser scanning and photogrammetry. The 

present study investigates the Palacio de Sástago—a prominent Renaissance palace in Zaragoza, 

Spain—and introduces a cu�ing-edge modus operandi for the automated recognition of architectural 

elements within the palace’s inner courtyard. Employing the well-established Random Forest 

algorithm, implemented in a Python environment, the framework begins with a comprehensive 

evaluation of the geometric features identified in the LiDAR point cloud. This process employs the 

Mean Decrease in Impurity metric to evaluate the relevance of each variable. To boost the accuracy 

and efficiency of the final classifications, the features are refined post-assessment, enhancing both 

the training phase and the algorithm’s later evaluation. The research’s findings demonstrate 

significant potential, supporting advancements in CAD systems and HBIM that will enable more 

precise, automated modelling of architectural elements, thereby enhancing the accuracy of digital 

reconstructions and improving conservation planning for heritage sites. 

Keywords: architectural heritage; point cloud; semantic enrichment; segmentation; classification; 
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1. Introduction and State of the Art 

The digital documentation of Cultural Heritage (CH), more specifically Architectural 

Heritage (AH), is crucial for its preservation, providing key benefits in terms of storage, 

accessibility, and resilience against degradation and anthropogenic impacts [1,2]. 

In this context, architectural surveying, supported by advanced techniques and 

technologies such as Structure from Motion (SfM) and Light Detection and Ranging 

(LiDAR), plays a crucial role in enhancing the acquisition of complex structures. Their 

application facilitates the transition from 2D to 3D representations, enabling the 

integration and refinement of traditional surveying methods [3–7]. 

A key outcome of these cu�ing-edge advancements is the generation of point clouds, 

which underpin further steps like parametric 3D modelling and comprehensive historical 

site documentation. Point clouds, derived from hybrid approaches that combine image-

based (photogrammetry) and range-based (laser scanning) methods [8–10], enable 

accurate analysis through spatial coordinates and colourimetric a�ributes. 
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Recent advances in Neural Radiance Field (NeRF) technology have revolutionised 

the preservation of CH by employing Deep Learning and Computer Vision to replicate 

historical buildings from 2D photos by utilising Artificial Neural Networks (ANN) [11,12]. 

Despite advances in point cloud processing techniques, their integration into HBIM 

workflows remains constrained compared to Computer-Aided Design (CAD) systems, 

which effectively utilise segmented point clouds in Scan-to-CAD workflows to enhance 

design accuracy, streamline modelling processes, and improve stakeholder collaboration 

through precise architectural representations [13,14]. Modelling processes still largely rely 

on manual intervention, which limits both the efficiency and automation of 3D data 

processing and management. In order to tackle this issue, the Scan-to-BIM technique [15] 

presents a viable solution by using point clouds as a guide to create precise ‘as-is’ and ‘as-

built’ BIM models, especially by obtaining exact building parameters from a geometric 

viewpoint [16–19]. 

These strategies promote the creation of complete digital information models that 

enable integration and application across a range of interdisciplinary domains and offer a 

strong basis for operational planning [20–22]. 

In the early stages, the point cloud data can be decimated and further processed 

through automated algorithms, optimising the workflow towards the final model. Several 

studies have outlined the most widely adopted approaches for segmenting and classifying 

point clouds, such as ‘edge-based’, ‘region-based’, ‘model-based’, ‘a�ribute-based’, and 

‘graph-based’ methods, each utilising algorithms that cluster data features extracted from 

the point clouds [23]. These techniques focus on different aspects of the point cloud data, 

such as geometric boundaries, spatial continuity, object models, data a�ributes, and 

relational structures, allowing for a more comprehensive and context-sensitive 

segmentation and classification process. When combined in a hybrid approach, they can 

further enhance performance [24,25]. 

The intricate geometric topology of cultural and architectural environments poses 

considerable challenges for the automated application of these algorithmic techniques. In 

this regard, Artificial Intelligence (AI) proves to be a powerful ally, significantly enhancing 

the precision, efficiency, and scalability of heritage management. By providing advanced 

tools for documentation, restoration, and analysis, AI offers unprecedented support in 

overcoming these challenges and optimising preservation practices [26,27]. 

However, ethical concerns also arise, particularly regarding the risk of data bias and 

the potential loss of human agency in decision-making, which could compromise the 

authenticity of preservation efforts [28]. Therefore, while AI can significantly optimise 

workflows and improve conservation practices, it is crucial to strike a balance between 

technological progress and ethical considerations to avoid unintended consequences 

[29,30]. 

Moreover, a key limitation lies in the difficulty in obtaining uniformly structured 

training datasets, which are crucial for ensuring the accuracy of AI algorithms [31,32]. 

Consequently, automated approaches frequently require human oversight to ensure 

proper implementation and verification, underscoring the necessity of an in-depth 

understanding of the context to achieve reliable outcomes. 

When supported by well-organised training datasets, AI techniques allow for 

automated segmentation and classification based on user-defined criteria and properties 

[33].  

In the field of AH, leveraging Machine Learning (ML) and Deep Learning (DL) make 

it easier to group data points or patches with comparable colorimetric and/or geometric 

properties into homogenous subsets [34–36]. In this context, until a few years ago, the use 

of ML was restricted because the majority of the work relied on statistical toolboxes 

applied to small datasets that are normally not publicly available [37]. 

Recent developments have resulted in the definition of a number of classification 

techniques for 3D models [38–41]: These include segmenting ortho-rectified images [42–

44], classifying textures from 2D images processed through UV mapping and reprojected 
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onto 3D models, segmenting point clouds using colorimetric and geometric feature 

extraction [45–48], and classifying multi-level and multi-resolution images [49]. 

The incorporation of DL approaches has led to notable advancements in semantic 

annotation in HBIM procedures [50,51]. The segmentation and classification of 

architectural features such as arcs, columns, walls, windows, and more has been made 

possible by notable approaches like PointNet, Pointnet++, and Dynamic Graph 

Convolutional Neural Network (DGCNN) [52–55] which demonstrate the field’s dynamic 

character and the ongoing development of techniques for historic buildings. 

1.1. Aims and Overview of the Research 

This study delves into the segmentation and classification of point clouds using 

Machine Learning techniques, arising from an initial bibliographic review of the state of 

the art (see Section 1). Specifically, it addresses the semantic enrichment of a LiDAR point 

cloud of the Palacio de Sástago in Zaragoza (Spain), employing the Random Forest (RF) 

algorithm within the PyCharm environment of Python. 

The primary aim is to enhance the point cloud’s semantic content by breaking it 

down into its architectural components, thereby establishing a foundation for future 

reconstructions within the framework of Scan-to-BIM. 

A target bibliographic review was first carried out to investigate the best strategies 

for classification and segmentation. A bibliometric analysis was performed using the 

‘bibliometrix’ package in RStudio and its web interface ‘biblioshiny’ to create a network 

map (Figure 1). This graph, based on search terms such as ‘Cultural Heritage’, ‘Point 

Cloud’, ‘Segmentation’, and ‘BIM’, highlights key concepts related to semantic 

enrichment. It was constructed by analysing 470 English-language papers from Scopus 

and Web of Science published between 2012 and 2024. 

 

Figure 1. Network map illustrating the semantic enrichment of Architectural Heritage, generated 

using the R programming language. 

Afterward, the RF algorithm was implemented, to initially identify the most relevant 

geometric features related to the point cloud and subsequently to refine the training of the 

algorithm, aiming to achieve the highest possible accuracy in the semantic data output. 

More specifically, RF is an ensemble learning technique that uses random subsets of 

the training data and feature set to build multiple decision trees. Through majority voting, 

it aggregates these trees’ predictions and chooses the class with the highest number of 
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votes overall as the final classification result [56], thereby reducing overfi�ing and 

improving both reliability and accuracy. 

After evaluating the best features to use through the ‘Mean Decrease in Impurity’ 

(MDI) measure—which quantifies the importance of variables in the model based on the 

reduction in impurity during node spli�ing—the algorithm was first trained and then 

validated. This was performed by manually segmenting different portions of the point 

cloud for each phase. 

In addition to the best features, normal features, height, and those related to the 

architectural element’s dimension were also included. In the final phase of the project, an 

evaluation of the algorithm’s metrics was conducted to gain a clearer understanding of 

the diverse combinations of features. This assessment is facilitated by the discretisation of 

the point clouds, which enhances visual observation, as will be detailed in the next 

sections. 

1.2. The Case Study 

This study focuses on the Palace of the Counts of Sástago (Palacio de Sástago), located 

in the old city (Casco Antiguo) of Zaragoza, standing as a significant testament to the 

socio-political and cultural developments of the 16th century (Figure 2). 

 

Figure 2. Inner courtyard of the Palacio de Sástago in Zaragoza, Spain. 

Commissioned by Don Artal de Alagón y Luna, the third count of Sástago, the palace 

has served various roles throughout history, reflecting the evolution of architectural styles 

and societal values in Aragon. Constructed during this transformative period, it 

symbolises the formidable influence of its patron, having been a crucial venue for notable 

events, including hosting Spanish monarchs and serving as a military headquarters 

during pivotal conflicts, most notably the Siege of Zaragoza. 



Heritage 2024, 7 6942 
 

 

The building was eventually repurposed after suffering severe damage during the 

burning of the adjoining Convent of San Francisco.  

The palace has served as both a police headquarters and the residence of the 

Captaincy General of Aragon for centuries, demonstrating its versatility and significance 

in Zaragoza’s urban landscape. Renowned for its eclectic neo-baroque architecture, the 

palace includes the distinctive ‘Casa Zorraquino’ on its ground floor. 

Its brick façade, shaped by the region’s limited access to stone, highlights an 

innovative use of local materials that blend seamlessly with the surrounding environment. 

Inside, the palace opens to a grand Renaissance-style courtyard, leading into an entrance 

hall and a noble staircase, along with prominent rooms like the Throne Room. 

The inner courtyard exemplifies a refined integration of classical architecture and 

elaborate ornamentation. Its symmetrical layout features partially fluted columns and 

graceful arches that create a balanced and elegant ambiance. These columns are often 

decorated with carved motifs and floral pa�erns, adding depth to the visual experience, 

while the courtyard walls are embellished with intricate friezes, delicately sculpted Ionic 

capitals, and decorative windows, all of which contribute to the building’s rich historical 

essence. 

Despite limited public access, the Palace of the Counts of Sástago has evolved into a 

vibrant cultural hub; it includes a modernist library, and frequently hosts exhibitions 

showcasing works by renowned artists like Pablo Picasso, Salvador Dalí, and Manuel 

Viola. This transformation reflects the palace’s ongoing relevance in contemporary society 

and its role in fostering artistic dialogue. 

2. Materials and Methods 

With regard to the building’s inner courtyard, the adopted approach (Figure 3) seeks 

to automatically identify recurrent architectural elements in the point cloud. 

Subsequently, these parts are classified and catalogued within a Scan-to-BIM framework, 

simplifying upcoming modelling processes and boosting efficiency. 

 

Figure 3. Methodology workflow. 
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A structured processing workflow was developed to handle raw point cloud data 

collected via laser scanning. This process involved identifying and extracting the most 

critical geometric features, which, along with carefully curated manual annotations, were 

used to train a Random Forest Machine Learning algorithm. The purpose was to empower 

the algorithm to autonomously classify the remaining point cloud data with high 

accuracy. To streamline the training process and reduce redundancy in error assessment, 

the study area was segmented into two main subsets: the ground floor and the first floor. 

This division was intentionally designed to leverage the unique architectural 

characteristics specific to each floor, enhancing the model’s performance and precision in 

classifying diverse architectural elements. 

2.1. Three-Dimensional Architectural Survey 

The surveying operations were carried out using the CAM2® FARO Focus M 70 laser 

scanner, which features a vertical field of view of 300° and a horizontal one of 360°. With 

a ranging error of ±3 mm and an unambiguity interval of 614 m, this scanner can capture 

up to 0.5 million points per second. A total of 32 indoor scans were completed: 21 scans 

on the ground floor and 11 on the first floor. Each scan was performed within a radius of 

10 m, achieving a resolution of 11 million points, with a net scan duration of 5 min and 11 

s, resulting in a scan size of 5156 × 2134 points. 

Point cloud registration was conducted using Autodesk Recap software, employing 

both automated and manual alignment techniques. The manual process involved 

identifying three corresponding points between pairs of scans to ensure accurate 

alignment. The initial registration yielded an accuracy of 6 mm, which was further refined 

through a noise reduction process using Statistical Outlier Removal (SOR) within 

CloudCompare software. Additionally, subsampling was performed at 2 cm intervals to 

optimise the computational file size. As a result, the entire dataset, covering an area of 

approximately 12.20 m × 8.90 m, was divided into two groups: one for the ground floor of 

the inner courtyard and the other one for the first floor (Figure 4). 

 

Figure 4. Subdivision of the complete point cloud into two groups: ground floor and first floor. 
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Subsequent processing steps were carried out concurrently for both levels. For the 

training phase, a specific subset of points was identified, while another subset was set 

aside for model evaluation. The remaining data for each floor were classified as the test 

set for the final classification. A comprehensive summary of the dataset is provided in 

Table 1. 

Table 1. Full dataset specification. 

 No. Points Point Spacing 

Point cloud_ground floor 5,323,756 6 mm 

Subsampled point cloud 427,068 2 cm 

Training 53,713 2 cm 

Evaluation 54,432 2 cm 

Test 318,923 2 cm 

Point cloud_first floor 4,579,345 6 mm 

Subsampled point cloud 440,695 2 cm 

Training 56,032 2 cm 

Evaluation 54,914 2 cm 

Test 329,749 2 cm 

2.2. Semantic Segmentation and Classification via Machine Learning 

The subsampled and enhanced point cloud for each floor is employed as input for 

the semantic segmentation process utilising Machine Learning techniques. 

To implement this, a sequence of phases is executed, as detailed in the workflow and 

summarised below: (a) neighbourhood selection; (b) extraction of the geometric features; 

(c) manual annotation for training and evaluation sets; (d) selection of the geometric 

features using Mean Decrease in Impurity; (e) calculation of the normals and feature 

height; (f) combinations of the features; (g) Random Forest classification on the test set 

and performance evaluation; and (h) semantic point cloud. 

2.2.1. Neighbourhood Selection 

A detailed series of covariance features were extracted from the two subsets of point 

clouds using CloudCompare software, with feature selection primarily guided by varying 

local neighbourhood radii. The term ‘local neighbourhood radius’ defines the spatial area 

surrounding each point in the point cloud that is considered when extracting geometric 

features [57]. This parameter specifies the maximum distance within which adjacent 

points are included in the computation of the geometric a�ributes for a central point. 

The core principle underlying this approach is that the geometric features of a point 

are greatly influenced by its neighbouring points. By adjusting the local neighbourhood 

radius, the extent of space considered in the analysis of each point’s features can be 

precisely controlled. To achieve this, a systematic radius increment was established, 

ranging from 10 to 20 cm for the analysis of smaller elements, while larger architectural 

components were assessed with radii approaching one metre. 

2.2.2. Extraction of the Geometric Features 

The term ‘covariance features’ denotes geometric characteristics derived from the 

covariance matrix of a set of points in three-dimensional space, often known to as the 3D 

structure tensor [58–60], which is calculated using the spatial information of points within 

a defined local neighbourhood. The covariance matrix is computed for each point in the 

point cloud relative to the centroid, revealing variance values along its diagonal. 

Through a Principal Component Analysis (PCA), eigenvectors and eigenvalues are 

derived, which describe the local geometry of the point cloud, with the eigenvalues 

ordered as λ₁ ≥ λ₂ ≥ λ₃, representing the primary components of the spatial distribution. 
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Using these eigenvalues, several 3D properties, referred to as dimensional features, 

are calculated: Linearity [Equation (1)], Planarity [Equation (2)], and Sphericity [Equation 

(3)]. Additionally, these eigenvalues serve as the foundation for further measurements, 

including Omnivariance [Equation (4)], Anisotropy [Equation (5)], Eigenentropy 

[Equation (6)], Sum of Eigenvalues [Equation (7)], and Surface Variation, also known as 

the Change of Curvature [Equation (8)]. Verticality [Equation (9)], which is categorised as 

a ‘normal-based feature’, and Height [Equation (10)], considered as a ‘height-based 

feature’, are additional features that can be obtained. 

The different types of features, along with their corresponding equations, are 

summarised in Table 2. 

Table 2. Geometric features explanation. 

Feature Typology Name Equation 

Covariance 

Linearity L� =
�����

��
       (1)

Planarity P� =
�����

��
       (2)

Sphericity S� =
��

��
        (3)

Omnivariance O� = �λ�λ�λ�
�      (4)

Anisotropy A� =
�����

��
      (5)

Eigenentropy E� = − ∑ λ�ln(λ�)
�
���   (6)

Sum of Eigenvalues Σ� = ∑ λ�
�
���       (7)

Surface Variation C� =
��

��
        (8)

Normal-based Verticality Vλ= 1 − |([0 0 1], e3)|   (9)

Height-based Height Z Coordinate    (10)

An in-depth examination of the 3D point cloud is made easier by these features, 

which clarify many aspects of local geometry structures. The scale at which these 

geometric features are assessed inside the point cloud shifts when the neighbourhood 

radius is modified.  

Specifically, Linearity measures the alignment of points along a straight line, with 

higher values indicating elongated structures. Planarity evaluates how closely points 

resemble a flat surface, while Sphericity describes their distribution in a spherical manner, 

with higher values suggesting rounder forms. Omnivarance captures overall spatial 

variability, and Anisotropy quantifies directional disparities in point distribution. 

Eigenentropy reflects the disorder in the point cloud, with higher values indicating more 

complexity. 

The Sum of Eigenvalues indicates spatial dispersion, and Surface Variation assesses 

curvature variability. Verticality measures the alignment along the vertical axis, while 

Height identifies elevation differences within the point cloud. 

The graphics in Figure 5 showcase examples of ‘ad hoc’ features, which are further 

examined in the context of the geometric dimensions, specifically the radius and diameter, 

of architectural elements. 
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Figure 5. Example of geometric features used during the training phase, pertaining to the point 

clouds of the ground and first floors: (A) Normals; (B) Anisotropy; (C) Planarity; (D) Linearity; (E) 

Surface Variation; (F) Sphericity; (G) Verticality; (H) Z coordinate. 

Calculating normals can improve the classification of complex scenes, though their 

necessity is debated [61]. Normals are vectors perpendicular to surfaces at each point, 

representing surface orientation. Each normal is a 3D vector (Nx, Ny, Nz), where Nx, Ny, 

and Nz are the components along the x, y, and z axes, respectively. 

At this point, the focus has been narrowed to the extraction of normal-based and 

covariance features. After the Machine Learning algorithm automatically identifies the 

most significant features, normals and height features will be computed. These will be 

essential for testing various combinations that the algorithm can use to automatically 

partition the test set. 

2.2.3. Manual Annotation for Training and Evaluation Sets 

The ground floor and first floor point clouds were manually segmented in order to 

provide an appropriate training and evaluation set for identifying architectural elements 

in the remaining section of the point cloud, which will act as the test set. It is possible to 

integrate certain geometric features, point coordinates, surface normals, and colour 

qualities (such as RGB values) with these segmented data, which have been designated as 

classes. 

Based on the categorisation of architectural elements using the ontological taxonomy 

supplied by the Ge�y Research Institute’s Art & Architecture Thesaurus© (AAT), the 

point cloud was semantically split [62]. In terms of glossary set-up, this method adheres 
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to classical architectural principles and falls in line with the ‘Information Standards in 

Practice’ (ISO and NISO). For the ground floor, the segmentation follows a hierarchical 

structure, from bo�om to top, as follows: Pavement, Base, Lower Shaft, Ring, Upper Shaft, 

Capital, Corbel, Architrave, Frieze, and Cornice. 

For the first floor, the segmentation includes: Parapet, Base, Lower Shaft, Ring, Upper 

Shaft, Capital, Arch, Stringcourse, Cornice, and Corner Column (Figure 6). For 

architectural analysis, ten classes were manually created from each floor. 

 

Figure 6. Manual annotation of the training and evaluation sets for the automatic identification of 

the test set classes using Machine Learning on the ground and first floors. 

2.2.4. Selection of the Geometric Features Using Mean Decrease in Impurity 

A preliminary multiscale analysis of feature relevance was carried out using the 

Random Forest algorithm in a Python environment (PyCharm) in order to determine 

which geometrical features were most pertinent for the training stage. In the beginning, 

63 features were retrieved for the ground floor and 72 features for the first floor. A 

standard metric for ‘feature importance’ in Random Forests [63,64] was used: the ‘Mean 

Decrease in Impurity’ (MDI). This metric calculates the contribution of each feature to the 

training process of lowering impurity in the decision tree nodes. Features that improve 

data separation by significantly reducing impurity are deemed more significant. 

The following procedures were used to calculate the feature importance ranking: 

 Data Preparation: After class labels (dependent variables) and features (independent 

variables) were added, the dataset was divided into training and test sets. 

 Random Forest Training: The RF classifier was trained on the point cloud data using 

the Python ‘scikit-learn’ library. The model determined feature importance 

automatically throughout training. 

 Feature Importance Extraction: Following the training phase, feature importance 

scores were obtained using the model’s ‘feature_importances_’ a�ribute. 

 Feature Ranking: Features were ranked to create a clear visual representation of their 

importance. These rankings are displayed in Figure 7, with the local neighbourhood 

radius represented on the x-axis and the normalised feature importance scores shown 

on the y-axis. 
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Figure 7. Feature importance ranking for the ground floor (on the top) and first floor (on the 

bo�om), derived from the Mean Decrease in Impurity (MDI) analysis. 

At this point, the 15 most important features were carefully chosen from the 63 

features on the ground floor and the 72 features on the first floor, respectively, to maximise 

training time and assess the prediction model’s overall performance. An additional set of 

6 features was subsequently selected in an iterative process that used the same strategies. 

In order to minimise overfi�ing errors, this was carried out to see how they affected the 

model’s behaviour when the overall number of features was progressively decreased. 

According to Table 3, Verticality is a significant feature on both floors, with 

‘Verticality (1)’ being more prominent on the first floor. While additional features like 

Eigenentropy and Omnivariance are emphasised on the ground floor, Surface Variation 

and Anisotropy are also crucial on the first floor. 

Table 3. Feature importance scores of the 15 features for the ground and first floors. 

Ground Floor First Floor 

Feature (Radius) Score Feature (Radius) Score 

Verticality (0.8) 0.05674217 Verticality (1) 0.07552335 

Verticality (1) 0.0516716 Surface Var. (0.6) 0.0438021 
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Verticality (0.3) 0.03921137 Anisotropy (0.6) 0.04372397 

Eigenentropy (1) 0.03920605 Sphericity (0.6) 0.04066766 

Verticality (0.4) 0.03728326 Verticality (0.8) 0.03792759 

Linearity (0.8) 0.03241092 Planarity (1) 0.03345083 

Verticality (0.2) 0.03235743 Surface Var. (0.8) 0.03309696 

Omnivariance (1) 0.02869746 Surface Var. (0.4) 0.03010814 

Surface Var. (0.8) 0.02767854 Linearity (1) 0.02567088 

Verticality (0.6) 0.02750381 Verticality (0.6) 0.02564896 

Anisotropy (0.8) 0.02535267 Anisotropy (0.8) 0.02492746 

Linearity (1) 0.02473062 Sphericity (0.4) 0.0232871 

Verticality (0.1) 0.02466849 Sphericity (0.8) 0.02164398 

Sphericity (0.8) 0.02439382 Sphericity (0.3) 0.02137714 

Surface Var. (0.4) 0.02417008 Planarity (0.8) 0.02003774 

Verticality stands out as a noteworthy feature in both floors, as shown in Table 4, but 

other specific features also make a substantial contribution to the overall score, giving each 

floor a unique profile. 

Table 4. Feature importance scores of the 6 features for the ground and first floors. 

Ground Floor First Floor 

Feature (Radius) Score Feature (Radius) Score 

Eigenentropy (1) 0.20324868 Verticality (1) 0.23757974 

Verticality (0.8) 0.19481669 Planarity (1) 0.22981696 

Verticality (1) 0.19275127 Surface Var. (0.6) 0.16260546 

Linearity (0.8) 0.18289954 Verticality (0.8) 0.1468888 

Verticality (0.4) 0.12677354 Sphericity (0.6) 0.11651344 

Verticality (0.3) 0.09951028 Anisotropy (0.6) 0.10659559 

Then, as previously illustrated in Figure 5, a customised set of 6 ‘ad hoc’ features was 

added to each level. These features were picked because they closely matched the 

manually classified classes and could effectively depict distinct architectural components. 

Features with a radius of 0.4 m to match the diameter of the column, including 

Anisotropy, Planarity, Linearity, and Sphericity, were carefully chosen for the ground 

floor. Verticality was given a radius of 0.1 m, which is half the radius of the column, and 

Surface Variation was chosen with a radius of 0.2 m, which is the same as the radius of the 

column. 

The first floor’s chosen features were Sphericity, Linearity, Planarity, and Anisotropy, 

each having a radius of 0.2 m to correspond with the diameter of the column. The radius 

for Surface Variation was set at 0.1 m, which is the same as the radius of the column, and 

the radius for Verticality was set at 0.04 m, which is half of the radius of the column. 

Certain features were purposefully left out on both levels, including Sum of Eigenvalues, 

Eigenentropy, and Omnivariance. Unlike those chosen using the MDI method, these 

features, at least visually, gave results that did not match expectations. 

2.2.5. Calculation of the Normals and Feature Height 

When combined with other geometric features, parameters like normals and feature 

height (Z coordinate) can greatly aid in the segmentation and classification of point 

clouds. The model’s capacity to distinguish between various entities is improved by these 

extra factors, which also enrich surface descriptions. As previously stated, normals 

provide crucial information about the orientation of surfaces within the point cloud, 

representing the perpendicular direction to each surface at every point. This function is 

essential for capturing the intricate geometry of surfaces and is especially helpful for 
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segmenting objects such as floors, walls, sloping structures, and other pa�erns that would 

be tricky to identify with just spatial coordinates. 

At the same time, the Z coordinate is quite useful for investigating the environment’s 

three-dimensional structure. It makes it easier to spot changes in vertical space, which 

improves comprehension of the building’s general layout. In order to achieve more 

precise and thorough segmentation, this is particularly helpful for identifying key 

architectural detailing, such as height variations between floors, balconies, or other raised 

features. In light of these benefits, the Z coordinate and normals were incorporated into 

the model to evaluate their performance throughout the training and classification phases. 

2.2.6. Combinations of the Features 

Three alternative combinations were carried out for each iteration with a different set 

of features (63–15–6–6 ‘ad hoc’, specifically for the ground floor; 72–15–6–6 ‘ad hoc’, for 

the first floor), giving a total of 12 combinations per floor, as shown below. 

Ground floor: 

 63 features; 63 features + Z coordinate; 63 features + Z coordinate + normals; 

 15 features; 15 features + Z coordinate; 15 features + Z coordinate + normals; 

 6 features; 6 features + Z coordinate; 6 features + Z coordinate + normals; 

 6 ‘ad hoc’ features; 6 ‘ad hoc’ features + Z coordinate; 6 ‘ad hoc’ features + Z 

coordinate + normals. 

First floor: 

 72 features; 72 features + Z coordinate; 72 features + Z coordinate + normals; 

 15 features; 15 features + Z coordinate; 15 features + Z coordinate + normals; 

 6 features; 6 features + Z coordinate; 6 features + Z coordinate + normals; 

 6 ‘ad hoc’ features; 6 ‘ad hoc’ features + Z coordinate; 6 ‘ad hoc’ features + Z 

coordinate + normals. 

The Random Forest approach was used to test the 12 combinations, and the weighted 

F1-score and model training time were the two main metrics used for comparison. When 

working with imbalanced datasets, the weighted F1-score—calculated using the following 

formula [Equation (11)]—is a valuable performance evaluation metric for classification 

models since it takes into account variations in the number of samples in each class: 

F1weighted  = 

∑ wi*F1ii

∑ wii

 (11)

where 

F1i = F1-score for class i; 

wi = weight associated with class i. 

All classes are used for the summation. The standard F1-score formula [Equation 

(12)] is used to determine the F1-score for a single class: 

F1i = 

2 Precisioni*Recalli

Precisioni+Recalli

 (12)

where 

Precisioni = precision for class i; 

Recalli = recall for class i. 

The weights wi are determined by calculating the ratio of the number of samples in 

class i to the overall number of samples in the dataset. 

3. Results and Discussion 

The following section presents the various combinations of features, along with the 

outcomes of the Machine Learning classification. These results are accompanied by 

evaluation metrics carefully selected to serve the intended purpose, offering a clear 

assessment of the model’s performance. 
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3.1. Results of the Feature Combinations 

In addition to the weighted F1-score, the hyperparameter that defines the number of 

decision trees in the forest, known as the number of estimators, is also considered. Each 

decision tree contributes to the final prediction, and the number of trees can significantly 

influence the model’s performance and generalisation capability. Training time is another 

parameter used for feature comparison. 

The following four combinations can be used to analyse the results of the ground 

floor analysis, as seen in Figure 8 and Table 5: 

(a) 63 features; 63 features + Z coordinate; 63 features + Z coordinate + normals: 

 For 63 features, the model achieved an impressive weighted F1-score of 0.9736 

using 200 estimators, with a training time of 40.9824 s. 

 For 63 features + Z coordinate, introducing the Z coordinate resulted in a slight 

decline in the weighted F1-score to 0.9606 with 100 estimators, while the training 

time increased to 44.2787 s. 

 For 63 features + Z coordinate + normals, adding normals led to a further minor 

decrease in the weighted F1-score to 0.9598 with 100 estimators, and the training 

time remained comparable, at 43.9770 s. 

(b) 15 features; 15 features + Z coordinate; 15 features + Z coordinate + normals: 

 For 15 features, the model used 200 estimators and a training duration of 19.1061 

s to reach a high weighted F1-score of 0.9710. 

 For 15 features + Z coordinate, the weighted F1-score dropped to 0.9373 with 200 

estimators when the Z coordinate was added, and the training time went up to 

22.3032 s. 

 For 15 features + Z coordinate + normals, the weighted F1-score increased 

slightly to 0.9439 with 50 estimators when normals were added, but the training 

time remained the same, at 22.7215 s. 

(c) 6 features; 6 features + Z coordinate; 6 features + Z coordinate + normals: 

 For 6 features, with 200 estimators and a training duration of 15.9416 s, the 

model obtained a weighted F1-score of 0.9296. 

 For 6 features + Z coordinate, the weighted F1-score was reduced to 0.9148 with 

50 estimators when the Z coordinate was included, and the training time 

dropped to 13.9675 s. 

 For 6 features + Z coordinate + normals, the weighted F1-score increased slightly 

to 0.9170 with 150 estimators when normals were added, while the training time 

increased to 16.6206 s. 

(d) 6 ‘ad hoc’ features; 6 ‘ad hoc’ features + Z coordinate; 6 ‘ad hoc’ features + Z 

coordinate + normals: 

 For 6 ‘ad hoc’ features, the model’s weighted F1-score was 0.7930 after training 

for 19.5866 s with 200 estimators. 

 For 6 ‘ad hoc’ features + Z coordinate, while the training duration was lowered 

to 15.7060 s, the weighted F1-score increased significantly to 0.9180 with 200 

estimators when the Z coordinate was added. 

 For 6 ‘ad hoc’ features + Z coordinate + normals, the weighted F1-score increased 

slightly to 0.9200 with 100 estimators when normals were added, although the 

training time remained the same, at 17.0059 s. 
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Figure 8. Analysis of the feature combinations for the ground floor: training time and weighted F1-

score. 

Table 5. Overview of the feature combinations for the ground floor. 

Feature Combinations No. Estimators Training Time (s) Weighted F1-Score 

63 features 200 40.9824 0.9736 

63 features + z coord. 100 44.2787 0.9606 

63 features + z coord. + normals 100 43.9770 0.9598 

15 features 200 19.1061 0.9710 

15 features + z coord. 200 22.3032 0.9373 

15 features + z coord. + normals 50 22.7215 0.9439 

6 features 200 15.9416 0.9296 

6 features + z coord. 50 13.9675 0.9148 

6 features + z coord. + normals 150 16.6206 0.9170 

6 ‘ad hoc’ features 200 19.5866 0.7930 

6 ‘ad hoc’ features + z coord. 200 15.7060 0.9180 

6 ‘ad hoc’ features + z coord. + normals 100 17.0059 0.9200 

The optimal performance for each of the four combinations is as follows when 

concentrating only on the F1-score and ignoring the training time, which stayed 

comparatively low throughout all configurations: 

a. With a score of 0.9736, the 63 features combination yielded the greatest F1-score. 

b. The configuration that uses only 15 features provided the greatest F1-score of all the 

combinations with 15 features, reaching 0.9710. 

c. The greatest F1-score, 0.9296, was obtained by combining the 6 features. 

d. For the 6 ‘ad hoc’ features, the inclusion of both the Z coordinate and normals yielded 

the highest F1-score of 0.9200. 

According to this analysis, when all features were considered together, the ground 

floor achieved its best result. However, as the following images demonstrate, a very good 

result can still be obtained by reducing the number of features, particularly when 

integrating ‘ad hoc’ features tied to the geometric size of architectural components. 

The results for the first floor’s designated feature combinations, as presented in 

Figure 9 and Table 6, are as follows: 
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(a) 72 features; 72 features + Z coordinate; 72 features + Z coordinate + normals: 

 For 72 features, the model obtained a high weighted F1-score of 0.9772 after 

training for 43.5884 s using 100 estimators. 

 For 72 features + Z coordinate, including the Z coordinate lowered the training 

time to 41.4688 s and produced a marginally lower F1-score of 0.9700 with 200 

estimators. 

 For 72 features + Z coordinate + normals, the F1-score increased slightly to 0.9712 

with 100 estimators when normals were added, while the training time was 

similar at 40.1178 s. 

(b) 15 features; 15 features + Z coordinate; 15 features + Z coordinate + normals: 

 For 15 features, with 200 estimators and a training duration of 21.1950 s, the 

model obtained an acceptable weighted F1-score of 0.9092 for 15 features. 

 For 15 features + Z coordinate, the training time was maintained at 21.2527 s; 

however, adding the Z coordinate improved the F1-score to 0.9248 with 200 

estimators. 

 For 15 features + Z coordinate + normals, the training time decreased to 19.7888 

s and the F1-score increased slightly to 0.9230 with 100 estimators after adding 

normals. 

(c) 6 features; 6 features + Z coordinate; 6 features + Z coordinate + normals: 

 For 6 features, with 200 estimators and a training time of 18.0612 s, the model 

obtained a moderate F1-score of 0.8521. 

 For 6 features + Z coordinate, including the Z coordinate reduced the training 

time to 14.1282 s and improved the F1-score to 0.8970 with 100 estimators. 

 For 6 features + Z coordinate + normals, the F1-score decreased slightly to 0.8934 

with 50 estimators when normals were included, while the training time was 

similar, at 14.5784 s. 

(d) 6 ‘ad hoc’ features; 6 ‘ad hoc’ features + Z coordinate; 6 ‘ad hoc’ features + Z 

coordinate + normals: 

 For 6 ‘ad hoc’ features, with 200 estimators and a training time of 22.2948 s, the 

model obtained a lower F1-score of 0.6749. 

 For 6 ‘ad hoc’ features + Z coordinate, the F1-score improved significantly to 

0.9018 with 200 estimators when the Z coordinate was incorporated, and the 

training time dropped to 14.5593 s. 

 For 6 ‘ad hoc’ features + Z coordinate + normals, the F1-score decreased 

marginally to 0.8815 with 150 estimators when normals were added, while the 

training time went up to 17.6194 s. 
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Figure 9. Analysis of the feature combinations for the first floor: training time and weighted F1-

score. 

Table 6. Overview of the feature combinations for the first floor. 

Feature Combinations No. Estimators Training Time (s) Weighted F1-Score 

72 features 100 43.5884 0.9772 

72 features + z coord. 200 41.4688 0.9700 

72 features + z coord. + normals 100 40.1178 0.9712 

15 features 200 21.1950 0.9092 

15 features + z coord. 200 21.2527 0.9248 

15 features + z coord. + normals 100 19.7888 0.9230 

6 features 200 18.0612 0.8521 

6 features + z coord. 100 14.1282 0.8970 

6 features + z coord. + normals 50 14.5784 0.8934 

6 ‘ad hoc’ features 200 22.2948 0.6749 

6 ‘ad hoc’ features + z coord. 200 14.5593 0.9018 

6 ‘ad hoc’ features + z coord. + normals 150 17.6194 0.8815 

The following are the best outcomes for each of the four combinations in terms of F1-

score, excluding training time: 

a. With a score of 0.9772, the ‘72 features’ combination yields the highest F1-score. 

b. The ‘15 features’ combination provides the best F1-score of 0.9248. 

c. The combination of ‘6 features + Z coordinate’ produces the greatest F1-score, 0.8970. 

d. The ‘6 ad hoc features + Z coordinate’ combination brings about the best F1-score of 

0.9018. 

In conclusion, the first floor’s results seem encouraging. The incorporation of ‘ad hoc’ 

features pertaining to the geometric dimensions of architectural components nevertheless 

produces an exceptionally high score, even if the combination that includes every 

conceivable feature produces the maximum F1-score. 
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3.2. Random Forest Classification on the Test Set and Performance Evaluation 

Two primary modules were used for segmentation in the PyCharm environment: the 

first module is in charge of automatically segmenting point clouds by training a Random 

Forest (RF) model, the second one uses a pre-trained model to categorise point clouds, 

enabling effective segmentation after the model has been tuned. To guarantee a distinct 

division of functions, the training module’s code is arranged in a modular structure. 

The ‘load_features_and_class’ function loads feature indices and class labels from a 

designated text file, while the ‘read_data’ function is dedicated to loading labelled point 

cloud data. Model training is handled by the ‘train_model’ function, which uses a RF 

classifier with parameters defined by the user. The classification module, on the other 

hand, uses a pre-trained model to categorise point clouds from the test set. The 

‘load_features’ function is designed to import feature indices from a specified text file, 

while the ‘read_model’ function loads a pre-trained RF model from a binary .pkl file. The 

primary classification process is coordinated by the main function, which integrates 

feature loading, model retrieval, and test data processing to perform classification. The 

results are subsequently saved to an output file for further analysis. 

To evaluate the performance of the ML model, the ‘Cross-Validation’ technique was 

employed as a rigorous method for hyperparameter tuning. This technique was 

instrumental in selecting the optimal number of trees and maximum depth for the RF 

classifier. The training set was partitioned into five folds (k = 5), a choice made to mitigate 

overfi�ing during hyperparameter selection. Through this process, the model underwent 

five training and evaluation cycles, with each fold alternately serving as the validation set, 

while the remaining folds supported training.  

This iterative approach provided a more reliable estimate of key evaluation metrics, 

including Precision, Recall, F1-Score, and Overall Accuracy. These metrics, derived from 

confusion matrices, offered insights into the model’s predictive performance across the 

four most promising feature combinations per floor, as presented in the following figures. 

In the confusion matrix (Table 7), the rows correspond to the actual (true) classes—

manually annotated—and the columns represent the model’s predicted classes. 

Table 7. Example of a confusion matrix. 

Class Actual Values 

P
re

d
ic

te
d

 v
a

lu
es

 

TP FP 

FN TN 

where 

TP (True Positive): instances accurately identified as positive. 

FP (False Positive): instances mistakenly identified as positive rather than negative. 

TN (True Negative): instances accurately identified as negative. 

FN (False Negative): instances mistakenly identified as negative rather than positive. 

Based on the values in the confusion matrix, the metrics Precision [Equation (13)], 

Recall [Equation (14)], F1-Score [Equation (15)], and Overall Accuracy [Equation (16)] are 

computed. The following lists their matching formulas: 

Precision = 

TP

TP+FP
 (13)
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Recall = 

TP

TP+FN
 (14)

F1-Score = 

2 Precision*Recall

Precision+Recall
 (15)

Overall Accuracy = 

TP+TN

TP+FP+TN+FN
 (16)

The following images display the confusion matrices for the best four feature 

combinations of each floor: Figure 10 shows the results for the ground floor, while Figure 

11 pertains to the first floor. Corresponding metric evaluations are summarised in Tables 

8 and 9 for the ground floor, and Tables 10 and 11 for the first floor, providing detailed 

performance insights for each configuration. 

Notable outcomes for overall accuracy were noted on the ground floor, especially 

when 63 features were combined, which produced an astounding accuracy of 97.38. The 

combination of just 15 features comes in second, with an impressive accuracy of 97.11, 

while the combination of 6 features achieved a reasonable accuracy of 92.98. With a score 

of 91.97, the combination of 6 ‘ad hoc’ features, the Z coordinate, and the normals has the 

lowest accuracy, which is still sufficient for the scope. 

Moving on to the first floor, the combination of 72 features produced the best 

accuracy, achieving a remarkable 97.73. On the other hand, the combination of 15 features 

and the Z coordinate showed a lower accuracy of 92.15. The combination of 6 ‘ad hoc’ 

features and the Z coordinate produced the highest accuracy (89.94), whereas the 

combination of 6 features and the Z coordinate produced the lowest accuracy (89.37). 
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Figure 10. Confusion matrix with the best combinations (63 features, 15 features, 6 features, and 6 

‘ad hoc’ features + Z coordinate + normals) for the ground floor. 
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Figure 11. Confusion matrix with the best combinations (72 features, 15 features + Z coordinate, 6 

features + Z coordinate, and 6 ‘ad hoc’ features + Z coordinate) for the first floor. 

Table 8. Performance metrics for the ground floor using 63, and 15 features. 

PERFORMANCE METRICS 

(63 Features) 

PERFORMANCE METRICS  

(15 Features) 

Precision Recall F1-Score  Precision Recall F1-Score  

99.46 99.89 99.67  99.65 99.37 99.51  

98.55 98.33 98.44  97.90 98.16 98.03  

93.10 99.64 96.26  92.82 99.68 96.12  

99.44 96.65 98.02  96.23 96.85 96.54  

99.55 96.33 97.91  99.40 95.91 97.62  

98.88 94.93 96.86  97.53 95.10 96.30  

96.80 96.17 96.48  96.31 95.16 95.73  

96.38 94.46 95.41  93.98 96.16 95.05  

80.18 94.86 86.91  89.73 89.14 89.44  

99.48 99.63 99.56  99.53 99.36 99.45  

Simple Average Overall Accuracy Simple Average Overall Accuracy 

96.18 97.09 96.55 97.38 96.31 96.49 96.38 97.11 
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Table 9. Performance metrics for the ground floor using 6 features and 6 ‘ad hoc’ features + Z 

coordinate + normals. 

PERFORMANCE METRICS 

(6 Features) 

PERFORMANCE METRICS 

(6 ‘Ad Hoc’ Features + Z Coordinate + Normals) 

Precision Recall F1-Score  Precision Recall F1-Score  

99.73 98.79 99.26  99.75 99.37 99.56  

93.81 95.11 94.45  98.23 98.48 98.36  

79.96 96.06 87.28  99.38 99.14 99.26  

81.64 96.58 88.48  96.23 96.93 96.58  

97.36 88.80 92.88  99.66 99.23 99.44  

96.01 88.30 92.00  97.61 81.31 88.72  

92.80 92.87 92.83  88.33 77.48 82.55  

87.23 92.51 89.79  77.33 83.18 80.15  

82.07 69.30 75.15  37.28 51.30 43.18  

97.22 98.52 97.87  87.97 100.00 93.60  

Simple Average Overall Accuracy Simple Average Overall Accuracy 

90.78 91.68 91.00 92.98 88.18 88.64 88.14 91.97 

Table 10. Performance metrics for the first floor using 72 features and 15 features + Z coordinate. 

PERFORMANCE METRICS  

(72 Features) 

PERFORMANCE METRICS  

(15 Features + Z Coordinate) 

Precision Recall F1-Score  Precision Recall F1-Score  

99.15 99.31 99.23  90.51 100.00 95.02  

66.82 84.62 74.67  70.09 20.27 31.45  

95.03 94.71 94.87  93.92 68.16 78.99  

71.37 76.06 73.64  54.19 72.78 62.12  

94.05 96.66 95.34  76.67 92.02 83.65  

85.33 90.22 87.70  54.39 81.77 65.33  

98.25 95.50 96.85  90.03 94.03 91.98  

94.55 95.61 95.08  92.69 78.91 85.25  

99.30 99.70 99.50  100.00 97.68 98.83  

97.59 97.30 97.45  93.66 88.96 91.25  

Simple Average Overall Accuracy Simple Average Overall Accuracy 

90.14 92.97 91.43 97.73 81.62 79.46 78.39 92.15 

Table 11. Performance metrics for the first floor using 6 features + Z coordinate and 6 ‘ad hoc’ 

features + Z coordinate. 

PERFORMANCE METRICS  

(6 Features + Z Coordinate) 

PERFORMANCE METRICS  

(6 ‘Ad Hoc’ Features + Z Coordinate) 

Precision Recall F1-Score  Precision Recall F1-Score  

86.20 100.00 92.59  92.63 100.00 96.17  

37.85 18.97 25.27  64.49 20.44 31.05  

90.49 61.57 73.28  72.75 78.18 75.37  

53.30 62.37 57.48  38.33 59.59 46.65  

84.62 87.34 85.96  78.39 85.03 81.58  

54.55 65.64 59.58  55.02 68.59 61.06  

83.67 92.07 87.67  85.93 84.49 85.20  

92.65 72.04 81.06  80.49 79.95 80.22  

100.00 97.80 98.89  100.00 97.28 98.62  
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89.87 81.92 85.71  89.10 83.23 86.07  

Simple Average Overall Accuracy Simple Average Overall Accuracy 

77.32 73.97 74.75 89.37 75.71 75.68 74.20 89.94 

3.3. Semantic Point Cloud 

The final point cloud rankings based on Machine Learning are shown in Figure 12, 

which represents the best four combinations of features for each floor. 

 

Figure 12. Semantic point cloud of the ground floor (on the top) and the first floor (on the bo�om), 

with the best four combinations for each floor. 
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Applying each combination to the two different floors produces quite important 

outcomes. From a graphical standpoint, an interesting phenomenon that suggests a 

possible reversal of roles arises when prioritising combinations with more a�ributes based 

on the confusion matrix results. 

In this regard, it appears visible that ‘ad hoc’ features, in conjunction with the Z 

coordinate and normals, provide almost flawless semantic discretisation for column-

related components. The ring that divides the shaft’s two portions may be clearly 

identified in this arrangement. However, there is some semantic dissonance in the upper 

sections, where the arch is occasionally confused with the first-floor corner column and 

the architrave with the ground-floor corbel. Combinations of 15 and 6 features produced 

intermediate findings, showing multiple semantic differentiating mistakes, mostly related 

to the ground-floor lower shaft and the first-floor parapet and stringcourse. 

Aside from the relatively minor errors arising from the different feature 

combinations, the results from the discretisation of point cloud geometries clearly 

demonstrate the value of this approach. A thorough, preliminary study focused on 

optimising point clouds through semantic enrichment can significantly facilitate the 2D 

and 3D digital reconstruction of Cultural and Architectural Heritage. In this context, the 

segmentation of point clouds into distinct and easily identifiable architectural components 

enables the creation of detailed and accurate representations of the elements, which can 

be used in CAD environments for extracting construction profiles and generating sections, 

details, plans, and more. 

Moreover, this approach proves particularly beneficial in the creation of 3D or 

parametric BIM models. The semantic point cloud offers a solid foundation for precise 

modelling, enabling the target selection of specific layers corresponding to distinct 

portions of the point cloud to be visualised during the modelling process. This is 

particularly pertinent in the context of digitisation for the conservation and enhancement 

of heritage, where large datasets present significant challenges, not only due to their 

computational demands but also because of the often irregular and complex geometries 

of buildings, which are inherently difficult to manage. 

4. Conclusions 

The integration of Artificial Intelligence (AI) within the realm of Architectural 

Heritage (AH) marks a transformative advancement in the automatic segmentation and 

classification of point clouds through Machine Learning, offering significant potential for 

the preservation, analysis, and understanding of historical structures. 

This study has achieved meticulous and accurate representations of a distinguished 

Renaissance palace in Zaragoza, yielding remarkable results. The AI-driven methodology 

has enabled the differentiation of geometrically intricate architectural and structural 

components, facilitating a deeper understanding and digital documentation of minute 

details that are often overlooked by the human eye. Notably, the automatic classification 

of point cloud segments was accomplished in mere seconds, demonstrating a significant 

optimisation of processing times. 

Despite these accomplishments, several notable challenges have been encountered, 

particularly the necessity for a comprehensive and representative training dataset, which 

presents a critical constraint. The manual segmentation of point clouds is inherently time-

consuming, dependent on the operator’s desired level of detail and precision, and 

consequently impacts the accuracy of the final classification. 

Nevertheless, the various combinations of geometric features explored here have 

yielded promising results, even with a limited training sample. In this instance, ‘ad hoc’ 

features were selected based on the geometric proportions of the architectural elements 

designated for segmentation. While these results were satisfactory, they did not match the 

performance levels achieved with combinations that included more extensive training 

data. The incorporation of normal coordinates and the Zcoordinate has substantially 
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enhanced the overall segmentation analysis, significantly improving the accuracy and 

efficacy of the classification process. 

It is essential to recognise that while the demonstrated automated methodology is 

generalisable within the framework of AH, the training data are specific to each study 

examined. This specificity could affect the broader applicability of the results. Addressing 

this gap may require the implementation of more sophisticated models; the integration of 

multi-sensor data; and the exploration of techniques, such as Segment Anything Model 

(SAM), Generative Adversarial Networks (GANs), Deep Learning, and more, to further 

augment system performance. Consequently, the development of more inclusive and 

diverse datasets will facilitate the management of a wider array of historical contexts and 

enhance the generalisation of models. 

Innovation in this field holds considerable potential to advance the understanding of 

historical architectural works and to create new avenues for heritage preservation, 

particularly when integrated into virtualisation frameworks such as Computer-Aided 

Design (CAD) or Heritage Building Information Modelling (HBIM). This offers valuable 

opportunities for future developments, particularly in facilitating automation across the 

operational stages of three-dimensional modelling. 

In this context, the present study functions as a foundational step, rather than an 

endpoint, providing a basis for further refinement. The segmentation of point clouds, in 

conjunction with the continuous evolution of segmentation and classification 

methodologies, can be extended to encompass semantic enrichment, with particular 

emphasis on HBIM contexts. Moreover, the integration of the Industry Foundation 

Classes (IFC) format enables the expansion of these methodologies, facilitating 

applications such as temporal analysis, while also ensuring the efficient management of 

data throughout the entire lifecycle of built heritage. Semantic point clouds can be 

seamlessly incorporated into BIM workflows, improving the precision of architectural 

modelling and facilitating key tasks such as verifying as-built models, detecting clashes, 

and managing assets. This integration not only optimises the design process but also 

significantly improves the maintenance and conservation of historical buildings. 
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